Nitrides

Angewandte International Edition www.angewandte.org

How to cite: Angew. Chem. Int. Ed. **2023**, 62, e202303580 doi.org/10.1002/anie.202303580

Combining MN_6 Octahedra and PN_5 Trigonal Bipyramids in the Mica-like Nitridophosphates MP_6N_{11} (M = AI, In)

Sebastian J. Ambach, Monika Pointner, Sophie Falkai, Carsten Paulmann, Oliver Oeckler, and Wolfgang Schnick*

Abstract: Layered silicates are a very versatile class of materials with high importance to humanity. The new nitridophosphates MP_6N_{11} (M=Al, In), synthesized from MCl₃, P₃N₅ and NH₄N₃ in a high-pressure hightemperature reaction at 1100°C and 8 GPa, show a mica-like layer setup and feature rare nitrogen coordination motifs. The crystal structure of AlP₆N₁₁ was elucidated from synchrotron single-crystal diffraction data (space group Cm (no. 8), a = 4.9354(10), b = 8.1608(16), c = 9.0401(18) Å, $\beta = 98.63(3)^{\circ}$), enabling Rietveld refinement of isotypic InP_6N_{11} . It is built up from layers of PN_4 tetrahedra, PN_5 trigonal bipyramids and MN_6 octahedra. PN5 trigonal bipyramids have been reported only once and MN_6 octahedra are sparsely found in the literature. AIP_6N_{11} was further characterized by energydispersive X-ray (EDX), IR and NMR spectroscopy. Despite the vast amount of known layered silicates, there is no isostructural compound to MP_6N_{11} as yet.

N aturally abundant (oxo)silicates dominate the solid earth crust with a volume fraction of more than 90 %.^[1] Despite the limited number of primary building units of the Si/O-networks, predominantly SiO₄ tetrahedra, this class features an immense structural diversity. This includes isolated tetrahedra or small groups thereof, ribbons, layers and 3D-frameworks. Layered silicate structures often consist of stacked SiO₄ tetrahedral (T) and MO_6 (M=Al, Mg, Fe, ...) octahedral (O) layers and various cations between oxide layers. Layer stacking between cations usually occurs in two

[*] S. J. Ambach, M. Pointner, S. Falkai, Prof. Dr. W. Schnick Department of Chemistry, University of Munich (LMU) Butenandtstraße 5–13, 81377 Munich (Germany) E-mail: wolfgang.schnick@uni-muenchen.de
Dr. C. Paulmann Institute for Mineralogy, Crystallography and Petrography, University of Hamburg Grindelallee 48, 20146 Hamburg (Germany)
Prof. Dr. O. Oeckler

Faculty of Chemistry and Mineralogy, Leipzig University Scharnhorstraße 20, 04275 Leipzig (Germany)

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made. ways: T-O or T-O-T, the latter being typical for micas, a subgroup of layered silicates. Combining these possibilities leads to a large structural variety and a similarly broad field of application, such as ceramics, building materials, (photo)catalysis, adsorbents, feed additives or biomedical applications.^[2-10] Furthermore, clay minerals have even been discussed to play an important role in the origin of life.^[11,12] The structural limitation of oxygen, usually connecting only up to two tetrahedral centers, is overcome when O is formally replaced by N and Si by P, leading to the class of nitridophosphates. Due to the isoelectronic combination Si/ O and P/N, both form similar structural elements, however, with one key difference: In nitridophosphates, N has the possibility to regularly connect up to three tetrahedral P centers, enabling an even larger structural diversity.^[13] Occasionally, even edge-sharing PN₄ tetrahedra have been reported (e.g. in α -P₃N₅, α -HP₄N₇ or P₄ON₆). In contrast, edge-sharing SiO₄ tetrahedra have only claimed once, namely for fibrous silica.^[14-17] This suggests a plethora of layered silicate minerals isostructural with or closely related to nitridophosphates. However, so far only one such example is known, namely $AESi_3P_4N_{10}(NH)_2$ (AE=Mg, Ca, Sr).^[18]

Nitridophosphates are versatile materials, ranging from semiconductors or luminescent materials (when doped with Eu²⁺) to flame-retardants, safety materials in pyrotechnics, ion conductors or gas storage materials.^[19-26] Extending their crystal chemistry in analogy to the manifold structural possibilities of layered silicates, their field of application would widely increase.

In contrast to naturally abundant (oxo)silicates, nitridophosphates are a purely synthetic class of materials. One reason for this is their susceptibility to irreversible thermal decomposition, releasing molecular nitrogen. For their formation, however, often temperatures way above the point of decomposition are necessary. Following Le Chatelier's principle, applying pressure prevents the formation of N₂ and allows high-temperature syntheses to be carried out. Typically, high pressure also affects coordination numbers, increasing the usual fourfold coordination in PN₄ tetrahedra. Thereby, PN₅-pyramids, either square-based in γ -P₃N₅, or trigonal-bipyramidal in γ -HP₄N₇ were observed and even PN₆-octahedra in β -BP₃N₆ could be enforced recently by applying a pressure of 46 GPa.^[27-30]

In this contribution, we report on the highly condensed nitridophosphates MP_6N_{11} (M = Al, In), which adopt a micalike structure with rare coordination motifs. The title compounds were synthesized in a high-pressure high-

Angew. Chem. Int. Ed. 2023, 62, e202303580 (1 of 5)

Angewandte

Construction of the second of

temperature reaction at 8 GPa and 1100 °C starting from MCl_3 , P_3N_5 and NH_4N_3 (equation 1). Starting materials were ground in a glove box under an argon atmosphere, tightly packed into a h-BN crucible and reacted in a multianvil press.^[31] Further details on the synthesis are given in the Supporting Information.

$$4MCl_3 + 8P_3N_5 + 3NH_4N_3 \rightarrow 4MP_6N_{11} + 12HCl + 4N_2$$
(1)

The reactions yielded a gray, microcrystalline powder, which is stable at ambient conditions. In both cases, best yields were obtained using only 10% of the required stoichiometric amount of NH₄N₃. Without this significant deviation from the ideal stoichiometry, diverse unknown side phases are formed, presumably containing H due to the high partial pressure of HCl. The in situ generated HCl seems to act as a mineralizer enhancing single-crystal growth, as it is known for the ability to reversibly cleave P–N bonds.^[32] Thereby plate-shaped single crystals of AlP₆N₁₁ up to $70 \times 70 \,\mu\text{m}^2$ in length and width (Figure 1) were obtained. In contrast, InP_6N_{11} forms small acicular single crystals that are only up to two μm long.

 MP_6N_{11} (M=Al, In) can be interpreted as the formal reaction product of MN and P_3N_5 in a molar ratio of 1:2. A direct high-pressure high-temperature reaction of these compounds, however, does not yield MP_6N_{11} . Instead, MNresults as the main crystalline constituent alongside minor unknown phases and an amorphous portion, which the higher reactivity of MCl_3 compared to MN may explain. Coherent with this, the synthesis of analogous GaP₆N₁₁ was not possible as yet. With the required usage of GaCl₃, the powder mixture starts to react with the boron nitride crucible and forms BP₃N₆ as the only crystalline product.^[30]

The crystal structure of AlP_6N_{11} was elucidated from synchrotron single-crystal X-ray diffraction data (space group *Cm* (no. 8), a=4.9354(10), b=8.1608(16), c=9.0401(18) Å, $\beta=98.63(3)^\circ$).^[33] The data were collected at beamline P24 at DESY (Hamburg, Germany; more information in the Supporting Information). The elemental compositions of both title compounds were analyzed by energy-dispersive Xray (EDX) spectroscopy (Tables S2 and S3). In the respective samples, MP_6N_{11} was confirmed as the main crystalline constituent by Rietveld refinement (Figures S2 and S3).

Figure 1. Exemplary a) scanning electron microscope (SEM) image of a plate-shaped single crystal of AIP_6N_{11} and b) transmission electron microscope (TEM) image of a small needle-shaped crystallite of InP_6N_{11} .

The layered structure of AlP_6N_{11} is built up from AlN_6 octahedra, PN_4 tetrahedra and PN_5 trigonal bipyramids (Figures 2 and 3). The AlN_6 octahedra are not interconnected, while both PN_4 tetrahedra and PN_5 trigonal bipyramids form *sechser* rings, as defined by Liebau.^[1] A more detailed view on the layered structure is provided in the Supporting Information (Figure S1). This setup is comparable to layered silicates, however, to the best of our knowledge, there is no clay mineral or mica, which is isotypic to MP_6N_{11} , probably because trigonal bipyramids SiO₅ have only been reported for exceptional oxosilicates.^[34,35] A related layer sequence is found in the mica clintonite (Ca(Mg,Al)₃(Al₃Si)O₁₀(OH)₂), with the exception of (Al,Si)O₆ octahedra instead of PN₅ trigonal bipyramids (Figure S1).^[36]

The AlN₆ octahedra, rarely found in the literature (e.g. AlP₆O_{3x}(NH)_{3-x}N₉ or rock salt-type high-pressure AlN), are significantly elongated along one axis, leading to Al–N bond lengths of 2.056(8) and 2.087(9) Å in the equatorial plane and 2.342(9) and 2.392(10) Å in the axial direction, respectively.^[37,38] Typical Al–N distances in octahedral coordination, as found in the aforementioned compounds, vary around 2.0 Å. N–Al–N angles are between 87.5(4) and 92.6(4)° and thus in a typical range for octahedra of ideally

Figure 2. The layered crystal structure of AIP_6N_{11} consists of AIN_6 octahedra (blue), PN_5 trigonal bipyramids (green) and PN_4 tetrahedra (red). Displacement ellipsoids are displayed at 90% probability level.

Figure 3. Coordination polyhedra of Al1, P1, P2 and P3 in AIP_6N_{11} .

Angew. Chem. Int. Ed. 2023, 62, e202303580 (2 of 5)

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Communications

90°. P-N distances (1.6283(8)-1.6492(11) Å) and N-P-N angles $(102.7(4)-122.2(4)^{\circ})$ in the PN₄ tetrahedra can be compared to other nitridophosphates, e.g. P₃N₅ or AlP₆O_{3x}- $(NH)_{3-x}N_9$.^[12,37] So far, trigonal bipyramidal PN₅ units were only observed in the high-pressure polymorph γ -HP₄N₇, where two longer and three shorter bonds appear.^[26] Comparable bond lengths and angles can be observed in AlP_6N_{11} , with 1.832(7) and 1.791(7) Å for the longer and 1.5408(13)–1.663(8) Å for the shorter bonds. As in γ -HP₄N₇, PN₅ units share edges, forming infinite strands along [100], however, with a major difference. While in γ -HP₄N₇ these strands do not interact with each other, they are directly interconnected via the N7 atom in AlP₆N₁₁. This leads to an energetically unfavorable, almost linear coordination (175-(3)°) of N7, resulting in a large thermal displacement ellipsoid with its largest displacement perpendicular to the P3...P3 vector (Figure 3). This feature has not yet been described for nitridophosphates. However, it appears in oxosilicates, e.g. K₃NdSi₇O₁₇.^[39] Such angles of approximately 180° can be seen as a time and position average rather than an actual bond angle. Its real value, at any instant in time, is likely to be much smaller than 180°. This is also consistent with a small P3-N7 distance of 1.5408(13) Å in case of the almost linear coordination, which would be larger with smaller bond angles. Other comparable bond lengths in trigonal bipyramids show values of 1.661(8) (P3–N3) and 1.663(8) Å (P3–N2). Even at low temperatures (173(2) K) this observation does not change.

The electrostatic plausibility of the crystal structure and polyhedral distortions were analyzed by charge distribution (CHARDI), bond-valence-sum (BVS) and minimal bonding ellipsoid (MBE) calculations, all of which confirm the consistency of the structure model.^[41–43] Corresponding results and more detailed information are provided in the Supporting Information (Tables S11 and S12, Figure S9).

Data obtained from X-ray diffraction initially suggest the higher symmetric space group C2/m (no.12) instead of the chosen Cm (no. 8). This, however, would cause two major issues. First, the nitrogen atom connecting the PN₅strands (N7, Figure 3) is forced into the energetically unfavorable linear coordination with a P3–N7–P3 angle of exactly 180°. Avoiding this by introducing a 50:50 split position of N7 still results in large displacement ellipsoids. Second, a twofold axis would lead to the crystallographic equivalency of all P sites of the PN₄ tetrahedra. This is not consistent with the results of ³¹P NMR spectroscopy (Figure 4b).

The ³¹P spectrum shows one signal at $\delta = -130.0$ ppm, corresponding to penta-coordinated P in the PN₅ trigonal bipyramids. A comparable chemical shift was reported for P in γ -HP₄N₇ ($\delta = -103.0$ ppm), which also contains trigonal bipyramidal PN₅ units.^[26] Additionally, two signals at $\delta =$ 14.5 and 12.0 ppm are observed, which is a typical range for fourfold N-coordinated P, as observed e.g. in AlP₆O_{3x}(NH)_{3-x}N₉.^[36] These signals suggest two independent crystallographic P sites for PN₄ tetrahedra, which is met in space group *Cm* but not in *C*2/*m* (only one P site). Whereas X-ray diffraction averages over long distances and may render space group *C*2/*m* acceptable, NMR spectroscopy is sensi-

Figure 4. Solid-state MAS NMR spectra of AIP_6N_{11} . a) One signal in the ²⁷Al spectrum. b) Three signals in the ³¹P (black) and one signal in the ³¹P{¹H} (red) spectra. The number of signals is consistent with the structure model in *Cm*, showing no evidence of H in AIP_6N_{11} . Sidebands are marked with asterisks.

tive to short-range interactions and rules out C2/m in the local environment. Thus, we prefer space group Cm for the structure model. The measure of similarity, calculated by the COMPSTRU tool of the Bilbao Crystallographic Server, has a value of $\Delta = 0.114$, indicating only small deviations between both structure models.^[44-49] For this reason, possible ferroelectric properties caused by the non-centrosymmetric structure would be minimal, if measurable at all. Additionally, a high-temperature phase transition from space group Cm to C2/m could be possible, however would require temperature-dependent solid-state NMR-measurements.

Structure elucidation of AlP₆N₁₁ enabled Rietveld refinement (Figure S3) for InP₆N₁₁ (a=4.9723(2), b=8.2930(3), c=9.2627(4) Å, β =99.217(1))°). In contrast to AlP₆N₁₁, the ³¹P NMR spectrum of InP₆N₁₁ (Figure S5) shows only one signal for tetrahedrally coordinated P (δ =6.8 ppm). This may be a superposition of two separate signals, leading to space group *Cm*, as in case of AlP₆N₁₁. On the other hand, based on NMR results space group *C2/m* is feasible for the structure model of InP₆N₁₁. As we see no apparent reason for a change in space group, we prefer *Cm* for InP₆N₁₁ as well. In–N distances of the elongated InN₆ octahedra range from 2.21(7) to 2.29(7) Å in the equatorial plane, comparable to rock salt-type high-pressure InN, and from 2.33(6) to 2.60(5) Å along the axial direction.^[40] All bond lengths and angles of the P–N polyhedra are comparable to AlP₆N₁₁.

Angew. Chem. Int. Ed. 2023, 62, e202303580 (3 of 5)

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

The *c* lattice parameter is expanded by 2.4 % from 9.0401 (18) Å in AlP_6N_{11} to 9.2627(4) Å in InP_6N_{11} .

To rule out imide functionality in MP_6N_{11} (M=Al, In), which might be introduced by the starting material NH₄N₃ or short contact with air before the synthesis, IR- and solidstate NMR spectra (Figure 4) were recorded. As in the case of $EASi_3P_4N_{12}H_2$ (EA=Mg, Ca, Sr), N–H valence modes are typically observed at around 3400 cm⁻¹ in IR-spectra, whereas the spectrum of AlP₆N₁₁ shows no such absorption band (Figure S6).^[16]

As a much more sensitive probe towards hydrogen, solid-state NMR measurements show the same result. The ²⁷Al (spin $I=5/_2$) spectrum shows one broad signal between $\delta=0$ and -100 ppm, which is in line with one crystallographic Al site. The shift is comparable to octahedrally coordinated Al as reported in the literature.^[36,50] The signal of the ³¹P{¹H} cross polarized spectrum does not match any positions of the signals in the direct ³¹P spectrum, indicating the absence of hydrogen in AlP₆N₁₁. The broad signal in the ³¹P{¹H} cross polarized spectrum may be explained by a minor amorphous side phase, containing both P and H. The ¹H NMR and all other NMR spectra of AlP₆N₁₁ can be found in the Supporting Information (Figure S4).

Despite the thermal sensitivity of many nitridophosphates, AlP₆N₁₁ is stable up to at least 950 °C under argon atmosphere (Figure S7) and shows a thermal volume expansion of 16.0 ppm/K, which is small compared to silicate clay minerals and micas.^[51,52] In the former, the lattice parameter perpendicular to the layers usually shows a much higher thermal expansion than the ones parallel to the layers. In AlP₆N₁₁, however, the increase in volume is caused by the expansion of the lattice parameter perpendicular to the layers and only one lattice parameter parallel to the layers. The second parallel lattice parameter only shows a very small increase in length. (Figure S8) This behavior may be a feature of the nearly linear coordinated N7 atom (Figure 3). Upon expansion along [010], the P3-N7-P3 angle would be further stretched towards the energetically unfavorable value of 180°.

Summing up, we synthesized the mica-analogous nitridophosphates MP_6N_{11} (M=Al, In), which contain the rare structure motifs of MN_6 octahedra and PN_5 trigonal bipyramids. As the second nitridic compound structurally mimicking layered silicate minerals, this gives proof that nitridophosphates should systematically be able to adopt structures of the former and $AESi_3P_4N_{10}(NH)_2$ (AE=Mg, Ca, Sr) is not just a stand-out curiosity. Exploring nitridic analogs of layered silicate minerals, with the aim to expand the already wide variety of structures and applications of nitridophosphates, seems an intriguing approach for further studies. Targeting compositions and structures known from nature promises to yield a vast amount of new nitridophosphates with applications as essential as the ones of silicate clay minerals and micas.

Acknowledgements

We gratefully acknowledge the financial support by Deutsche Forschungsgemeinschaft (projects SCHN 377/18-1 and OE530/6-1). The Deutsches Elektronensynchrotron (DESY, Hamburg) is acknowledged for granting beamtime (project I-20210953). Laetitia Bradaczek, Alexander Feige, Niklas Langer and Lennart Staab are acknowledged for help during the beam time. Furthermore, the authors thank Christian Minke and Amalina Buda for the SEM and EDX measurements as well as solid-state NMR experiments. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: Aluminum · High-Pressure Chemistry · Layered Structures · Nitrides · Nitridophosphate

- F. Liebau in *Structural Chemistry of Silicates. Structure, Bonding, and Classification*, Springer, Berlin, Heidelberg, **1985**, pp. 212–229. The term "*sechser ring*" has been defined by Liebau and is derived from the German word "sechs" (engl. six), describing a ring formed by six polyhedra.
- [2] F. Bergaya, G. Lagaly in *Handbook of Clay Science*, Vol. 2, Elsevier, Amsterdam, 2006, pp. 1–19.
- [3] H. H. Murray, Appl. Clay Sci. 1991, 5, 379–395.
- [4] M. Valásková, Ceram.-Silik. 2015, 59, 331–340.
- [5] M. Ghadiri, W. Chrzanowski, R. Rohanizadeh, *RSC Adv.* 2015, 5, 29467–29481.
- [6] Y. Zou, Y. Hu, Z. Shen, L. Yao, D. Tang, S. Zhang, S. Wang, B. Hu, G. Zhao, X. Wang, J. Environ. Sci. 2022, 115, 190–214.
- [7] W. D. Johns, Annu. Rev. Earth Planet. Sci. 1979, 7, 183–198.
- [8] C. H. Zhou, J. Keeling, Appl. Clay Sci. 2013, 74, 3-9.
- [9] M. Nadziakiewicza, S. Kehoe, P. Micek, Animal 2019, 9, 714.
- [10] V. Reyes-Zamudio, C. Angeles-Chávez, J. Cervantes, J. Therm. Anal. Calorim. 2011, 104, 405–413.
- [11] A. Weiss, Angew. Chem. Int. Ed. Engl. 1981, 20, 850-860.
- [12] J. T. Kloprogge, H. Hartmann, Life 2022, 12, 259-313.
- [13] S. D. Kloß, W. Schnick, Angew. Chem. Int. Ed. 2019, 58, 7933– 7944.
- [14] S. Horstmann, E. Irran, W. Schnick, Angew. Chem. Int. Ed. Engl. 1997, 36, 1873–1875.
- [15] S. Horstmann, E. Irran, W. Schnick, Angew. Chem. Int. Ed. Engl. 1997, 36, 1992–1994.
- [16] J. Ronis, B. Bondars, A. Vitola, T. Millers, J. Schneider, F. Frey, J. Solid State Chem. 1995, 115, 265–269.
- [17] A. Weiss, A. Weiss, Z. Anorg. Allg. Chem. 1954, 276, 95-112.
- [18] L. Eisenburger, P. Strobel, P. J. Schmidt, T. Bräuniger, J. Wright, E. L. Bright, C. Giacobbe, O. Oeckler, W. Schnick, *Angew. Chem. Int. Ed.* **2022**, *61*, e202114902.
- [19] Y. Hirota, T. Kobayashi, J. Appl. Phys. 1982, 53, 5037-5043.
- [20] Y.-H. Jeong, K.-H. Choi, S.-K. Jo, B. K. Bongkoo Kang, Jpn. J. Appl. Phys. 1995, 34, 1176–1180.

Angew. Chem. Int. Ed. 2023, 62, e202303580 (4 of 5)

© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Construction of the second of

- [21] F. J. Pucher, A. Marchuk, P. J. Schmidt, D. Wiechert, W. Schnick, *Chem. Eur. J.* 2015, 21, 6443–6448.
- [22] S. Wendl, L. Eisenburger, P. Strobel, D. Günther, J. P. Wright, P. J. Schmidt, O. Oeckler, W. Schnick, *Chem. Eur. J.* 2020, 26, 7292–7298.
- [23] M. S. Choudhary, J. K. Fink, K. Lederer, H. A. Krässig, J. Appl. Polym. Sci. 1987, 34, 863–869.
- [24] E.-C. Koch, S. Cudziło, Angew. Chem. Int. Ed. 2016, 55, 15439– 15442.
- [25] W. Schnick, J. Luecke, Solid State Ionics 1990, 38, 271-273.
- [26] F. Karau, W. Schnick, Angew. Chem. Int. Ed. 2006, 45, 4505– 4508.
- [27] K. Landskron, H. Huppertz, J. Senker, W. Schnick, Angew. Chem. Int. Ed. 2001, 40, 2643–2645.
- [28] D. Baumann, W. Schnick, Angew. Chem. Int. Ed. 2014, 53, 14490–14493.
- [29] S. Vogel, M. Bykov, E. Bykova, S. Wendl, S. D. Kloß, A. Pakhomova, S. Chariton, E. Koemets, N. Dubrovinskaia, L. Dubrovinsky, W. Schnick, *Angew. Chem. Int. Ed.* **2019**, *58*, 9060–9063.
- [30] K. Landskron, H. Huppertz, J. Senker, W. Schnick, Z. Anorg. Allg. Chem. 2002, 628, 1465–1471.
- [31] H. Huppertz, Z. Kristallogr. Cryst. Mater. 2004, 219, 330-338.
- [32] S. Vogel, A. T. Buda, W. Schnick, Angew. Chem. Int. Ed. 2018, 57, 13202–13205.
- [33] Deposition number 2241809 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- [34] A. Pakhomova, E. Bykova, M. Bykov, K. Glazyrin, B. Gasharova, H.-P. Liermann, M. Mezouar, L. Gorelova, S. Krivovichev, L. Dubrovinsky, *IUCrJ* 2017, 4, 671–677.
- [35] F. Liebau, Inorg. Chim. Acta 1984, 89, 1–7.
- [36] J. A. MacKinney, C. I. Mora, S. W. Bailey, Am. Mineral. 1988, 73, 365–375.

- [37] L. Neudert, F. Heinke, T. Bräuniger, F. J. Pucher, G. B. Vaughan, O. Oeckler, W. Schnick, *Chem. Commun.* 2017, 53, 2709–2712.
- [38] H. Vollstädt, E. Ito, M. Akaishi, S. Akimoto, O. Fukunaga, Proc. Jpn. Acad. Ser. B 1990, 66, 7–9.
- [39] S. M. Haile, B. J. Wuensch, Acta Crystallogr. Sect. B 2000, 56, 773–779.
- [40] M. Ueno, M. Yoshida, A. Onodera, O. Shimomura, K. Takemura, *Phys. Rev. B: Condens. Matter Mater. Phys.* 1994, 49, 14– 21.
- [41] K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272-1276.
- [42] A. S. Wills, VaList A bond valence calculation and analysis program, London, 2010.
- [43] J. Cumby, J. P. Attfield, Nat. Commun. 2017, 8, 14235.
- [44] G. Bergerhoff, M. Berndt, K. Brandenburg, T. Degen, Acta Crystallogr. Sect. B 1999, 55, 147–156.
- [45] M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. de la Flor, A. Kirov, *Bulg. Chem. Commun.* 2011, 43, 183–197.
- [46] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Z. *Kristallogr.* 2006, 221, 15–27.
- [47] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, H. Wondratschek, *Acta Crystallogr. Sect. A* 2006, 62, 115–128.
- [48] G. de la Flor, D. Orobengoa, E. Tasci, J. M. Perez-Mato, M. I. Aroyo, J. Appl. Crystallogr. 2016, 49, 653–664.
- [49] E. S. Tasci, G. de la Flor, D. Orobengoa, C. Capillas, J. M. Perez-Mato, M. I. Aroyo, *EPJ Web Conf.* 2012, 22, 00009.
- [50] T. Bräuniger, M. Jansen, Z. Anorg. Allg. Chem. 2013, 639, 857– 879.
- [51] H. A. McKinstry, Am. Mineral. 1965, 50, 212–222.
- [52] M. Gemmi, M. Merlini, A. Pavese, N. Curetti, Phys. Chem. Miner. 2008, 35, 367–379.

Manuscript received: March 10, 2023

Accepted manuscript online: April 13, 2023 Version of record online: May 4, 2023