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1. Introduction
Halide perovskite nanocrystals (PNCs), 
first demonstrated in 2014, have been 
rapidly improved, yielding tunability 
throughout the visible spectrum, quantum 
yields approaching 100%, and diverse 
geometries and sizes.[1] Due to their excep-
tional properties, PNCs have already been 
incorporated into diverse applications, 
focusing on optoelectronics such as LEDs, 
solar cells, and photodetectors, but also 
in field-effect transistors and, even more 
recently, photocatalysis.[2–6] Despite these 
impressive improvements, several issues 
impede widespread commercialization, 
such as stability, lead toxicity, and spectral 
efficiency in the blue region of the vis-
ible spectrum.[7–9] This latter effect is due 
to the chloride-perovskites being far from 
defect tolerant, resulting in extremely poor 
efficiencies compared to bromide- and 
iodide-based perovskites.[10] Another way 
to tune the spectral response in PNCs is 
through quantum confinement. Especially, 
2D nanoplatelets (NPLs) are ideal in this 
regard, as they exhibit no inhomogeneous 
broadening in the confined dimension, 

with only incremental thickness values possible—currently 
between two and six monolayers (MLs).[11] Analogous to the 
bulk-like Ruddlesden–Popper perovskites,[12] their strong con-
finement can enable directional emission, boosting maximum 
theoretical external quantum efficiencies to 28%.[13] The quality 
of these colloidal quantum wells has improved significantly; 
however, their photoluminescence quantum yields are still far 
from unity, and reproducibility is an issue. Improving the NPL 
quality or that of any nanocrystal (NC) dispersion is an arduous 
task, involving a vast possible number of parameters relating to 
composition and fabrication. Synthesizing all of these is both 
infeasible and unnecessary, as it is possible to create robust and 
data-efficient predictors to describe the outcome of changes in 
fabrication parameters.[14]

The process of synthesis optimization, however is a daunting 
task if undertaken purely with experimental intuition. To this 
end, it is imperative to incorporate artificial intelligence into 
the pipeline. Artificial intelligence and machine learning have 

With the demand for renewable energy and efficient devices rapidly 
increasing, a need arises to find and optimize novel (nano)materials. With 
sheer limitless possibilities for material combinations and synthetic proce-
dures, obtaining novel, highly functional materials has been a tedious trial 
and error process. Recently, machine learning has emerged as a powerful tool 
to help optimize syntheses; however, most approaches require a substan-
tial amount of input data, limiting their pertinence. Here, three well-known 
machine-learning models are merged with Bayesian optimization into one to 
optimize the synthesis of CsPbBr3 nanoplatelets with limited data demand. 
The algorithm can accurately predict the photoluminescence emission 
maxima of nanoplatelet dispersions using only the three precursor ratios as 
input parameters. This allows us to fabricate previously unobtainable seven 
and eight monolayer-thick nanoplatelets. Moreover, the algorithm dramati-
cally improves the homogeneity of 2–6-monolayer-thick nanoplatelet disper-
sions, as evidenced by narrower and more symmetric photoluminescence 
spectra. Decisively, only 200 total syntheses are required to achieve this vast 
improvement, highlighting how rapidly material properties can be optimized. 
The algorithm is highly versatile and can incorporate additional synthetic 
parameters. Accordingly, it is readily applicable to other less-explored 
nanocrystal syntheses and can help rapidly identify and improve exciting 
compositions’ quality.
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become substantially more prominent in the field of materials 
science, both for discovering new material combinations and 
also for optimizing their fabrication.[15,16] Various approaches 
have emerged, such as artificial neural networks[17,18] or random 
forests and support vector machines.[19,20] However, no algo-
rithm is universally superior, with certain ones more suited 
for specific applications.[21] Moreover, combining different 
algorithms can merge their individual capabilities. One such 
example involves Gaussian processes (GPs) and Bayesian opti-
mization. GPs, with their inbuilt uncertainty quantification 
functionalities, are especially attractive given their data effi-
ciency and robustness against overfitting.[22–24] Even if the pre-
dictor is robust, however, the optimization algorithm must be of 
equal strength for a viable pipeline to be constructed. Bayesian 
optimization has shown its value in determining the optimal 
values of predictors, which elucidate the effect that different 
fabrication and chemical parameters have on the resulting 
material properties. This is accomplished by balancing the 
exploration of new areas in input parameter space against the 

exploitation of already acquired information.[16,25] However, this 
has required a massive experimental effort to achieve impres-
sive results, limiting the applicability of this method for rapid 
material discovery.

In this study, we develop an algorithm to rapidly optimize 
material synthesis as illustrated in Figure 1. We demonstrate 
the capabilities of the algorithm, comprising Gaussian pro-
cessing with a neural network and a random forest classifier, 
by applying it to a synthesis of 2D CsPbBr3-based NPLs with 
which we already have significant experience. The algorithm 
uses three precursor amounts to predict the emission wave-
length of the resulting NPLs and the quality, that is, the homo-
geneity of the photoluminescence (PL) spectra. Starting from 
a pool of 100 initial syntheses, we carried out seven rounds of 
optimization. The algorithm produced 14 new precursor com-
binations, which were then used for synthesis and the PL of 
the resulting dispersions measured. For all previously synthe-
sized NPL thicknesses (2–6 ML), we significantly reduced the 
width and asymmetry of the PL emission, signifying higher 
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Figure 1. Scheme of the optimization process: Initially existing data points (syntheses) were analyzed and used to predict a spectral figure of merit 
(FoM) based on the narrowness and symmetry of their PL spectra using Gaussian processes in combination with a random forest and a neural network. 
Constrained Bayesian optimization subsequently leverages the information of the artificial intelligence step to provide suggestions for new composi-
tions. For each cycle, 14 new syntheses were carried out and characterized. The amended dataset is subjected to a new optimization cycle.
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homogeneity and thus improved emission quality. Addition-
ally, the algorithm effectively predicted precursor combinations 
leading to hitherto unobtained, thicker NPLs (seven and eight  
MLs). The algorithm’s performance was strong, especially con-
sidering the small amount of necessary experimental synthe-
sizing. Importantly, it can easily be adapted to other less-known 
syntheses and incorporate additional synthetic input para-
meters, such as temperature and humidity.

2. Results and Discussion

2.1. Synthesis and Optical Characterization

In contrast to typical inorganic semiconductor NC syntheses 
and halide perovskite quantum dots, which rely on the hot-
injection method, our synthesis is based on the ligand-assisted 
reprecipitation (LARP) method.[2,11,26] Importantly, it is con-
ducted at room temperature in ambient atmospheres.[11,27,28] 
Briefly, a cesium-oleate precursor is injected into a PbBr2-ligand 
(comprising oleylamine and oleic acid) solution. After ≈10 s, 
acetone, which acts as an antisolvent, is injected into the solu-
tion to induce NPL formation. After 60 s of vigorous stirring, 
the reaction is terminated by centrifugation at 1800 g for 3 min. 
The supernatant is discarded, and the precipitate is redispersed 
in hexane. Our previous studies determined that NPLs form 
when the amount of the A-site cation, in this case, cesium, is 
restricted.[27] By fine-tuning the volumes of the cesium and 
lead-precursors and the anti-solvent, acetone, we were able to 
obtain nearly homogeneous dispersions of NPLs from two to 
six MLs.[11] Accordingly, we chose these three parameters as the 
input parameters for the learning algorithm while keeping all 
others, for example, synthesis time, temperature, and humidity, 
essentially constant. To quantify the quality of the synthesis, we 
acquired and analyzed PL spectra of the resulting dispersions. 
We chose not to focus on the PL intensity but rather on the nar-
rowness and the spectral position of the PL emission. Accord-
ingly, we determined the narrowness fnarby the usual half width 
at half maximum (HWHM) metric,[29] while the symmetry, fsym 

was given by interpreting the spectrum as a distribution and 
calculating its skewness.[30] As these two metrics have different 
ranges, they were normalized separately with the min–max 
method between zero and one and subsequently added. A more 
detailed derivation can be found in Supporting Information.

2.2. Designing the Algorithm

Accordingly, small values of fnar and fsym indicate good sam-
ples with a resulting FoM of one being a perfect spectrum and 
zero a very poor one. Examples of poor spectra are shown in 
Figure 2a,b, and the best spectrum according to the metric 
obtained in Figure 2c. The goal of the machine learning-pow-
ered process is thus the maximization of the FoM. Several 
aspects must be considered when developing the full frame-
work for guiding the NPL synthesis. Starting from a limited 
number of syntheses (100), we have to be sure to prevent 
overfitting. Therefore, to predict which precursor ratios yield 
the highest FoM values, we adopted a Gaussian process pre-
dictor using the python package GPy.[31] This choice was made 
because Gaussian processes are generally more robust than 
others with a limited number of data. Our goal was to obtain 
ideal spectra for a given NPL thickness; hence, we needed a way 
to determine how many MLs the resulting NPLs would have. 
Due to the strong confinement of the NPLs, there is a robust 
correlation between thickness and PL emission wavelength.[11] 
We implemented a neural network through the tensorflow 
library[32] to predict the PL peak position based on the precursor 
ratios, starting from the pool of initial syntheses. We incorpo-
rated this into the overall FoM optimization pipeline as soft or 
hard Lagrange multipliers, constraining the PL to a given spec-
tral window (see Table 1). In the soft case, we only incentivize 
and do not fully constrain PL emission near the mean of the 
spectral range. In contrast, in the hard case, the peak position is 
forced to fall on the mean, under the rationale that the sugges-
tions will be least affected by the peak position prediction error. 
The hard constraints gave the best results in the initial stages of 
the optimization, when the peak position was still inaccurate, 
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Figure 2. Examples of synthesized spectra with the classification of their merit according to narrowness (fnar), symmetry (fsym), and overall quality 
(FoM). a,b) Examples of poor spectra with (a) being extremely broad and (b) being quite asymmetric. c) PL spectrum from the synthesis with the highest 
obtained FoM value. An extremely narrow spectrum compensates for the slight asymmetry. d) The FoM calculation classifies this PL spectrum as very 
good due to a near-perfect symmetry. However, the short wavelength shoulder is a clear indicator of multiple thicknesses. This feature is predicted and 
preempted with the random forest classifier.
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with the soft constraints giving better flexibility and therefore 
results when the peak position could be more accurately pre-
dicted. More details are given in the Supporting Information.

In some syntheses, the PL spectrum revealed secondary 
peaks, which were not identified through the HWHM method, 
yet signify polydispersity, see Figure 2d. For this synthesis, 
the FoM is relatively high at 0.543; however, the shoulder 
at 455 nm is a clear sign of an inhomogeneous NPL popula-
tion. To increase the data efficiency of the optimization pipe-
line, we trained a random forest classifier with the aid of the 
library scikit-learn to identify the conditions leading to polydis-
perse NPL distributions (see Experimental Section for details). 
Importantly, while the classifier could identify roughly half of 
the combinations resulting in multiple peaks, it only errone-
ously excluded less than 5% of the combinations yielding single 
peaks (see Supporting Information, for more details). Conse-
quently, viable compositions are hardly prevented from being 
evaluated while large areas of infeasible compositional space 
are cordoned off, significantly improving the algorithm’s effi-
ciency. The final set of considerations results from heuristic 
laboratory rules garnered from experience. Among these are 
minimum precursor volumes, the condition that the concentra-
tion of the Cs-precursor must be larger than the lead precursor 
to ensure NPL formation, and that the acetone volume is at 
least 30% of the total precursor volume to ensure the function 
as an antisolvent.

These individual contributions were merged into a Bayesian 
optimization framework to deliver suggestions for promising 
precursor ratios for new syntheses. This approach generates 
suggestions focusing initially on points with high uncertainty 
and gradually shifting toward known areas with a high payoff. 
The advantage of this method is that it exploits known space and 
explores potentially promising points, but it completely neglects 
areas with a low payoff and low uncertainty. This results in a 
very data-efficient scheme, as only a fraction of the parameter 
space is explored to reveal local maxima and minima. The 
tradeoff between exploitation and exploration is merged into 
a surrogate function which is then optimized. Not many data 
points are initially available, so the algorithm favors explora-
tion at the cost of exploitation. However, over time, this balance 
shifts with further exploitation leading to a faster optimization 
of the surrogate function. In this phase, already acquired data 
points are exploited to refine suggestions and obtain optimized 
peaks. In this work, we used the expected improvement acqui-
sition function to define the balance between exploration and 
exploitation (see Supporting Information for additional details).

2.3. Optimization Process

Specifically, we generated 100 000 random 3D vectors 
 (representing the precursor ratios), adhering to the heuristic 

constraints as mentioned earlier. For each NPL thickness, we 
determined the vectors with the highest overall optimization 
goal not predicted to exhibit a double peak, and synthesized 
NPLs with these precursor settings. Overall, we ran seven 
cycles with 14 syntheses per cycle for a total of 220 syntheses, 
including the initial ones. An overview of all the syntheses is 
given in Figure 3a, where eachone is located in the 3D input 
parameter space (given by the volumetric ratios of the pre-
cursor solutions with the total volume normalized to 1) with the 
color signifying the emission wavelength. The overall trend is 
similar, with smaller Cs:Pb ratios leading to shorter emission 
wavelengths emanating from thinner NPLs. Note that the point 
density deviates significantly throughout the parameter space. 
This constitutes a visual representation of the algorithm ini-
tially exploring wide areas loosely and focusing on specific areas 
of high interest once it has developed a good understanding of 
the space. The quality of the PL spectra improved noticeably, as 
can be seen in Figure S1, Supporting Information, for the case 
of five ML NPLs. The FWHM narrows considerably from 38 to 
19 nm (193 to 99 meV), while the fsym is reduced by 1.607 to 0, 
achieving perfect symmetry. Additionally, the spectral position 
of the PL maximum shifts gradually from 490 to 486 nm. In 
terms of the FoM, this corresponds to an improvement from 
0.429 to 0.916. Similar improvement was achieved for all pre-
viously established NPL thicknesses, as shown in Figure 3b, 
where the FWHM before (gray bars) and after optimization 
(colored) are shown for all thicknesses. The optimized spectra 
are displayed as colored curves in Figure 3c, where the dashed 
gray ones are from typical initial syntheses. All optimized 
spectra are significantly narrower and less asymmetric. All peak 
maxima exhibited a blueshift with the sole exception of the 
three ML NPLs. The improvement can also be seen in the FoM 
values, which increased substantially for all thicknesses. These 
are displayed in Table 2 along with the precursor amounts (both 
new and old). While there are only subtle shifts in the precursor 
amounts for some thicknesses, there are also significant devia-
tions, such as for the four ML and six ML NPLs. This demon-
strates the advantage of the employed approach, as it is unlikely 
these precursor ratios would have been heuristically selected. 
The quality of the spectra is noticeable even when compared 
to the best spectra obtained from the initial NPL synthesis (see 
Figure S2, Supporting Information).[11]

2.4. Results of the Optimized NPL Syntheses

The algorithm performed very well, as shown in Figure 4. With 
every new synthesis added to the training sets, the error in pre-
dicting the quality factor decreased substantially (Figure 4a). 
As the downward trend is still steep at the end of the imple-
mented training data, the algorithm would probably improve 
further with more syntheses. Nevertheless, even this level of 
accuracy was sufficient for the purposes of the application. In 
contrast, the predictor for the resulting PL emission wavelength 
improved rapidly for the first 30–40 syntheses, continued by 
a slower improvement (Figure 4b). This shows how well the 
precursor amounts define the PL emission of the resulting 
NPLs and that the algorithm could adapt quickly. The differ-
ence between predicted and measured PL emission maxima is 

Adv. Mater. 2023, 35, 2208772

Table 1. NPL thickness and constraints for upper and lower limits.

NPL thickness [ML] 2 3 4 5 6 7 8

Lower limit [nm] 427 455 472 484 491 499 504

Upper limit [nm] 438 467 479 489 498 503 507
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 highlighted in Figure 4c. Here, there is a very strong grouping 
of the points along the diagonal (indicated as the gray line), 
indicative of very high accuracy. Interestingly, the algorithm 
predicted several precursor combinations to result in spectra 
with emission maxima at wavelengths longer than 494 nm, 
which corresponds to six ML NPLs. While not all of these 
resulted in NPLs, we were able to obtain two separate disper-
sions with distinct emission maxima at 501 and 505 nm, which 
we could assign to seven ML and eight ML NPLs, respectively 

and confirm through TEM imaging (see Figure S3, Supporting 
Information). We must note that the eight ML NPL disper-
sion also contains small amounts of slightly thicker NPLs. 
Nevertheless, the algorithm enabled us to obtain specific NPL 
thicknesses for the first time, which also helped determine 
important excitonic properties of the strongly confined asym-
metric nanocrystals.[33] This is very impressive considering:  
a) the significantly low amount of data (i.e., syntheses) being 
fed into the algorithm and b) the fact that no data points in this 

Adv. Mater. 2023, 35, 2208772

Figure 3. a) Results of all synthesized NPL dispersions displayed in the 3D precursor parameter space of precursor ratios, normalized, so that all 
volumes add to 1. The points are colored according to their respective PL emission maximum. b) The narrowness of NPL spectra was measured 
by FWHM values (in meV) before optimization (gray bars) and after optimization (colored bars). A clear improvement is observed for all samples.  
c) Optimized PL spectra for all NPL thicknesses (colored lines) compared to initial, typical PL spectra (dashed gray). As the seven and eight ML NPLs 
were only obtained through optimization, there are no initial spectra.

Table 2. Precursor amounts and FoMs for the optimized and conventional syntheses of different NPL thicknesses are listed.

Conventional ratios Optimized ratios % Improvement

NPL PbBr2 Cs-oleate Acetone FoM PbBr2 Cs-oleate Acetone FoM

2 ML 0.58 0.029 0.38 0.330 0.680 0.016 0.304 0.987 198

3 ML 0.411 0.041 0.548 0.727 0.488 0.024 0.488 0.560 No improvement

4 ML 0.358 0.045 0.597 0.711 0.472 0.127 0.401 0.794 11

5 ML 0.294 0.059 0.647 0.721 0.299 0.084 0.617 0.439 No improvement

6 ML 0.247 0.062 0.691 0.394 0.218 0.020 0.762 0.917 132

7 ML – – – – 0.302 0.132 0.566 0.459 –

8 ML – – – – 0.096 0.0030 0.814 0.469 –
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spectral region were provided, proving the strong extrapolative 
abilities of our pipeline. We carried out only 220 syntheses, 
which is more than an order of magnitude less than in similar 
studies[16] and our previous experience with the synthesis cer-
tainly helped streamline the process. Accordingly, in the next 
step, we will apply the algorithm to a novel synthesis, which we 
have not yet had experience with, and test how well it performs 
in this case and which parts might need further optimization. 
As is, our code and data are freely available for method evalu-
ation, reproduction, and repurposing (see Experimental Sec-
tion). Also, to further increase turnaround time and enhance 
reproducibility, we will look into merging the algorithm with 
high throughput, automated synthesis via microfluidics with 
temperature control.[34,35]

3. Conclusion

We have implemented a novel machine-learning method to 
obtain CsPbBr3 NPLs of a given thickness, with high optical 
quality and a vastly reduced amount of data. The algorithm, 
comprising three machine-learning models merged with 
Bayesian optimization, can optimize the spectral quality, thus 
the monodispersity of the samples and the desired emis-
sion wavelength, that is, the thickness of the resulting NPLs. 
Additionally, predicting and taking into account the purity of 
the resulting spectrum and incorporating additional heuristic 
constraints helped decrease the data pressure, meaning that 
the algorithm was able to rapidly improve the quality of NPL 
dispersions while requiring only at most three optimization 
cycles per NLP. In total, only 220 samples were required to 
obtain these results, which are orders of magnitude less than 
other, more complex approaches. Moreover, the model was able 
to identify precursor ratios leading to hitherto unobtainable 
NPL thicknesses, proving that the models learned correlations 
beyond the training set bounds, which is of high significance to 
the prediction certainty. Further, we acquired spectra that hint 
strongly at the formation of even thicker NCs, some of which 
are potentially unconfined; however, further investigation will 
be necessary to confirm these findings. The model can easily be 
expanded to account for additional synthetic parameters, such 
as temperature and humidity, and optimize quantum yields or 
stability. Able to improve a more-known synthesis so substan-

tially, the algorithm should be able to rapidly optimize the syn-
thesis and quality of less-known materials. This also constitutes 
one of the next steps for the algorithm, besides implementing 
a high throughput automated synthesis via microfluidics to 
 further speed up the process and ensure higher reliability.

4. Experimental Section
Synthesis: Cs2CO3 (cesium carbonate, 99%), PbBr2 (lead(II)bromide, 

>98%), oleic acid (technical grade 90%), oleylamine (technical grade 
70%), acetone (for HPLC, >99.9%), toluene (for HPLC, >99.9%), and 
hexane (for HPLC, >97.0%, GC) were purchased from Sigma-Aldrich and 
used without further purification.

The PbBr2 ligand solution and Cs-oleate were prepared according to 
Bohn et al.[11] The synthesis procedure remained the same for all used 
synthesis parameters. It is presented in the following: The synthesis 
was carried out under an ambient atmosphere at room temperature. 
The synthesis ratios were multiplied by three to get reasonable volumes 
to work with in the laboratory. A reaction glass was loaded with  
PbBr2-precursor solution and Cs-oleate was immediately added under 
vigorous stirring. After 10 s, acetone was added quickly, and the reaction 
mixture was stirred for 1 min. Afterward, the mixture was centrifuged 
at 4000 rpm for 3 min, and the precipitate was redispersed in hexane 
(2 mL). Immediately after synthesis, the samples were optically 
characterized with a commercial spectrometer (FLOUROMAX-Plus, 
HORIBA).

Algorithm Details: In this chapter, a brief overview of each algorithmic 
component of the pipeline in order to facilitate its reproduction and 
reuse is presented. For the purposes of reproducibility of results, the 
code and data are available in the following repository https://github.
com/benkour/Quantum_Dot_optimization.git. All of the information on 
the required package versions is available in the readme of the repository. 
Algorithm parameters that are not explicitly mentioned have default 
values that can be readily found in the documentation. All algorithms 
were tested with different random seeds and parameters, and without 
exception, the methods were found to be robust to hyperparameter 
changes.

Peak Position Prediction: A neural network was implemented through 
the tensorflow library[32] and trained to identify the peak position 
based on the ratios of the precursor solutions. It consisted of three 
hidden layers with five neurons and an output layer with one neuron. 
The layer activations were respectively elu, relu, relu, elu, determined 
by statistical space search of the available activations, neuron number 
and layer number. The uniform variance scaling initializer was chosen 
as the weight initializer. The optimizer used was root mean squared 
propagation (RMSDrop) with exponential decaying learning rate and 
the training took 1000 epochs. The network was evaluated employing 
30 random 98–2% splits and training for 1000 epochs. The reason for 

Adv. Mater. 2023, 35, 2208772

Figure 4. a) Evolution of error for the FoM prediction with an increasing number of training samples. The error would likely decrease even further with 
additional syntheses. b) Evolution of error for the peak position predictor with an increasing number of training samples. The initially low error has 
almost reached a plateau, confirming the high efficiency of the algorithm in predicting the resulting PL emission maxima. c) The final accuracy of the 
peak position predictor. The outlier points correspond to rare occurrences in the dataset and hardly decrease the overall evaluation. All results were 
generated with a 90–10 training validation split and tenfold validation.
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the unusually small test set is the limited amount of data and was 
compensated by the multiple models trained.

Quality of Peak Prediction: The quality of the peak was assessed by 
combining two metrics, one for symmetry and one for width. The 
symmetry was defined according to Equation 1 and is reflecting the 
skewness metric drawn from the realm of statistics.

f = −100mean median
meansym  (1)

The narrowness fnar was defined by the full width of the distribution at 
half minimum (FWHM), as defined routinely, for example ref. [36]

The total objective function was defined by

f
f f

= +








normalization 1

normalization( ) normalization( )obj
sym nar

 (2)

where normalization() denotes the 0–1 min max normalization that 
brings both metrics to the same magnitude so that they can be taken 
into account equally.

A Gaussian process predictor was implemented through the Gpy 
library and trained to predict the quality of the peak using the ratios 
of the precursor solutions as inputs. The kernel used was the sum of 
a Matern32 and RBF kernels and optimized by maximization of the 
maximum likelihood estimation. The predictor was evaluated employing 
30 random 98–2% splits and training for 1000 epochs. The reason 
for the unusually small test set is the limited amount of data and is 
compensated by the multiple iterations of the training-test cycle. It must 
be noted that the intuition behind this algorithm is the modeling of the 
predictions as normal distributions, whose parameters are optimized. It 
is therefore a natural result of this method that uncertainty is quantified 
simultaneously with the prediction and is reflected in the standard 
deviation of the resulting distributions.

Formability Prediction: The prediction of whether a composition will 
lead to a feasible, pure perovskite was undertaken by a random forest 
classifier with the maximum depth per tree being 150 and the minimum 
samples per split 10. The results were evaluated by performing a 
stratified fivefold validation. Both the stratified fold scheme and the 
classifier were implemented through the sklearn library.[37]

A brief overview of the methods is given in Table 3.
Bayesian Optimization: Multiple acquisition functions were tested 

and the expected improvement was found to perform best for the given 
configuration. The initial value of the tradeoff between exploration and 
exploitation was 1 and it slowly decreased until in the final iteration it had 
the value 0.01. Further, it was suitably constrained with the constraints 
described in Section 4.

Confusion Matrix for the Multi-Peak Classifier: This double peak 
random forest classifier has an error of ≈15% and the confusion matrix 
shown in Table 4.

Constraints: The peak position was introduced through two separate 
constraining strategies. The first applied hard Lagrange multipliers 
of the form shown in Equation 3 on the upper and lower limit of the 
wavelength for each nanoplatelet number.

and[ ] [ ]pred min max prede e− −ν ν ν νΞ∗ − Ξ∗ −  (3)

with Ξ being a very large number, νmax is the maximum peak wavelength 
of the respective NPL thickness, and νmin the minimum wavelength of 
the respective NPL thickness. This gave more freedom to the algorithm 
but made it sensitive to peak prediction errors close to the boundaries. 

To counter that a second strategy was developed that gave a small 
advantage to peaks closer to the middle point of the wavelength range. 
This constraint took the form shown in Equation 4

F
ν ν
ν ν

−
− ×mean pred

min max
FoM (4)

with νmean being the mean wavelength of the respective NPL thickness 
and FFoM the predicted value for the symmetry and narrowness. In 
this fashion, a penalty proportional to the objective function was 
implemented, incentivizing but not constraining the optimizer to search 
closer to the middle point.

The formability and purity constraint was implemented with a single 
hard Lagrange multiplier:

e F− −Ξ∗ − 1[1 ]class  (5)

where Fclass = 1 signifying a normal peak and Fclass = 0 signifying multiple 
peaks present.
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Table 3. Method overview.

Method Inputs Outputs

Deep neural network Precursor solution ratios Peak position

Gaussian processes Precursor solution ratios Narrowness and symmetry  
metric

Random forest Precursor solution ratios 0–1 for viable-non viable 
compositions

Table 4. Confusion matrix for number of peaks prediction.

True behavior

One peak Multiple peaks Total

Predicted behavior One peak 167 25 192

Multiple peaks 8 20 28

Total 175 45 220
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