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Abstract

As the availability of omics data has increased in the last few years, more
multi-omics data have been generated, that is, high-dimensional molecular
data consisting of several types such as genomic, transcriptomic, or proteo-
mic data, all obtained from the same patients. Such data lend themselves to
being used as covariates in automatic outcome prediction because each
omics type may contribute unique information, possibly improving predic-
tions compared to using only one omics data type. Frequently, however, in
the training data and the data to which automatic prediction rules should
be applied, the test data, the different omics data types are not available for
all patients. We refer to this type of data as block-wise missing multi-omics
data. First, we provide a literature review on existing prediction methods
applicable to such data. Subsequently, using a collection of 13 publicly
available multi-omics data sets, we compare the predictive performances of
several of these approaches for different block-wise missingness patterns.
Finally, we discuss the results of this empirical comparison study and draw
some tentative conclusions.
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1 | INTRODUCTION

The generation of various types of omics data is becoming increasingly rapid and cost-effective. As a consequence, there
are more so-called multi-omics data becoming available, that is, high-dimensional molecular data of several types such
as genomic, transcriptomic, or proteomic data measured for the same patients. In the last few years, several approaches
to use these data for patient outcome prediction have been developed (see Hornung and Wright (2019) for an extensive
literature review). Nevertheless, doubts have recently emerged as to whether there is benefit to using multi-omics data
over simple clinical models (Herrmann et al., 2020).

Regardless of their usefulness for prediction, multi-omics data from different sources that are used for the same pre-
diction problem, for various reasons, often do not feature the exact same types of data. Most importantly, the data for
which predictions should be obtained, that is, the test data, often do not contain the same data types as the data avail-
able for obtaining the prediction rule, that is, the training data (Krautenbacher et al., 2019). The training data are also
frequently composed of subsets originating from different sources (e.g., different hospitals) that frequently consist of dif-
ferent combinations of omics data types, as mentioned previously. When focusing on the collection of all omics data
types available in at least one of the observations and considering data types not available for the different observations
as missing, we can concatenate the data associated with all observations to obtain a large data set with partly missing
data (cf. Figure 1 for illustrative examples). In the following, data concatenated in this form will be referred to as
block-wise missing multi-omics data, where the different omics data types will be denoted as “blocks.” The groups of
observations in the data set that share the same combinations of observed data types will be denoted as “subsets” for
simplicity. Note that in addition to the omics data, there are often clinical covariates (e.g., age or disease stage) available
in practice, which usually contain plenty of predictive information. In this article, we assume that the clinical covariates
are always available for all patients. This data will be referred to as the “clinical block” in the following.

We begin with a presentation of the current state-of-the-art prediction approaches applicable to block-wise missing
multi-omics data, followed by an empirical benchmark comparison study of the performance of some approaches. For
this study we used a large collection of publicly available multi-omics data sets, for which missing data were generated
artificially. As a response variable, we used the presence versus absence of a TP53 mutation. While it is not clinically
meaningful to derive a model that predicts the presence of TP53 mutations, these mutations have been associated
with poor clinical outcomes (Wang & Sun, 2017). Against this background, we use TP53 as a surrogate for a phenotypic
outcome in our benchmark study.

2 | EXISTING PREDICTION APPROACHES FOR PARTLY MISSING
MULTI-OMICS COVARIATE DATA

Existing methods that can handle block-wise missing data can be broadly characterized into three categories: naive
methods, imputation methods to be used before prediction modeling, and methods that deal with the missingness struc-
ture within the prediction modeling process. In the following, we will describe these methods, where we will go into
particular detail about those methods that have been included in our empirical comparison study. Tables 1 and 2 facili-
tate the identification of commonalities and differences between the methods discussed below by providing key charac-
teristics for each method. Unfortunately, for most of the methods there do not seem to exist publicly available
implementations. In the following descriptions, we will mention all publicly available implementations that we identi-
fied. In addition, we implemented some of the methods in R in order to include them in our benchmark study. These
implementations, which are exclusively available in the GitHub repository associated with this article (https://github.
com/RomanHornung/bwm_article), will also be mentioned in the following. Hereafter, for simplicity, we will use the
terms “training data” and “test data” instead of “block-wise missing multi-omics training data” and “block-wise missing
multi-omics test data.”

2.1 | Naive methods

The simplest method is the complete case approach. In conventional complete case analysis, all observations with miss-
ing values are removed. However, in the presence of block-wise missingness this would often be impossible or ineffec-
tive because there may be no or very few observations with all blocks observed. Therefore, to increase the number of
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training observations with no missing data, it makes sense to first remove all those blocks from the training data that
do not occur in the test data. When subsequently removing all observations with missing values from the training data,
more complete observations can be retained. However, still a potentially important part of the training observations
may be discarded with this method. In extreme cases, there may not even be any patients with complete data. For
example, one study center may have collected transcriptomic and proteomic data only, while the other center has col-
lected transcriptomic and genomic data only; none of the patients are a complete case with respect to the combination
of transcriptomic, proteomic, and genomic data. Note that with the complete case approach, as with most of the
approaches described below, the prediction rule can only be trained if the missing data structure of the test data is
known.

(Klau et al., 2018)

TABLE 1 Overview of existing prediction approaches for partly missing multi-omics covariate data—I.
Developed for Parametric versus Prediction Computational
Approach Type multi-omics data  non-parametric method type effort required
Complete case approach  Naive No - Any Low
Single block approach Naive No - Any Low
Conventional Imputation-based No Depends on Any High
imputation imputation
procedure
Semi-supervised Imputation-based No Non-parametric Any Unclear
imputation (W. Lan
et al., 2022)
TOBMI (Dong Imputation-based Yes Non-parametric Any Moderate
et al., 2019)
Thung et al. (2014) Imputation-based No (medical data Semi-parametric Using imputation, Unclear
including omics binary outcomes
data) only
Cai et al. (2016) Imputation-based Yes Non-parametric Any Unclear
Linder and Zhang Imputation-based Yes Non-parametric Any Unclear
(2019)
Generalized integrative ~ Imputation-based No Semi-parametric Any Unclear
principal component
analysis (Zhu
et al., 2020)
Multiple block-wise Imputation-based No (medical data Semi-parametric Linear regression Moderate
imputation (Xue & including omics model
Qu, 2021) data)
mdd-sPLS (Lorenzo, Imputation-based No (medical data Semi-parametric Linear regression Unclear
Razzagq, et al., 2019; including omics model, linear
Lorenzo, Saracco, & data) discriminant
Thiébaut, 2019) analysis
Zhang et al. (2020) Imputation-based No (medical data Semi-parametric Latent factor Unclear
including omics regression
data)
PRIME (Yang Imputation-based No Semi-parametric SVM with variable ~ Unclear
et al., 2020) selection using
LASSO
Hieke et al. (2016) Imputation-based Yes Parametric Componentwise Unclear (probably
likelihood-based low to
boosting moderate)
priority-LASSO-impute Imputation-based Yes Parametric Priority-LASSO Moderate
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TABLE 2 Overview of existing prediction approaches for partly missing multi-omics covariate data—II.
Developed for Parametric versus Prediction Computational
Approach Type multi-omics data non-parametric method type effort required
Ingalhalikar et al. (2012) Missingness No Non-parametric Any Unclear
pattern-based
Multi-source random Missingness Yes Non-parametric Variant of random  High
forests pattern-based forests
(Ludwigs, 2020)
Krautenbacher et al. Missingness No (medical data Non-parametric Any Moderate
(2019) pattern-based including omics
data)
Incomplete Multi- Missingness No (medical data Parametric Ensemble of Unclear
Source Feature (iMSF) pattern-based including omics regularized
learning (Yuan data) logistic regression
et al., 2012) models
Incomplete Source- Missingness No (medical data Parametric Ensemble of Unclear
Feature Selection pattern-based including omics regularized linear
(ISFS) model (Xiang data) regression models
et al., 2014)
MMPEFS (Q. Lan & Missingness No Parametric Ensemble of Unclear
Jiang, 2021) pattern-based regularized
logistic regression
models
Multi-hypergraph Missingness No Semi-parametric Hypergraph-based  Low
learning (MHL) pattern-based transductive
method (Liu classification
et al., 2017)
Dong et al. (2021) Missingness No Semi-parametric Ensemble of SVMs  Moderate
pattern-based
Heterogeneous Graph-  Missingness No Semi-parametric Graph neural Unclear (probably
based Multimodal pattern-based network-based high)
Fusion (HGMF) transductive
(Chen & Zhang, 2020) classification

Another naive method is the single block approach, where a model is trained only on one block that is available in
both the training and test data. This may be advantageous in situations in which a single block carries most of the avail-
able predictive information or in which the predictive information contained in the different blocks is redundant. In
the first step of the single block approach, all blocks not featured in the test data are removed from the training data.
Subsequently, the predictive performance of classifiers of the same but arbitrary type trained on each of the remaining
blocks is measured using, for example, cross-validation. Finally, the considered classifier is trained on the block associ-
ated with the best measured predictive performance. This method has the major disadvantage that it leads to discarding
a potentially important part of the predictor variables. The complete case approach and the naive method share the
advantage that, for training, any prediction method suitable for high-dimensional covariate data can be used. R
implementations of both approaches are available in the GitHub repository associated with this article (https://github.
com/RomanHornung/bwm_article).

2.2 | Imputation-based methods

A more sophisticated approach to dealing with missing data than the naive approaches is to impute the missing values
using a data-driven procedure. An important advantage of the imputation approach over the complete case approach
described above is that no observations need to be excluded when training the prediction rule. Note that some of the
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methods discussed in this section assume that all covariates are continuous. However, these methods can still handle
categorical covariates by dummy coding them. This means creating a separate binary variable for each category and
assigning a value of 1 or 0 to each observation to indicate whether it belongs to that category or not (except for a refer-
ence category). The imputed values will generally be continuous, which is why they cannot be interpreted as those of
categorical covariates. However, this is not a problem if the sole purpose is prediction.

In the simplest form, imputation methods can be used to impute the missing values in the same ways as performed in
conventional missing data imputations. Here, missForest (Stekhoven & Biithlmann, 2011) or a semi-supervised learning
approach (W. Lan et al., 2022) may be used. With these methods, as with those presented in the last subsection, any pre-
diction method suitable for high-dimensional covariate can be used. It is in principle possible to use also multiple imputa-
tion methods with this most simple approach. In contrast, all other approaches discussed in this subsection perform
single imputation. Multiple imputation generates multiple plausible values for each missing value based on the observed
data. The resulting multiple imputed data sets are then analyzed separately and the results are combined.

While, as discussed in the last paragraph, it is possible to use conventional imputation methods to estimate the
missing values, such methods may not be optimal for block-wise missing multi-omics data. This is because block-wise
missingness patterns are quite different from conventional missingness patterns. With block-wise missing data, the
observations can be divided into a limited number of groups, with a different combination of blocks observed in each
group. In contrast, conventionally the missingness is more diffuse in the sense that each observation may have a differ-
ent combination of covariates missing. In addition, because entire blocks representing different data types are missing
in block-wise missing data, the missing values may differ more from the observed values of the same observations than
in standard missingness patterns.

The TOBMI (Dong et al., 2019) approach is based on the popular k-nearest neighbor imputation principle (Beretta
& Santaniello, 2016). TOBMI was designed for situations with two (omics) blocks A and B, where block A is available
for all observations and block B is missing for part of the observations. First, the Mahalanobis distance matrix M
between all observations is calculated, where importantly only the measurements from block A are used. Subsequently,
the data of each observation i with missing data from block B are imputed in the following way: (1) Determine the k
observations in the subset of the observations with measurements in block B that are closest to i according to M (note
again that the latter distance matrix was obtained only using block A). These k observations likely behave similar to i
and thus are used for imputing the missing values of i in the second step; (2) Impute each missing block B value in i by
its weighted mean across the k nearest neighbors determined in step 1. As weights, the reciprocals of the Mahalanobis
distances from i are used. For k, the (rounded down) square root of the number of observations with measurements in
block A and B is used. Although TOBMI was only intended for situations with no more than two blocks, it can easily
be applied to situations with more than two blocks; see Section 3.2.1 where we describe the configuration used for
TOBMI in our empirical comparison study. Note again that with this procedure, there needs to be at least one block
that is available for all observations because we need at least one block that can be used to calculate the Mahalanobis
distances between all observations (i.e., matrix M). This should be fulfilled in practice in most cases because usually
clinical information is available for all patients. The original version for two blocks is implemented in R and is available
on a GitHub repository by the authors of Dong et al. (2019) (https://github.com/XuesiDong/TOBMI). We provide an
accelerated version of this code, also applicable to situations with more than two blocks, in the GitHub repository
accompanying the current article (https://github.com/RomanHornung/bwm_article).

Several methods use matrix completion algorithms to impute missing values. In Thung et al. (2014), first, the train-
ing data is reduced in size by removing noisy and redundant covariates and selecting observations that well represent
the observations in the test data. Second, after removing the same covariates from the test data, the missing data in the
combined training and test data are imputed, including the missing outcome values in the test data. Cai et al. (2016)
assume an approximately low rank matrix for block-wise missing data and propose a structured matrix completion
algorithm. This is the basis for Linder and Zhang (2019) who also allow for missing values in individual covariates in
addition to the block-wise missingness structure.

Other approaches for imputation include Zhu et al. (2020). They assume that the data are realizations from expo-
nential families and estimate the parameters of the distributions of the missing values using principal component
analysis-based techniques, where they take relations within and between omic types into account. The empirical studies
presented in Zhu et al. (2020) suggest that the performance of their approach tends to be lower in situations with more
than two blocks. Moreover, it is only applicable if there are complete observations that feature values for all blocks. The
approach is implemented in R and available on a GitHub repository by the authors of Zhu et al. (2020) (https://github.
com/zhuhuichenecho/GeneralizedIntegrativePCA). In the multiple block-wise imputation approach (Xue & Qu, 2021),
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the data are divided into disjoint groups based on the missingness pattern, the missing values are imputed multiple
times, and the results aggregated. The imputed data sets are used to generate estimation equations and the different
estimators are combined to yield one prediction. MI-GAN (Dai et al., 2021) learns generative adversarial networks for
the different missingness patterns to multiply impute the missing values.

Multi-Block Data-Driven sparse partial least squares (mdd-sPLS) (Lorenzo, Razzaq, et al., 2019; Lorenzo, Sar-
acco, & Thiébaut, 2019) is a complex method based on the partial least squares (PLS) technique. Both the training
data and the test data are imputed, where these imputations are performed separately. After imputation, there are
no missing values in the training and test data, which is why all blocks can be used for prediction. Put simply,
mdd-sPLS performs PLS-type procedures on the blocks separately and predicts the outcome using a specific func-
tion of the (imputed) covariate values and the estimated parameters. Note, however, that although the PLS-type
procedures are performed separately on the blocks, information is shared between the blocks by estimating also
block-unspecific parameters in these procedures. The missing values in the training and test data of those
covariates used by mdd-sPLS in prediction are imputed using additional PLS-based models. The missing values are
imputed using the outcome and the other covariates respectively. These two steps, building the prediction model
and imputing missing values, are repeated until convergence of the involved latent variables. The approach is
implemented in the R package “ddsPLS,” which was previously available on the CRAN network, but is currently
only available as an archived version (https://cran.r-project.org/src/contrib/Archive/ddsPLS/). We have also
included it in the GitHub repository that accompanies this article (https://github.com/RomanHornung/bwm_
article).

Some methods make use of latent structure for the imputation. Zhang et al. (2020) estimate a factor model that is
then used to impute missing values. Yang et al. (2020) first learn the pairwise mappings between each data type A and
the remaining data types using autoencoders. Second, these pairwise mappings are regularized to be consistent with
each other, each pairwise mapping is applied to A imputing the missing values, and finally the imputations obtained
using the different pairwise mappings are averaged.

Hieke et al. (2016) build different penalized regression models and use the predictions from one model as the
offset for the next model. For observations that do not feature predictions from one model due to missing values, only
the offset is imputed and not the missing values themselves. This method is only applicable in situations with two
blocks, but a potential extension to more blocks is mentioned in Hieke et al. (2016). The authors of Hieke et al. (2016)
provide R code that reproduces part of their analysis as a supplement to their article (https://doi.org/10.1186/s12859-
016-1183-6), demonstrating how their approach can be applied in R.

The same idea is used and generalized in priority-LASSO-impute (pL-imp (available)). This variant of priority-
LASSO (Klau et al., 2018) is implemented in the R package “prioritylasso” available on the CRAN network (Klau
et al., 2023). Priority-LASSO is a multi-omics prediction method based on the Least Absolute Shrinkage and Selection
Operator (LASSO) (Tibshirani, 1996) that allows researchers to specify a priority ranking of the blocks. A priority
ranking is often given because some blocks are more established or easier to obtain than others. The first step in
obtaining the priority LASSO prediction rule is to fit a LASSO model using only the covariates in the block with highest
priority. In the second step, a LASSO model is fitted again, but this time using only the covariates in the block with the
second highest priority, and using the linear predictor from the LASSO model fitted in the first step as an offset in the
model equation. By including this latter offset, only that part of the predictive information contained in the block with -
second-highest priority that is not contained in the block with highest priority is used. This process is continued itera-
tively for all blocks in order of priority, thus obtaining estimated model coefficients for all covariates.

In the case of block-wise missing multi-omics data, this estimation scheme would not be applicable, as in each step
the offsets would only be available for those observations for which the respective block is available. With priority-
LASSO-impute, the missing offsets are imputed using a LASSO model. Roughly speaking, in each step, this approach
first learns a LASSO model for each subset using observations for which the offsets are available. In this LASSO model,
the offsets are the response variables and the other blocks contain the covariates. The fitted model is then used to
predict the missing offsets.

2.3 | Methods that deal with the missingness pattern

A different approach is to divide the data into groups based on the missingness pattern and then deal with this structure
without imputing missing values. One of the earliest methods of this kind was devised by Ingalhalikar et al. (2012) who
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divided the data into subsets so that every subset has complete observations for a specific combination of blocks. On
each of these subsets a model is trained and the predictions are weighted inversely by their expected error.

A similar approach are multi-source random forests, described and evaluated in a smaller-scale empirical study
(Ludwigs, 2020). With this method, separate random forests are learned on subsets of the data where each contains
observations that feature a particular combination of blocks. In the prediction phase, first, each tree in the forests is
pruned in the following way: Starting with the first split that divides the full (bootstrapped or subsampled) data set,
each branch in the tree is followed, and for each split encountered, it is checked whether that split uses a covariate
available in the test data, and if not, the branch is cut. This ensures that the trees in the forests only use covariates that
are available in the test data. Then, similar to Ingalhalikar et al. (2012), each forest is applied to the test data and
each prediction is weighted proportionally to the out-of-bag AUC value of that forest. This approach is implemented in
the R package “multisForest” available on GitHub (https://github.com/RomanHornung/multisForest).

A similar idea is used in Krautenbacher et al. (2019) where a model is trained on each block. A separate classifier is
trained for each block, using all observations that contain measurements for the corresponding block in the training
data. To obtain predictions for the test data, first the corresponding classifiers are applied to each block available in the
test data, and in each case a predicted probability for Y =2 is calculated, where Y € {1,2} describes the binary response.
Second, a weighted average of the predicted probabilities obtained for each test data block is computed, with
weights proportional to the cross-validated AUC values of the corresponding random forests. An R implementation of
this approach is available in the GitHub repository associated with this article (https://github.com/RomanHornung/
bwm_article).

The methods described above in this subsection learn models independently on subsets of the training data. There
are, however, also several methods which share information in the learning of models obtained on different subsets of
the data. This has the advantage of increasing the robustness of the individual models. Yuan et al. (2012) proposed the
incomplete Multi-Source Feature (iMSF) learning method. First, the data are divided into disjoint subsets, where each
subset contains observations that feature a particular combination of blocks (and no further blocks). Subsequently, a
regularized regression model is fitted on every subset. These models are constrained in such a way that in all models
that share a block, the same covariates within this block have to be selected. However, the coefficients for one block do
not need to have the same values. In contrast to the methods discussed in the previous paragraph, for iMSF, it is not
necessary to apply different models to the test data and obtain a weighted prediction. Instead, to obtain predictions the
model with the correct block combination is applied. For example, suppose the training data featured blocks A, B, and
C. In this case, using the training data, a separate model is learned using each possible combination, that is, using the
following combinations: {A,B}, {A,C}, {B,C}, and {A,B,C}. Suppose now that a test observation is missing the block
B, thus it only features the blocks A and C. In that case, to obtain a prediction, the model learned on the combination
{A,C} is applied to the test observation.

The iMFS method was developed further by Xiang et al. (2014) to the incomplete Source-Feature Selection (iSFS)
model. Again, different subsets are formed based on the missingness patterns, but in contrast to for iMFS these subsets
are overlapping. Each subset is defined as all observations that feature all blocks from a particular combination of
blocks, but potentially also other blocks. For example, if there are three blocks A, B, and C, the subset corresponding to
the combination A with C contains all observations that feature only A and C, but also all observations that feature B in
addition to A and C. This procedure has the advantage that more observations are considered per combination com-
pared to in the case of iMFS. Moreover, in contrast to iMFS, not a separate coefficient vector for each combination is
learned. Instead, a common coefficient vector is learned for the variables from all blocks and to obtain the coefficient
vectors for the individual combinations, the entries in the common coefficient vector are multiplied by block- and
combination-specific weights. This has the advantage that less parameters need to be estimated for the iSFS, which
should lead to more stable models. Q. Lan and Jiang (2021) reformulate the iMSF method as a multi-task learning prob-
lem in their method MMPFS.

Liu et al. (2017) again divide the observations into subsets based on the missingness pattern in a similar way to
iMSF, where, however, the available data are exploited better than for iMSF. Then a hypergraph is learned on each sub-
set. Hypergraphs are graphs for which each edge can connect more than two vertices. This allows to model high-order
relationships. In Liu et al. (2017), the subjects in the data represent the vertices in the hypergraphs. Thus, the purpose
of the hypergraphs here is to capture high-order relationships between the subjects. The different hypergraphs are com-
bined and used to train a transductive classifier. In Dong et al. (2021), a similar approach is used. In contrast to Liu
et al. (2017), the hypergraphs are learned on a low-rank representation of the data. Afterwards, for every block, a sup-
port vector machine classifier is trained and the predictions are combined. Another method working with hypergraphs
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is Heterogeneous Graph-based Multimodal Fusion (Chen & Zhang, 2020). The data are first divided into subsets based
on the missingness pattern and heterogeneous hypernode graphs are constructed. On every graph, the relationships
between different data types are learned and this information is used to construct a new hypergraph. Then, interactions
between the different missingness patterns are learned and the information of the different data types are fused into
one embedding.

Note that almost all of the methods described in this and the previous subsections need to be reapplied and the pre-
diction rule retrained for varying test data sets that do not have data for all the blocks observed in the training data.
This is because most methods do not allow for missing values in the test data. For these methods, blocks that are not
present in the test data must be removed from the training data before the procedures are reapplied. Thung et al. (2014)
do allow missing values in the test data, but the missing data in the training and test data are imputed jointly, which is
why retraining is also required here. For mdd-sPLS (Lorenzo, Razzagq, et al., 2019; Lorenzo, Saracco, & Thiébaut, 2019),
separate imputation is performed on both training and test data. However, since the mdd-PLS procedure involves
predicting the outcome, it needs to be reapplied as well when new test data are received.

Multi-source random forests (Ludwigs, 2020), iMSF (Yuan et al., 2012), and MMPFS (Q. Lan & Jiang, 2021) are the
only methods that do not need the prediction rule to be retrained when new test data sets with missing values are
obtained. As described above, with multi-source random forests the trees are pruned to use only covariates that are
available in the training data. With iMSF and MMPFS, the models learned on the training data that are (most) consis-
tent with the specific combination of blocks in the test data are applied (see above for details).

3 | EMPIRICAL COMPARISON STUDY OF APPROACHES FOR PARTLY
MISSING MULTI-OMICS COVARIATE DATA

3.1 | Neutrality disclosure

Our study is intended as “neutral” in the sense that we are focusing on the comparison rather than promoting a particu-
lar new method (Boulesteix, Binder, et al., 2017; Boulesteix, Wilson, & Hapfelmeier, 2017). However, we are not equally
familiar with all methods. In particular, two of the included methods, multi-source random forests and priority-LASSO-
impute, were developed by some of the authors of this article. While our familiarity with these methods helped us to set
them up appropriately, we were committed to providing a fair comparison, that is, we neither spent more efforts to opti-
mize these two methods than the other methods nor did we design the study to favor one or the other method.

3.2 | Design of the comparison study
3.2.1 | Configurations of the compared approaches

In this subsection, we describe the configurations and implementations used for the approaches compared in the
empirical study. When selecting these approaches out of the methods described in Section 2 we ensured that at
least two methods from each of the three categories described in Sections 2.1-2.3 were included. Moreover, we
selected only methods that are either implemented in publicly available R packages or could be implemented with
reasonable effort.

The following approaches were considered in the study: complete case approach, single block approach, imputation
based on TOBMI, mdd-sPLS, block-wise random forest, multi-source random forest, and priority-LASSO-impute. As
described in Section 2.1, the first two of these are naive approaches. These served as a baseline against which the other
more sophisticated methods were compared. Three of the other methods were imputation-based (imputation based on
TOBMI and mdd-sPLS, as well as priority-LASSO-impute, see Section 2.2) and two methods deal with the missingness
pattern without imputation (block-wise random forest and multi-source random forest, see Section 2.3).

Preliminary remarks on the use of random forests in the compared approaches
With the exception of mdd-sPLS, multi-source random forests and priority-LASSO-impute, all the approaches compared
allow the use of any classifier for prediction. To make the results of the different approaches more comparable, we used
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random forests as classifiers for all these approaches. Random forests are known to perform well in a wide range of
tasks, providing robust and accurate predictions in many applications.

When using random forests for classification tasks, the response classes most frequently predicted by the individual
trees in the forest are typically used as predictions. However, we needed class probability predictions as we evaluated
performance not only in terms of accuracy, but also in terms of Brier score and area under the receiver operating char-
acteristic curve (AUC). In random forests, probability predictions for each class are obtained by averaging the propor-
tions of observations belonging to that class in the predicted leaf nodes across all trees in the forest. For (binary)
classification, we used the class with the higher predicted probability.

The random forests were constructed using the R package “randomForestSRC” (version 2.9.2). The values of the
tuning parameters were set to the default values provided by “randomForestSRC.” For instance, the number of
covariates sampled for each split, denoted mtry, was set to the square root of the total number of covariates, and each
forest consisted of 500 trees.

Complete case approach (ComplcRF)
The complete case approach as described in Section 2.1 was applied.

Single block approach (SingleB1RF)

Because we used random forests as classifiers, it was not necessary to perform cross-validation to measure the perfor-
mance of the classifiers trained on each block. Instead, it was possible to use the out-of-bag predictions (Breiman, 2001)
of the random forests as out-of-sample class probability predictions. The AUC was used as a performance measure for
selecting the block used for training the final random forest classifier.

Imputation approach based on TOBMI (ImpRF)

Since, as described in Section 2.2, TOBMI is not applicable to general block-wise missingness patterns, we proceeded as
follows to impute the training data in our comparison study. We first concatenated all those blocks that featured no
missing values for any of the observations. Subsequently, we used TOBMI repeatedly, each time for imputing the values
of a different block with missing values. Here, the concatenation of the blocks without missing values took the role of
“block A” from the previous paragraph and the block to impute at the current repetition took the role of “block B.”
The imputation was performed across subsets. Subsequently, we removed all blocks in the training data not available in
the test data set and constructed a random forest using the training data processed in this way.

Multi-block data-driven sparse PLS (mdd-sPLS) (MddsPLS)

We used 10-fold cross-validation to determine the optimal regularization parameter for the correlation matrices, per-
forming a grid search on 10 values. Moreover, we used one component for the involved matrix decomposition and
inversely weighted the components per block by the number of selected covariates per block. See Lorenzo, Saracco, and
Thiébaut (2019) for details.

Block-wise random forest (B1wRF)

Similar to the SingleB1RF case, because we used random forests as classifiers, it was not necessary to perform cross-
validation to calculate the AUC values that serve as weights for the predicted probabilities obtained using the block spe-
cific classifiers. Instead, we used the out-of-bag estimated AUC values.

Multi-source random forest (Mult isRF)

Due to the comparably high computational burden associated with this approach we used only 250 trees per forest
instead of 500 trees as in the cases of the other random forest-based methods. For the remaining tuning parameter
values, we used the default values from the R package “randomForestSRC” (version 2.9.2).

priority-LASSO-impute (pL-imp (available)) (PrLasso)

As indicated in Section 2.3, the pL-imp (available) algorithm was not designed to handle missing blocks in the test data.
In order to deal with this issue, we excluded all blocks that were not available in the test data before fitting the model
to the training data. Moreover, the pL-imp (available) algorithm, similar to the original priority-LASSO algorithm,
requires the user to provide a priority ranking of the available blocks. As no useful biological information was available
for the data sets considered in the comparison study performed for this article, the priority rankings were determined
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in the following way: (1) Fitting a LASSO model to each block and estimating the deviance associated with each model
using 5-fold cross-validation (CV); (2) Assigning the highest priority to the block associated with the lowest cross-
validated deviance value, the second highest priority to the block associated with the second-lowest cross-validated
deviance value, and so on; in cases in which two or more blocks were associated with the same cross-validated deviance
value, the priority order between these blocks was assigned randomly.

The shrinkage parameters in the LASSO models involved in the priority-LASSO and priority-LASSO-impute estima-
tion procedures were determined using grid search and 10-fold CV.

3.2.2 | Data

The data material consists of 13 publicly available multi-omics data sets from The Cancer Genome Atlas (TCGA) pro-
ject (Weinstein et al., 2013). These data are a subset of 21 data sets previously used in Hornung and Wright (2019).
From these 21 data sets, 18 contained all four omics blocks that were considered as covariates (see below), the clinical
block and the response variable, that is, the presence versus absence of the TP53 mutation. From the remaining 18 data
sets, we removed imbalanced data sets for which the smaller response variable class was represented by less than 15%
of the observations. This resulted in 13 data sets for use in the comparison study. The covariates consisted of the follow-
ing four blocks: clinical block, copy-number variation block, miRNA block, and RNA block. There were no missing
values in these data. Table 3 gives an overview of the used data sets. The clinical covariates available differed slightly
across the data sets. Most data sets provided information on patient age, gender, and race, while many also included
details on tumor stage. Moreover, the BRCA and LUSC data sets included cancer-specific variables. In Section A of the
Supplementary Materials, we provide a detailed overview of which covariates were available for each data set.

3.2.3 | Generation of block-wise missingness and performance evaluation

Block-wise missingness patterns are generated by randomly deleting parts of the data sets. First, the data sets are split
into training and test data in the ratio 3:1. Second, as described in more detail in the next paragraph, the block-wise
missingness patterns are induced separately in training and test data, where there are five different patterns for the
training data sets and four for the test data sets, see Figure 1. In the following, training data block-wise missingness
patterns will be abbreviated as “trbmp” and test data block-wise missingness patterns as “tebmp,” respectively. As is

TABLE 3 Overview of the data sets.

Label n Prop. TP53 clin cnv mirna rna

BLCA 310 0.49 4 57,964 825 23,081
BRCA 863 0.34 8 57,964 835 22,694
COAD 350 0.56 5 57,964 802 22,210
ESCA 121 0.83 4 57,964 763 25,494
HNSC 411 0.69 5 57,964 793 21,520
LGG 454 0.46 3 57,964 645 22,297
LIHC 298 0.29 4 57,964 776 20,994
LUAD 424 0.49 6 57,964 799 23,681
LUSC 365 0.85 7 57,964 895 23,524
PAAD 142 0.63 4 57,964 612 22,348
SARC 183 0.36 2 57,964 778 22,842
STAD 284 0.47 6 57,967 787 26,027
UCEC 503 0.36 3 57,447 866 23,978

Note: The second column shows the number of observations. The third column shows the proportion of observations with TP53 mutation. The fourth to the
seventh column show the numbers of covariates in the respective blocks.
Abbreviations: clin, clinical covariates; cnv, copy-number variation; mirna, miRNA; rna, RNA.
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FIGURE 1 Block-wise missingness patterns in training and test data. Colored/empty boxes indicate that the respective blocks are
present/absent. The first column always represents the clinical block.

evident from Figure 1, each of the trbmps consists of either one, two, three, or eight subsets of observations. For each
combination of data set, trbmp, and tebmp, the above procedure is repeated five times.

Figure 2 illustrates the procedure for inducing block-wise missingness in the training and test data. Following each
division into training and test data, the subset memberships of the training observations are assigned randomly and the
subsets are of equal size for each training data set (note again that the data are split into training and test data in the
ratio 3:1). We induce the missingness patterns after random permutation of the omics blocks, where a different permu-
tation is used for each repetition. This is performed separately for the training data and the test data. First, the omics
blocks are permuted randomly (the clinical block always stays at the first position). Second, values in the data matrix
are deleted according to the respective considered block-wise missingness pattern (Figure 1). After having performed
these steps separately for the training and test data, the blocks are re-ordered again to have the original ordering to
ensure that the block ordering is the same in training and test data. Without the random permutation of the omics
blocks described above, each block would have been observed with unequal frequency for the different missingness pat-
terns. This would have made it impossible to tell whether differences in the results observed for different missingness
patterns (trbmps and tebmps) are actually due to the missingness patterns or the fact that specific influential blocks are
featured to different degrees in the missingness patterns. The permutation procedure ensures that different blocks
are missing in the subsets for different repetitions even when considering the same trmps and tebmps. For example,
consider trbmp 2 and tebmp 3; for the first division into training and test data, the first set in the training data might
include RNA and miRNA data and the second set only mutation data, whereas the test data might include RNA and
mutation, but no miRNA data. For the second division, the first set in the training data might include only mutation
and miRNA data and the second set only RNA data, while the test data may include mutation and miRNA data, but no
RNA data.

For each division, the methods described in Section 3.2.1 are learned on the training data, subsequently applied to
the test data, and the performance on the test data measured according to the three considered performance metrics:
the Brier score, the AUC, and the accuracy. The Brier score measures discrimination and calibration and is a proper
scoring rule in the sense that it measures the accuracy of class probability predictions (e.g., probability for class B if
there are two classes A and B). The accuracy is not a proper scoring rule because it does only evaluate the precision of
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1) Split data set into training and test 2) Assign subset memberships to the 3) Permute omics blocks randomly
data (3:1 ratio). training observations randomly. (clinical block stays in the first position).

random shuffling

random shuffling

4) Delete values in the data according 5) Re-order the blocks to their original
to the respective trmbp and tebmp. ordering.
re-ordering

O = B
== Ea
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FIGURE 2 Overview of the procedure used for inducing block-wise missingness in the training and test data. Here trbmp 4 and tebmp
3 are used, but the figure would appear similar for other trbmps and tebmps.

class predictions, not class probability predictions. Thus, it uses less information from the predictions than the Brier
score. The AUC only measures discrimination. More precisely, it measures the models’ abilities to order different
subjects correctly in terms of their predicted probabilities. Note that a model can feature a high AUC value even though
it is not calibrated well. This would, for example, be the case in a situation in which the predicted probabilities output
by a model are systematically too small, but still observations with larger predicted probabilities for class B tend to fea-
ture class B much more often than those with smaller predicted probabilities.

3.24 | Code availability

All R code written to perform and evaluate the analyses is available on GitHub (https://github.com/RomanHornung/
bwm_article). The pre-processed data sets are available as Rda files on the online open access repository figshare
(https://doi.org/10.6084/m9.figshare.22304050.v2). For details on the process of the pre-processing and the associated
code, see Hornung and Wright (2019).

3.3 | Results

As a preliminary remark, please note that some methods delivered few or no successful predictions for specific trbmps
and tebmps. For example, ComplcRF is not applicable for tebmp 4 when considering trbmp 2, 3, or 4: For tebmp 4, the
test data do not contain missing values, which is why none of the variables in the training data are removed
(cf. Section 3.2.1); because of this there are no complete cases in the training data for any of the trbmps 2, 3, or
4 (cf. Figure 1) and the complete case approach ComplcRF is thus not applicable. MultisRF is not applicable for
trbmp 1 because the R package “multisForest” (version 0.1.0) implementing MultisRF does not allow training data
sets without missing values. In addition, PrLasso lead to errors in rare cases. More precisely, 10 of the 1300 repetitions
performed in total for PrLasso resulted in an error, which all but one occurred for the data set ESCA. The remaining
methods did deliver predictions in all cases. The frequencies of repetitions with missing results were 25.0%, 34.1%, and
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0.8% for ComplcRF, MultisRF, and PrLasso respectively. We describe the reasons for unsuccessful predictions in
full detail in Section B of the Supplementary Materials.
3.3.1 | Global performance comparison

Figure 3 shows the ranks the methods achieved among each other, pooled across all trbmps, tebmps, and data sets.
Note that here we only included those repetitions for which each of the seven considered methods delivered a result. If
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FIGURE 3 Ranks each method achieved among the other methods in terms of the three considered performance metrics—global
performance. The ranks were computed for each combination of trbmp, tebmp, data set, and repetition, where only those repetitions were
considered for which the results were available for all seven considered methods. The figure shows these ranks averaged across repetitions,
with lower ranks indicating better performance.
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we would have included all available repetitions for each method, the comparison between the methods would not have
been fair. This is because, as stated above, some methods did not deliver predictions for specific trmps and tebmps.
Given that the predictive performance generally differed across different trbmps and tebmps, the comparison of the
methods would have been confounded by the trmps and tebmps if all available results would have been used.

In general, the differences between the performances observed for the different methods are not very strong. For the
Brier score and the accuracy PrLasso performed best, while for the AUC there is no clear winner among the methods.
B1wRF was among the worst-performing methods for all three performance metrics, while for MddsPLS this was the
case only for the Brier score and the AUC.

As stated above, in Figure 3, we only included those repetitions for which results were available for all seven
methods. Because of this, many repetitions were excluded. This was mainly due to ComplcRF and MultisRF. For
example, as stated above, all repetitions with trbmp 1 were excluded because Mult isRF did not deliver results for this
method. Therefore, Supplementary Figures S1 and S2 show the results presented above, however, under the exclusion
of ComplcRF and MultisRF, respectively. Excluding ComplcRF and MultisRF allowed us to consider more repeti-
tions because we did not need to exclude all repetitions for which results were not available for ComplcRF and Mul -
tisRF, respectively. We do not see any notable differences in the results after the exclusion of ComplcRF and
MultisRF, respectively.

Supplementary Figures S3-S5 show the raw values of the metrics, which confirm that the differences between the
results obtained for the different methods are not strong.

3.3.2 | Performance separately by trbmp

Figure 4 shows the ranks each method achieved with respect to the Brier score among the other methods separately by
trbmp. For reasons of clarity, in the main paper, we do not present these results for all three performance metrics.
The corresponding results obtained for the AUC and the accuracy are shown in Supplementary Figures S6 and S7.
The reason why we decided on the Brier score was that it can be seen as the most important metric because it
measures both discrimination and calibration, whereas the AUC and the accuracy each measure only one of these.
In the following descriptions we will focus on the Brier score, but also describe differences observed for the other
two performance metrics.

PrLasso performed best for all four trbmps shown in Figure 4. Note that trbmp 1 is not included here because
MultisRF is not applicable for trbmp 1 and we again only considered repetitions for which results were available for
all seven methods. For trbmps 2 to 5, BIwRF and MddsPLS were again among the worst-performing methods. For
trbmps 2, 4, and 5, ImpRF was also among the worst-performing methods, but not for trbmp 3. The observation that
ImpRF was not among the worst methods for trbmp 3 can likely be explained by a feature of ImpRF. As described in
Section 3.2.1, ImpRF uses the concatenation of those blocks that are observed for all observations to calculate the
distance matrix that is used in the imputation. For trbmp 3, two blocks are available for all observations, whereas for
the other trbmps this is the case for only one block (excluding trbmp 1 with no missing observations). Thus, for trbmp
3 the calculated distance matrix can be expected to better reflect the true distances between the observations, which
would explain, why ImpRF performed better for trbmp 3 than for the other trbmps. However, we did not see this for
the AUC and the accuracy (Supplementary Figures S6 and S7), where ImpRF generally performed better compared to
the results obtained for the Brier score.

For trbmp 5, excluding PrLasso and SingleB1RF, all methods performed similarly poorly. ComplcRF likely per-
formed worse for trbmp 5 than for the other trmps because the number of complete observations is much smaller for
this trbmp. The likely reason MultisRF performed worse for trbmp 5 was that the subsets were much smaller in size
in comparison to the other trbmps. The predictive performance of the random forests learned on these small subsets
probably suffered. Again, ImpRF performed better with respect to the AUC and the accuracy for trbmp 5.

The results obtained under the exclusion of ComplcRF and MultisRF were again very similar (Supplementary
Figures S8-S13). The results obtained for trbmp 1 can only be studied by excluding MultisRF (Supplementary
Figure S11) because this method was not applicable for trbmp 1. These results were similar to those obtained for trbmps
2, 3, and 4 except that BIwRF clearly performed worst here. However, for the AUC MddsPLS performed similarly bad
(Supplementary Figure S12). Note that, if there are no missing blocks in the training data (i.e., for trbmp 1), ComplcRF
and ImpRF are identical.
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FIGURE 4 Ranks each method achieved among the other methods in terms of the Brier score—separately by trbmp. The ranks were
computed for each combination of trbmp, tebmp, data set, and repetition, where only those repetitions were considered for which the results
were available for all seven methods. The figure shows these ranks averaged across repetitions, with lower ranks indicating better
performance.

In general, for the AUC and the accuracy, the differences in performance between the methods were smaller than
for the Brier score (Supplementary Figures S6, S7, S9, S10, S12, and S13). The raw values of the performance metrics
obtained for the analysis separated by trbmp are shown in Supplementary Figures S14-S22.

3.3.3 | Performance separately by tebmp

For comparing the results observed for the different methods separately by tebmp we again focus on the Brier score
(Figure 5). PrLasso again performed the best for all tebmps excluding tebmp 2, where ComplcRF and SingleBlRF
performed similarly well. For Comp1cRF, this good performance may be explainable by the fact that for tebmp 2 there
are few blocks observed in the test data, which is why many blocks are removed from the training data which in turn
increases the number of complete observations in the training data. Note, however, that for the AUC and the accuracy
(Supplementary Figures S23 and S24), PrLasso was not clearly the best method.

For tebmp 1 ComplcRF, SingleB1RF, B1wRF, and ImpRF all performed equally well. This can be explained by
the fact that for this tebmp only the clinical block is available in the test data and for these methods all blocks not avail-
able in the test data are removed from the training data. Therefore, these four methods all function identically for
tebmp 1 because they all construct standard random forests using only the clinical block. Note that for tebmp
1, PrLasso corresponds to a simple Lasso model fitted to the clinical block. Against this background it is interesting to
see that PrLasso still performed better than these four random forest-based methods named above (not in the case of
the AUC, see Supplementary Figure S23). This means that, when using the clinical block as covariate data, standard
Lasso performs better than standard random forests. Tebmp 1 is also the only setting for which MddsPLS worked better
than these four random forest-based methods named above. Given that tebmp 1 is the only tebmp for which all blocks
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FIGURE 5 Ranks each method achieved among the other methods in terms of the Brier score—separately by tebmp. The ranks were
computed for each combination of trbmp, tebmp, data set, and repetition, where only those repetitions were considered for which the results
were available for all seven methods. The figure shows these ranks averaged across repetitions, with lower ranks indicating better
performance.

except the clinical block are missing in the test data, the better performance of MddsPLS for tebmp 1 might be due to
the fact that this method is the only one that imputes the missing blocks in the test data. For the AUC, however,
MddsPLS performed worse than the four random forest-based methods named above also for tebmp 1; for this metric,
MultisRF also performed worse.

When interpreting the results for the remaining tebmps, it must be considered that, in Figure 5, the results dis-
played for tebmp 4 are only those obtained for trbmp 5. In this figure, as before, we show only the results of those repe-
titions for which each of the seven considered methods delivered a result. As explained above, for tebmp 4, the results
of either ComplcRF (for trbmps 2, 3, and 4) or MultisRF (for trbmp 1) were missing for all trbmps excluding trbmp
5. Therefore, when interpreting the results obtained for tebmp 4 we must resort to Supplementary Figure S25, which
shows the corresponding results obtained under the exclusion of ComplcRF. B1wRF and MddsPLS are again among
the worst-performing methods for tebmps 2, 3, and 4. For tebmps 3 and 4 (cf. Supplementary Figure S25 for tebmp 4)
ImpRF also is among the worst-performing methods, but this is seen less clearly when studying the results for each
combination of trbmp and tebmp (Section 3.3.4) and not at all for the AUC and the accuracy (Supplementary
Figures S23, S24, S26, S27, S29, and S30). An explanation for why we observed this slightly worse performance of
ImpRF for tebmps 3 and 4 in the case of the Brier score could be the following: for larger numbers of blocks in the test
data more blocks and thus more missing values are retained in the training data meaning that larger proportions of
missing values need to be imputed.

The differences between the methods in performance were, as in the previous sections, smaller for the AUC and the
accuracy (Supplementary Figures S23, S24, S26, S27, S29, and S30). Excluding ComplcRF and MultisRF
(Supplementary Figures S25-S30) did again not change the results strongly, except for tebmp 4, as discussed above. For
the raw values of the performance metrics, see Supplementary Figures S31-S39.
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3.34 | Performance separately for each combination of trbmp and tebmp

In the previous two subsections we studied the performances of the methods separately by trbmp and by tebmp, but
not separately by the various combinations of trbmps and tebmps. Figure 6 shows the ranks each method achieved
among the other methods with respect to the Brier score separately for the different combinations of trbmps and
tebmps. Because some methods were not applicable for certain (combinations of) trbmps and tebmps, to interpret the
results obtained for all combinations of trbmps and tebmps, we also have to consult Supplementary Figures S42 and
S45, which show these results under the exclusion of ComplcRF and MultisRF, respectively.
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FIGURE 6 Ranks each method achieved among the other methods in terms of the Brier score—separately by each combination of
trbmp and tebmp. The ranks were computed for each combination of tebmp, tebmp, data set, and repetition, where only those repetitions
were considered for which the results were available for all seven methods. The figure shows these ranks averaged across repetitions, with
lower ranks indicating better performance.
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One observation that can be made across all three performance metrics considered is that for tebmp 4, that is, the
setting with no missing observations in the test data, ComplcRF performed much worse for trbmp 5 than for trbmp
1 (Supplementary Figures S45-S47). This can most probably be explained by the fact that for trbmp 1 all observations
are complete, whereas for trbmp 5 only the observations in the first subset are complete. This is why for trbmp 1 there
are many more observations available for training in the case of ComplcRF. In Section 3.3.2, we already made the
observation that ComplcRF performed worse for trbmp 5, but here, when focusing on tebmp 4 this worsening is
considerably stronger because if all blocks are available in test data (i.e., for tebmp 4), the complete observations are
always restricted to the first subset in trbmp 5.

Another observation which can be made for the Brier score (Figure 6) and the accuracy (Supplementary
Figure S41), however, not for the AUC (Supplementary Figure S40), is that in the case of tebmp 1, MultisRF
performed worse for trbmp 3 than for trbmps 2, 4, 5. This may be explained by the fact that, starting with the first splits,
MultisRF prunes all trees, cutting tree branches at splits for which variables are used that do not occur in the test set.
Because the clinical covariates are so few in comparison to the omics covariates it is very unlikely that the first splits
use clinical covariates, which is why, if the test data only feature the clinical covariates (i.e., for tebmp 1), many trees
are removed entirely from the forests, which naturally leads to a worsening of the predictive performance. Finally, the
reason why MultisRF performed worse for trbmp 3 than for the other trbmps (2, 4, and 5) could be that for trbmp
3 more blocks are observed, which could make it particularly unlikely that the first splits use clinical covariates.

For the combination trmbp 1 and tebmp 4 PrLasso did not clearly outperform ComplcRF (Supplementary
Figures S45-S47). This is interesting against the background that in Section 3.3.3, it was seen that PrLasso
outperformed ComplcRF (as well as SingleB1RF, B1wRF, and ImpRF) in the case of tebmp 1, for which only the
clinical block is used as covariate data. This indicates that PrLasso may only outperform ComplcRF (i.e., standard
random forests) if only clinical covariate data are used, but not necessarily for multi-omics data.

The results obtained for the AUC and the accuracy were mostly very similar to those obtained for the Brier score;
however, the differences between the methods' performance tended to again be smaller for the former two performance
metrics (Supplementary Figures S40, S41, S43, S44, S46, and S47). With a few exceptions, excluding ComplcRF and
MultisRF hardly changed the results obtained for the remaining methods (Supplementary Figures S42-S47).

The raw values of the performance metrics are shown in Supplementary Figures S48-S56. Note that here, in each
sub-figure, we have added the performance metric values obtained using random forests constructed and evaluated
on the data without missing values (equivalent to the combination trbmp 1 and tebmp 4). For these random forests,
hereafter referred to as FulldataRF, we used the same configuration as for the other approaches using random
forests. We have included the results of FulldataRF to assess the degree to which the missing values lead to a deterio-
ration in the predictive performance. If FulldataRF would perform much better than the best methods evaluated
using the data with block-wise missingness, this would suggest that none of the compared methods are able to deal with
block-wise missingness efficiently. In this case, addressing the issue of missing data in the field of multi-omics data
would be more crucial than attempting to deal with it post hoc using sophisticated (prediction) methods.

Supplementary Figures S48-S56 reveal that only for tebmp 1 does FulldataRF demonstrate a markedly better per-
formance than methods using the data with block-wise missingness. Note that tebmp 1 is the setting where only the
clinical covariates are available in the test data. Therefore, this finding only means that the performance is improved
when the omics blocks are also considered. For tebmp 2, which includes the clinical covariates and an omics block in
the test data, FulldataRF also performed best; however, the performance difference compared to the methods using the
data with block-wise missingness is much smaller. For tebmps 3 and 4, FulldataRF performed similarly to the other
methods. There are no distinct differences between the trbmps regarding the performance gap between FulldataRF and
the methods that use the data with block-wise missingness.

In summary, the results suggest that the methods seem to effectively exploit the predictive information present in
data with block-wise missingness. However, the test data should contain more than just clinical covariates to exploit
the predictive information in the omics blocks.

4 | DISCUSSION

For the great majority of the different trbmps and tebmps we considered, PrLasso performed best with respect to
the Brier score. In Section 3.3.3, we obtained strong evidence that PrLasso better exploited the predictive information
contained in the clinical covariates than the random forest-based methods. This could be an important reason for the

85U017 SUOWILLIOD 3AIER.D 8|qedl|dde 3y Aq pausenoh afe saoiie YO ‘8SN JO S8|N. 10} Akeiq) 73Ul uO A8|IA UO (SUORIPLOD-pUe-SWLR W00 A3 | ' AeJq U UO//:StiY) SUORIPUOD PUe SW.B | 84} 89S *[t7202/20/T2] U0 Aigi]auljuo A8|IM ‘929T 'SOIM/ZO0T 0T/I0p/wod A3 |1m: Afelq1jpul [UO'Sa.1M//SANY WoJj pepeojumod ‘T ‘v202 ‘89006E6T



HORNUNG ET AL. WIREs Wl LEY 19 of 22

superior performance of PrLasso in our comparison study, given that the clinical covariates have been found to be
very important to prediction with multi-omics data (Herrmann et al., 2020).

B1wRF and MddsPLS performed worst for most settings. These two methods have in common that they treat the
blocks independently from each other, where for prediction all blocks are used. Treating the different blocks separately
might not be effective because the predictive information contained in them is overlapping. Surprisingly, the naive
methods were not among the worst methods in general and even among the best for some settings. In contrast,
PrLasso demonstrated a more robust behavior in the sense that it was consistently among the best methods. As
expected, the complete case approach ComplcRF did not perform well if there were only few complete observations in
the training data.

In its current form MultisRF is not very well suited for the multi-omics case. An important reason for this is the
pruning procedure performed prior to prediction (cf. Section 3.2.1). If the test data contain blocks of small size, this
procedure is expected to lead to the removal of large proportions of the trees in the random forests constructed with
MultisRF. We saw this in our comparison study, where, as discussed in Section 3.3.4, the predictive performance was
diminished if the test data only contained clinical covariates, but at the same time in the test data many omics blocks
were available. MultisRF could also be better adjusted to the multi-omics case by replacing the standard random
forests constructed using the different subsets by a prediction method that takes the multi-omics structure into account,
for example, by the block forests method (Hornung & Wright, 2019).

The results differed across the different performance metrics. For example, while PrLasso performed substantially
better than the other methods with respect to the Brier score, there was no clear winner among the methods for the AUC.
In general, great care has to be taken in the interpretation of our results. As all studies based on real data sets, ours may
have yielded different results to some extent if we had considered other real data sets as a basis (other inclusion criteria,
or data from other databases) and more random repetitions for each of these real data sets. Moreover, while the number
of data sets is larger than in many benchmark studies that are based on few, say four or five, data sets the number of
included data sets is still limited. Nief3l et al. (2022) have shown that the results of benchmark studies are in general vari-
able and strongly affected by analytic choices even if large numbers of data sets are used. Against this background, to
avoid drawing non-replicable conclusions, we took great care to offer reasonable explanations for our observations. In the
cases of ComplcRF and MultisRF there were no results for certain trmpbs and tempbs. In general, systematically miss-
ing values of this kind are an issue in empirical benchmark studies, which may lead to biased results. However, by only
including repetitions obtained for all seven methods in our visualizations we took care to present our results appropriately
in view of this issue. Moreover, the additional figures presented in each case that excluded ComplcRF and MultisRF,
respectively, suggested that our results are quite robust against biases caused by the missing values.

Our study has a number of further limitations that may be addressed in future research. For reasons of clarity, we
investigated only a limited number of simplified missing patterns, which may not cover all potential scenarios encoun-
tered in reality. Practical scenarios may for example feature more “irregular patterns” with subsets of patients of very
different sizes. Moreover, there could be missing values in individual covariates, that is, missing values beyond whole
types of omics data missing for subsets of patients.

Importantly, in practice the data in the subsets that feature different block combinations often stem from different
sources (e.g., generated at different time points or using different machines). This leads to systematic differences between
the data subsets that are generally known as batch effects (Li et al., 2009). The training data and test data subsets in our
empirical study were random partitions of the same data sets and thus did not feature batch effects. In the training data
such batch effects can be corrected using batch effect removal methods such as ComBat (Johnson et al., 2006). For
correcting the test data correspondingly, add-on batch effect removal can be used (Hornung et al., 2016), where the test
data is transformed to be similar to the training data in distribution. This add-on batch effect removal helps to improve
the predictive performance which tends to deteriorate in the presence of batch effects (Hornung et al., 2017).

We assumed that the model can be retrained depending on the respective test data missingness pattern before
prediction. However, this may not always be feasible in practice. Applying models to test data with strongly varying
missingness patterns is fundamentally different from the setting considered in the present study and requires different,
possibly more complex techniques.

While we claim that the choice of the TP53 mutation as a binary response variable considered as surrogate for dis-
ease outcome is acceptable from the purely methodological perspective adopted here, it may make sense to consider
other response variables or to extend the study to other types of response variables such as censored survival times.
However, not all methods considered in our study are capable to handle this case. Our study could also be extended to
include further methods, in particular methods not implemented in R, which we excluded from our comparison.
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Finally, in our empirical study, we assumed that the data types are missing completely at random (MCAR) (Little &
Rubin, 2019), meaning that their missingness does not depend on their own values or the values of other data types. It
is reasonable to assume an MCAR mechanism for multi-omics data, as the reasons for missingness are typically techni-
cal rather than biological. Hieke et al. (2016) cite assay failure, sample quality issues, and changes in measurement plat-
forms as reasons why not all data types are available for every patient in multi-omics data. However, since the data
come from different sources, there may still be biological differences between subsets. In such cases, the observed and miss-
ing data could differ systematically between different subsets. In these situations, the differences between missing data in
different subsets would be explainable by other data types, particularly the clinical block, which would make the data miss-
ing at random (MAR) (Little & Rubin, 2019). With the exception of the complete case approach, the compared methods
include all observations and, therefore, are not biased in the sense that they would exclude certain observations based on
their data distributions. Thus, we expect that we would have obtained similar results under the MAR assumption.

As seen in Section 2, most methods unfortunately lack public implementations, making it challenging for interested
readers to apply them. From our experience, this is a prevalent issue in the methodological literature. Given
that authors need to implement their methods for evaluation in the papers introducing them, making these
implementations publicly accessible, for example, through a GitHub repository, should not require significant effort.
We hope that this approach becomes more widespread in the future, as it would significantly enhance the applicability
of new methods and the execution of neutral comparison studies like the one conducted in this article. Neutral compar-
ison studies are essential, considering the tendency for new methods to perform better in the analyses presented in their
introductory papers than in subsequent comparison studies (Buchka et al., 2021).

5 | CONCLUSION

We first provided a state-of-the-art literature overview on prediction methods for block-wise missing multi-omics covar-
iate data. Subsequently, we presented a large-scale benchmark comparison study of some of these methods. The results
of this study may aid applied researchers confronted with block-wise missing multi-omics data to select suitable
methods. Nevertheless, given the generally high variability of the findings of benchmark studies, it is important to
not over-interpret details of the results of our study. In addition to applied researchers, the literature overview and
the benchmark study may also aid methodological researchers in developing new, stronger methods that share the
strengths of the most promising methods, while addressing their weaknesses.
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