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Abstract
For both the meso- and synoptic scales, reduced mathematical models give
insight into their dynamical behaviour. For the mesoscale, the weak tem-
perature gradient approximation is one of several approaches, while for
the synoptic scale the quasigeostrophic theory is well established. How-
ever, the way these two scales interact with each other is usually not
included in such reduced models, thereby limiting our current perception
of flow-dependent predictability and upscale error growth. Here, we address
the scale interactions explicitly by developing a two-scale asymptotic model
for the meso- and synoptic scales with two coupled sets of equations for
the meso- and synoptic scales respectively. The mesoscale equations fol-
low a weak temperature gradient balance and the synoptic-scale equations
align with quasigeostrophic theory. Importantly, the equation sets are cou-
pled via scale-interaction terms: eddy correlations of mesoscale variables
impact the synoptic potential vorticity tendency and synoptic variables force
the mesoscale vorticity (for instance due to tilting of synoptic-scale wind
shear). Furthermore, different diabatic heating rates—representing the effect of
precipitation—define different flow characteristics. With weak mesoscale heat-
ing relatable to precipitation rates of (6 mm ⋅ h−1), the mesoscale dynamics
resembles two-dimensional incompressible vorticity dynamics and the upscale
impact of the mesoscale on the synoptic scale is only of a dynamical nature. With
a strong mesosocale heating relatable to precipitation rates of (60 mm ⋅ h−1),
divergent motions and three-dimensional effects become relevant for the
mesoscale dynamics and the upscale impact also includes thermodynamical
effects.
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1 INTRODUCTION

Our Earth’s atmosphere is a multiscale system. It is charac-
terized by a wide range of processes on myriad spatial and
temporal scales. Microphysical and turbulent processes
leading to precipitation occur on spatial scales from mil-
limetres to kilometres, mesoscale systems such as squall
lines have spatial scales of tens or hundreds of kilome-
ters, and synoptic systems such as baroclinic waves easily
extend a thousand kilometers or more. Importantly, all
these different processes at different scales can influence
each other. As a consequence, small-scale disturbances
can grow to large scales, presumably limiting our ability
to predict the weather (Lorenz, 1969b; Craig et al., 2021).
Our current lack of understanding of multiscale interac-
tions and their physical mechanisms further limits our
understanding of error growth and predictability (Zhang
et al., 2007; Durran and Gingrich, 2014; Bierdel et al., 2017;
Selz et al., 2022), providing the underlying motivation for
the present investigation.

Lorenz (1969b) proposed an elegant theory for the
development of perturbations across scales based on non-
linear interactions in a homogeneous turbulent flow. From
this idealized model, he was able to obtain quantitative
estimates of the influence of different scales of motion on
each other, and to estimate the limits of predictability of
a multiscale flow. However, the theory is based on strong
assumptions that the statistics of the flow are homoge-
neous, isotropic, and stationary, which ignores the quali-
tatively different character of the flow on different scales.

On synoptic scales in midlatitudes, the atmosphere
remains close to geostrophic and hydrostatic balance.
Expanding the hydrostatic primitive equations in Rossby
number gives geostrophic balance at leading order, and
the quasigeostrophic (QG) equations at first order. QG
theory is a well-accepted mathematical model, and under-
pins our understanding of weather phenomena including
Rossby-wave dynamics or barotropic and baroclinic insta-
bility (Vallis, 2017). What QG theory does not provide is
insight into the dynamics of the mesoscale and smaller
scales, where errors grow initially.

At present, there is no theory for the mesoscales that
is as well established as QG theory for synoptic scales.
In the mesoscale, the constraint provided by the Earth’s
rotation is weaker, requiring different approximations and
opening the possibility of other processes becoming dom-
inant. A conceptually simple idea is to generalize the QG
equations for weaker rotation by going to higher order
in the Rossby-number expansion (Charney, 1955). This
leads to a more accurate approximation—for example,
for highly curved flows (Davis and Emanuel, 1991)—but
is still not appropriate for phenomena like convective
systems, where the influence of rotation may be negligible.

Another approach is semigeostrophic theory, which con-
siders flows that are anisotropic, with only one component
of the wind in geostrophic balance (Hoskins and Brether-
ton, 1972; Craig, 1993). Such models are well applicable to
atmospheric fronts, but, like Charney’s nonlinear balance
theory, they do not cover the range of phenomena seen
in the mesoscale. A third alternative is centered around
latent heat release, particularly from convection, and uses
a different physical constraint, namely a balance between
the diabatic heat source and adiabatic cooling of ascend-
ing air (Sobel and Bretherton, 2000). In this so-called weak
temperature gradient (WTG) approximation, the divergent
wind component is determined to leading order by the ver-
tical motion balancing the heat source. As with QG theory,
the WTG approximation applies to slowly varying motions,
where transient gravity waves do not play a role. It is
widely used for the tropical atmosphere, where the effects
of the Earth’s rotation are small, and there is evidence
that it is also applicable to the mesoscale in midlatitudes
(Klein, 2010; Craig and Selz, 2018), although the approx-
imation is not as accurate as geostrophic balance on the
synoptic scale. However, even if the WTG approximation
is accepted as a useful theory for mesoscale motions, their
interactions with other scales, particularly the synoptic
scale, remain an open question.

To obtain a theory for how different scales interact,
we need to understand how the mathematical approxi-
mations that are appropriate for the different scales are
related. The review of Klein (2010) shows how equations
that are commonly applied to different scales in the
atmosphere (including the QG and WTG approxima-
tions) can be obtained by different distinguished limits
that arise when different characteristic scales of motion
are assumed. The single-scale asymptotic derivations can
be extended to a multiscale analysis, to yield a consis-
tent set of equations for motions on different scales that
include interaction terms describing the influence of other
scales. A number of recent examples illustrate how this
method can be applied to the atmosphere. Dolaptchiev
and Klein (2013) applied this approach to obtain equations
for both synoptic and planetary scales. Further applica-
tions of such multiscale approaches can be found for
instance in Klein and Majda (2006); Achatz et al. (2010);
Hittmeir and Klein (2018); Boljka and Shepherd (2018);
Klein et al. (2022) for various scales. Saujani and Shep-
herd (2006) used a related approach to develop a more gen-
eral version of the QG model that is potentially also appli-
cable to mesoscales, but without making specific scale
assumptions. Shaw and Shepherd (2009) combine hydro-
static planetary-scale flow with nonhydrostatic mesoscale
flow representative of convection and gravity waves.

The aim of this article is to derive and interpret a mul-
tiscale equation set applicable for synoptic and mesoscale
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HIRT et al. 1321

motions, which can be used in the future to understand
better the processes that influence our atmosphere’s pre-
dictability. First, we aim for an appropriate distinguished
limit that combines the QG approximation on the synop-
tic scale with the WTG approximation on the mesoscale.
We focus in particular on the interactions between the
scales, that is, on how the synoptic scale influences the
mesoscale and vice versa, and on the impact of diabatic
heating on the multiscale dynamics. Finally, we inves-
tigate how the multiscale asymptotic framework can be
used to obtain a physical insight into atmospheric flows
where scale interactions occur, by considering the impact
of an idealized mesoscale heat source on a geostrophically
balanced tropospheric jet, as an example of a physically
relevant upscale interaction.

This article is structured as follows. In Section 2,
we introduce the scale-consistent equations from
Klein (2010), the two-scale ansatz that we use for the
meso- and synoptic scales, and the basic steps for deriving
the final, two-scale asymptotic equation sets. A detailed
derivation of the equations is given in the Appendix. We
present two different equations sets in Sections 3 and 4,
depending on weaker or stronger diabatic heating in the
mesoscale, respectively. An idealized example is consid-
ered in Section 5 to understand better the response to an
idealized heat source and to obtain a first, data-driven
perspective of the asymptotic approach and the resulting
equations. Finally, we summarize and discuss our results
and interpretations in Section 6.

2 GOVERNING EQUATIONS AND
MULTISCALE ASYMPTOTIC
METHOD FOR MESO- AND
SYNOPTIC SCALES

To derive the two-scale model for the synoptic and
mesoscale regimes, we follow closely the approaches taken
in Klein (2010) for several single-scale asymptotic regimes
and Dolaptchiev and Klein (2013) for the multiscale
approach. We further distinguish two regimes with dif-
ferent mesoscale diabatic heating strengths based on the
characteristic heating rates of mesoscale phenomena. This
distinction is made because the strength of the diabatic
heating is found to affect the leading-order dynamics in a
qualitative manner.

2.1 Governing, nondimensionalized
equations

First, we require a set of primitive equations that are
nondimensionalized using a set of seven independent

characteristic scales. These characteristic scales can be
combined to give three independent dimensionless param-
eters describing key characteristics of the flow. Following
Klein (2010), these dimensionless parameters are then
written in terms of a small parameter 𝜖 to obtain a dis-
tinguished limit that is characteristic for the atmospheric
scales of interest. Further characteristic scales can be
derived from the independent ones. We refer the reader to
Klein (2010) for further details and explanations.

Some key—independent and derived—characteristic
scales that are used for the nondimensionalization are the
following.

• uref ∼ 12 m ⋅ s−1: reference velocity (horizontal and ver-
tical)

• Tref ∼ 273 K: reference temperature
• Δ𝜃 ∼ 40 K: for example, vertical potential temperature

difference in the troposphere
• hsc ∼ 11 km: density scale height (used to nondimen-

sionalize x, y, and z)
• tref ∼ 15 min: reference time-scale (used to nondimen-

sionalize t)

Further characteristic scales and the formulation of the
dimensionless parameters in terms of 𝜖 are given in
Klein (2010).

The resulting nondimensional equations for the hor-
izontal and vertical momentum equations, the thermo-
dynamic equation, and the continuity equation are then
given as1:

(𝜕t + vh ⋅ ∇h + w𝜕z) vh + 𝜖(2𝛀 × v)h +
𝜃

𝜖

∇h𝜋̃ = Qv, (1)

𝜖 (𝜕t + vh ⋅ ∇h + w𝜕z)w + 𝜖2(2𝛀 × v)v

− 𝜃

1 + 𝜖𝜃
+ (1 + 𝜖𝜃)𝜕z𝜋̃ + 𝜖2

𝜃𝜕z𝜋̃ = 𝜖Qw, (2)

𝜖 (𝜕t + vh ⋅ ∇h + w𝜕z) 𝜃 + w𝜕z𝜃 =
1
𝜖

Q𝜃, (3)

𝜖
2
𝜕t𝜋̃ + 𝜖2vh ⋅ ∇h𝜋̃ + 𝜖2w𝜕z𝜋̃ + 𝛾𝜋

(
∇h ⋅ vh +

1
p
𝜕z(pw)

)

+ 𝜖2
𝛾Γ𝜋̃ (∇h ⋅ vh + 𝜕zw) = 𝛾𝜋

𝜃

Q𝜃. (4)

1We use equations 9 in Klein (2010) with 𝛼x = 𝛼t = 0 and 𝛼
𝜋
= 2. In

combination with the multiscale ansatz given below, these values for 𝛼
enable the same scaling for the synoptic and mesoscale regimes as
considered in Klein (2010). For the continuity equation, we further
introduce the pseudodensity p = 𝜋1∕(Γ𝛾). The third term in Equation 2
deviates from Klein (2010) equation 9b (there, 𝜃∕𝜃), but is consistent
with his equation 5b. This has no further implications, as the differences
occur only at higher orders of 𝜖, which we do not consider here.
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1322 HIRT et al.

T A B L E 1 Scaling ansatz for meso- and synoptic-scale coordinates.

Horiz. scale x y Temp. scale t Vert. scale z

Non-dimens. hsc ∼ 11 km x y tref ∼ 15 min t hsc ∼ 11 km z

Mesoscale Lmeso ∼ 150 km xm = 𝜖x ym = 𝜖y Tmeso ∼ 3.5 h tm = 𝜖t hsc ∼ 11 km z

Synoptic-scale Lsyn ∼ 1100 km xs = 𝜖2x ys = 𝜖2y Tsyn ∼ 1 d ts = 𝜖2t hsc ∼ 11 km z

Note: The nondimensional coordinates x, y were scaled with regard to hsc ∼ 11 km and t with regard to tref ∼ 15 min. Indices “m” and “s” refer to the meso- and
synoptic scale, respectively. For the vertical scale, we use the same characteristic scale used for the nondimensionalization (hsc ∼ 11 km) for both meso- and
synoptic scales. These scalings are in line with the scales given by Klein (2010) and are representative of the actual scales for meso and synoptic processes in the
atmosphere. The notation used here leaves room also to incorporate the convective scale at (𝜖0), which is planned for future work.

The variables and parameters are the horizontal wind
vh, the vertical wind w, the potential temperature 𝜃 =
(1 + 𝜖𝜃(z) + 𝜖2

𝜃), the Exner pressure 𝜋 = 𝜋(z) + 𝜖2Γ𝜋̃, the
pseudodensity p(z), the planetary rotation vector 𝛀 =
k(f0 + 𝜖𝛽ys), and Γ = (𝛾 − 1)∕𝛾 with the dry isentropic
exponent 𝛾 . Furthermore, we have the source and sink
terms Qvh , Qw, and Q𝜃 for the horizontal momentum,
vertical momentum, and diabatic heating, respectively.
We use subscript “h” to denote the horizontal (x, y)
components and subscript “v” for the vertical compo-
nent. The partial derivatives 𝜕z and 𝜕t correspond to the
vertical and temporal derivatives, respectively. Variables
with an overline, e.g. 𝜃, only depend on z, while their
tilde counterparts, that is, 𝜃 and 𝜋̃, contain variability
in the x, y, t dimensions as well (see also Equations 7
and 8 below).

2.2 Multiscale asymptotic ansatz
and characteristic diabatic heating rates

Second, we use a scaling ansatz for the characteristic meso-
and synoptic scales as summarized in Table 1 and the
corresponding multiscale asymptotic expansions for the
variables.

We expect the mesoscale diabatic heating source Q𝜃

to play a crucial role, due to the expected WTG, regime
and we thus distinguish between a weak diabatic heating
regime (weakDH) and a strong diabatic heating regime
(strongDH) with mesoscale heating magnitudes in the
range of 4 K∕3.5 h and 40 K∕3.5 h, respectively. If the heat-
ing rates are dominated by latent heat release, they can
be related to precipitation rates of 6 and 60 mm ⋅ h−1 for
weak and strong heating, respectively (Klein et al., 2022).
Under weak temperature gradient balance, the heating
rates translate further into vertical velocities of 0.12 and
∼ 1.2 m ⋅ s−1 for weak and strong heating, respectively.
Strong heating rates could occur, for instance, in deep con-
vective updrafts of mesoscale convective systems (Houze
Jr., 2004), while the weak heating rate relates more
to the stratiform areas of mesoscale convective systems

(Liu et al., 2021) or latent heat release in warm con-
veyer belts (Joos and Wernli, 2012; Martínez-Alvarado
et al., 2014).

We use the following multiscale asymptotic expansions
with regard to 𝜖 for the relevant variables, where we abbre-
viate the dependences {xm, ym, tm} as Xm and {xs, ys, ts}
as Xs:

vh = vh,0 (Xm,Xs, z) + 𝜖vh,1 (Xm,Xs, z)
+ 𝜖2vh,2 (Xm,Xs, z) + … , (5)

w = 𝜖𝛼ww1 (Xm,Xs, z) + 𝜖2w2 (Xm,Xs, z)
+ 𝜖3w3 (Xm,Xs, z) + … , (6)

𝜋 = 𝜋(z) + 𝜖2Γ[ 𝜋̃0 (Xs, z) + 𝜖𝜋̃1 (Xm,Xs, z) + … )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝜋̃

, (7)

𝜃 = 1 + 𝜖𝜃(z) + 𝜖2[𝜃0 (Xs, z) + 𝜖𝜃1 (Xm,Xs, z) + …
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝜃

], (8)

Q𝜃 = 𝜖2
𝛼wQ𝜃,2 (Xm,Xs, z) + 𝜖3Q𝜃,3 (Xm,Xs, z) + … , (9)

Qw = 𝜖2Qw,2 (Xm,Xs, z) + 𝜖3Qw,3 (Xm,Xs, z) + … , (10)

Qvh
= 𝜖Qvh,1 (Xm,Xs, z) + 𝜖2Qvh,2 (Xm,Xs, z) + … . (11)

In the ansatz for Q𝜃 , we use 𝛼w = {0, 1} to distinguish
between the weakDH (𝛼w = 0) and strongDH (𝛼w = 1)
regimes. Due to the weak temperature approximation at
leading orders for w (see Equation 28), this distinction
affects the scaling of w accordingly (see 𝛼w in Equation 6).
With 𝛼w = 1, these multiscale asymptotic expansions are
in line with the two single-scale expansions given in
Klein (2010) for his meso-𝛽2 and synoptic scales. Note
that tm, which represents the fastest time-scale accounted
for in this expansion, corresponds to the advection time

2Our scaling corresponds to the weak-temperature-gradient scaling for
the mesoscale with a = 1 as given by Klein (2010).
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HIRT et al. 1323

at mesoscales. Thus, by the asymptotic ansatz, the faster
internal waves, which are assumed to be in balance, are
suppressed.

Following Dolaptchiev and Klein (2013) for the mul-
tiscale approach, we treat the meso- and synoptic-scale
coordinates as if they were independent dimensions and
use the following operators:

∇h = 𝜖∇m + 𝜖2∇s, (12)

𝜕t = 𝜖𝜕tm + 𝜖
2
𝜕ts . (13)

A single vertical scale has been used for both meso- and
synoptic-scale regimes, since motions on both horizontal
scales can extend through the troposphere.

2.3 Sublinear growth condition
and averaging procedure

Next, we require a so-called sublinear-growth condition
to obtain sufficiently robust expansions: all variables in
the expansions, e.g. vh,0(Xm,Xs, z), have to grow less than
linearly in the mesoscale coordinates. A practical con-
sequence of this condition is that any averages in the
mesoscale coordinates vanish when applied to mesoscale
derivatives:

𝜕

𝜕Xm
vi(Xm,Xs, …) = 0, (14)

where the averaging of a variable vi(Xm,Xs, …) over a
mesoscale averaging scale Lm is defined as

vi(Xs, …) = lim
𝜖−−−−−→0

𝜖

2Lm∫

Xs
𝜖

+ Lm
𝜖

Xs
𝜖

− Lm
𝜖

vi(Xm,Xs, …) dXm.

(15)

Note that Xm = Xs∕𝜖. See Dolaptchiev and Klein (2013) for
further details.

This averaging procedure allows us to decompose all
our variables into a synoptic part, that is the average over
the mesoscale, and a residual, describing the mesoscale
fluctuating part:

vi(Xm,Xs, …) = vi(Xs, …) + vres
i (Xm,Xs, …)

= vi,s(Xs, …) + vi,m(Xm,Xs, …) (16)

Given characteristic scales for synoptic-scale vertical
velocities of (0.01 m ⋅ s−1) (Wallace and Hobbs, 2006),
we assume w1 = w2 = 0. It follows that Q𝜃,2 = Q𝜃,3 = 0 as
well. We further set Qvh,1 = 0, which allows for geostrophic
balance.

2.4 Procedure for deriving
the two-scale asymptotic model

Given these prerequisites, we can now derive a two-scale
asymptotic model for the meso- and synoptic scales by
executing the following steps.

1 Put the multiscale ansatz into all equations.
2 For each equation, collect terms with the same order of

magnitude in 𝜖, as they need to balance each other.
3 Decompose fields into meso- and synoptic-scale parts.
4 Compute average and residual equations to obtain sep-

arate equations for the two scales. This reveals the
upscale/downscale impact, where prognostic equations
for synoptic/mesoscale variables may contain forcing
terms involving mesoscale/synoptic variables, respec-
tively.

5 Derive vorticity, QGPV, horizontal divergence
equations.

The execution of these steps can be found in
Appendix A.

3 TWO-SCALE ASYMPTOTIC
MODEL FOR THE WEAKDH
REGIME (𝛂W=0)

For the weakDH regime with a mesoscale diabatic heating
scale of 4 K∕3.5 h (translating to a vertical velocity scale of
0.12 m ⋅ s−1 or a precipitation rate of 6 mm ⋅ h−1 via latent
heating), we set 𝛼w = 0 so that Q𝜃,2 and w1 vanish in our
expansions (see Equation A9). This simplifies the resulting
asymptotic equations and we obtain a closed set of cou-
pled equations for the synoptic and mesoscale variables as
follows.

Indeed, at the mesoscale, the thermodynamic equation
reduces to the following weak temperature gradient, as
expected (see Equation A10):

w2𝜕z𝜃 = Q𝜃,3. (17)

The mesoscale dynamics are described further by a
mesoscale vorticity equation with the relative mesoscale
vorticity 𝜁m = k ⋅ ∇m × v0,m and the two leading-order
continuity equations (see Equations A30,A2, and A5,
respectively):

𝜕tm𝜁m + ∇m ⋅
(
𝜁mv0,m

)
res

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Mesoscale vorticity flux

+ v0,s ⋅ ∇m𝜁m
⏟⏞⏞⏞⏟⏞⏞⏞⏟

synoptic advection of 𝜁m

= k ⋅ ∇m × Qv,1, (18)

∇m ⋅ v0,m = 0, (19)
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1324 HIRT et al.

∇m ⋅ v1,m + ∇s ⋅ v0,m +
1
p
𝜕z
(

pw2
)
= 0. (20)

For the synoptic scale, we obtain a quasigeostrophic poten-
tial vorticity (QGPV) equation (see Equation A33):

𝜕ts qs
⏟⏟⏟

(I) syn. QGPV tendency

+ ∇s ⋅
(

v⃗0,sqs
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

(II) syn. QGPV advection

+
𝜕xs𝜕ys v0,mv0,m − 𝜕xs𝜕ys u0,mu0,m

+ 𝜕xs𝜕xs u0,mv0,m − 𝜕ys𝜕ys u0,mv0,m
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(III–VI) Reynolds stress terms: k⋅∇s×
(
∇T

s ⋅(v0,m⋅vT
0,m)

)T

+ 1
p
𝜕z(pk ⋅ ∇s × v0,mw2)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(VII) vertical eddy flux

= k ⋅ ∇s × Qv,2,s +
f0

p
𝜕z

(
p

𝜕z𝜃
Q𝜃4

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

source terms

, (21)

with the synoptic-scale quasigeostrophic potential vortic-
ity (PV) qs:

qs = ⃗k ⋅ ∇s × v⃗0,s + 𝛽ys +
f0

p
𝜕z

(
p

𝜕z𝜃
𝜃0

)
. (22)

In addition, we have the synoptic-scale thermodynamic
equation, the first two continuity equations, and equations
for geostrophic and hydrostatic balance, respectively (see
Equations A14,A4,A7,A25, and A16):

𝜕ts𝜃0 + v0,s ⋅ ∇s𝜃0 + w3,s𝜕z𝜃 = Q𝜃4 , (23)

∇s ⋅ v⃗0,s = 0, (24)

∇s ⋅ v1,s +
1
p
𝜕z
(

pw3,s
)
= 0, (25)

f0⃗k × v⃗0,s + ∇s𝜋̃0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

geostr. balance

= 0, (26)

𝜕z𝜋̃0 = 𝜃0. (27)

3.1 Mesoscale dynamics

On the mesoscale, we obtain a weak temperature gradient
balance so that diabatic heating is balanced by the verti-
cal motion w2 (Equation 17). The leading-order horizontal
wind is nondivergent (Equation 19), that is, the vertical

motion—generated by weak diabatic heating—is too weak
to drive a horizontal divergence of the leading-order
horizontal wind on the mesoscale. The vertical motion
w2 does affect the mesoscale horizontal divergence of
v1,m and the synoptic-scale horizontal divergence of v0,m
in Equation 20. The latter will become relevant for
the upscale-scale interactions in the synoptic-scale PV
equation (terms III–VI in Equation 21). The leading-order
vorticity dynamics in the mesoscale (Equation 18) closely
resemble 2D vorticity dynamics for incompressible flow
(Vallis, 2017). In the absence of momentum sources,
mesoscale vorticity is only modified due to mesoscale and
synoptic-scale advection; neither the planetary vorticity f0
nor the mesoscale diabatic heating/horizontal divergence
contributes to mesoscale vorticity production. The advec-
tion of mesoscale vorticity by the synoptic wind is the only
downscale influence from the synoptic to the mesoscale.
From the mesoscale’s perspective, this corresponds to vor-
ticity advection via the large-scale background wind field.

3.2 Synoptic-scale dynamics

On the synoptic scale, the dynamics follow QG theory
closely, with additional mesoscale influences via eddy cor-
relation terms. As we expect from regular QG theory, the
leading-order synoptic wind is nondivergent (Equation 24)
and follows geostrophic balance (Equation 26). When we
neglect all mesoscale interaction terms in the PV equation
(Equation 21), we obtain the PV equation given by regular
QG theory, with a conservation of QGPV (terms I and II)
in the absence of momentum sources and diabatic heating.
The advantage of this multiscale model, however, is that
the synoptic QGPV is now also influenced by mesoscale
interaction terms, terms III–VII. Terms III–VI can be
regarded as the synoptic-scale rotation of the horizon-
tal divergence of a mesoscale horizontal Reynolds stress
term acting in a diffusive manner. Note that these terms
also include the synoptic-scale horizontal divergence of
the mesoscale wind fields (see Equation A33), making
the upscale impact from a mesoscale diabatic heat source
more apparent. Term VII represents the impact of a vertical
eddy momentum flux on the synoptic QGPV. Interestingly,
these terms only represent a dynamical upscale influ-
ence on the QGPV without a thermodynamical upscale
impact on the synoptic QGPV. Due to the eddy nature
of these terms, the specific structure of the mesoscale
flow field is critical to understanding the impact of these
scale-interaction terms. The specific relevance and con-
tributions of these terms for realistic atmospheric flow
constellations will need to be identified in state-of-the-art
weather simulations. To bridge the gap from mathemati-
cal asymptotic theory to such comprehensive simulations,
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HIRT et al. 1325

we study the multiscale response to diabatic heating in an
idealized numerical framework in Section 5.

To summarize, the weakDH regime depicts a fairly pas-
sive role of mesoscale flow, which follows 2D vorticity
dynamics for incompressible fluids, without further vortic-
ity generation/destruction processes at leading order other
than advection and momentum sources. The mesoscale
diabatic heating is balanced by mesoscale vertical motion
due to the WTG balance, but has no direct impact on 𝜁0,m.
However, it projects upscale on the synoptic QGPV via the
eddy flux terms.

4 TWO-SCALE ASYMPTOTIC
MODEL FOR STRONGDH (𝛂W=1)

We now consider the resulting asymptotic equations for
flows with stronger diabatic heating, that is, with 𝛼w = 1
and dimensional heating rates of 40 K∕3.5 h (translating
to a vertical velocity scale of 1.2 m ⋅ s−1 or a precipita-
tion rate of 60 mm ⋅ h−1 via latent heating), as proposed in
Klein (2010). Note that 𝛼w = 1 is left in the equations to
highlight the differences from the previous regime.

On the mesoscale, we now have the first-
and second-order thermodynamic equations (see
Equations A9,A10):

𝛼ww1𝜕z𝜃 = 𝛼wQ𝜃,2, (28)

𝛼ww1𝜕z𝜃0 + w2𝜕z𝜃 = Q𝜃,3. (29)

The vorticity equation (see Equation A30) reads

𝜕tm𝜁m + ∇m ⋅
(
(𝜁m + f0)v0,m

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(II) Mesoscale abs. vorticity flux

+ 𝛼w
(
k ⋅ ∇mw1 × 𝜕zv0,m

)
res

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(III) mesoscale tilting

+ 𝛼w (w1𝜕z𝜁m)res
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(IV) vert. advection of 𝜁m

+ v0,s ⋅ ∇m𝜁m
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(V) synoptic advection of 𝜁m

+ 𝛼wk ⋅ ∇mw1 × 𝜕zv0,s
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(VI) tilting of synoptic wind

= k ⋅ ∇m × Qv,1. (30)

We also have the following continuity equations
and hydrostatic balance in the mesoscale (see
Equations A2,A5, and A19):

∇m ⋅ v0,m +
𝛼w

p
𝜕z
(

pw1
)
= 0, (31)

∇m ⋅ v1,m + ∇s ⋅ v0,m +
1
p
𝜕z
(

pw2
)
= 𝛼wQ𝜃,2, (32)

𝜕z𝜋̃1,m = 𝜃1,m. (33)

We can determine 𝜋̃1,m with the mesoscale, horizontal
divergence equation (see Equation A36):

∇2
m𝜋̃1,m = f (v0,m, v0,s,w1,Qv,1). (34)

For the synoptic scale, we again obtain the following PV
equation (see Equation A33):

𝜕ts qs
⏟⏟⏟

(I) syn. PV tendency

+ ∇s ⋅
(

v⃗0,sqs
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

(II) syn. PV advection

+
𝜕xs𝜕ys v0,mv0,m − 𝜕xs𝜕ys u0,mu0,m

+ 𝜕xs𝜕xs u0,mv0,m − 𝜕ys𝜕ys u0,mv0,m
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(III–VI) Reynolds stress terms: k⋅∇s×
(
∇T

s ⋅(v0,m⋅vT
0,m)

)T

+ 1
p
𝜕z(pk ⋅ ∇s × v0,mw2) +

𝛼w

p
𝜕z(pk ⋅ ∇s × v1,mw1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(VII, VIII) vertical eddy fluxes

+
𝛼wf0

p
𝜕z

(
1
𝜕z𝜃

𝜕z

(
pw1𝜃1,m

))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(IX) vert. eddy temperature flux

= k ⋅ ∇s × Qv,2,s +
f0

p
𝜕z

(
p

𝜕z𝜃
Q𝜃4

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(X, XI) source terms

. (35)

The synoptic-scale prognostic equation for 𝜃0 (thermo-
dynamic equation) now takes the following form (see
Equation A12):

𝜕ts𝜃0 + v0,s ⋅ ∇s𝜃0 + w3,s𝜕z𝜃 +
𝛼w

p
𝜕z

(
pw1𝜃1,m

)
= Q𝜃4 .

(36)

Further diagnostic equations for the synoptic scale include
averaged (𝜖2) and (𝜖3) continuity equations, the aver-
aged(𝜖1) horizontal momentum equation, and the(𝜖0)
vertical momentum equation (hydrostatic balance; see
Equations A4,A7,A25, and A16):

∇s ⋅ v⃗0,s = 0, (37)

∇s ⋅ v1,s +
1
p
𝜕z
(

pw3,s
)
= 0, (38)

f0⃗k × v⃗0,s + ∇s𝜋̃0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

geostr. balance

+ 𝛼w

p
𝜕z

(
pw1v⃗0,m

)
= 0, (39)

𝜕z𝜋̃0 = 𝜃0. (40)
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1326 HIRT et al.

To close the equations and obtain an explicit expression for
the vertical eddy flux of v1,m in the synoptic PV equation
(Equation 35, term VIII), a relatively involved analytical
procedure designed to solve for v1,m and to guarantee its
sublinear growth in both fast time and space variables
is required. A similar task, although for the somewhat
simpler problem of shallow-water flow over small-scale
orography, was carried out by Bresch et al. (2011). A brief
summary of the key ideas behind the procedure is pro-
vided in Appendix B, but we defer a more detailed study
to a forthcoming work. Alternatively, one may use a more
conventional closure, Stull (1988), or assume w1v1,m = 0
to eliminate the corresponding term for now. This has no
major consequences for the other equations and all other
terms remain, and we proceed along these lines in the rest
of the article.

4.1 Mesoscale dynamics

With the stronger diabatic heating, the mesoscale dynam-
ics changes comprehensively in comparison to the previ-
ous regime.

The weak temperature gradient balance now holds
for w1, which is determined by the leading-order dia-
batic heating Q𝜃,2 (see Equation 28). The next order of
the vertical velocity, w2, can be determined by a modified
WTG balance (Equation 29): w2 is balanced not only by
the diabatic heating Q𝜃,3, but also by a scale interaction
term manifesting as vertical temperature advection, where
the synoptic-scale temperature variations 𝜃0 are advected
with w1.

The mesoscale temperature and pressure fields are in
hydrostatic balance (Equation 33) and can be determined
via the mesoscale horizontal divergence (Equation 34).
The mesoscale temperature field 𝜃1,m is then required to
determine the eddy temperature flux in the synoptic PV
equation.

In this strong heating regime, the leading-order
mesoscale wind has a divergent component which is bal-
anced by w1 (Equation 31). Its rotational component (𝜁0,m,
Equation 30) is generated and destroyed via several more
processes in addition to the advection terms from the
previous regime. The mesoscale flux term of absolute vor-
ticity (term II) can be decomposed into v0,m ⋅ ∇m(𝜁m +
f0) + 𝜁m∇m ⋅ v0,m + f0∇m ⋅ v0,m, which includes the pre-
vious mesoscale advection term but also two stretch-
ing terms due to relative and planetary vorticity. The
mesoscale tilting term (term III) corresponds to the trans-
formation of horizontal vorticity due to vertical wind shear
𝜕zv0,m into vertical vorticity 𝜁0,m via tilting by w1 gradients.
The vertical advection term of 𝜁0,m (term IV) now also con-
tributes to changes of 𝜁0,m, as the vertical velocity w1 is

now sufficiently strong to advect 𝜁0,m with a leading-order
impact. The synoptic scale influences the mesoscale vor-
ticity via the synoptic advection term (term V), as before,
but also via a scale-interacting tilting term (term VI): the
horizontal vorticity related to the vertical wind shear of
the synoptic wind is tilted by w1 gradients and transformed
to the mesoscale horizontal vorticity 𝜁0,m. Hence, in con-
trast to the weak-heating regime, we now observe a rela-
tively direct impact of mesoscale diabatic heating on the
mesoscale vorticity dynamics, manifesting in terms II, III,
IV, VI via w1 or ∇m ⋅ v0,m (see Equations 28,31).

The higher order continuity equation (Equation 32)
is directly affected by the diabatic heating Q𝜃,2 due
to thermal expansion: the diabatic heating results in
temperature-related density changes, thereby impacting
the balance between the two horizontal divergence terms
and the vertical gradient of w2.

4.2 Synoptic-scale dynamics

While most aspects of the synoptic-scale dynamics are sim-
ilar to the previous weak heating regime (nondivergent
wind, hydrostatic balance, most scale interactions), two
additional terms appear that provide further mesoscale
influence on the synoptic scale. First, we have a verti-
cal eddy temperature flux in the thermodynamic equation
(Equation 36). Hence the mesoscale vertical velocity w1
is now strong enough to impact the synoptic 𝜃0 field via
this eddy heat flux. As a consequence, the synoptic QGPV
is now also modified by this thermodynamic process
(term IX in Equation 35). Second, the geostrophic balance
(Equation 39) is extended by an eddy momentum flux.
Hence, with stronger diabatic heating, the leading-order
synoptic wind does not follow the geostrophic wind any
more, but is modified by mesoscale eddy momentum
fluxes. (This resembles the eddy term in the antitrip-
tic balance considered within the Ekman layer (see, e.g.,
(Markowski and Richardson, 2011)).

In summary, the stronger diabatic heating consid-
ered in this strongDH regime changes the leading-order
mesoscale dynamics fundamentally by generating a
leading-order divergent wind component and generat-
ing mesoscale vorticity via 3D effects. The synoptic scale
is modified only by two additional interaction terms,
modifying the geostrophic wind balance and providing a
thermodynamic upscale impact on the synoptic QGPV.

5 IDEALIZED EXAMPLE OF
MULTISCALE WAVES

To obtain further physical insight into the multiscale
framework, the equation sets obtained, and the multiscale
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HIRT et al. 1327

F I G U R E 1 Illustration of an idealized example with prescribed/imposed fields in color and the response/model outcome shown as
contours. The meridional distribution for the prescribed, basic state zonal wind is shown in (a) for the total wind, (b) for the synoptic
component ⟨u0,s⟩, and (c) for the mesoscale component ⟨u0,m⟩. (d) The meridional and vertical distribution of the imposed diabatic
heating/vertical velocity (colors) and the eddy correlation ⟨u0,m⟩w′

2,m from Equation 44 (contours). (e) The meridional and vertical
distribution of the synoptic-scale QGPV (colors) and the impact from the eddy flux term (see Equation 44; contours). (f) The synoptic-scale
zonal wind (colors) and how it is affected by the eddy flux (contours) [Colour figure can be viewed at wileyonlinelibrary.com]

impact of diabatic heating, we consider an idealized
example that resembles a midlatitude synoptic-scale
barotropic jet stream with a mesoscale wave component
in a slab-symmetric case3 as displayed in Figure 1 (left
column). We evaluate how a system with such prescribed
wind fields responds linearly to an imposed mesoscale heat
source of scale 4 K∕3.5 h, that is, considering the weakDH
regime. Other source/sink terms, for example, friction, are
set to zero. Within the linear framework, we decompose
our variables into a prescribed basic state denoted with
⟨⟩ and a response denoted with a prime ′: for example,
u0 = ⟨u0⟩ + u′0. Note that all variables are nondimensional
as in our theoretical mode. We also treat the example
from a numerical perspective, to bridge the gap between
the mathematical asymptotic theory and its application in
more realistic weather situations as given by numerical
simulations. This will be helpful for future investigations,
where state-of-the-art numerical weather simulations will
be considered.

5.1 Prescribed, basic state

We prescribe a basic state—denoted with ⟨⟩—of our
idealized wind field that is stationary, nondivergent,

3All variables are constant in the zonal direction and vary only in the
merdional or vertical direction.

height-invariant, and without any vertical motion or
meridional wind component:

⟨u0⟩ = ⟨u0,m⟩(ym, ys) + ⟨u0,s⟩(ys), (41)

⟨v0,m⟩ = ⟨v0,s⟩ = ⟨w2,m⟩ = 0, (42)

Specifically, we consider a synoptic-scale jetstream ⟨u0,s⟩ =
𝜎us

√
2𝜋 ⋅ (ys|0, 𝜎us), which follows a Gaussian distri-

bution with 𝜎us = 0.5 in the meridional dimension as
displayed in Figure 1b. Due to the height invariance
of the jet stream, synoptic-scale potential temperature
fluctuations are negligible, that is, 𝜃0 = 0. We superim-
pose this synoptic-scale component with a prescribed
mesoscale wave, the amplitude of which varies on the syn-
optic scale, as shown in Figure 1c: ⟨um⟩ = cos[(2𝜋∕𝜆s)ys] ⋅
cos[(2𝜋∕𝜆m)ym] with 𝜆s = 4 and 𝜆m = 4. The prescribed
total zonal wind is illustrated in Figure 1a. In our numer-
ical framework, we transform the ys coordinate to our
reference coordinate ym via ys = 𝜖ym using 𝜖 = 0.1 and use
a grid spacing ofΔym = 0.01. We approximate the averaging
procedure (see Equation 15) using a Gaussian filter in the y
dimension with 𝜎ym,gaussianfilter = 2. Since the specific filter
width is somewhat arbitrary,4 we verify that the numerical

4Following Equation 15, the effective filter size should be large with
respect to the mesoscale coordinates, but small with respect to the
synoptic-scale coordinate.
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1328 HIRT et al.

decomposition of the total zonal wind into synoptic and
mesoscale components (see Equation 16) resembles our
original synoptic and mesoscale structures (see dashed
curves in Figure 1b,c, which are almost identical to the
analytically computed ones). The same averaging proce-
dure will then be used to compute the system’s response.

Furthermore, we set p = 1 and 𝜕z𝜃 = 1 for simplic-
ity and set the Coriolis parameters f0 = 𝛽 = 0, as they do
not contribute to the system’s response in our idealized
framework.

Derivatives are computed using finite differences with
a finite-difference step of Δym = 0.01.

5.2 Imposed diabatic heat source

Given this basic state, we now impose a diabatic heat
source Q′

𝜃,3(ym, tm, z) = w′
2,m (see Equation 17), which rep-

resents latent heat release from precipitating mesoscale
clouds, and investigate the system’s linear response.
Specifically, we assume that the heat source follows the
mesoscale jet stream ⟨u0,m⟩ in the meridional direction
to maximize their eddy correlation, but with a Gaussian
distribution in the vertical direction, see Figure 1d (colors):

Q′
𝜃,3 = 𝜎z

√
2𝜋 (z|0.5, 𝜎z = 0.15)

⋅ cos
(

2𝜋
𝜆s

ys

)
⋅ cos

(
2𝜋
𝜆m

ym

)
. (43)

For simplicity, the heat source exists only during a short
synoptic time interval Δts = 0.01, during which it remains
constant.

We write the response of the system for any vari-
able as its deviation from the stationary, height-invariant
basic state, for example, u′0,m(ym, z, tm) = u0,m(ym, z, tm) −⟨u0,m⟩(ym). Any terms that are nonlinear in the prime (′)
variables are neglected due to the linearity assumption.

5.3 Response to the heat source

The impact of the heat source on the mesoscale manifests
in the vertical motion from the WTG balance. Otherwise,
the diabatic heating source has no impact on the mesoscale
vorticity dynamics.

There is, however, an upscale impact of the mesoscale
heat source on the synoptic PV dynamics. Due to the
design of our basic state and the linearity assumption, the
PV equation (see Equation 21) reduces to

𝜕ts q
′
s = −𝜕ts𝜕ys u

′
0,s

= −𝜕z(𝜕ys⟨u0,m⟩w′
2,m)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(VII) vertical eddy flux

. (44)

The only remaining QGPV source is the vertical eddy
flux term, which consists of the eddy correlation of the
mesoscale zonal wind and the mesoscale vertical veloci-
ty/heat source. The vertical and meridional distribution
of the eddy correlation is depicted in Figure 1d (con-
tours), while its impact on the QGPV tendency is given
in Figure 1e (contours), showing increases/reductions of
QGPV gradients in the upper/lower troposphere. By con-
sidering its time evolution, the temporally integrated effect
on the synoptic wind, that is, u′0,s from Equation 44, is
shown in Figure 1f (contours), where the jet stream is
strengthened/weakened in the upper/lower troposphere.5
We emphasize that the specific impact of the mesoscale
heat source on the synoptic jet depends strongly on the
eddy correlation of the mesoscale jet and the diabatic heat
source.

To summarize, the imposed diabatic heat source is
balanced by a vertical wind at the mesoscale, but does
not affect mesoscale dynamics further. The heat source
is projected upscale on the synoptic scale by a vertical
eddy flux term, which modifies the synoptic jet stream,
but it depends sensitively on how the mesoscale jet
stream and the heat source are correlated. A more phys-
ical application of our multiscale equations using realis-
tic numerical weather simulations is currently ongoing,
where we hope to gain insight into realistic atmospheric
conditions.

6 SUMMARY AND DISCUSSION

In this work, we address how the meso- and synoptic
scales interact with each other by following the approach
from Klein (2010) and Dolaptchiev and Klein (2013). We
developed a two-scale asymptotic model for the meso-
and synoptic scales with two coupled sets of equations for
the meso- and synoptic scales, respectively. The mesoscale
equations follow a WTG balance and the synoptic-scale
equations align with QG theory. Importantly, the equation
sets are coupled via scale-interaction terms. Furthermore,
we distinguish between weaker and stronger diabatic heat-
ing rates in the mesoscale—as proxy for the effect of
latent heating. This distinction is made as it produces two

5The time evolution of the heat source does not have a qualitative
impact on the system response. If the heat source lasts longer, for
example, over a time period Δts = 1, the impact on the synoptic jet
stream would simply be larger, but structurally identical.
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qualitatively different regimes, the weakDH and strongDH
regimes.

The weakDH regime is applicable to most mesoscale
weather phenomena with moderate precipitation rates
of (6 mm ⋅ h−1), such as warm conveyer belts or strat-
iform precipitation from mesoscale convective systems.
The mesoscale diabatic heating is balanced by adiabatic
cooling from vertical motion following WTG balance. In
contrast to traditional WTG theory, however, it has no
direct impact on the leading-order mesoscale horizon-
tal wind, which is nondivergent. Only at the next order
does the corresponding WTG-related divergent motion
occur. Consequently, the leading-order mesoscale vorticity
closely follows 2D vorticity dynamics for incompressible
flow, which is only modified by advection and momen-
tum sources and is decoupled from the WTG-related
vertical motion. There is a downscale influence from
the synoptic scale via mesoscale vorticity advection with
the synoptic-scale wind. The synoptic-scale dynamics is
in geostrophic balance at leading order. The next-order
synoptic-scale dynamics follows QG dynamics except for
five eddy correlation terms in the PV equation, which
describe a dynamical mesoscale impact on synoptic-scale
QGPV generation. These terms can be interpreted as the
impact of horizontal Reynolds stress and vertical eddy
momentum flux on the vorticity dynamics.

The strongDH regime is applicable only for highly con-
vective phenomena with very strong precipitation rates
of (60 mm ⋅ h−1), for example, deep convective areas
within mesoscale convective systems. The leading-order
vertical wind balances a stronger heat source and is now
sufficiently strong to impact the leading-order mesoscale
divergent wind similarly to traditional WTG theory. The
mesoscale vorticity is additionally affected by plane-
tary and relative vorticity stretching, tilting of horizon-
tal vorticity, and vertical vorticity advection, that is,
three-dimensional effects become relevant. In addition
to the synoptic-scale advection term already relevant in
the weakDH regime, another downscale interaction term
becomes relevant, namely the tilting of horizontal vorticity
from synoptic-scale wind shear. On the synoptic scale, the
geostrophic balance is broken by an upscale eddy momen-
tum flux term and the QGPV is further influenced by a
thermodynamic upscale process related to eddy vertical
temperature fluxes.

The distinction between weak and strong heating
emphasizes the flow-dependent nature of the mesoscale.
In the weakDH regime, the flow is dominated by 2D vor-
ticity dynamics with negligible divergence and forced by
the downscale vorticity advection. Such flow characteris-
tics may relate to a downscale enstrophy cascade and a −3
slope in the energy spectrum (Vallis, 2017). Similarly, Selz
et al. (2019) have reported the mesoscale dynamics for dry

weather situations to be mostly nondivergent with a −3
slope in the kinetic energy spectrum, and driven primarily
by large-scale QGPV dynamics. In the strongDH regime,
3D effects and divergent motion become relevant for the
mesoscale dynamics, which fits well with the observations
from Selz et al. (2019) for precipitating weather situations,
where divergent motions and a shallower kinetic energy
spectrum are found.

An important application for this framework will be
to derive error equations, that is, equations that describe
the evolution of the difference between simulations start-
ing from perturbed initial conditions, in order to provide
further insight into our atmosphere’s predictability. For
instance, do the nonlinear triad interaction processes of
Lorenz (1969a) dominate error growth in the weakDH
regime, while upscale error growth is more relevant if the
latent heat release is unusually strong and the strongDH
equations apply? What processes can we identify to be
most relevant for upscale error growth? Does that align
with previous results from Bierdel et al. (2017); Baum-
gart et al. (2019), where divergent motion and geostrophic
adjustment were identified as key contributors for how
convective processes project errors upscale? We hope to
gain further insight in the future.

Furthermore, we applied the multiscale asymptotic
framework to an idealized numerical example, where
a synoptic-scale zonal jet stream is superimposed on a
weak mesoscale diabatic heating wave. Here, the ver-
tical eddy momentum flux projects the mesoscale heat
source on the synoptic scale, strengthening the upper
tropospheric synoptic jet stream. However, because an
eddy correlation between mesoscale vertical and horizon-
tal motion is required, the impact on the synoptic jet
stream is very sensitive to the specific mesoscale situation.
Hence, more realistic situations need to be considered to
make meaningful conclusions on the upscale behaviour of
mesoscale diabatic heat sources. We are currently apply-
ing the mathematical asymptotic framework to numer-
ical model output finite-scale separations, to investigate
the validity of the approximations and the insight that
can be obtained about the physical processes on differ-
ent scales. This work will be reported in a forthcoming
publication.

To conclude, by developing a two-scale asymptotic
model, we have identified scale-interaction terms between
the meso- and synoptic scales and found the strength of
the mesoscale diabatic heating to determine key mesoscale
flow properties such as divergence and 3D vorticity
effects. The multiscale equations can now be used as a
diagnostic tool for realistic weather simulations to gain
deeper insights into the scale interactions, correspond-
ing error-growth processes, and predictability limits of our
atmosphere’s many scales.
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APPENDIX A. FULL DERIVATION OF THE
MULTISCALE MODEL

A.1 Continuity equation
To derive the multiscale version of the continuity equation,
we start with Equation 4, consider the ansatz given
in Section 2.2, and follow the first step described in
Section 2.4:

𝜖
3
𝜕tm 𝜋̃ + 𝜖

4
𝜕ts 𝜋̃ + 𝜖

3vh ⋅ ∇m𝜋̃ + 𝜖4vh ⋅ ∇s𝜋̃

+ 𝜖3(𝛼ww1 + 𝜖w2 + … )𝜕z𝜋̃

+ 𝛾𝜋(𝜖∇m ⋅ vh + 𝜖2∇s ⋅ vh

+ 𝜖

p
𝜕z
[
p (𝛼ww1 + 𝜖w2 + … )

]
)

+ 𝜖2
𝛾Γ𝜋̃

[
𝜖∇m ⋅ vh + 𝜖2∇s ⋅ vh

+𝜖𝜕z (𝛼ww1 + 𝜖w2 + … )
]

=
𝛾

(
𝜋 + 𝜖2

𝜋̃

)
1 + 𝜖𝜃 + 𝜖2

𝜃

(
𝜖

2
𝛼wQ𝜃,2 + 𝜖3Q𝜃,3 + …

)
. (A1)

We use the Taylor series for 1
1+𝜖𝜃+𝜖2

𝜃0+…
≈ 1 − 𝜖𝜃 +

𝜖
2(𝜃

2
− 𝜃0) + … . Following steps 2–4 from Section 2.4, we

separate the equation into different orders of 𝜖, average
each resulting equation over the synoptic scale, and com-
pute residual equations as the difference between the cor-
responding equation and its averaged version. We obtain
the following equations for the first three orders of 𝜖:


(
𝜖

1) ∶ ∇m ⋅ v0,m +
𝛼w

p
𝜕z
(

pw1
)
= 0, (A2)


(
𝜖

2) ∶ ∇m ⋅ vh,1 + ∇s ⋅ vh,0 +
1
p
𝜕z
(

pw2
)
= 𝛼wQ𝜃,2,

(A3)


(
𝜖

2
)
∶ ∇s ⋅ v0,s = 0, (A4)


(
𝜖

2)
res ∶ ∇m ⋅ v1,m + ∇s ⋅ v0,m +

1
p
𝜕z
(

pw2
)
= 𝛼wQ𝜃,2,

(A5)


(
𝜖

3) ∶ 𝛼w

𝛾𝜋

w1𝜕z𝜋̃0 + ∇m ⋅ vh,2 + ∇s ⋅ vh,1 +
1
p
𝜕z
(

pw3
)

+ 𝜋̃0Γ
𝜋

(
∇m ⋅ vh,0 + 𝛼w𝜕zw1

)
= Q𝜃,3 − 𝛼w𝜃Q𝜃,2, (A6)


(
𝜖

3
)
∶ ∇s ⋅ v1,s +

1
p
𝜕z
(

pw3,s
)
= 0. (A7)
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A.2 Thermodynamic equation

[
𝜖

2
𝜕tm + 𝜖

3
𝜕ts + 𝜖

2vh ⋅ ∇m + 𝜖3vh ⋅ ∇s

+𝜖2 (w1 + …) 𝜕z
] (
𝜃0 + 𝜖𝜃1 + …

)
+ 𝜖 (𝛼ww1 + 𝜖w2 + …) 𝜕z𝜃 =

1
𝜖

Q𝜃. (A8)

We separate the equation into different orders of epsilon
and average over the synoptic scale:


(
𝜖

1) ∶ 𝛼ww1𝜕z𝜃 = 𝛼wQ𝜃,2, (A9)


(
𝜖

2) ∶ 𝛼ww1𝜕z𝜃0 + w2𝜕z𝜃 = Q𝜃,3, (A10)


(
𝜖

3) ∶ 𝜕tm𝜃1 + 𝜕ts𝜃0 + vh,0 ⋅ ∇m𝜃1

+ vh,0 ⋅ ∇s𝜃0 + 𝛼ww1𝜕z𝜃1 + w2𝜕z𝜃0

+ w3𝜕z𝜃 = Q𝜃4 , (A11)


(
𝜖

3
)
∶ 𝜕ts𝜃0 + v0,m ⋅ ∇m𝜃1,m

+ v0,s ⋅ ∇s𝜃0 + 𝛼ww1𝜕z𝜃1,m

+ w3,s𝜕z𝜃 = Q𝜃4 . (A12)

Using the continuity equation (Equation A5), we can for-
mulate the mesoscale 𝜃1,m horizontal and vertical advec-
tion terms as vertical flux only:

𝜕ts𝜃0 + v0,s ⋅ ∇s𝜃0 + w3,s𝜕z𝜃

+ ∇m ⋅
(
v0,m𝜃1,m

)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=0

− 𝜃1,m∇m ⋅ v0,m
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

− 𝛼w
p
𝜃1,m𝜕z(pw1)

+ 𝛼ww1𝜕z𝜃1,m = Q𝜃4 . (A13)

Then we obtain for the synoptic-scale thermodynamic
equation

𝜕ts𝜃0 + v0,s ⋅ ∇s𝜃0 + w3,s𝜕z𝜃

+ 𝛼w

p
𝜕z

(
pw1𝜃1,m

)
= Q𝜃4 . (A14)

A.3 Vertical momentum equation

[
𝜖

3
𝜕tm + 𝜖

4
𝜕ts + 𝜖

3vh ⋅ ∇m

+ 𝜖4vh ⋅ ∇s + 𝜖2(𝛼ww1 + 𝜖w2

+ … )𝜕z
]
(𝛼ww1 + 𝜖w2 + … )

+ 𝜖2(2𝛀 × v)v −
𝜃

1 + 𝜖𝜃
+ 𝜕z𝜋̃

+ 𝜖𝜃𝜕z𝜋̃ + 𝜖2
𝜃𝜕z𝜋̃ = 𝜖Qw. (A15)

We use the Taylor series for

1
1 + 𝜖𝜃

≈ 1 − 𝜖𝜃 + … .

Including the ansatz for all the variables and separating
into different orders of 𝜖 yields:


(
𝜖

0) ∶ 𝜕z𝜋̃0 = 𝜃0, (A16)


(
𝜖

1) ∶ 𝜕z𝜋̃1 = 𝜃1 − 2𝜃𝜃0, (A17)

 (𝜖1) ∶ 𝜕z𝜋̃1,s = 𝜃1,s − 2𝜃𝜃0, (A18)


(
𝜖

1)
res ∶ 𝜕z𝜋̃1,m = 𝜃1,m. (A19)

A.4 Horizontal momentum equation

[𝜖𝜕tm + 𝜖
2
𝜕ts + 𝜖vh ⋅ ∇m + 𝜖2vh ⋅ ∇s

+ 𝜖(𝛼ww1 + 𝜖w2 + … )𝜕z]vh + 𝜖(2𝛀 × v)h (A20)

+ (1 + 𝜖𝜃 + 𝜖2
𝜃)∇m𝜋̃ + 𝜖(1 + 𝜖𝜃 + 𝜖2

𝜃)∇s𝜋̃ = Qv.

Including the ansatz for all the variables and 𝛀 = k(f0 +
𝜖𝛽ys) and separating into different orders of 𝜖 yields


(
𝜖

1) ∶ 𝜕tm vh,0 + vh,0 ⋅ ∇mvh,0 + 𝛼ww1𝜕zvh,0

+ f0k × vh,0 + ∇m𝜋̃1 + ∇s𝜋̃0 = Qv,1, (A21)

 (𝜖1) ∶ v0,m ⋅ ∇mv0,m
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=𝛼w
v0,m

p
𝜕z(pw1)

+ 𝛼ww1𝜕zv0,m

+ f0k × v0,s + ∇s𝜋̃0 = 0, (A22)


(
𝜖

1)
res ∶ 𝜕tm v0,m +

(
v0,m ⋅ ∇mv0,m

)
res

+
(
𝛼ww1𝜕zv0,m

)
res + f0k × v0,m + ∇m𝜋̃1,m

+ v0,s ⋅ ∇mv0,m + 𝛼ww1𝜕zv0,s = Qv,1. (A23)

Note that we can rewrite Equation A22 using Equation A2
(continuity equation) as

𝛼w

p
𝜕z(pw1v0,m) + f0k × v0,s + ∇s𝜋̃0 = 0. (A24)

For the next order in 𝜖, we obtain


(
𝜖

2) ∶ 𝜕tm vh,1 + 𝜕ts vh,0 + vh,0 ⋅ ∇mvh,1

+ vh,1 ⋅ ∇mvh,0 + vh,0 ⋅ ∇svh,0 + 𝛼ww1𝜕zvh,1
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+ w2𝜕zvh,0 + f0k × vh,1 + 𝛽ysk × vh,0

+ ∇m𝜋̃2 + 𝜃∇m𝜋̃1 + ∇s𝜋̃1 + 𝜃∇s𝜋̃0 = Qv,2. (A25)


(
𝜖

2
)
∶ 𝜕ts v0,s + v0,s ⋅ ∇sv0,s

+ v0,m ⋅ ∇mv1,m + v1,m ⋅ ∇mv0,m
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

v0,m

(
∇s⋅v0,m+

1
p
𝜕z(pw2)

)
+ 𝛼w

p
v1,m𝜕z(pw1)−𝛼wv0,mQ

𝜃,2

+ v0,m ⋅ ∇sv0,m

+ 𝛼ww1𝜕zv1,m + w2𝜕zv0,m

+ f0k × v1,s + 𝛽ysk × v0,s + ∇s𝜋̃1,s

+ 𝜃∇s𝜋̃0,s = Qv,2,s. (A26)


(
𝜖

2)
res ∶ 𝜕tm v1,m + 𝜕ts v0,m

+ (v0,m ⋅ ∇mv1,m)res + (v1,m ⋅ ∇mv0,m)res

+ (v0,m ⋅ ∇sv0,m)res + 𝛼w(w1𝜕zv1,m)res

+ (w2𝜕zv0,m)res + v0,s ⋅ ∇mv1,m + v1,s ⋅ ∇mv0,m

+ v0,m ⋅ ∇sv0,s + v0,s ⋅ ∇sv0,m

+ 𝛼ww1𝜕zv1,s + w2𝜕zv0,s + f0k × v1,m

+ 𝛽ysk × v0,m + ∇m𝜋̃2,m + 𝜃∇m𝜋̃1,m

+ ∇s𝜋̃1,m = Qv,2,m. (A27)

We can use Equations A2 and A5 in Equation A26 to
rewrite the eddy advection terms.

A.5 Mesoscale vorticity equation
For each given horizontal momentum equation, we can
now compute a corresponding vorticity equation.

We apply k ⋅ ∇m× to Equation A23 to obtain the
mesoscale vorticity equation:

𝜕tm𝜁m + k ⋅ ∇m ×
(
v0,m ⋅ ∇mv0,m

)
res

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=(v0,m⋅∇m𝜁m)res+(𝜁m∇m⋅v0,m)res

+ 𝛼wk ⋅ ∇m ×
(

w1𝜕zv0,m
)

res

+ k ⋅ ∇m × (f0k × v0,m)
+ k ⋅ ∇m × (∇m𝜋̃1,m)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

+ k ⋅ ∇m × (v0,s ⋅ ∇mv0,m)
+ 𝛼wk ⋅ ∇m × (w1𝜕zv0,s) = k ⋅ ∇m × Qv,1, (A28)

where the mesoscale vorticity is defined as 𝜁m = k ⋅ ∇m ×
v0,m. Since ∇m ⋅

(
𝜁m + f0)v0,m

)
= 0, according to the sub-

linear growth criterion, we obtain

𝜕tm𝜁m + ∇m ⋅
(
(𝜁m + f0)v0,m

)
+ 𝛼w

(
k ⋅ ∇mw1 × 𝜕zv0,m

)
res + 𝛼w (w1𝜕z𝜁m)res

+ v0,s ⋅ ∇m𝜁m + 𝛼wk ⋅ ∇mw1 × 𝜕zv0,s

= k ⋅ ∇m × Qv,1. (A29)

A.6 Synoptic PV equation
We apply k ⋅ ∇s× to Equation A26 to obtain the vorticity
equation for the synoptic scale:

𝜕ts𝜁s + v0,s ⋅ ∇s𝜁s + f0∇s ⋅ v1,s
⏟⏞⏞⏟⏞⏞⏟

=− f0
p
𝜕z(pw3,s)

+ 𝛽ys∇s ⋅ v0,s
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=0

+ 𝛽vy0,sk ⋅ ∇s ×
(

v0,m(∇s ⋅ v0,m) + v0,m
1
p
𝜕z(pw2)

)

+ 𝛼w

p
k ⋅ ∇s × 𝜕z(pv1,mw1) + k ⋅ ∇s × (v0,m ⋅ ∇sv0,m)

+ k ⋅ ∇s × (w2𝜕zv0,m)

= k ⋅ ∇s × Qv,2,s + 𝛼wk ⋅ ∇s × (v0,mQ𝜃,2). (A30)

The synoptic-scale vorticity is defined as 𝜁s = k ⋅ ∇s × v0,s.
We obtain an equation for the potential vorticity by using
the thermodynamic equation for w3,s:

w3,s =
1
𝜕z𝜃

(
−𝜕ts𝜃0 − v0,s ⋅ ∇s𝜃0 −

𝛼w

p
𝜕z

(
pw1𝜃1,m

)
+ Q𝜃4

)
,

(A31)

and the potential vorticity

qs = k ⋅ ∇s × v0,s + 𝛽ys +
f0

p
𝜕z

(
p

𝜕z𝜃
𝜃0

)
∶

𝜕ts qs + v0,s ⋅ ∇sqs

+ k ⋅ ∇s ×
(

v0,m(∇s ⋅ v0,m) + v0,m ⋅ ∇sv0,m

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜕xs 𝜕ys v0,mv0,m−𝜕xs 𝜕ys u0,mu0,m+𝜕xs𝜕xs u0,mv0,m−𝜕ys 𝜕ys u0,mv0,m

+ 1
p

k ⋅ ∇s × 𝜕z(pv0,mw2) +
𝛼w

p
k ⋅ ∇s × 𝜕z(pv1,mw1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

vertical eddy fluxes

+
𝛼wf0

p
𝜕z

(
1
𝜕z𝜃

𝜕z

(
pw1𝜃1,m

))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

vert. eddy temperature flux

= k ⋅ ∇s × Qv,2,s + 𝛼wk ⋅ ∇s × v0,mQ𝜃,2 +
f0

p
𝜕z(

p

𝜕z𝜃
Q𝜃4)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

source terms

.

(A32)

We can further eliminate the source term
(k ⋅ ∇s × v0,m)Q𝜃,2 by using the synoptic-scale rotation of
Equations A24 (extended geostrophic balance) and A4
(continuity equation):

 1477870x, 2023, 753, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4456 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [20/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1334 HIRT et al.

1
p

k ⋅ ∇s × 𝜕z
(

pw1v0,m
)
= 0. (A33)

With the weak temperature balance for w1 (Equation 28),
it follows that

1
p

k ⋅ ∇s × 𝜕z

(
p

𝜕z𝜃
Q𝜃,2v0,m

)
= 0. (A34)

Hence, it is reasonable to assume k ⋅ ∇s × v0,mQ𝜃,2 = 0.
Then, the PV equation reduces to the one given in

Equation 35.

A.7 Divergence equations
Taking the mesoscale, horizontal divergence of
Equation A23, we obtain an equation that we can solve
for 𝜋̃1,m, if trivial boundary conditions (e.g., periodic,
vanishing at distance) are used:

∇2
m𝜋̃1,m = −𝛼w𝜕tm∇m ⋅ v0,m − ∇m ⋅

(
v0,m ⋅ ∇mv0,m

)
res

− 𝛼w∇m ⋅
(

w1𝜕zv0,m
)

res + f0𝜁0,m

− 𝛼wv0,s ⋅ ∇m
(
∇m ⋅ v0,m

)
+ 𝛼w∇mw1 ⋅ 𝜕zv0,s + ∇m ⋅ Qv,1

= f (v0,m, v0,s,w1,Qv,1). (A35)

APPENDIX B. SUBLINEAR GROWTH OF V1,M
AND THE VERTICAL QGPV FLUX CLOSURE

Here we discuss the principal line of thought to be fol-
lowed in the construction of a self-consistent closure of
the vertical flux term VIII in the synoptic PV equation
(Equation 35). So far, we have not discussed how to exploit
fully the information provided by the first-order perturba-
tion equations in Equations A3,A10,A17, and A26 in deter-
mining the (tm, xm) dependences of the first-order quanti-
ties (v1,m,w2, 𝜋̃1, 𝜃1). Since the vertical velocities w1,w2 are
given here by the external heat sources through the WTG

principle (see Equation A10), Equations A3,A17, and A25
constitute a linear inhomogeneous system of equations for
the (tm, xm) dependences of the remaining unknowns U1 =
(v1,m, 𝜋2, 𝜃1), once we know the (tm, xm)dependences of the
lower order fields U0 = (vh,0,w1, 𝜋̃0, 𝜋̃1, 𝜃0) and the ther-
modynamic source term Q𝜃,3. We may write this system
formally as

𝜕tm U1 + [U0]U1 = R1[U0]. (B1)

Here, our notation [U0] and R1[U0] is meant to indi-
cate that the linear spatial partial differential operator
 and the right-hand side R1 may generally depend
upon on U0, 𝜕tm U0, 𝜕ts U0,∇mU0,∇sU0, and 𝜕zU0. Note,
however, that [U0] has no explicit dependence upon
the synoptic-scale derivatives 𝜕ts U0 and ∇sU0 of the
leading-order solution.

Generally, solutions to Equation B1 will be superpo-
sitions of some particular solution Up

1 , which may still
violate the initial and boundary conditions for U1, and
an appropriate “homogeneous solution” Uh

1 of the homo-
geneous Equation B1 with R1 ≡ 0, which accommodates
the initial and boundary data. Assuming for now that the
homogeneous equation system produces bounded solu-
tions in tm, xm, proper application of the sublinear growth
condition requires us to constrain the right-hand side
R1[U0] in such a way that U0 remains sublinear in both
fast variables, tm and xm. These constraints will ulti-
mately reduce to new equations involving the—thus far
undetermined—synoptic-scale derivatives 𝜕ts U0 and∇sU0,
that is, we will obtain the desired synoptic-scale dynam-
ical evolution equation for the leading-order solution.
Once these constraints are imposed, the solution pro-
cedure also generates the explicit (tm, xm) dependences
of U1, and hence of v1, v1,m, and will thus allow us to
compute the hitherto unclosed term VIII in Equation 35
in terms of U0.

Working out the details of this procedure for specific
flows can be arduous, and is therefore left for a future
publication.
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