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1 | INTRODUCTION

Florian Pfisterer |

Fabian Scheipl

Abstract

Outlier or anomaly detection is an important task in data analysis. We discuss
the problem from a geometrical perspective and provide a framework which
exploits the metric structure of a data set. Our approach rests on the manifold
assumption, that is, that the observed, nominally high-dimensional data lie on
a much lower dimensional manifold and that this intrinsic structure can be
inferred with manifold learning methods. We show that exploiting this struc-
ture significantly improves the detection of outlying observations in high
dimensional data. We also suggest a novel, mathematically precise and widely
applicable distinction between distributional and structural outliers based on
the geometry and topology of the data manifold that clarifies conceptual ambi-
guities prevalent throughout the literature. Our experiments focus on func-
tional data as one class of structured high-dimensional data, but the
framework we propose is completely general and we include image and graph
data applications. Our results show that the outlier structure of high-
dimensional and non-tabular data can be detected and visualized using mani-
fold learning methods and quantified using standard outlier scoring methods
applied to the manifold embedding vectors.
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Detecting atypical observations that deviate substantially from the bulk of the data is an important task in data analysis
with applications across domains like, for example, intrusion detection (Zhang & Zulkernine, 2006), medical imaging
(Fritsch et al., 2012), or network analysis (Azcorra et al., 2018). The most common terms for this task are outlier or
anomaly detection, but many different terms are used (Zimek & Filzmoser, 2018). Although there is a vast amount of
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literature on the topic, there is neither a commonly accepted, precise definition of what exactly constitutes outliers or
anomalies, nor agreement on whether these two terms are synonymous. As Unwin (2019, p. 635) puts it:

“Outliers are a complicated business. It is difficult to define what they are, it is difficult to identify them,
and it is difficult to assess how they affect analyses.”

Overviews on the topic are given by Zimek et al. (2012) or Goldstein and Uchida (2016) from a computer science
perspective, and by Rousseeuw and Leroy (2005) or Unwin (2019) from a statistical perspective. Kandanaarachchi and
Hyndman (2020) provide a short summary including both perspectives, while Campos et al. (2016) as well as Marques
et al. (2020) focus on the evaluation of unsupervised outlier detection. Zimek and Filzmoser (2018) provide a compre-
hensive survey bringing together both perspectives with in-depth epistemological discussion. In particular, Zimek and
Filzmoser (2018) discuss that there are two different notions of outliers and different terms used to describe these
notions—including, for example, apparent, discrepant, real, contaminating, or true outlier—in the literature. From this
discussion, it can be inferred that (1) Zimek & Filzmoser (2018, p. 7) distinguish “true” and “apparent” outliers and con-
sider “those objects as ‘(true) outliers’ that have been ‘generated by a different mechanism’ than the remainder or
major part of the data or than the whatsoever defined reference set”, (2) there is neither a clear understanding of how
these two notions are different and actually manifest in practice nor (3) a “language” to precisely describe the problem
theoretically.

In the more statistically flavored literature, the problem of unsupervised outlier detection is usually tackled by defin-
ing outliers based on a single probability distribution P. If P allows for a density, outliers are simply observations in
low-density regions. From this perspective, we have distributional outliers whose outlyingness is defined relative to a
single probability distribution. The notion of distributional outliers is easy to define precisely in probabilistic terms, for
example, based on minimum level sets (Scott & Nowak, 2006) or M-estimation (Clémengon & Jakubowicz, 2013), and
has yielded a multitude of results and algorithms. In practical terms, this requires access to (an estimate of)) the underly-
ing density and finding a suitable (local) density level below which observations are to be classified as outliers. Note
that both are infeasible for general, non-tabular data types like shapes, functions, or images whose domains frequently
do not admit probability densities. However, Zimek and Filzmoser (2018) emphasize that “observations which are in
the extremes of the model distribution (i.e., distributional outlier) should be distinguished from ‘real’ outliers (contami-
nants)” (Zimek & Filzmoser, 2018, p. 13). This second notion of outliers (“true” or “real” outliers) is not reflected by the
statistical concept because such outliers are assumed to be observations generated by a different data-generating pro-
cess. This is reflected in statements like “different mechanism” or “any observation that is not a realization from the tar-
get distribution” (Beckman & Cook, 1983, p. 121). That means, for the second notion (“real outliers”) it is implicitly
assumed that outliers are not independent and identically distributed (IID) observations. So next to distributional out-
liers there are also structural outliers whose outlyingness is caused by the structural differences between the underlying
data generating processes. The two outlier types are complementary and both are necessary to fully address the chal-
lenges of outlier detection. In contrast to distributional outliers, structural outliers are much more difficult to formalize,
but also more general.

With this work, we intend to “broaden” the view on the problem of unsupervised outlier detection to account for the
two notions of outliers present in the literature. We show that a geometric approach to the problem, which does not
require the availability of probability densities defined over the data space but only some metric structure (i.e., suitable
dissimilarity or distance measures), allows for a more precise conceptualization and terminology. To do so, we focus on
building up intuition and demonstrating the application of these concepts to diverse and comprehensive practical exam-
ples and visualizations. However, to be able to “speak” of this new perspective without referring to vague and subjective
perceptions as done previously (see Zimek & Filzmoser, 2018), we also consider it necessary to introduce a certain degree
of mathematical terminology. The provided degree of formality is exhausted in the definition of distributional and struc-
tural outliers in precise mathematical terms and thus serves the need for precise terminology but does not overload the
work with more formalism than we think necessary to contribute to the overall scope of the study. Readers interested in
more rigorous mathematical approaches to infer structures in data may, for example, consult Mordohai and Medioni
(2010) for dimensionality estimation and manifold learning based on tensor voting, Niyogi et al. (2011) for a topological
perspective on unsupervised learning, Guan and Loew (2021) of a distance-based measure of class separability, and
Kandanaarachchi and Hyndman (2020) for outlier detection in tabular data based on dimensionality reduction.

The rest of the paper is structured as follows. Section 2 describes the scope and contribution of the study and out-
lines its background and related work. The proposed theoretical framework is defined in Section 3 and its practical
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relevance is demonstrated in Section 4 using qualitative and quantitative experiments for a variety of data sets of differ-
ent data types. Section 5 discusses our findings and the resulting conceptual implications, before we conclude in
Section 6.

2 | PRELIMINARIES
2.1 | Scope and contribution of the study

With this focus article, we intend to draw connections between different conceptual aspects provided in the overview
article by Zimek and Filzmoser (2018) and as proposed by us in a paper focusing on functional data analysis (FDA).
Therefore, we recapitulate the underlying conceptualization presented in the earlier paper in a more general form and
different terminology in Section 3. This framework builds on principles from manifold learning (Lee & Verleysen, 2007;
Ma & Fu, 2011), that is, dimension reduction methods that infer the intrinsic lower-dimensional manifold structure of
high-dimensional data and yield low-dimensional vector representations of the data. This perspective allows us to for-
malize structural and distributional outliers jointly in a single mathematical framework, where structural outliers are
data that are separate from the main data manifold, and distributional outliers are data that are situated at the periph-
ery of, but still on the main data manifold. While the first paper exclusively focused on the functional data setting, the
present focus article generalizes the underlying conceptualization of outlier detection to other data types. This is
straightforward theoretically but has important general conceptual implications that have never been described in
detail and demonstrated on diverse real data problems before. In particular, we draw connections between and provide
a unifying perspective on different data types (functions, images, graphs, tabular data) which were previously often
treated separately from a theoretical as well as a practical perspective, in particular when it comes to outlier detection.

The main contribution of this review paper is to discuss and demonstrate two conceptual aspects of outlier detection
in general. First of all, as already outlined, there seems to be a lack of clarity about what defines outliers, evidenced also
by the plethora of terms used to describe the issue (Zimek & Filzmoser, 2018). Several recent reviews on the topic also
point out this conceptual ambiguity (Goldstein & Uchida, 2016; Unwin, 2019; Zimek & Filzmoser, 2018). In particular,
the comprehensive overview of Zimek and Filzmoser (2018, p. 4) devotes a complete section to the question of “what
an ‘outlier’ possibly means”. Recall that they define “true outliers” as objects “that have been ‘generated by a different
mechanism’ than the remainder or major part of the data or than the whatsoever defined reference set” and distinguish
them from “objects that appear to be outliers (independent of whether or not they actually are (true) outliers)” (Zimek
& Filzmoser, 2018, p. 7). As we will show, the geometrical framework provides suitable mathematical terminology to
delineate “true” and “apparent” outliers much more cleanly and thus reduces the conceptual ambiguity that surrounds
the topic: We transfer concepts established in manifold learning to the problem of outlier detection, deriving a novel
underlying conceptualization of the problem of outlier detection that (1) is capable of reflecting two types of outliers,
(2) replaces vague notions of “real”, “contaminant” or “apparent” outliers with a precise definition, and (3) incorporates
the well-established concept of distributional outliers in a unified fashion. With this, we can abandon vague notions of
outlier subtypes in favor of two precisely defined concepts.

Second, our framework also suggests that outlier detection in high-dimensional (and/or non-tabular) data is not
necessarily more challenging than in low-dimensional settings once the underlying manifold structure is recovered and
exploited. This is important because high dimensionality is often reported to be particularly problematic for outlier
detection and many outlier detection methods break down or at least face particular challenges in such settings
(e.g., Aggarwal, 2017; Aggarwal & Yu, 2001; Goldstein & Uchida, 2016; Kamalov & Leung, 2020; Navarro-Esteban &
Cuesta-Albertos, 2021; Ro et al., 2015; Thudumu et al., 2020; Xu et al., 2018; Zimek et al., 2012).

To highlight these aspects, we again provide simple and easily accessible functional data examples to demonstrate
the principal practical implications (in addition to the recapitulation of the theoretical conceptualization). Functional
data analysis (Ramsay & Silverman, 2005) deals with data that are (discretized) realizations of stochastic processes over
a compact domain. Functional data is well suited to illustrate the underlying conceptualization both practically and the-
oretically because it is usually highly structured (the manifold assumption is specifically realistic and useful), theoreti-
cally/analytically well accessible, and easily visualized in bulk. Beyond the FDA setting, we also use examples of other
data types including image, graph, curve, and tabular data.

Finally, our framework is fully general and does not rely on a specific combination of manifold learning and outlier
detection methods. To demonstrate its practical performance, we show that one of the simplest and most established
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manifold learning methods—Multidimensional Scaling (MDS) (Cox & Cox, 2008)—combined with a standard outlier
detection algorithm—Local Outlier Factors (LOF) (Breunig et al., 2000)—already yields a flexible, reliable and generally
applicable recipe for outlier detection and visualization in complex, high-dimensional data.

2.2 | Background and related work

The fundamental assumption of manifold learning is that the high-dimensional data observed in a D-dimensional space
‘H actually lie on a d-dimensional manifold M C ‘H with d < D. Manifold learning methods yield an embedding function
e:H— Y from the high-dimensional data space to a low-dimensional embedding space ) such that the configuration
of embedded data reflects the characteristics of M. The terms manifold learning and nonlinear dimension reduction
are often used interchangeably (Lee & Verleysen, 2007; Ma & Fu, 2011). Typically, the fundamental step is to compute
distances between the high-dimensional observations. Methods based on this approach are, for example, Multi-
dimensional Scaling (MDS) (Cox & Cox, 2008), Isomap (Tenenbaum et al., 2000), diffusion maps (Coifman &
Lafon, 2006), local linear embeddings (Roweis & Saul, 2000), Laplacian eigenmaps (Belkin & Niyogi, 2003), t-
distributed stochastic neighborhood embeddings (t-SNE) (Maaten & Maaten & Hinton, 2008), and uniform manifold
approximation and projection (UMAP) (McInnes et al., 2018), to name only a few. The methods differ in how they infer
the manifold structure from these distances and how they obtain low-dimensional embedding vectors from these.

Despite their promising results in other settings, manifold learning methods have not found application for outlier
detection to a significant extent so far. Kandanaarachchi and Hyndman (2020) define an outlier detection method
explicitly based on dimension reduction, while Pang et al. (2018) make use of ranking model-based representation
learning. However, they do not provide a general conceptual framework and focus on tabular data. For functional data,
Xie et al. (2017) introduce a geometric approach that decomposes functional observations into amplitude, phase, and
shift components in order to identify specific types of outliers. However, the approach is only applicable to functional
data and does not make use of the intrinsic structure of the functional observations from a manifold learning perspec-
tive. Ali et al. (2019) analyze time series data using 2D-embeddings obtained from manifold methods for outlier detec-
tion and clustering and Toivola et al. (2010) compare specific dimensionality reduction techniques for outlier detection
in structural health monitoring, but both focus on practical considerations and do not provide a theoretical underpin-
ning. Another line of work focuses on projection-based outlier detection, for example for high-dimensional Gaussian
data (Navarro-Esteban & Cuesta-Albertos, 2021), financial time series (Loperfido, 2020) or functional data (Ren
et al., 2017).

3 | GEOMETRICAL FRAMEWORK FOR OUTLIER DETECTION

The framework we propose generalizes an approach for outlier detection in functional data developed recently
(Herrmann & Scheipl, 2021). Since the approach exploits the metric structure of a functional data set, it is straightfor-
ward to generalize it to other data types, both from a theoretical as well as a practical perspective. Theoretically, the
observation space needs to be a metric space, that is, it needs to be equipped with a metric. Practically, there only needs
to be a suitable distance measure to compute pairwise distances between observations. Two assumptions are fundamen-
tal for the framework. First of all, the manifold assumption that observed high-dimensional data lie on or close to a
(low-dimensional) manifold. Note that functional data typically contain a lot of structure, and it is often reasonable to
assume that only a few modes of variation suffice to describe most of the information contained in the data, that is,
such functional data often have low intrinsic dimension, at least approximately, see Figure 1 for a simple synthetic
example. Similar remarks hold for other data types such as image data (Lee & Verleysen, 2007; Ma & Fu, 2011). Second,
it is assumed that outliers are either structural outliers—or in the terminology of Zimek and Filzmoser (2018, p. 10)
“real outliers” stemming from a different data generating process than the bulk of the data—or distributional outliers,
observations that are structurally similar to the main data but still appear outlying in some sense. We make these
notions mathematically precise in the remainder of this section based on the exposition in Herrmann and Scheipl
(2021) before we demonstrate the practical relevance of the framework in Section 4 and summarize its general concep-
tual implications in Section 5.
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FIGURE 1 Example data types. (a) Functional inliers (gray) with a structural outlier (red) and distributional outliers (blue). (b) Graph
data with a structural outlier (lower right graph). (c) Image data with a structural outlier (lower right image).

Given a high-dimensional observation space H of dimension D, a d-dimensional parameter space ® C R¢, such that
the elements 0; € ® are realizations of the probability distribution P over the domain R, that is, 6; ~ P, and given an
embedding space Y C R?, define the mappings ¢ and e so that

@iMHi’y,

with My, C 'H a manifold in the observation space. The structure of My, is determined by the structure and dimension-
ality of ®, P, and the map ¢, which is isometric for the appropriate metrics in ® and H. Conceptually, the low-dimen-
sional parameter space ® represents the modes of variation of the data and the mapping ¢ represents the data
generating process that yields high-dimensional data x; = ¢(6;) € My, characterized by these modes of variation. We
assume that low-dimensional representations of the observed data in the embedding space ), which capture as much
of the metric structure of My, as possible, can be learned from the observed data. A successful embedding e then also
recovers as much of the structure of the parameter space ® as possible in the low-dimensional representa-
tions y; =e(x;) € ).

In our framework, distributional outliers are defined w.r.t. minimum volume sets (Polonik, 1997) of P in this param-
eter space ©:

Definition 1. Minimum volume set.

Given a probability distribution P over (a subset of) R¢, a minimum volume set Q is a set that minimizes the qua-
ntile function V(a) = inf c < ¢{Leb(C) : P(C) > a},0 <a < 1 for i.i.d. random variables in R¢ with distribution P, C a class
of measurable subsets in R? and Lebesgue measure Leb.

So Q; » is the smallest region containing a probability mass of at least a. We can now define structural outliers and
distributional outliers as follows:

Definition 2. Structural and distributional outlier.

Define Mg 4 as the codomain of ¢ applied to ©.

Define two such manifolds M, = Me, 4, and M. = Meg_4, and a data set X C MyUM,.
W.lo.g., letr= Hx“xi {iiﬁf“sﬁﬁlﬁ/tf} | «< 1 be the structural outlier ratio, that is, most observations are assumed to stem
from M.. Then an observation x; € X is

« a structural outlier if x; € M, and x; ¢ M, and
« adistributional outlier if x; € M. and 6; ¢ Q;,, where Q_ is defined by the density of the distribution generating ©,.

Figure 1 shows examples of three data types with structural outliers (in red) and some distributional outliers for the
functional data example. Since distributional outliers are structurally similar to inliers, they are hard to detect visually
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for graph and image data, as doing so requires a lot of “normal” data to reference against and we can only display a few
example observations here. As outlined, this is one reason why we again use functional data for our exposition in the
following.

Summarizing the framework's crucial aspects in less technical terms, we assume that the bulk of the observations
comes from a single “common” process, which generates observations in some subset M., while some data might come
from an “anomalous” process, which defines structurally distinct observations in a different subset M,. This follows
standard notions in outlier detection which often assume (at least) two different data-generating processes (Dai
et al., 2020; Zimek & Filzmoser, 2018). Note that this does not imply that structural outliers are in any way similar to
each other: P, could be very widely dispersed or arise from a mixture or several different distributions and/or M, could
consist of several unconnected components representing various kinds of structural abnormality. The only crucial
aspect is that the process from which most of the observations emerge yields structurally similar data. We consider set-
tings with a structural outlier ratio r € [0,0.1] to be suitable for outlier detection. The proportion of distributional outliers
on M., in contrast, depends only on the a-level for € ,, . Practically speaking, neither prior knowledge about these
manifolds nor specific assumptions about structural differences are necessary for our approach. The key points are that
(1) structural outliers are not on the main data manifold M., (2) distributional outliers are at the edges of M, and (3)
these properties are preserved in the embedding vectors as long as the embedding is based on an appropriate notion of
distance in H.

4 | EXPERIMENTS

This section lays out practical implications of the framework through experiments on several different data types, via a
comprehensive qualitative and visual analysis of six examples. In addition, we provide quantitative results for six
labeled data sets.

41 | Methods

The focus of our experiments is to evaluate a general framework for outlier detection, which is motivated by geometri-
cal considerations. With these experiments, we support the claim that the perspective induced by the framework lets us
visualize, detect, and analyze outliers in a principled and canonical way. For this demonstration, we chose Multi-
dimensional Scaling (MDS) (Cox & Cox, 2008) as our embedding method and Local Outlier Factors (LOF) (Breunig
et al., 2000) as our outlier scoring method. Note that the experiments are not intended to draw conclusions about the
superiority of these specific methods and other combinations of methods may be as suitable or even superior for the
purpose (see for example results for Isomap in Herrmann and Scheipl (2021)).

However, more sophisticated embedding methods than MDS require tuning over multiple hyperparameters,
whereas MDS has only one—the embedding dimension. Moreover, an advantage of MDS over other embedding
methods is that it aims for isometric embeddings, that is, tries to preserve all pairwise distances as closely as possible,
which is crucial in particular to reflect structural outlyingness. In fact, Torgerson Multidimensional Scaling (tMDS, i.e.,
MDS based on L, distance)—that is: a simple linear embedding equivalent to standard PCA scores—seems to uncover
many outlier structures sufficiently well in many data settings despite its simplicity. For similar reasons, we chose to
use LOF as an outlier scoring method. This method also has a single hyperparameter, minPts, the number of nearest
neighbors used to define a point's (local) neighborhood, which we denote as k in the following. Moreover, in contrast to
many other outlier scoring methods such as one-class support vector machines (Mufioz & Moguerza, 2004) which
require low-dimensional tabular data as input (i.e., which can only be applied to complex data types indirectly by using
embedding vectors as feature inputs), LOF can also be applied to high-dimensional and non-tabular data directly as it
only requires a distance matrix as input. Experiments on functional data have shown that LOF applied directly to a dis-
tance matrix of functional data and LOF applied to the corresponding embedding vectors yield consistent results
(Herrmann & Scheipl, 2021).

Note, however, that beyond the ability to apply outlier scoring methods to low-dimensional embedding vectors of
high-dimensional and/or non-tabular data, such embeddings provide additional practical value: In particular, scalar
scores or ranks as provided by outlier scoring methods are not able to reflect differences between distributional and
structural outliers whereas such differences become accessible and interpretable in visualizations of these embeddings.
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This also points to a major caveat of the quantitative (in contrast to the qualitative) experiments, in which we use
ROC-AUC to evaluate the accuracy of outlier ranks obtained with LOF with respect to the “outlier” structure defined
by the different classes of labeled data. Setting one class as M, and contaminating this “normal” class with observations
from other classes, which are assumed to be structurally different and thus form M,, we obtain data sets
X C M.UM,. Although this is a widely used approach (Campos et al., 2016; Goldstein & Uchida, 2016; Pang
et al., 2018), such an evaluation only considers outliers as defined by the class labels and poor AUC values may not nec-
essarily imply poor performance if there are observations from the “normal” data class which are (distributionally or
structurally) more outlying (and thus obtain higher scores) than some of the “labeled” outliers, see also Campos et al.
(2016). This is why we do not merely report potentially problematic quantitative measures (Section 4.3), and instead
put more emphasis on qualitative experiments that are much closer to the way we would recommend using these
methods in practical applications.

4.2 | Qualitative assessment

In this section, we provide extensive qualitative analyses to demonstrate the practical relevance of the framework. First,
we demonstrate that the distinction between structural and distributional outliers is preserved in embeddings using
two simulated functional data sets. Second, using two real-world data sets—a functional and an image data set—we
show that the approach can be applied flexibly to different data structures. Third, we illustrate the general applicability
to more general data types based on synthetic graph data and real-world curves data. In the following, all LOF results
are obtained using k = 0.75n, where n is the number of observations.

4.2.1 | Demonstrating the framework'’s practical implications on idealized synthetic data

Figure 2 shows two simulated functional data sets (A & B, left) and their 2D PCA/tMDS embeddings (A & B, right).
One can observe that data set A is an example with structural outliers in terms of shape and slope. This is an extended
version of an example by Hernandez and Mufioz (2016) and, following their notation, the two manifolds can be defined
as Mg ={x(t)|x(t) =b+0.05¢t+ cos(20xt),b € R} U{x(t)|x(t) = (c— 0.05¢t) +-er,c,e, € R}  and M. = {x(t)|x(¢t) =a+
0.01t+ sin(#t*),a R} with t€[0,1] and a~N(u=156=4), b~N(u=506=3), c~N(u=2506=3), and
e;~N(u=0,06=4). Note that the structural outliers are not all similar to each other in shape or slope, which is
reflected in M, being a union of two structurally different manifolds.

In contrast, data set B of various (vertically shifted) Beta-distribution densities is an example where distributional
outlyingness is defined by phase—that is horizontal—variation and structural outlyingness by vertical shifts. The
respective  manifolds  are  defined as My ={x(t)]x(t)=b+B(t,a,p),(b,a,f) ERxR* xR*}  and
M= {x(t)|x(t) =B(t,a,p),(a,8) €RT x R*} with t€[0,1], @, ~U[0.1,2], b~ U[-5,5] and B the density of the beta
distribution. For both, we generate 100 “normal” observations from M, and 10 structural outliers from M,, with
D =500 evaluation points in the first and D = 50 evaluation points in the latter example.

Structural outliers are clearly separated from observations on M, in both cases and appear as outlying in the 2D
embeddings. Moreover, we see that distributional outliers are embedded at the periphery of M,. Numbers in the figures
are ascending LOF score ranks of the outliers. Note that M. C M, in data set B. Nevertheless, most structurally outly-
ing observations from M, are clearly separated in the embedding. Two structural outliers are in or very close to
M.UM, and thus appear in the main bulk of the data. The LOF scores also reflect this, as one of the distributional
outliers is ranked as even more outlying.

Summarizing, we see that in these simulated situations, practically relevant outlier sub-structure—deviations in
terms of functional shape, slope, or vertical shifts—are represented accurately by low-dimensional embeddings learned
from the observed high-dimensional data. In particular, structural outliers do not need to be similar to each other as
Example A demonstrates. Also, note that Example B illustrates as a by-product that there can be situations where the
approach yields meaningful results even though the two manifolds are not completely disjoint. However, this does not
necessarily hold in general. See Souvenir and Pless (2005) for an approach to disentangle intersecting manifolds. More-
over, we see that situations where distributional outliers appear “more” outlying than structural outliers are captured
as well. Note that this is a crucial aspect. Although this aspect is quantified correctly by an outlier scoring method such
as LOF, the two outlier types can be distinguished only if visualizations, as provided by embedding methods, are
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considered. Consider that evaluation of unsupervised outlier detection is often performed using a labeled data set, set-
ting observations from one class as inliers and sampling observations from another class as outliers, and then comput-
ing binary classification performance measures such as the AUC (Campos et al., 2016; Goldstein & Uchida, 2016; Pang
et al., 2018). Different class labels do not guarantee that the classes do not overlap, that is, that the respective manifolds
are disjoint in H, nor that there are no distributional outliers appearing more outlying than structural outliers. Thus,
there may be distributional outliers among the inliers which are scored as more outlying than structural outliers (see
data set B) and a purely quantitative assessment is likely to mislead. Being able to create faithful visualizations of such
more complex outlier structures for high-dimensional data is a crucial benefit of the proposed approach.

4.2.2 | Demonstrating flexibility on real functional and image data

Of course, real-world data settings are usually more complicated than our simulated examples. First of all, real data are
much more difficult to assess since the underlying manifolds are usually not directly accessible, so it is impossible to
define the exact structure of the data manifolds like in the simulated examples. In addition, some data sets may not con-
tain any clear structural outliers, while others may not contain any clear distributional outliers, or both. A crucial aspect
of the approach is that, although it is based on a highly abstract conceptualization involving unobservables like the
parameter space ® and its probability measure P, it is not at all necessary to come up with any such formalization of
the data generating process to put the approach into practice and obtain meaningful results, as will be demonstrated in
the following.

Consider Figure 3, which shows a real functional data set of 591 ECG measurements (Dau et al., 2019; Goldberger
et al., 2000) with 82 evaluation points per function, that is, a D =82 dimensional data set (a), and a sample of the
COIL20 data (Nane et al., 1996) (b). It is impossible to define the exact structure of the ECG data manifold. However,
the visualizations of the functions on the left-hand side suggest that there are no observations with clear structural dif-
ferences in functional form: none of the curves are clearly shifted away from the bulk of the data, nor are there any cur-
ves with isolated peaks, or observations with clearly different shapes. In accordance with this observation, there is also
no clearly separable structure in the embedding. However, observations that appear in low-density regions of the
embedding can be regarded as distributional outliers in terms of horizontal shift, that is, phase variation, like the three
observations with the earliest minima colored in blue. This is also reflected in the scoring of the embeddings, as the
observations with the lowest LOF ranks are clear distributional outliers in function space. However, the embedding
provides much more complete information in this example than LOF ranks and the functional visualization alone. For
example, they also pinpoint a vertical shift outlier in the first and last thirds of the domain (green curve, which would
be hard to detect based on its functional representation alone). This apparently represents a second “dimension” of dis-
tributional outlyingness.

The COIL20 data (Nane et al., 1996) consists of 1440 pictures (128 x 128, grayscale) of 20 different objects. The 72
pictures in each class depict one and the same object at different rotation angles with a picture taken at every 5° within
[0°,355°]. We use all 72 pictures of a rubber duck to represent observations from M, and randomly sample 7 observa-
tions (i.e., r ~0.1) from the 72 pictures of a toy car as structural outliers from M,. We compute L, distances of the vec-
torized pixel intensities (D = 1282 = 16384). Figure 3b, left column, shows a sample of 6 inlier and 3 structural outlier
pictures, the right column shows embeddings of all 79 images. Since the inlier data are images of a rotated object, M,
is the image of a one-dimensional closed and circular parameter space defining the rotation angle (c.f. Ma & Fu, 2011),
that is, other than in the ECG example substantial considerations yield at least some knowledge about the specific
structure of the data manifold(s) in this case.

The 2D embedding reflects the expected structure of our COIL20 subset very well, with clear separation of the 7 pic-
tures of the toy car as structural outliers. In addition, the embedding of M, indeed yields a closed, but not quite a circu-
lar loop, as does the embedding of the seven rotated images from M,. The corresponding 3D embedding (not shown)
reveals that the embeddings of the inliers lie on a rough circle folded over itself. In summary, in the ECG example there
seem to be no clearly separable, structurally different outliers that could be detected with tMDS, but only distributional
outliers, whereas in the COIL data there are clearly separate structural outliers, but no distributionally outlying obser-
vations. These two examples with very different intrinsic structures (single connected manifold with distributional out-
liers versus disconnected manifolds without clear distributional outliers) illustrate that it is not necessary to have
explicit prior knowledge about the data generating process or its outlier characteristics for the approach to work and
that it is able to handle different data manifold structures flexibly and successfully.
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FIGURE 2 Simulated functional data and their 2D embeddings. Numbered labels are ascending LOF score ranks of the
outliers (k =0.75n).

4.2.3 | Demonstrating generalizability on graph and curve data

Note that the COIL example illustrates that the framework also works in image data and that a fairly simplistic
approach of computing L, distances between vectorized pixel intensities yields very reasonable results in this example.
The framework is, however, not at all restricted to these two data types nor such a simple distance metric. Recall that
the approach can be applied to any data type whatsoever as long as a suitable distance metric is available. Beyond 1D
functional and image data, the framework can also be extended to more general and complex data types, for example,
graphs or 2D curves as depicted in Figure 4. We use more specialized distance measures to show that good results can
also be obtained on such data.

We simulate two structurally different classes of Erdds-Rényi graphs with 20 vertices (see Figure 4a). This structural
difference results from different edge probabilities p, that two given vertices of the graph are connected, setting p, =0.1
for M, and p,=0.4 for M,. We randomly sample 100 observations from M, and 10 from M,, that is, r=0.1, and
obtain a pairwise distance matrix by computing the Frobenius distances between the graph Laplacians.

The curves data (Figure 4b) consists of spiral curve drawings from an Archimedes spiral-drawing test that is used to
diagnose patients with Parkinson's disease (Alty et al., 2017; Steyer et al., 2022). Taking data from the dynamic version
of the test (Isenkul et al., 2014), we use 15 curves drawn by healthy controls not suffering from Parkinson's disease and
two curves drawn by Parkinson patients to represent potential structural outliers, where each curve is evaluated on
200 points. Previous investigations have shown that an elastic shape distance is better suited than L, distances to dis-
criminate between the two groups (Steyer et al., 2022).

So, in contrast to the previous examples, we use more specialized distance measures to capture the relevant struc-
tures in these settings. This illustrates that the approach is not only flexible with respect to the actual structure present
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in a given data set as demonstrated in the previous section but that it is also very generally applicable to a variety of
data types. The approach can be used for any kind of data simply by defining an appropriate (data-specific) distance
measure. In both, the embeddings of the graphs, as well as the embeddings of the curves, structurally different observa-
tions (in red) are clearly separated from the observations on M.. This is also reflected by their LOF scores. Moreover,
in both settings, there are observations from M, (in blue) which appear in peripheral, sparser regions of the ‘“normal”
data and thus can be considered distributional outliers. Note that it is not always immediately obvious on the level of
the original data why observations appear distributionally outlying. For example, in the graph data, note that other
than in previous examples (e.g., Figure 2a) comparing them to a few inliers does not reveal a striking difference at first
(in contrast to the structural outliers!): Figure 4a, left column, shows six inlier graphs in the 1st and 2nd row, the three
distributional outlier graphs in the 3rd row, and three structural outlier graphs in the 4th row.

Nevertheless, the embedding vectors and their LOF ranks indicate that the distributionally outlying observations
have obtained some specific characteristics setting them apart from most inlying observations. For example, further
analysis reveals that the graph with LOF rank 11 contains the node with maximum connectedness of all nodes in all
inlier graphs. Its degree is 8 (i.e., it is directly connected to 8 other nodes), while the average of the maximum degree in
the graphs on M, is just 4.39. In contrast, the graph with LOF rank 13 contains 8 isolated nodes of degree 0, while the
average number of nodes with degree 0 is only 2.47 on M.. The respective values of the graph with LOF rank 10 are
above the upper quartile for both of these metrics, with four unconnected nodes and a maximally connected node with
degree 6.

4.3 | Quantitative assessment

In order to provide less subjective experimental results, we assess the approach quantitatively, using labeled data with
at least two classes. For each data set, we consider four outlier ratios r € {0.01,0.025,0.5,0.1}. Setting one class as M.,
with n;, =| M, |, and contaminating this “normal” class with n,y = r-ny, “structural” outliers from other classes, which
form M,, we obtain data sets X C M,U M, with n=nj, + ney. For each setting, we repeat the contamination process
50 times, sampling outliers at random from M,. Based on outlier ranks computed with LOF, we use ROC-AUC as a
performance measure and report the mean AUCs over the 50 replications for each combination of settings. Note that
we only use the labels of the “structural” outliers for computing this performance measure, not for the unsupervised
learning of the embeddings themselves. For all data sets considered in this section, plots of typical embeddings for
r=0.05 can be found in Figures A1 and A2. We consider three additional functional data sets for this experiment:

TABLE 1 Mean ROC-AUC values over 50 replications based on the ranks as assigned by LOF

A Dodgers Phoneme Starlight
Nin =97, D =289 Hin = 400, D =150 in = 6656, D =1025
k 0.01n 0.1n 0.75n 0.9n 0.01n 0.1n 0.75n 0.9n 0.01n 0.1n 0.75n 0.9n
r:1.0% 0.78 0.98 0.96 0.96 0.78 1.00 0.99 0.99 0.96 1.00 0.69 0.78
r:2.5% 0.62 0.97 0.96 0.96 0.54 1.00 0.99 0.99 0.55 1.00 0.88 0.88
r:5.0% 0.59 0.97 0.96 0.96 0.56 0.99 0.99 0.99 0.53 1.00 0.92 0.92
r:10% 0.54 0.84 0.97 0.96 0.57 0.75 0.99 0.99 0.56 0.98 0.95 0.87
B Iris Wisconsin breast cancer Simulated data
Ny, =50,D=4 Ny, =357, D =30 nip =750, D =1000
k 0.01n 0.1n 0.75n 0.9n 0.01n 0.1n 0.75n 0.9n 0.01n 0.1n 0.75n 0.9n
r:1.0% 1.00 1.00 1.00 1.00 0.76 0.96 0.94 0.89 0.66 1.00 1.00 1.00
r:2.5% 0.71 1.00 1.00 1.00 0.64 0.97 0.95 0.92 0.56 1.00 1.00 1.00
r:5.0% 0.52 1.00 1.00 1.00 0.60 0.97 0.94 0.91 0.58 1.00 1.00 1.00
r:10% 0.61 0.69 1.00 1.00 0.58 0.96 0.94 0.92 0.56 1.00 1.00 1.00

Note: Each data set consists of n observations, ni, from .#, and noyt = niy - ¥ from M. M, and . are defined by classes of the original labeled data sets. D is
the dimensionality of a data set (i.e., evaluations per function for functional data) and k the number of nearest neighbors used in the LOF algorithm. (A)
Functional data. (B) Tabular data.
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dodgers (Dau et al., 2019), a set of times series of daily traffic close to Dodgers Stadium, with days on weekends forming
M, and weekdays forming M.; phoneme (Febrero-Bande & Oviedo de la Fuente, 2012), discretized log-periodograms
of five different phonemes, with phoneme “dcl” forming M, and phonemes “sh”, “iy”, “aa”, and “ao” forming M,;
starlight (Dau et al., 2019; Rebbapragada et al., 2009), phase-aligned light curves of Eclipsing Binary, Cepheid, and RR
Lyrae stars, the first forming M, and the latter two forming M.. All results are based on simple, linear tMDS/PCA
embeddings with the LOF algorithm applied to the resulting 2D embedding vectors.

In addition, we consider three tabular data sets, two real and one simulated. This includes the well-known Iris data
(Anderson, 1935; Fisher, 1936) where class Setosa forms M. and the other two classes M, . Moreover, we use the
Wiscon Breast Cancer (wbc) data (Street et al., 1993) as provided by the UCI Machine Learning repository (Dua &
Graff, 2017). This tabular data set comprises 30 features containing information about the cell nuclei of breast tissue
and has been used by Goldstein and Uchida (2016) for outlier detection before. Following their approach, the healthy
patients form M, and patients with malignant status form M,. Yet, other than Goldstein and Uchida (2016), we do not
fix outliers to the first 10 observations from the latter class but—as outlined—repeatedly sample outliers at random
from M,. Finally, we include a simple simulated example where M,={x:x~N1op0(0,X)} and
Mg ={x:x~N1000(1,X)}, Z=diag(1). That is, 1000-dimensional data with observations sampled from two multivari-
ate normal distributions where the class difference stems from the difference in the mean vectors, 0 for M, and 1
for M,.

The results depicted in Table 1 show that outlier detection does not need to be specifically challenging in nominally
high-dimensional data. In each of the data sets, which have very different numbers of observations and numbers of
dimensions, high ROC-AUC >0.95 can be achieved for all considered outlier ratios r. This indicates that most of the
observations from M, indeed appear to be outlying in the embedding space and thus obtain high LOF scores. Further-
more, as in the qualitative analysis, a global setting of k = 0.75n seems to be a reasonable default for the LOF algorithm.
Only for r =0.01,0.025 in the starlight data, we see a large improvement (AUC = 1.00) with k =0.1n. For small r <0.1,
in all other settings the achieved ROC-AUC is very robust against changes in this tuning parameter.
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FIGURE 3 Real functional and image data and their 2D tMDS embeddings. Numbered labels are ascending LOF score ranks of the
outliers (k =0.75n).
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FIGURE 4 Curve and graph data as further examples to demonstrate the flexibility and general applicability of the approach, and their
2D MDS embeddings based on Frobenius (graphs) and Elastic shape distances (curves). Numbered labels are ascending LOF score ranks of
the outliers (k = 0.75n).

5 | DISCUSSION
51 | Summary

We propose a geometrically motivated framework for outlier detection, which exploits the metric structure of a (possi-
bly high-dimensional) data set and provides a mathematically precise distinction between distributional outliers and
structural outliers. Experiments show that the outlier structure of high-dimensional and non-tabular data can be
detected, visualized, and quantified using established manifold learning methods and standard outlier scoring. The
decisive advantage of our framework from a theoretical perspective is that the resulting embeddings make subtle but
important properties of outlier structure explicit and—even more importantly—that these properties are made accessi-
ble based on visualizations of the embeddings. From a more practical perspective, our proposal requires no prior knowl-
edge nor any specific assumptions about the actual data structure in order to work, an important aspect since data
generating processes are usually inaccessible. This is highly relevant in practice, in particular since a well-established,
computationally cheap combination of widely used and fairly simple methods like (t)MDS and LOF proved to be a
strong baseline that yields fairly reliable results without the need for tuning hyperparameters. In addition, the proposed
framework has several more general conceptual implications for outlier detection which will be summarized in the
following.

5.2 | Implications

5.2.1 | Outlier taxonomy

We propose a clear taxonomy to distinguish between frequently interchangeably used terms anomalies and outliers in a
canonical way: we regard anomalies as observations from a different data generating process than the majority of the

data (i.e., as observations that are on M, but not on M), which can be more precisely identified as structural outliers.
Recall that Zimek and Filzmoser (2018, p. 10) refer to such observations as “real” outliers that need to be distinguished
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from “observations which are in the extremes of the model distribution”. On the other hand, regarding outliers as obser-
vations from low-density regions of the underlying “normal” data manifold M., they can be more precisely identified
as distributional outliers. Based on our reading of the literature, this distinction is usually not made explicit. Since there
is rarely a practical reason to assume that a given data set contains only distributional or only structural outliers, some
of the confusion surrounding the topic (Goldstein & Uchida, 2016; Unwin, 2019; Zimek & Filzmoser, 2018) might be
because such conceptual differences have not been made sufficiently clear. As outlined, the concept of structural differ-
ence is very general. For example, structural differences in functional data may appear as shape anomalies in data
mainly characterized by vertical shift variation (see Figure 1a) or as vertical shift anomalies in data dominated by shape
variation, as phase anomalies in data with magnitude variation or magnitude anomalies in data with phase
variation, etc.

In real unlabeled data, there may not always be a clear distinction between somewhat structurally anomalous obser-
vations with “off-manifold” embeddings and merely distributionally outlying observations with embeddings on the
periphery of the data manifold, as in the ECG data in Figure 3a. Nevertheless, the theoretical distinction between these
two kinds of outliers adds conceptual clarity even if the practical application of the categories may not be
straightforward.

5.2.2 | Curse of dimensionality

As outlined in Section 2.1, outlier detection is often reported to suffer from the curse of dimensionality. For example,
Goldstein and Uchida (2016) show that most outlier detection methods under consideration break down or perform
poorly in a data set with 400 dimensions and conclude that unsupervised outlier detection is not possible in such high
dimensions. Some (e.g., Aggarwal, 2017) attribute this to the fundamental problem that distance functions can lose
their discriminating power in high dimensions (Beyer et al., 1999), which is linked to the concentration of measure
effect (Pestov, 2000). However, this effect occurs only under fairly specific conditions (Zimek et al., 2012), which means
that outlier detection does not have to be affected by the curse of dimensionality: In addition to the effects of depen-
dency structures and signal-to-noise ratios (Zimek et al., 2012), the necessary conditions for concentration of measure
are not fulfilled if the intrinsic dimensionality of the data is smaller than the actually observed dimensionality, or if the
data is distributed in clusters that are relatively well separable (Beyer et al., 1999). Exactly these two characteristics are
reflected in our framework in the form of (1) the manifold assumption, which implies low-ish intrinsic dimensionality
and (2) the assumption that structural outliers come from different manifolds than the rest of the data, that is, from dif-
ferent “clusters” in H. This has two important consequences: First of all, the geometric perspective our framework is
based on makes these important aspects for outlier detection in high-dimensional data explicit, while a purely probabi-
listic perspective obscures them. Second, it mitigates many of the problems associated with high-dimensional outlier
detection: any outlier detection method that performs well in low dimensions becomes—in principle—applicable in
nominally high-dimensional and/or complex non-tabular data when applied to suitable low-dimensional embedding
coordinates. In addition, our results show that outlier sub-structure, specifically the differences between distributional
and structural outliers, can be detected and visualized with manifold methods. This opens new possibilities for descrip-
tive and exploratory analyses:

5.2.3 | Visualizability of outlier characteristics

If the embeddings provided by manifold methods are restricted to two or three dimensions, they also provide easily
accessible visualizations of the data. In fact, manifold learning is often used in applications specifically to find two- or
three-dimensional visualizations reflecting the essential intrinsic structure of the high-dimensional data as faithfully as
possible. Consequently, structural and distributional outliers, which are rather glaring data characteristics if the mani-
folds are well separable, can often be separated clearly even in two- or three-dimensional representations as long as the
embedding is (approximately) isometric with respect to a suitable dissimilarity measure. This is specifically important
for complex non-tabular or high-dimensional data types such as images or graphs, where at most a few observations
can be visualized and perceived simultaneously. In the same vein, substructures and notions of data depth are reflected
in the embeddings, making the approach also useful as an exploration tool for settings with unclear structure.
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5.2.4 | Generalizability

Since the central building block of the proposed framework is to capture the metric structure of data sets using distance
measures, the framework is very general and applicable to any data type for which distance metrics are available. In
Section 4.2, we illustrated this generalizability using high-dimensional as well as non-tabular data; in particular, we
applied it to functional, curve, graph, and image data. This also makes the framework very flexible as one can make use
of non-standard and customized dissimilarity measures to emphasize the relevant structural differences in specific situ-
ations based on domain knowledge: Representing image data as vectors of pixel intensities, we computed distances
between those vectors, for example. Dissimilarities between different graphs were captured, for example, by con-
structing their graph Laplacians and computing Frobenius distances between them, and we used a specific elastic depth
distance for the spiral curve data as suggested by earlier results in Steyer et al. (2022).

5.3 | Limitations and outlook

If in an exploratory setting, observations appear clearly separated in the (first few) embedding dimensions, we can be
sure they are structural outliers. Note that if D-dimensional data actually live in a d’-dimensional subspace, con-
structing a d’-dimensional embedding with MDS based on L, distances will lead to an embedding with a distance
matrix exactly matching the distance matrix in the D-dimensional space, that is, MDS is isometric by design. If other
than L, distances are used this still holds approximately (Young & Householder, 1938; see also Cox & Cox, 2008;
Torgerson, 1952). Note that this is an important difference from many other dimension reduction methods. For exam-
ple, UMAP is based on a local connectivity constraint (McInnes et al., 2020) which ensures that each point is at least
connected to its nearest neighbor and which runs counter to a reliable embedding of structural outliers. In addition,
more sophisticated methods require parameter tuning for any given setting, which is inherently difficult for
unsupervised tasks, and it is not always clear how to tune other embedding methods so that they yield (approximately)
isometric embeddings.

Clear structural outliers are the source of large variation in data sets with low intrinsic dimensionality. Since
MDS embedding dimensions are sorted according to the decreasing variation, they will be reflected in the first few
embedding dimensions. It may be that some of the distributional outliers are masked due to projection if the
embedding dimension d is smaller than d’ but following Zimek and Filzmoser (2018) we consider faithfully reflecting
structural outliers more important. However, inliers, that is, observations on M., may show large “within class” varia-
tion and/or may be spread over several disconnected clusters in some situations. For example, object images on M,
which are structurally similar in terms of the depicted objects’ shape, may vary in rotation, scale, or location, and may
have different colors or textures. In functional data, observations on M. may show phase and amplitude variation and
form clusters due to different shapes. In such settings, M, can yield complex substructure and highly dispersed obser-
vations and it may be hard to distinguish whether separable structures observed in embeddings are due to groups of
homogeneous structural outliers or due to multimodality in M, in which some modes are sparsely sampled. Moreover,
in such cases, the dispersion of M, accounts for large parts of the data's variability, and two- or three-dimensional MDS
embeddings may not be sufficient to also faithfully represent structural outliers, since MDS embedding vectors are
sorted decreasingly by explained “variance”. However, this does not mean that structural outliers are not necessarily
separable. Instead, they appear as outliers in higher embedding dimensions, requiring higher order embeddings to
reflect the outlier structure. That means, if in an exploratory setting, there are no clearly separated observations in the
(first few) embedding dimensions, there are either no clear structural outliers or they appear in later embedding dimen-
sions if there are sources in M, that induce more variation than the structural outliers. For example, objects in images
may be structurally different in texture but not in color, orientation, and scale. In such a case—all observations differ in
color, orientation, and scale but only some observations in texture—these other aspects can induce large variation
within observations on M., and the structural difference in texture is loaded on latter embedding dimensions. In such
a situation, one can use scatterplot matrices and Scagnostics (scatterplot diagnostics, Wilkinson et al., 2005) for visual
inspection. In addition, one can check out the kurtosis of the LOF scores in different embedding dimensions or high
contrast subspaces for density-based outlier ranking (HiCS, Keller et al., 2012), to find pairs of dimensions that are “inter-
esting” in terms of structural outliers. Moreover, techniques from multi-view learning such as “distance-learning from
multiple views” may likely yield better results, because different structures (e.g., structure induced by color vs. structure
induced by texture) should be “treated separately as they are semantically different” (Zimek & Vreeken, 2015, p. 128).
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Note, however, that suitable inductive biases can also be brought to bear in our framework fairly easily. If substantial
considerations suggest that specific structural aspects are important, specifying dissimilarity metrics focused on these
aspects allows to emphasize the relevant differences. For example, if isolated outliers in functional data (i.e., functions
which yield outlying behavior only over small parts of the domain such as isolated peaks) are of most interest, higher
order L, metrics such as Lo will be much more sensitive to such structural differences than general L, distances. If
phase variation should be ignored, the unnormalized L,-Wasserstein or the Dynamic Time Warping (DTW) distance
can be used. Such problem-specific distance measures can reduce the number of MDS embedding dimensions necessary
for faithful embeddings of structural outliers (Herrmann & Scheipl, 2021). In future work, we will investigate these
aspects and possible extensions w.r.t. to multi-view learning approaches. Moreover, we will elaborate more on the
specifics of other data types, in particular, image data.

6 | CONCLUSION

In conclusion, our illustration suggests that the proposed geometric conceptualization, which distinguishes distribu-
tional and structural outliers on a general level, provides a more precise terminology and shows that outlier detection in
high-dimensional and complex non-tabular data does need to be specifically challenging per se. Convincing results
could be achieved in a wide range of settings and data types by a combination of the simple methods MDS for dimen-
sion reduction and visualization and LOF for outlier scoring. We hope that the proposed framework contributes to a
better understanding of unsupervised outlier detection and provides some guidance to practitioners as well as methodo-
logical researchers in this regard.
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dodgers: functional observations
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EXAMPLE VISUALIZATIONS OF THE DATA USED IN THE QUANTITATIVE EXPERIMENTS
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Plots to Table 1A: Functional data and tMDS embeddings. Inlier class in grey, outlier class in red. r = 0.05
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iris: tMDS embedding
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FIGURE A2 Plots to Table 1B: tMDS embeddings of tabular data. Inlier class in grey, outlier class in red. r = 0.05
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