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Advancements in artificial intelligence are rapidly in-
creasing. The new- generation large language mod-
els, such as ChatGPT and GPT- 4, bear the potential 
to transform educational approaches, such as peer- 
feedback. To investigate peer- feedback at the inter-
section of natural language processing (NLP) and 
educational research, this paper suggests a cross- 
disciplinary framework that aims to facilitate the 
development of NLP- based adaptive measures for 
supporting peer- feedback processes in digital learn-
ing environments. To conceptualize this process, we 
introduce a peer- feedback process model, which 
describes learners' activities and textual products. 
Further, we introduce a terminological and proce-
dural scheme that facilitates systematically deriving 
measures to foster the peer- feedback process and 
how NLP may enhance the adaptivity of such learn-
ing support. Building on prior research on education 
and NLP, we apply this scheme to all learner activi-
ties of the peer- feedback process model to exemplify 
a range of NLP- based adaptive support measures. 
We also discuss the current challenges and suggest 
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INTRODUCTION

Feedback, one of the most powerful means to support learning (Hattie, 2008), refers to “all 
post- response information that is provided to a learner to inform the learner about his or 
her actual state of learning or performance” (Narciss, 2008, p. 127). In formal education, 
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directions for future cross- disciplinary research on 
the effectiveness and other dimensions of NLP- 
based adaptive support for peer- feedback. Building 
on our suggested framework, future research and 
collaborations at the intersection of education and 
NLP can innovate peer- feedback in digital learning 
environments.
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feedback

Practitioner notes

What is already known about this topic
• There is considerable research in educational science on peer- feedback 

processes.
• Natural language processing facilitates the analysis of students' textual data.
• There is a lack of systematic orientation regarding which NLP techniques can be 

applied to which data to effectively support the peer- feedback process.

What this paper adds
• A comprehensive overview model that describes the relevant activities and prod-

ucts in the peer- feedback process.
• A terminological and procedural scheme for designing NLP- based adaptive sup-

port measures.
• An application of this scheme to the peer- feedback process results in exemplifying 

the use cases of how NLP may be employed to support each learner activity dur-
ing peer- feedback.

Implications for practice and/or policy
• To boost the effectiveness of their peer- feedback scenarios, instructors and in-

structional designers should identify relevant leverage points, corresponding sup-
port measures, adaptation targets and automation goals based on theory and 
empirical findings.

• Management and IT departments of higher education institutions should strive to 
provide digital tools based on modern NLP models and integrate them into the 
respective learning management systems; those tools should help in translating 
the automation goals requested by their instructors into prediction targets, take 
relevant data as input and allow for evaluating the predictions.
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feedback is often provided by instructors, such as teachers or lecturers, or peer learners, 
especially the latter offering high potential for learning (eg, Double et al., 2020). However, 
learners' often insufficient competencies (eg, knowledge, skills, and attitudes; see Blömeke 
et al., 2015) concerning a learning task and feedback production can diminish the effective-
ness of peer- feedback. To exploit peer- feedback's potential benefits, learners need support. 
Theoretically, a support measure might be any aspect of instructional design that helps 
learners pursue a task goal or develop their competencies. Owing to technological advance-
ments in artificial intelligence (AI), these support measures can be adapted and automated 
(Ninaus & Sailer, 2022).

Natural language processing (NLP)— a subfield of AI dedicated to text and speech 
processing— has attained great progress in recent years, with the latest generation of large 
language models (LLMs)— ChatGPT and GPT- 4 (OpenAI, 2023)— attracting wide public 
attention and enabling novel applications of AI in many areas of human activity, such as 
education (Kasneci et al., 2023). In digital learning environments, where communication 
during peer- feedback often involves an exchange of written text (eg, Patchan et al., 2016), 
automating adaptive support measures via NLP bears great promise. Prior research at the 
intersection of education and NLP has investigated, for example, using NLP to automate 
computer- supported adaptive feedback on students' reasoning about case vignettes in dig-
ital learning environments and found positive effects on students' performance during and 
after the learning process (Sailer et al., 2023). However, compared to designing adaptive 
support for peers giving each other feedback, the design process underlying the use case of 
NLP- based adaptive feedback, which is automatically provided as part of digital learning en-
vironments, appears far less complex because peer- feedback involves several more options 
for leveraging students' learning processes to maximize their potential learning benefits.

This paper aims to initiate and facilitate the development of NLP- based adaptive mea-
sures to support peer- feedback in digital learning environments. To this end, (a) we propose 
a model to describe the activities that learners engage in and the textual products they 
generate during a peer- feedback process. On this basis, we systematically derive poten-
tial support measures. However, to make these measures adaptive and automatize their 
employment, we need to cross the boundaries of educational research and NLP. For this 
reason, (b) we introduce a terminological and procedural scheme for designing NLP- based 
adaptive support measures. Then, (c) we apply this scheme to the peer- feedback process 
and provide examples of potential NLP- based adaptive measures for supporting peer- 
feedback. Finally, we discuss current challenges and future research directions.

THE PEER-  FEEDBACK PROCESS

Peer- feedback involves at least two learners performing a series of activities (see Figure 1) 
and thereby engaging in cognitive, meta- cognitive, motivational- affective and social pro-
cesses (Aben et al., 2019; Narciss et al., 2014). This paper refers to peer- feedback as a 
process organized around solving a specific task, guided by instruction and realized within 
a digital learning environment. Due to peer- feedback's dialogic nature, learners repeatedly 
engage in social activities, such as sharing information, negotiating meaning and regulating 
the learning process (Liu et al., 2016), and they often generate several textual products as 
well as cognitive, meta- cognitive and affective learning outcomes.

In the following section, we briefly illustrate a peer- feedback scenario in a digital learning 
environment in teacher education. The scenario aims to facilitate pre- service teachers' skills 
in evidence- informed reasoning about classroom- related teaching problems (Hornstein 
et al., 2023). The pre- service teachers are confronted with written case vignettes about 
a school lesson. In the design phase (see Figure 1), an instructor specifies a rule for peer 
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assignment. Each student will review the initial solutions of two randomly assigned peer 
learners and receive feedback from two randomly assigned peer reviewers. In the task 
phase of the peer- feedback process, the learners receive a learning task: to identify, analyse 
and solve the teaching problems in the case vignettes. During task processing, the learn-
ers produce a written initial solution comprising a short essay for each identified teaching 
problem. In the provision phase, peers are prompted to engage in reviewing and feedback 
production. The learners compose feedback messages for the initial solutions of two peers. 
In the reception phase, each learner receives two feedback messages on their own initial 

F I G U R E  1  A peer- feedback process model. 
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1226 |   BAUER et al.

solutions. The learners subsequently engage in feedback processing and revision and pro-
duce a revised solution. During evaluation, the learners evaluate the feedback process and 
the learning outcomes. All these activities feed back into the individual learner characteris-
tics (eg, increasing task knowledge).

The peer- feedback process is influenced by the characteristics of individual learners, 
the learning context, and the task characteristics. Learner characteristics include prior task 
knowledge, feedback skills, digital skills and meta- cognitive skills, as well as motivation, 
beliefs and attitudes toward the learning task and peer- feedback (Aben et al., 2019; Berndt 
et al., 2022; Narciss et al., 2014; Panadero, 2016; Sailer et al., 2021; Strijbos et al., 2021). 
Contextual characteristics include the usability of the learning environment and the in-
structional design (eg, the motivational design of the peer- feedback scenario; Brewer & 
Klein, 2006; Narciss et al., 2014; Patchan et al., 2018). Task characteristics relate to the 
features of the learning content and tasks, such as the functional complexity and compre-
hensiveness of the required learning activities (Fischer et al., 2022; Van Merriënboer & 
Kirschner, 2018).

To facilitate the peer- feedback process, learners usually need instructional support. This 
is most often realized as static, non- adaptive scaffolds which are the same for every learner, 
such as prompts with stepwise instructions or assessment rubrics. However, ideally, the 
support considers the individual, contextual, and task characteristics (Double et al., 2020; 
Li et al., 2020). Such adaptive support measures adjust to the observed changes in learn-
ers' characteristics and performance. The type and degree of the provided support is thus 
tailored to the learners' current needs and hence capable of further enhancing the learning 
benefits (Plass & Pawar, 2020; Tetzlaff et al., 2021).

EDUCATIONAL RESEARCH AND NLP FOR ADAPTIVE  
PEER-  FEEDBACK SUPPORT

The peer- feedback process model (see Figure 1) describes the activities and textual prod-
ucts that can be identified during learning with peer- feedback. To develop adaptive sup-
port measures that benefit from advancements in NLP, we need to bridge the boundaries 
between educational research and NLP. We thus suggest a terminological and procedural 
scheme (see Figure 2) that links concepts from educational research with concepts from 
NLP to better describe, investigate and design NLP- based adaptive measures for support-
ing peer- feedback. In the subsequent section, we will apply this scheme to exemplify sev-
eral NLP- based measures that target the individual activities depicted in the peer- feedback 
process model.

Adaptively supporting the peer- feedback process

To be effective, support measures need to target relevant leverage points in the peer- 
feedback process. Leverage points are the factors and instances in the peer- feedback 
process that can either facilitate or impair the learning process and outcomes. Leverage 
points can be identified at the cognitive, meta- cognitive, affective- motivational and social- 
dialogical levels of the peer- feedback process (eg, Aben et al., 2019; Narciss et al., 2014). 
We will primarily focus on the cognitive level in the examples throughout this paper, such 
as the correctness of the initial solution in the task phase; however, we will, at times, also 
illustrate meta- cognitive leverage points (eg, reflection processes or awareness of important 
aspects of the peer- feedback process during the phase of evaluation) and motivational lev-
erage points (eg, when processing multiple feedback messages).
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Adaptive support measures target leverage points to increase the effectiveness of 
the peer- feedback process by providing additional task- relevant information or explana-
tions or by exerting direct or indirect regulation. While scaffolds— such as prompts and 
hints— regulate peer learning directly by offering additional instructions and explana-
tions (Bannert & Mengelkamp, 2013; Quintana et al., 2004), awareness tools regulate 
indirectly by offering performance indicators to inform learners' self- regulation (Lin & 
Tsai, 2016; Michel et al., 2017). Moreover, some support measures offer learners op-
tions for individualization (Kucirkova et al., 2021): Compared to adaptivity, adaptability 
offers learners themselves (rather than the technical learning environment with which 
they work) the option to adjust the overall use, timing or degree of learner support 
(Fischer, 2001; Wang et al., 2017). Consequently, learners can practice self- regulation 
(eg, Vogel et al., 2022).

Adaptive support measures can vary across use cases, depending on the adaptation 
targets, such as learner characteristics, processes or outcomes to which the support is 
adapted. To adjust the learner support to dynamically changing adaptation targets (eg, 
advancing skills; Kalyuga, 2007; Tetzlaff et al., 2021), observable activities and products 
can be used for performance assessment. For example, as a reviewing support, the to- be- 
reviewed initial solution of a peer might be pre- processed in such a way that its important 
flaws are automatically highlighted. In addition, the reviewing support could be personalized 
for the reviewer by adapting to their task performance so that those reviewers with low prior 
performance receive hints with additional instructions.

To automate adaptive learner support in digital learning environments, technological ad-
vancements in AI can augment learner activities and automate routine operations and ac-
tions (eg, Ninaus & Sailer, 2022). For the peer- feedback process, such automation goals 
can be classified as supporting individual activities (eg, prompting to further structure in-
sufficiently structured feedback messages), modifying individual products (eg, highlighting 
important aspects in feedback messages), and modifying the sequence of activities in the 
peer- feedback process (eg, omitting the revision step if feedback does not include sugges-
tions for improvement; see Figure 1).

F I G U R E  2  Terminological and procedural scheme for designing NLP- based adaptive support measures. 
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Enhancing adaptive support via NLP

The products exchanged during peer- feedback— such as the feedback message— often 
constitute textual data. NLP is thus a primary candidate for automating and augmenting 
adaptive support measures for peer- feedback scenarios. NLP's general objective is to 
create computational models that make accurate predictions about a target based on 
textual input according to one or multiple evaluation metrics. This objective encompasses 
a wide range of task types (Wang et al., 2022), ranging from surface- level tasks (such 
as text categorization or span and relation extraction) to deep semantics- driven tasks 
(such as summarization and text generation; see Figure 3). Modern deep- learning- based 
NLP builds upon pre- trained LLMs (Brown et al., 2020; Devlin et al., 2019). Through self- 
supervised training on large, unlabeled textual collections, these models create gener-
ally applicable neural representations of text that can be tailored to particular end tasks. 
NLP's applications range from predicting the sentiment of tweets (Agarwal et al., 2011) to 
automatic question answering for scientific literature (Dasigi et al., 2021). The latest gen-
eration of LLMs, such as GPT- 4 and Tk- Instruct (Wang et al., 2022), blends the bounda-
ries between task types by offering a unified text- to- text interface for model querying, 
which allows one to apply the models to unfamiliar tasks solely based on a brief task 
definition and a few examples.

Previously, NLP has been applied to support scenarios similar or related to peer- feedback, 
such as scholarly peer review (Cheng et al., 2020; Hua et al., 2019; Kennard et al., 2022; 
Kuznetsov et al., 2022), case- study analysis (Pfeiffer et al., 2019; Schulz et al., 2019), and 
argumentative writing and essay grading (eg, Burstein et al., 1998; Zhang & Litman, 2021). 
However, these existing applications of NLP have been limited to the isolated scenarios for 
which they were originally designed; no holistic framework for NLP- based peer- feedback sup-
port has been proposed to date. The potential of the new generation of LLMs to support peer- 
feedback remains equally underexplored. Moreover, the idiosyncrasies of peer- feedback data 

F I G U R E  3  Examples of the NLP task types discussed in this paper and their inputs (italic) and prediction 
targets (in colour). Each task type can accommodate a wide range of tasks: For example, the sentiment analysis 
of blog posts and stance prediction for peer- feedback texts can be both cast as score prediction tasks or text 
categorization tasks. 
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and associated tasks in the educational domain pose a range of methodological challenges, 
such as data scarcity, language and domain shift, interpretability, sensitivity to bias and in-
creased privacy demands. We revisit these challenges in the final section of the paper.

A generic approach to NLP model development for peer- feedback can be derived following  
the recently proposed framework of Translational NLP (Newman- Griffis et al., 2021). Based on 
the automation goal and available data, an appropriate NLP task type is chosen, along with the  
formal definitions of the prediction target, textual input, and evaluation metric. For example, solu-
tion grading (goal) based on task solution texts (data) can be cast as a score prediction task 
(NLP task type). That is, given plain text (input), the model predicts a numerical score in a given 
range (target) with the aim of minimizing the deviation between the true and the predicted score 
(evaluation metric). Based on the data's size and availability, technical constraints (eg, hardware 
limitations), and existing NLP resources (eg, pre- trained language models and corpora), NLP 
practitioners collaborate with educational researchers to select the appropriate NLP methodology 
for the task. Moreover, the nature of the support measure must be considered: while some sup-
port measures, such as essay grading (eg, to identify learners' current performance level), can 
be performed offline, others, such as real- time feedback analysis, place additional requirements 
on the model's throughput. The trade- off between the processing speed and the acceptable error 
rate of NLP- based assistance must be established in a collaborative cross- disciplinary process.

Based on the chosen approach, an NLP model is created, which, in most cases, involves ob-
taining a set of inputs paired with target values for the chosen task and using this data to develop 
and evaluate an NLP model. Once the model reaches adequate performance on a held- out test 
portion of the data, it can be integrated into the learning environment to support the automation 
goal, either by fully automating the target procedure (eg, predicting the solution score) or by 
augmenting the learner experience via continuous real- time support or via an adaptive scaffold 
(eg, notifying the learner that the current task solution text is insufficient prior to submission). A 
model might perform well intrinsically— that is, on the test data (eg, solution score deviation is 
low)— but fail to adequately support the chosen support measure, with reasons ranging from a 
poor selection of the intrinsic evaluation metrics and data to the particularities of implementation 
and overall user experience. Hence, extrinsic evaluation is the final and crucial step in measuring 
the adequacy of NLP- based support. Unlike intrinsic evaluation, which is usually performed by 
the NLP development team itself, extrinsic evaluation requires the NLP model to be deployed in 
a learning setting and incorporates both user feedback and formal measurements of intervention 
success. For example, the effectiveness of an NLP- enhanced adaptive support measure can 
be investigated in a pretest– posttest control group study regarding extrinsic outcomes, such 
as learners' skill improvement. If applying the newly developed support measure results in the 
desired extrinsic outcomes, the implementation can be considered successful.

NLP ADAPTIVE MEASURES FOR SUPPORTING THE  
PEER-  FEEDBACK PROCESS

Below, we exemplify a range of (a) leverage points for effective peer- feedback, (b) several 
options for support measures that target these leverage points, (c) adaptation targets for 
these measures, (d) corresponding automation goals, (e) the necessary textual data and (f) 
the NLP prediction targets that may be used for doing so.

Design phase: Preparing the peer- feedback process

In the context of formal education, a peer- feedback scenario in a digital learning environ-
ment is usually designed by an instructor (ie, teacher, lecturer or tutor), who specifies the 
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learning task(s), learning materials, instructions, and nonadaptive scaffolds (eg, reflection 
prompts; Bannert & Mengelkamp, 2013). The instructor also needs to define the rules for 
the peer assignment— that is, to whom each learner gives feedback and from whom each 
learner receives feedback. The peer assignment can be random or based on learner char-
acteristics, such as learners' task- related skills. Research found that learners who delivered 
better initial solutions also provided more hints on self- regulation aspects instead of provid-
ing only corrective feedback (Alqassab et al., 2018b). Their feedback comments were also 
more critical (Cho & Cho, 2011). The same was true for learners with a higher general writing 
ability (Patchan & Schunn, 2015). In addition, Alqassab et al. (2018a) found that the feed-
back accuracy decreased when the initial solution contained more flaws. However, Patchan 
et al. (2013) showed that writers with high general verbal ability also received similar feed-
back from low- ability peers, whereas low- ability writers of initial solutions received more 
valuable feedback from high- ability peers. Therefore, as a leverage point, it might be recom-
mendable to assign initial solutions of more competent learners to less competent learners 
and initial solutions of less competent learners to more competent learners (comparable to 
positive vs. erroneous worked examples; Große & Renkl, 2007; Tsovaltzi et al., 2012).

To optimize the effectiveness of the peer- feedback processes, a support measure for the 
peer assignment might focus on the learners' level of domain knowledge and initial solution 
performance as an adaptation target. The automation goal for NLP would consist of auto-
matically identifying high- performing and low- performing learners.

The design phase requires textual data to determine learners' performance. The peer 
assignment can be scheduled to take place after the initial processing of the learning task, 
making it possible to estimate learners' performance within the current learning scenario. 
In cases when learners are assigned to dyads or groups prior to task processing (eg, in 
collaborative or otherwise dialogical learning situations), learners' prior textual data can be 
obtained from prior learning tasks. The indicators and automation targets for distinguish-
ing high- performing and low- performing learners based on their textual products (ie, initial 
solution, feedback message, and revised solution) are detailed in the subsequent sections. 
From an NLP perspective, the quality of a task solution can be cast as a score predic-
tion or ranking task and approached in an end- to- end fashion. Several lines of research in 
NLP are dedicated to the automatic evaluation of texts, including automatic essay scoring 
(Burstein, 2003; Dasgupta et al., 2018; Ke & Ng, 2019; Page, 1968; Zhang & Litman, 2021), 
quantifying readability (Deutsch et al., 2020), factuality (Maynez et al., 2020) or specificity 
(Lugini & Litman, 2017).

Task processing and producing an initial solution

Through initial task processing, learners are familiarized with the content and instructions of 
the learning task and build a mental model of the approaches needed to process and solve 
the task, which can facilitate the quality of the subsequently produced feedback message 
and increase the effectiveness of the peer- feedback process (eg, Alemdag & Yildirim, 2022; 
Greene & Azevedo, 2009). However, learner characteristics, such as prior knowledge, im-
pact task processing and the quality of the initial solution. Therefore, a leverage point in-
volves facilitating learners' task processing toward producing a sufficient initial solution.

Support measures to facilitate task processing should serve one or more of the follow-
ing mechanisms (Belland, 2014, p. 507): “enlisting student interest, controlling frustration, 
providing feedback, indicating important task/problem elements to consider, modeling ex-
pert processes, and questioning.” For example, indicating some important elements to con-
sider could be realized by highlighting or annotating the relevant aspects in learners' initial 
solutions. The adaptation target for adjusting such support measures is the learners' task 
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performance in the present learning task or prior learning tasks. Current task performance 
can be assessed by letting learners submit a draft of their initial solution. An automation goal 
for such adaptive support measures is the automatic detection of the relevant structural as-
pects or content aspects in the initial solution texts that distinguish adequate initial solutions 
from inadequate ones. The relevant aspects depend on the task at hand: argumentation struc-
tures (eg, claims, premises and their connections; Rapanta & Walton, 2016; Wambsganss 
et al., 2020) are a key requirement for argumentative essay writing; pre- service teachers' 
initial solutions about a case vignette can be analysed, for example, concerning epistemic 
activities, such as identifying the problem, generating hypotheses, generating evidence, 
evaluating evidence, and drawing conclusions (Bauer et al., 2020; Fischer et al., 2014).

NLP automation at this stage can be based on the current and prior initial solution texts as 
well as the sample or expert solution texts available to the instructor. Detecting the structural 
aspects of initial solutions can be naturally cast as a span and relation extraction or as a text 
categorization task, backed by the existing body of work in NLP: automatic argumentation 
mining is an active research area (Lippi & Torroni, 2016; Lugini & Litman, 2020); NLP- based 
automatic analysis of epistemic activities in diagnostic essays written by pre- service teach-
ers and medical students (Schulz et al., 2019) has been used to automatically provide adap-
tive feedback (Pfeiffer et al., 2019; Sailer et al., 2023). Moreover, state of the art approaches 
for recognizing textual entailment (Bowman et al., 2015) can be used to judge the validity of 
the claims made in the solution cast as a text pair classification task; the recent advances 
in text similarity measurement (Reimers & Gurevych, 2019), text generation quality metrics 
(Zhang et al., 2020), and linking (Kuznetsov et al., 2022) can be used to compare learner's 
solutions to sample solutions and determine the differences to be communicated to the 
learner to facilitate task processing.

Reviewing peer solutions

After submitting the initial solutions, learners adopt the role of peer reviewers and receive 
the initial solutions of their peer learners for review. The peer reviewers subsequently ana-
lyse the assigned initial solutions and compare them to the assumed performance goal. 
The reviewers thus prepare for producing a feedback message (Gielen & De Wever, 2015) 
and learn from the alternative solutions (Cho & Cho, 2011; Lundstrom & Baker, 2009; Nicol 
et al., 2014). However, learners' task- relevant knowledge may limit the effectiveness of re-
viewing. Therefore, a leverage point for reviewing is to facilitate learners' understanding of 
the performance goal— that is, the characteristics that separate adequate and inadequate 
initial solutions (Berndt et al., 2018; Huisman et al., 2018; Peters et al., 2018).

Prior studies have provided support measures, such as evaluation rubrics, worked 
examples, and templates with assessment criteria (Alemdag & Yildirim, 2022; Alqassab 
et al., 2018b; Gielen & De Wever, 2015; Peters et al., 2018; Rotsaert et al., 2018; Voet 
et al., 2018). Adaptive support measures might highlight or annotate the structural or content 
aspects of initial solutions— essentially analogous to the support measures for task pro-
cessing. In addition, the relationships between a learner's initial solution and the reviewed 
initial solution can be highlighted and communicated to the learner. The reviewing support 
can be adjusted to two adaptation targets: (a) reviewers may receive support adapted to the 
reviewed initial solution, which might be implemented as a default support or an adaptable 
support; (b) the degree of reviewing support might be adapted to the reviewer's level of task- 
relevant competencies, indicated by the performance in their own initial solution. Similar 
to the initial task- processing support, the automation goals for adaptive reviewing support 
entail detecting the relevant structural aspects or content aspects in the initial solution texts.
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Given the similarity of goals, NLP automation developed for the task phase can be reused 
to provide adaptive support in the reviewing phase. The availability of one's own and other 
learners' initial solution texts at this stage allows the application of the previously developed 
NLP models to compare initial solutions to sample solutions. The solution under review can 
be compared to one's own solution text, which highlights the differences and establishes 
cross- document links.

Feedback production

After reviewing a peer's initial solution, the reviewers craft a feedback message, and the 
quality of the message determines its effectiveness in facilitating learning processes and 
outcomes (Hattie & Timperley, 2007; Narciss et al., 2014). Several models for conceptual-
izing feedback (Panadero & Lipnevich, 2022) and peer- feedback (eg, Patchan et al., 2016; 
Wu & Schunn, 2020) exist; the most well- known model, which addresses feedback quality, 
was introduced by Hattie and Timperley (2007), according to whom high- quality feedback 
is structured based on three feedback questions that address (1) the performance goal 
(feed- up), (2) the current performance (feed- back), and (3) the possible improvements (feed- 
forward). They offer recommendations concerning four content levels of feedback: Novice 
learners require guidance on the task processes (process level); intermediate learners can 
already benefit from guidance for self- monitoring (self- regulation level); for advanced learn-
ers, corrective performance- information can suffice (task level); and personal evaluations 
serve social- affective purposes instead of improving learning outcomes (person level). 
Therefore, a central leverage point for increasing the effectiveness of peer- feedback pro-
cesses entails advancing the quality of the peer- feedback messages regarding the degree 
of elaboration, structuring, and the choice of content level for the feedback.

The support measures in prior research addressed the three feedback questions and 
four content levels by providing instructions and prompts, assessment scripts with structural 
scaffolds, structural guidelines, and structural templates (Alqassab et al., 2018b; Gielen 
& De Wever, 2015). Possible adaptation targets for adjusting feedback support would be: 
(1) the reviewer's feedback skills, indicated by a submitted draft of the current feedback 
message (eg, for prompts concerning the feedback questions) or feedback messages from 
prior peer- feedback scenarios (eg, for prompts on avoiding common structural flaws); (2) 
the peer's task performance in the reviewed initial solution (eg, for prompts concerning the 
content level for the feedback); (3) the reviewer's task performance in the initial solution (for 
personalizing the degree of feedback support). The automation goals for adaptive feedback 
support focus on automatically detecting relevant aspects of feedback messages (in addi-
tion to analyses of the prior initial solution texts).

NLP automation for the feedback production phase can utilize a wide spectrum of textual 
data as input, including one's own and other learners' initial solutions and the feedback mes-
sage draft. Feedback messages are subject to structural analysis cast as span and relation 
extraction or as a text categorization task. Prior NLP studies successfully applied discourse 
parsing to analyse feedback messages in scholarly peer review. For example, Kuznetsov 
et al. (2022) proposed a corpus of scholarly feedback texts in which each sentence is la-
belled with pragmatic categories, such as recap (feed- up), strength and weakness (feed- 
back), todo (feed- forward) and so on. Alternatively, Hua et al. (2019) focused on extracting 
argumentation structures, labelling parts of peer review reports as evaluation, fact, request 
and so on. Similar efforts exist in the domain of English argumentative essay writing; for 
example, Nguyen et al. (2016) proposed, implemented, and deployed an instant feedback 
system to detect solutions in peer review texts. The automatic analysis of the content level 
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addressed in feedback texts has not been widely studied, but it might be approached simi-
larly as a text classification or a span extraction NLP task.

Feedback processing

To process the feedback, learners need to read the received message(s) and try to compre-
hend it and evaluate its relevance. Their mindful processing of the feedback— that is, paying 
attention to the relevant information and investing mental effort for comprehension— can 
increase their recall performance (Alemdag & Yildirim, 2022; Bolzer et al., 2015). Mindful 
processing is particularly important for dealing with complex feedback (Berndt et al., 2022). 
However, if learners lack motivation or are overwhelmed by feedback (Aben et al., 2022; 
Huisman et al., 2018, 2020; Strijbos et al., 2021), they can react maladaptively, for exam-
ple, by ignoring the feedback (Butler & Winne, 1995). In addition, to minimize the impact of 
varying feedback quality, receiving feedback from multiple peers can average the feedback 
information, thus increasing the objectivity of the peer- feedback (Cho & Schunn, 2007; De 
Wever et al., 2011). This advantage, however, must be balanced with the downside of in-
creased effort for processing multiple feedback messages (Rouet & Britt, 2011). Therefore, 
the leverage points for supporting learners' feedback processing entail facilitating the mind-
ful processing and information integration of multiple feedback messages.

As a support measure for facilitating feedback processing and comprehension, prior re-
search explored the use of rubrics (Wichmann et al., 2018). Such scaffolds might also be 
used to support the processing and integration of multiple feedback messages. The adap-
tation targets for adaptive processing support primarily comprise the received feedback 
message(s). In addition, the amount of processing support can be personalized to the feed-
back receiver based on their initial solution and their previous feedback messages. The 
automation goals for such adaptive support measures include, for example, the automatic 
detection of the relevant aspects in feedback messages (eg, for prompting or highlighting) or 
summarizing the information common in multiple feedback messages.

NLP for assisting peer- feedback processing largely follows the tasks required for feed-
back production, including the structural and content level analysis of peer- feedback texts. 
However, the feedback processing stage offers new opportunities for NLP automation: since 
each learner receives more than one feedback message from their peers in many sce-
narios, NLP can be applied to aggregate the information from these messages, either by 
summarizing them (text generation) or by connecting multiple feedback texts to the initial 
solution text (linking). The former goal can be supported by existing NLP research on multi- 
document summarization (Fabbri et al., 2019); the latter can be addressed using the latest 
developments in NLP for scholarly peer review analysis (Kennard et al., 2022; Kuznetsov 
et al., 2022) that study the problem of connecting paper drafts to peer review texts and au-
thor responses as well as emerging general- purpose NLP approaches to multi- document 
language modelling (Caciularu et al., 2021).

Revision

After processing the received feedback, learners will ideally revise their initial solution, 
which offers them a range of benefits for learning (Linn et al., 2013): recognizing new ideas 
in the feedback messages and adding them to their understanding of the subject matter, 
generating connections between ideas, and monitoring their progress while working these 
new ideas into their initial solution. However, while revising, learners (a) must avoid making 
new mistakes or adopting incorrect feedback comments (Wichmann et al., 2018); moreover, 
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(b) they might experience difficulties making fundamental changes to their initial solution, 
instead focusing on micro- level changes, such as clarifying or elaborating a sentence or 
paragraph (Cho & MacArthur, 2010). Therefore, the leverage points for revision support 
include avoiding new mistakes and facilitating making fundamental changes when revising 
initial solutions.

As a support measure for adopting only adequate ideas, Wichmann et al. (2018) used a 
rubric, which prompted strategic behaviours, such as reflecting on the feedback information 
and engaging in planning, monitoring, and evaluating throughout revisions. Directly regulat-
ing scaffolds or awareness support, such as highlighting, can be used to identify the parts 
in the initial solution that must be revised according to the received feedback. In particular, 
if suggested in the feedback, the need to make fundamental changes can be emphasized. 
The adaptation targets for revision support are primarily the received feedback messages. 
In addition, the degree of revision support might be personalized for the learner by ad-
justing it to their prior performance (eg, initial solution and quality of feedback message). 
The automation goals for revision support measures might entail detecting revision- critical 
information in the feedback messages and connecting it to the parts in the initial solution 
and comparing the revised solution draft to the initial solution by considering the received 
feedback.

In addition to the NLP automation for feedback production and processing assistance, the 
availability of the revised solution draft enables new NLP automation scenarios to support 
the revision automation goals. The revised solution can be compared to the initial solution 
via version alignment, and the differences introduced during revision can be attributed to 
the received feedback messages: a linking task type was recently proposed by Kuznetsov 
et al. (2022) in the context of scholarly peer review; related efforts also exist in the domain 
of English argumentative writing (Afrin et al., 2020; Afrin & Litman, 2018; Zhang et al., 2017). 
The automatic classification of edit purposes and intentions (eg, as text pair classification) 
was explored in a research on Wikipedia (Yang et al., 2017). In contrast, judging whether 
the edits indeed address the feedback is an underexplored NLP area related to recent stud-
ies in edit-  and change- aware NLP and language modelling (Logan IV et al., 2022; Schick 
et al., 2022).

Evaluating the feedback process and learning outcomes

Experiences with activities in the peer- feedback process feed into the individual learners' 
internal evaluation of the peer- feedback process and learning outcomes (Nicol, 2021). For 
example, learners who evaluate the received feedback as low- quality might conclude that 
peer- feedback is not a beneficial instructional approach (Kaufman & Schunn, 2011). With 
such an attitude, they will likely invest less effort into future peer- feedback scenarios and 
offer low- quality peer- feedback themselves. This makes learners' evaluation a relevant 
condition for the benefits of future learning with peer- feedback. However, without external 
guidance, learners' final evaluations often remain rather superficial (Anderson, 2012). An 
important leverage point might thus entail provoking learners' in- depth reflection about the 
peer- feedback process, its benefits and options for future improvements.

As support measures for in- depth evaluation, learners' awareness of the various as-
pects of the peer- feedback process might be increased. This could be achieved by using 
reflection prompts that address aspects of the peer- feedback process, such as the intended 
behavioural changes for future peer- feedback activities or the learning outcomes gained 
from receiving the feedback (Anderson, 2012; Raković et al., 2022). The summary statistics 
and visuals of the tracked changes or rebutted feedback information might provide further 
options for supporting individual learners in their final evaluation. These options could be 
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employed for learners in the roles of both feedback receiver and reviewer. In addition, such 
summarizing information could be provided at a group level (eg, a whole class or course) to 
illustrate the benefits and challenges of collaborative knowledge construction— that is, how 
information (eg, advances but also misconceptions) is distributed and “travelled” between 
learners (Huisman et al., 2020). The adaptation targets might primarily entail distinguishing 
learners' successes and difficulties in the different activities of peer- feedback (eg, incorpo-
rating vs. not incorporating the feedback information) and offering personalized instructions.

The automation goals for these support measures comprise comparing the revised and 
initial solution, determining the extent to which the changes reflect the feedback and how 
similar the revised solution is to a sample solution (if the task allows the creation of such a 
sample solution), and calculating the group- level indicators based on the information from 
individual peer- feedback loops (eg, the extent of revisions as well as the most frequently im-
plemented feedback targets and structural elements). At this stage, the results of prior NLP 
automation can be used to produce aggregate statistics and insights from the peer- feedback 
process. Additionally, unsupervised NLP approaches can be applied to aggregate and clus-
ter parts of the task solution and feedback message texts to determine the most commonly 
mentioned topics and improvement suggestions, for example, by using neural sentence 
representations (Reimers & Gurevych, 2019).

CURRENT CHALLENGES AND A RESEARCH AGENDA

In this paper, we proposed a peer- feedback process model that offers an overview of peer 
learners' activities and products, developed a terminological and procedural scheme to 
bridge educational research and NLP perspectives, and applied the latter to the former to 
exemplify how each peer- feedback activity might be adaptively supported using NLP. As 
our examples show, peer- feedback offers a wide ground for applying NLP support, from the 
pre- scoring of initial solutions during peer assignment, to judging the sufficiency of changes 
resulting from peer- feedback, to extracting new insights about the overall peer- feedback 
process. NLP models, we note, can often be repurposed between phases as part of different 
support measures— yet, the extrinsic evaluation measures remain specific to each phase. 
For example, while a feedback provider might be interested in writing a comprehensive 
feedback message, a feedback receiver might be interested in investing reduced feedback 
processing time. We also note that, as the peer- feedback scenario proceeds, more informa-
tion becomes available for potential support measures, and more data becomes accessible 
for developing NLP automation models to enhance those measures.

In the following, we describe current challenges and opportunities that arise when apply-
ing NLP to peer- feedback and propose an agenda of seven major themes for future research 
directions:

1. The effectiveness of NLP- based adaptive support measures for all phases and activ-
ities of the peer- feedback process constitutes the primary desideratum to investigate 
in future research. NLP bears great potential to amplify the effectiveness and effi-
ciency of peer- feedback by augmenting and automating adaptive support measures 
that target the relevant leverage points of an effective peer- feedback process. Unlike 
many other applications of NLP that are primarily concerned with improving the 
efficiency of text work per se, the extrinsic evaluation of NLP applications in the 
educational domain is additionally concerned with facilitating learners' skills or other 
latent learner variables (eg, affective- motivational states). Such variables are challenging 
to define and measure, requiring close cross- disciplinary collaboration between NLP 
practitioners and educational scientists. Future research might investigate the relative 
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effectiveness of different NLP- based adaptive support measures— that is, for which 
phases and activities NLP- based adaptive support can bring the most merit according 
to the chosen extrinsic evaluation metrics. In addition, within the phases and activ-
ities, it remains unclear which support measures are most effective for facilitating 
peer- feedback processes and increasing learning outcomes (eg, indirectly vs. directly 
regulating support, adaptive vs. adaptable support, and so on) and which adaptive 
support measures are best to be automated or augmented by NLP. Multiple support 
measures might also create synergies for learning when used in combination (Tabak 
& Kyza, 2018), which suggests potential for further research on the combinations of 
NLP- based learner support. Such research questions might be investigated in stud-
ies using pretest- posttest control group designs. The initial investigations might be 
conducted in laboratory settings that allow detailed investigations of the intervention 
effects on learning and peer- feedback processes; subsequently, it seems important 
to conduct field studies in actual classrooms to further investigate the practical fea-
sibility of the NLP adaptive support measures for different peer- feedback scenarios 
(eg, smaller classes vs. lectures) and to investigate the stability of effects found in 
the laboratory under field conditions.

2. The generalizability of peer- feedback processes as described in the suggested peer- 
feedback process model across peer- feedback scenarios with varying contextual char-
acteristics is another open question. Our examples mostly presume a linear and nicely 
pre- structured peer- feedback scenario in which learners follow a more or less fixed se-
quence without synchronously communicating much during the individual activities. Peer- 
feedback scenarios that require a higher degree of self- regulation and co- regulation might 
impose additional challenges (Greisel et al., 2021; Koivuniemi et al., 2017) but also po-
tential for NLP- based adaptive support measures. Moreover, the characteristics of the 
learning task— its complexity or dynamics (see Fischer et al., 2022) or the non- existence 
of a correct solution (see Fischer & Wolf, 2015)— might be relevant to both the generaliz-
ability of the model as well as the effectiveness of NLP- based adaptive support measures. 
Educational research on peer- feedback needs to continue with detailed process analyses 
to investigate the learning processes during peer- feedback as well as the potential influ-
ences of varying learner characteristics, context characteristics and task characteristics, 
which might also affect the leverage points for optimal learner support.

3. In addition, future research must further investigate the potential leverage points and  
support measures for facilitating peer- feedback processes. In this paper, we exempli-
fied a limited number of potential leverage points and support measures; they do not 
represent a comprehensive list and must be complemented. We mostly focused on the 
cognitive level of the peer- feedback process. However, the peer- feedback process also 
involves affective- motivational and social- dialogical levels (eg, Aben et al., 2019; Narciss 
et al., 2014), which involve a variety of further options for leveraging the effectiveness of 
the peer- feedback process and increasing learners' benefits by providing suitable adap-
tive support measures. The leverage points and support measures targeting these levels 
of the peer- feedback process must be identified and systematically investigated. For the 
cognitive leverage points and support measures, one can distinguish between structural 
dimensions (eg, argumentation structures or the three feedback questions of high- quality 
feedback) and content dimensions (eg, the correctness of an initial solution or the feedback 
message concerning the content of the learning task) in the products of the peer- feedback 
process. The content aspects facilitate specifying the support needed for the content of 
the learning task, which might be more comprehensible and, thus, more beneficial for 
the learners; however, structural aspects might facilitate learning transfer across different 
learning tasks (Hetmanek et al., 2018). The comparative effectiveness of targeting these 
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two dimensions with NLP- based adaptive learner support requires further investigation as 
well.

4. The generalizability of collaborative processes between NLP and education, as described 
by the proposed terminological and procedural scheme for designing NLP- based adaptive 
support measures, is another open question. We developed this scheme motivated by the 
idea of researching peer- feedback at the intersection of NLP and education. The use case 
of supporting peer- feedback involves some characteristics that seem relevant to consider 
for designing automatic adaptive learner support; for example, the peer- feedback pro-
cess implies early access to text data (eg, initial solution) to which learner support can be 
adapted. Another important characteristic is that NLP is used to augment the peer- feedback 
process to give students further opportunities for learning, whereas other use cases would 
strive for complete automatization (eg, fully automating adaptive feedback; eg, Sailer et 
al., 2023). Despite these specificities of using NLP for supporting peer- feedback, the de-
veloped scheme might as well be beneficial for facilitating other cross- disciplinary col-
laboration at the intersection of NLP and education, such as automating adaptive learner 
support for educational contexts other than peer- feedback (eg, supporting essay writing) 
and for developing teaching support for instructors (eg, dashboards for teachers or lectur-
ers). However, while a joint terminology and framework can facilitate cross- disciplinary 
research (Heitzmann et al., 2021), the generalizability of the suggested scheme for further 
cross- disciplinary collaborations between NLP and education remains to be explored.

5. A major challenge and research direction concerning NLP entails handling data scarcity. 
Modern NLP is driven by the availability of data; however, compared to other application 
areas of NLP, such as news and social networks, peer- feedback data is scarce. Although 
many of the NLP approaches mentioned in our overview come bundled with labelled 
datasets and pre- trained models, performance degradation due to domain and language 
shifts can prevent their wide reuse. For instance, an argumentative essay scoring model 
for English will underperform on German medical case- study essays. Even the most ad-
vanced NLP systems suffer from substantial performance decrease when applied to pre-
viously unseen languages and domains. The application of NLP to peer- feedback thus 
demands advancements in domain and language adaptation technology (Chronopoulou et 
al., 2022; Pfeiffer et al., 2020), as well as quantifying and collecting data from pre- existing 
peer- feedback workflows (Dycke et al., 2022, 2023). Simultaneously, peer- feedback has 
the potential to generate great amounts of diverse textual data for NLP research and to 
provide excellent testing grounds for the study of language-  and domain- adaptation in 
NLP.

6. Handling important properties of peer- feedback data— such as handling biases and per-
sonal data— is also crucial. NLP models exhibit a wide range of biases, including reproduc-
ing pre- existing biases in the data (eg, non- native speakers' solution texts being graded 
lower), technical bias due to algorithm behaviour, as well as emergent bias from applying 
NLP models outside of their intended task and data distribution (Bender & Friedman, 2018). 
While some application areas are less sensitive to bias, it is clearly an undesirable prop-
erty for peer- feedback support, as even small and undetectable biases can be amplified by 
repeated exposure and thus put the affected learner groups at a disadvantage. Bias can 
be addressed by carefully documenting and curating NLP datasets and models (Bender & 
Friedman, 2018; Mohammad, 2022), applying specialized debiasing techniques (Utama et 
al., 2020), and choosing automation goals less vulnerable to known biases. At the same 
time, the diversity of the participants involved in peer- feedback and the resulting data form 
an excellent basis for the study of bias mitigation in NLP. In addition, when applying NLP 
to peer- feedback, the ethical and legal challenges related to learners' personal data man-
agement and data licensing must be addressed. While responsible research is already 
gaining traction in NLP (Dycke et al., 2022, 2023; Rogers et al., 2021), we envision that 
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cross- disciplinary collaborations between the fields would greatly enrich the overall data 
and participant handling practice in NLP.

7. The interpretability of NLP models often seems to be a crucial requirement for peer- 
feedback support: simply informing a learner that their peer- feedback is insufficient is likely 
not as useful as being able to highlight the problematic instances, for example, in the 
feedback message. Yet, despite their predictive power, modern NLP models are notori-
ously opaque: while state- of- the- art neural models, such as GPT- 4, might offer correct 
predictions for a wide range of tasks, they lack the ability to reliably explain why a predic-
tion is made. While potentially acceptable in many other scenarios, such as predicting the 
sentiment of tweets, this is clearly problematic for NLP application in the context of learner 
support. There is an active line of research on NLP that addresses the interpretability of 
NLP models (Tenney et al., 2020), and further research on their interpretability can be con-
ducted in the context of supporting peer- feedback. Applying NLP to peer- feedback offers 
an excellent opportunity to study related questions of human– AI interaction, such as what 
kind of explanations are most helpful and required to increase interpretability and sup-
port the learners' understanding of their learning processes. Such research could benefit 
from combining different research approaches: qualitative interview studies could explore 
learners' perceptions and acceptance of technology enhancement; moreover, large- scale 
studies could use learning analytics to understand how learners adopt the behavioural 
changes suggested by automated learning support.

Future research and design work in the fields of education and NLP might build on the 
proposed cross- disciplinary framework and research agenda to collaborate more systemat-
ically and innovate peer- feedback in digital learning environments.
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