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1   |   INTRODUCTION

Maintenance of cell–cell adhesion is crucial for the in-
tegrity of internal and external barriers in multicellular 

organisms allowing to isolate the organism from the 
surrounding environment and separate different com-
partments within the body. These barriers include epi-
thelia such as the epidermis as well as the endothelium 
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Abstract
Regulation of cadherin-mediated cell adhesion is crucial not only for maintain-
ing tissue integrity and barrier function in the endothelium and epithelium but 
also for electromechanical coupling within the myocardium. Therefore, loss of 
cadherin-mediated adhesion causes various disorders, including vascular inflam-
mation and desmosome-related diseases such as the autoimmune blistering skin 
dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regu-
lating cadherin-mediated binding contribute to the pathogenesis of diseases and 
may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 
3′,5′-monophosphate (cAMP) has emerged as one of the master regulators of cell 
adhesion in endothelium and, more recently, also in epithelial cells as well as in 
cardiomyocytes. A broad spectrum of experimental models from vascular physi-
ology and cell biology applied by different generations of researchers provided 
evidence that not only cadherins of endothelial adherens junctions (AJ) but also 
desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs 
are central targets in this scenario. The molecular mechanisms involve protein 
kinase A- and exchange protein directly activated by cAMP-mediated regulation 
of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adap-
tor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as 
apremilast have been proposed as a therapeutic strategy to stabilize cadherin-
mediated adhesion in pemphigus and may also be effective to treat other disor-
ders where cadherin-mediated binding is compromised.
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outlining the inner wall of blood vessels and the heart. 
Moreover, the myocardium requires proper cell adhe-
sion to allow the electromechanical coupling of cardio-
myocytes during the contractile heart cycle. Although 
the main barrier-forming cell contacts in endothelium 
and epithelium are formed by tight junctions (TJ), the 
general assumption is that adherens junctions (AJ) and 
desmosomes as adhesive cell contacts are required to 
provide the mechanical strength for intercellular adhe-
sion.1-3 Both AJ and desmosomes consist of cadherin-
type adhesion molecules which are coupled via adaptor 
proteins including plakoglobin (Pg) to the cytoskele-
ton. In endothelial AJ, VE-cadherin is coupled to actin 
filaments, whereas desmosomal cadherins comprise 
different desmoglein (Dsg) and desmocollin (Dsc) iso-
forms and are attached to intermediate filaments.4,5 
In the myocardium, intercalated discs, besides proper 
desmosomes, also contain areae compositae in which 
AJ and desmosome components intermingle.6 This 
conserved backbone of cadherin-based adhesive con-
tacts serves as the structural basis for shared mecha-
nisms in the regulation of intercellular adhesion in cell 
types as diverse as endothelial cells, keratinocytes and 
cardiomyocytes.

Research on the regulation of barrier function in 
blood vessels goes back to a time when the molecular 
composition of cell contacts was unknown. Then, vas-
cular physiologists studied the transport of water and 
fluid across the vessel wall and proposed different forms 
of pores to allow regulated exchange.7,8 Meanwhile, it 
is known that TJ, together with the glycocalyx, are the 
structures to limit endothelial paracellular permea-
bility.9,10 The groundbreaking studies of physiologists 
identified the second messenger, cyclic adenosine 
3′,5′-monophosphate (cAMP), as one of the most effi-
cient signaling molecules to reduce permeability against 
almost all forms of inflammatory stimuli.11 Later, cAMP 
in the endothelium was found to regulate the Rho 
family GTPases and to control VE-cadherin-mediated 
adhesion, which was identified as a central barrier-
supporting adhesion molecule.12,13 Since Rho family 
GTPases were identified to regulate cadherin adhesion 
in desmosomes, the role of cAMP to regulate desmo-
somal adhesion was explored in keratinocytes and in 
cardiomyocytes because these cell types are affected 
by the desmosome-related diseases pemphigus and 
arrhythmogenic cardiomyopathy, respectively.14 This 
review summarizes the current knowledge on the reg-
ulation of cadherin-mediated adhesion by cAMP in dif-
ferent tissues and highlights components of the cAMP 
signaling cascade and its downstream molecules as tar-
gets for therapeutic approaches in disease.

2   |   cAMP SIGNALING PATHWAY

cAMP was identified as a second messenger by Sutherland 
and Tall in 195815 and plays a critical role in a plethora 
of cellular functions such as the response to hormones 
and neurotransmitters, migration, mitochondrial ho-
meostasis, proliferation and cell death.16 The broad spec-
trum of cellular functions requires precisely regulated 
levels of cAMP in the cell and compartmentalization of 
cAMP signaling to provide a cell- and stimulus-specific 
response.17-19 Levels of cAMP are balanced by the activity 
of adenylyl cyclases (AC) and phosphodiesterases (PDE), 
of which different isoforms with certain expression pat-
tern and mechanisms of regulation exist.19,20 The α subu-
nit of G protein drives AC activation. Important members 
of this G-protein-coupled receptors (GPCR) are the β-
adrenoreceptors (Figure 1). Vice versa, AC activity can be 
inhibited by muscarinic receptors and their αi subunit of 
the Gi protein20 (Figure 1).

cAMP induces activation of protein kinase A (PKA) and 
exchange protein directly activated by cAMP (Epac).21,22 
PKA consists of two catalytic (C) and two regulatory (R) 
subunits, the latter of which binds to cAMP.21 cAMP bind-
ing leads to dissociation of the subunits and release of the 
catalytic subunit affecting a broad range of downstream 
targets23 (Figure  1). A-kinase-anchoring proteins (AKAP) 
attach to the regulatory subunits of PKA to drive compart-
mentalization of PKA (Figure  1). For instance, AKAPs 
link PKA to the classical cadherins VE-cadherin and E-
cadherin.24-26 In addition, Epac activates the GTPase Rap122 
but is also involved in other cellular processes such as cell 
adhesion,27,28 differentiation29 and gene expression.21

The cAMP signaling cascade is connected to and reg-
ulated by a plethora of other signaling pathways known 
to be involved in desmosomal and adherens junction ad-
hesion such as Ca2+ signaling,30 Rho family GTPases,13 
PKC,31 PI3K,32 PLC and MAPK/ERK signaling.33

Pharmacologically, the cAMP signaling cascade can 
be targeted by several mediators to modulate cadherin-
mediated adhesion. A selection of respective compounds 
and targets are summarized and highlighted in Figure 1.

3   |   cAMP REGULATES 
BARRIER FUNCTION AND 
CADHERIN-MEDIATED CELL 
ADHESION OF ENDOTHELIAL 
CELLS UNDER PHYSIOLOGIC AND 
INFLAMMATORY CONDITIONS

Endothelium, as a single, semipermeable layer of endothe-
lial cells covering the inner surface of the blood vessels, 
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provides a selective barrier between the blood and the 
surrounding tissue.4,34 Several processes contribute to the 
maintenance of endothelial barrier integrity such as actin–
myosin contraction, cell–cell and cell–matrix adhesion, 
actin cytoskeleton remodeling and glycocalyx integrity.9 
Therefore, the balance between adhesion and contraction 
is crucial for the barrier function and this may be partly 
controlled by cAMP.35-37 Endothelial barrier dysfunction, 
occurring mainly in postcapillary venules,34,38 is a hall-
mark of various pathological disorders such as tumor, 
edema or severe inflammation, which often is accompa-
nied by sepsis and multiorgan failure, remaining a pri-
mary cause of mortality in intensive care units.39-41 Under 
inflammatory conditions, endothelial barrier breakdown 
is mostly caused by gap formation at intercellular contacts 
(paracellular leak), whereas the transcellular leak is less 
relevant.4,42,43 Paracellular permeability is controlled by 
the dynamic opening and closing of intercellular junc-
tions,40,44 such as AJ and TJ. While the TJ seal the inter-
cellular cleft between neighboring cells and thus directly 
control paracellular permeability, VE-cadherin-composed 
AJ provide mechanical strength, initiate cell-to-cell con-
tacts and support their maturation and preservation. It is 
also believed that AJ assembly is essential for precise TJ 

organization.44,45 In addition to the ability to transmit in-
tracellular signals, which can modulate many endothelial 
functions, both junctional complexes are associated with 
the actin cytoskeleton, which explains why the regulation 
of actin dynamic is also crucial for the maintenance of en-
dothelial barrier integrity.40,45,46,47

A remarkable number of studies revealed that intra-
cellular cAMP levels drop significantly during onset of 
inflammation,48-51 while increased cAMP levels reduce 
paracellular permeability under basal conditions52-54 and 
attenuate the endothelial cells inflammatory response 
in vitro and in vivo.50,51,55,56,57,58,59,60,61,62,63,64,65 To do so, 
cAMP is produced by endothelial cells downstream of 
β-adrenergic receptors which were found to be neces-
sary for proper barrier function in vivo.66 Before, cAMP 
was shown to regulate permeability of brain capillaries67 
However, Fitzroy E. Curry's laboratory was the first to dis-
cover the effect of cAMP on baseline endothelial perme-
ability in intact microvessels in vivo. The group reported 
that treatment with agents enhancing cAMP levels reduce 
microvascular hydraulic conductivity (Lp) of single intact 
capillaries and postcapillary venules. Interestingly, the 
effect was not linked to closure of preexisting gaps but 
was associated with an increase in the mean number of 

F I G U R E  1   cAMP signaling machinery. Intracellular cAMP levels are controlled by phosphodiesterase (PDE) and adenylyl cyclase 
(AC) activity, the latter of which is regulated by β-adrenoreceptors and M2/M4 muscarinic receptors. cAMP activates PKA and Epac which 
in turn lead to a plethora of downstream signaling that maintain the respective function of cAMP signaling. Different compounds can be 
used pharmacologically to regulate cAMP levels: Carbachol: agonist of muscarinic Ach-receptor; Forskolin: activator of adenylyl cyclase; 
Isoprenaline: agonist of ß-adrenoreceptor; Rolipram: PDE4 inhibitor, Apremilast: PDE4 inhibitor, H89: PKA inhibitor, O-methyl-cAMP: 
activator of Epac. 5′AMP, 5′adenosine monophosphate; AKAP, A-kinase-anchoring protein; ATP, adenosine triphosphate; C, catalytic units; 
cAMP, cyclic adenosine 3′,5′- monophosphate; Epac, exchange protein directly activated by cAMP; PKA, protein kinase A; R, regulatory 
units.
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TJ between cells in vivo.58,68 The latter observation was in 
agreement with an in vitro study reporting modulation of 
TJ complexity by cAMP54 and supported by the finding 
that the basal levels of cAMP are crucial for maintaining 
cell membrane permeability under resting conditions.69

As outlined earlier, cAMP is generated by AC in re-
sponse to various stimuli triggering GPCRs. In contrast, 
hydrolysis of cAMP via different PDEs leads to its deg-
radation.70-73 Therefore, it is believed that application of 
cAMP-enhancing agents such as PDE inhibitors has the 
potential to overcome the loss of endothelial barrier func-
tion. Thus, in this context, PDE inhibitors against the most 
abundant PDE isoform in endothelium, that is, PDE4, 
such as rolipram or roflumilast have been intensively test-
ed.74-76 Several studies were showing that systemic PDE 
inhibition may attenuate inflammation- or sepsis-derived 
microvascular leakage in vivo.77-80 Recently, activation 
of PDE3A, found to be expressed in the heart and lungs 
and known to hydrolyze both cAMP and cGMP, was 
also shown to negatively regulate cAMP levels in LPS-
challenged mice in vivo.81

It is important to notice that cAMP synthesis within 
different cell compartments is critical for endothelial bar-
rier function. While the cAMP localized at the plasma 
membrane strengthens barrier function, the cytosolic 
pool of cAMP was reported to cause barrier dysfunc-
tion.13,82,83,84,85,86,87 In this line of thoughts, a number of 
reviews discussed the existence of signalosome complexes 
where a unique combination of cyclic nucleotide effec-
tors such as PKA or other kinases, phosphatases, ACs and 
Epac are in interaction with PDE and/or other scaffolding 
proteins (i.e. AKAPs, β-arrestin, or RACK1) to promote 
highly compartmentalized cyclic nucleotide signaling 
platforms.72,73,88,89,90,91 Interestingly, cAMP extruded into 
the extracellular space was also identified. This so-called 
“free” cAMP directly contributes to intercellular commu-
nication. Beyond this, cAMP encapsulated within extra-
cellular vesicles was discovered too. The latter acts in a 
similar fashion to the cAMP localized near the membrane 
by preserving the intact endothelial barrier.92,93 However, 
a recent study revealed that prolong activation of cAMP 
signaling leads to endothelial barrier dysfunction. In fact, 
cAMP, as a key regulator of gene expression, repressed 
the RRAS gene, leading to VE-cadherin clustering and 
thereby AJ disruption.94

Downstream from cAMP, endothelial barrier function 
is enhanced by the activation of PKA95-98 and consequent 
phosphorylation of its substrates such as ERK,99 ZNF185,100 
MLCK,61 RhoA,101 VASP,102-106 and/or Epac and its effec-
tor GTPase Rap131 (Figure 2). These otherwise indepen-
dent pathways may work in parallel to maintain barrier 
function.107 Further down, PKA- and Epac-mediated 
pathways converged on Rac1, the activation of which is 

Tiam1/Vav2 dependent. Rac1 together with RhoA and 
Cdc42 belongs to Rho family of small GTPases, which ear-
lier were found to be involved in the regulation of the en-
dothelial barrier.108-111 Later, the requirement of Rac1 for 
cAMP-dependent endothelial barrier maintenance in vivo 
and in vitro was demonstrated and it was shown that Rac1 
is crucial for VE-cadherin junctional integrity, strengthen-
ing of junction-associated actin cytoskeleton and the VE-
cadherin–actin cytoskeleton anchorage.112,113

cAMP-mediated Rac1 activation was verified in both 
micro- and macrovascular endothelium in vitro,114,115 
though the data for the latter are controversial.116 
Meanwhile, it was shown that Epac1 acts as a tonic sta-
bilizer of vascular baseline permeability in vivo.117 In line 
with this, in cultured cells, Epac1 was found to be crit-
ical for basal and cAMP-mediated endothelial barrier 
stabilization, which is partly independent of Rac1.118 
Inhibition of Epac also increased the basal permeability in 
bovine retinal endothelium and the Epac-Rap1 pathway 
preserved TJ organization of ZO1, claudin-5 and occlu-
din.119 Independent of cAMP/Epac1 activation, Rap1A 
can be also triggered by ArhGEF12 to limit disruption 
of TJ-dependent integrity induced by inflammation.120 
Furthermore, it was shown that FLRT2/LPHN2/cAMP/
Rap1 signaling disassemble integrin-based focal adhe-
sions and promotes ZO1-containing TJ. These effects were 
associated with restriction of YAP/TAZ signaling cascade 
known to regulate an angiogenic blood vessel formation 
and function.121 cAMP/PKA signaling modulates endo-
thelial permeability by phosphorylating the TJ component 
claudin-5.122-124 Moreover, it was shown that stimulation 
of cAMP/PKA/CREB cascade via Gsα leads to an increase 
of plasmalemma vesicle-associated protein (PLVAP) ex-
pression, a membrane protein playing indispensable role 
in endothelial barrier function.125 In this context, the role 
of Gsα was also demonstrated in vivo.

Signaling activation by an EPAC-specific cAMP analog 
also restored the barrier properties by attenuating VEGF/
ERK signaling.119 Indeed, numerous studies revealed that 
Rap1, its effectors and their binding partners (Rasip1, 
Radil, ArhGAP29, Cdc42 and its GEF FGD5, AF6, KRIT1) 
control RhoA/ROCK signaling, actin dynamics, as well 
as recruitment and stabilization of junctional complex-
es.126-131 In this respect multiple studies reported that 
cAMP/Epac/Rap signaling promotes augmentation of 
VE-cadherin-mediated adhesion associated with cortical 
actin rearrangement.28,116,132,133,134,135 The impact of VE-
cadherin was further demonstrated when strengthening 
of VE-cadherin transinteraction via a tandem peptide was 
protective against stimuli compromising the barrier in 
vivo.136 In line with this, VE-cadherin extracellular inter-
action created a positive feedback loop of Rac1-signaling 
and thereby this VE-cadherin outside-in signaling may 
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control local Rac1 activity.137 Vice versa, VE-cadherin 
fragments (sVE-cadherin) released from endothelial cells 
upon inflammation, which were detected in sepsis pa-
tients, interfered with VE-cadherin interaction and there-
fore promote endothelial barrier breakdown in vitro.138

Finally, AKAPs and actin-binding proteins are cru-
cial modulators of cAMP/PKA-dependent Rac1 stimu-
lation (Figure 2). It was shown that AKAPs are required 
for endothelial barrier integrity in vivo and particularly 
AKAP220 and AKAP12 control cAMP-mediated Rac1 
activation in vitro.24 AKAP9, downstream from Epac1, 
was also introduced to promote microtubule growth and 
thus enhanced endothelial barrier stability.139 Recently, 
AKAP2 was identified for cAMP-independent PKA acti-
vation, leading to myosin light chain phosphatase (MLCP) 
stimulation and consequent MLC dephosphorylation re-
sulting in reduced endothelial cell contraction and endo-
thelial barrier preservation.140 Additionally, actin-binding 
proteins including vasodilator-stimulated phosphoprotein 

(VASP),103,104,106 adducin,141,142 and cortactin143 are in-
volved in the modulation of cAMP-mediated Rac1 activity 
and barrier function. In this context, the role of cortactin 
was also demonstrated in vivo.

It is important to note that Rac1 activation promoted 
by both Epac1 and PKA can contribute to the inhibition of 
RhoA signaling, assuming the existence of a Rac1/RhoA 
crosstalk mechanism stimulated by cAMP144,145 (Figure 2). 
Moreover, cAMP/PKA activation, independently of Rac1, 
may inhibit the RhoA/ROCK pathway. The latter is re-
ported to reduce MLC phosphorylation via MLCP acti-
vation and thereby leading to inactivation of endothelial 
contractile machinery.146,147 However, this was shown 
for macrovascular endothelium in culture in vitro only, 
which is not the vascular bed relevant for inflammation. 
Since it was demonstrated that contractile mechanisms 
are overexaggerated in cultured endothelium,37 the in vivo 
relevance of this mechanism is unclear. cAMP-induced 
PKA activation may also phosphorylate ZNF185, which 

F I G U R E  2   Mechanisms involved in cAMP-mediated regulation of cadherin adhesion and barrier function in the endothelium. cAMP 
produced under control of β-adrenergic signaling activates PKA and Epac1 which control the activity of Rho family GTPases and thereby 
fine-tune the balance of cytoskeletal anchorage and actin–myosin contraction to regulate endothelial AJ.
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together with filamentous actin was reported to localize to 
the plasma membrane and stabilize cortical actin and thus 
was found to be important for barrier function in vivo. 
ZNF185 is also essential for cAMP/PKA-induced RhoA 
inhibition.100 Taken together, ample evidence has been 
provided over the last two decades that cAMP via PKA 
and Epac1 controls endothelial barrier properties includ-
ing VE-cadherin adhesion by the regulation of Rap1 and 
Rho family GTPases. In this process, spatiotemporal reg-
ulation is provided by AKAPs and actin-binding proteins 
which allow actin anchorage of VE-cadherin and actin–
myosin contraction along junctions to be fine-tuned.

4   |   cAMP INDUCES 
POSITIVE ADHESIOTROPY IN 
CARDIOMYOCYTES

In contrast to endothelial cells, intercellular adhesion of 
cardiomyocytes depends on both AJ and desmosomes, both 
of which comprise cadherin-type adhesion molecules to 
maintain the adhesive function.6 Impaired cardiomyocyte 
cohesion can contribute to heart disease. Arrhythmogenic 
cardiomyopathy in most patients is considered to be an 
inherited heart disease, the pathogenesis of which is very 
complex and includes morphological changes such as fi-
brosis and fatty degeneration, inflammation, arrhythmias 
and a loss of cell–cell adhesion, all of which affect the my-
ocardium and impair its function leading to an increased 
risk of sudden cardiac death.148,149 Fibro-fatty degenera-
tion results from altered signal transduction in Hippo, an 
interacting partner of Pg, and of Wnt, along with impaired 
αVβ6-integrin binding and transforming growth factor β 
(TGF β) release.2,6,150–155 In addition, inflammation may 
cause myocardial damage.156–159 However, early arrhyth-
mias occur without detectable myocardial damage and 
may be induced by p38MAPK and ERK-mediated loss 
of gap junction (GJ) component Cx43 and disruption of 
ryanodine receptor 2 (RyR2).153,160–162 Excitation propa-
gation is transmitted via GJ using electrotonic and ephap-
tic coupling with Nav 1.5 channels and depends on Ca2+ 
homeostasis.163

It is important that arrhythmogenic cardiomyopathy 
is considered as a disease of the desmosome148,149 since 
more than 60% of patients carry mutations in genes for 
Dp (DSP), Pkp2 (PKP2), Pg (JUP), Dsg2 (DSG2) and Dsc2 
(DSC2).148,149 Beta blockers are recommended as the first-
line therapy for arrhythmogenic cardiomyopathy patients; 
however, the prophylactic use of β blockers in healthy 
gene carriers was not recommended.164 In contrast, beta-
blocker treatment was ineffective in certain arrhythmo-
genic cardiomyopathy patient's cohorts.165 Therefore, it 
is imperative to understand how cAMP, a downstream 

effector molecule of β-adrenergic receptor, regulates car-
diomyocyte cohesion.

In this pursuit, the first evidence for a possible role of 
cAMP in cardiomyocyte desmosomal adhesion was found 
when β1-adrenergic receptor was localized to the inter-
calated disc of intact mouse myocardium,166 where the 
desmosome together with AJ and GJ proteins is localized6 
(Figure 3). Further, in another study, adrenergic signaling 
phosphorylated Pg at serine 665 by PKA, paralleled by an 
enhanced desmosomal adhesion via increased Dsg2 in-
teractions at cell borders, eventually leading to enhanced 
cardiomyocyte cohesion in vitro.167 Similar to other func-
tions of adrenergic signaling in the heart, this phenom-
enon was referred to as “positive adhesiotropy.” On the 
ultrastructural level, positive adhesiotropy was charac-
terized by increased area composita length and plaque 
thickness at intercalated discs in murine slice culture.168 
In line with this, enhanced cardiomyocyte cohesion was 
abrogated in the Pg-deficient murine arrhythmogenic 
cardiomyopathy model. Furthermore, Langendorff 's ex-
periments with β-adrenergic mediator isoprenaline in 
Pg-deficient hearts failed to increase pulse pressure and 
heart rate ex vivo, indicating that the positive adhesiotro-
pic effects of β-adrenergic signaling could be coupled with 
positive inotropic and chronotropic effects. Indeed, treat-
ment of murine hearts with the inotropic agent digitoxin 
enhanced desmosomal adhesion, paralleled by increased 
plaque thickness and enhanced Dp and Dsg2 localization 
at the intercalated disc.169 Similar to the abrogation of pos-
itive adhesiotropy by adrenergic signaling in Pg-deficient 
mouse heart,167 the inotropic agent digitoxin failed to in-
duce positive inotropy and adhesiotropy in the absence 
of Pg. Overall, these observations strongly support that 
adhesiotropy and inotropy are interlinked and cAMP via 
PKA-mediated Pg-S665 phosphorylation can alter both 
inotropy and adhesiotropy.

The cardiac desmosome is classically thought to 
function as a cell–cell adhesive structure170; however, 
emerging evidence points to non-canonical roles for the 
cardiac desmosome in regulating electrical channels and 
function, independent of its structural roles. Indeed, a 
functional interplay between desmosomes, GJ protein, 
and β1-adrenergic receptors was observed in HL-1 car-
diomyocytes.171 In this study, immunoprecipitation of 
GJ protein, Cx43, revealed Dsg2 and β1-adrenergic re-
ceptors in complex with Cx43 in vitro. Furthermore, 
impaired cadherin binding induced by tryptophan or 
siRNA-mediated depletion of Dsg2 or Pg significantly 
abrogated cAMP increase and impaired conduction 
velocity of HL-1 cardiac myocytes in response to β1-
adrenergic receptor activation in vitro. Overall, the find-
ings from this study revealed that desmosomal proteins 
aid in sufficient GJ and β1-adrenergic receptor functions, 
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and concomitantly, β1-adrenergic receptor signaling 
regulates both desmosomal adhesion and GJ function. 
Although the signaling mechanisms operating between 
desmogleins and GJ are not clear, a linking peptide en-
hancing Dsg2 binding rescued GJ function and caused 
PKC-mediated phosphorylation of Cx43 at Serine 368.172 
Moreover, a loss of interaction between Pkp2, Dp, Cx43, 
N-cad, and ankyrin G, which necessitate directional 
transport of Nav 1.5 to the ICDs, disrupted excitatory 
conduction.162,166,173–177 Similarly, Dsg2 and Pkp2 prob-
ably also influence the functional properties of these 
channels through their association with Nav1.5.178–180 
In a recent study, Pg deubiquitination enhanced its in-
teraction with the Dp and end-binding protein 1 com-
plex, promoting the microtubule-dependent transport of 
Cx43.181

The downstream mechanisms of cAMP-mediated pos-
itive adhesiotropy include PKA-mediated Pg-S665 phos-
phorylation and ERK1/2182 (Figure 4), the latter of which 
was dependent on Pg, Dp, and Dsg2 in vitro. Interestingly, 
the role of ERK1/2 in desmosomal adhesion contrasts in 

keratinocytes compared to cardiomyocytes, as ERK1/2 in-
hibition rather than activation was proven beneficial for 
desmosomal adhesion in keratinocytes.183

It is well established that cardiac stimulation by 
the sympathetic and parasympathetic autonomic ner-
vous system has antagonistic effects on many aspects 
of cardiomyocyte physiology. Similarly, recently it was 
demonstrated that cholinergic signaling in both HL-1 
cells and murine ventricular cardiac slices from wild-
type and Pg-deficient mice antagonized the positive 
adhesiotropy of adrenergic signaling184 (Figure  3). In 
addition, cholinergic signaling abrogated Dsg2 translo-
cation to cell borders via inhibiting ERK1/2 activation 
in vitro. This observation was further supported by the 
finding that cholinergic signaling effectively reduced 
cardiomyocyte cohesion in PG-deficient murine slices ex 
vivo, suggesting that alternative pathways independent 
of Pg exist for cholinergic signaling mediated cardio-
myocyte cohesion. Furthermore, cholinergic signaling 
reduced the translocation of Dsg2 and Dp to cell bor-
ders, thereby cardiomyocyte cohesion dependent on the 

F I G U R E  3   cAMP-mediated stabilization of desmosomal adhesion at intercalated discs. Adrenergic and cholinergic signaling have 
antagonistic effects on desmosomal adhesion which in part are mediated by opposite regulation of signaling molecules such as ERK. In 
addition, cAMP triggers PKA-mediated Pg phosphorylation at S665, which drives desmosome assembly and enhances GJ function.

adrenergic
agonist

β-adrenergic
receptor

active

PKA

cAMP

ATP
PG PK

P
PG

D
P

D
P

P

PG PK
P

D
P

PG PK
P

D
P

PG PK
P

D
P

PG
PK

P
D

P
P

PG PK
P

D
P

PG PK
P

D
P

PG PK
P

PG
D

P
D

P

P

PG PK
P

PG
D

P
D

P

D
SG

2

D
SC

2
P

PK
P

PK
P

PGD
P

D
P

cholinergic
agonist

Desmosome Desmosome
Muscarinic

receptor

Dense
plaque

Cardiomyocyte 1

Cardiomyocyte 2

In
te

rc
al

at
ed

 d
is

c

?

D
SG

2

D
SG

2 D
SG

2

D
SG

2

D
SG

2

ER
K

1/2
ER

K
1/2Desmin

GJ
Plaque

1

1

2

Adenylyl
cyclase

Gαs

P

PG
P

 17481716, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/apha.14006, W

iley O
nline L

ibrary on [21/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 17  |      VIELMUTH et al.

PI3Kinase-AKT-GSK3-β signaling axis. The counterbal-
ance of enhanced cardiomyocyte cohesion in response 
to adrenergic signaling by the cholinergic signaling axis 
was termed as “negative adhesiotropy.”

In summary, adrenergic signaling via enhanced cAMP 
stabilizes desmosomal adhesion by activating PKA-
mediated PG-S665 phosphorylation and ERK1/2 acti-
vation. Cholinergic signaling interferes with adrenergic 
signaling and destabilizes desmosomal adhesion via abro-
gation of ERK1/2 activation and via the PI3Kinase-AKT-
GSK3-β signaling axis.

5   |   cAMP STABILIZES 
KERATINOCYTE 
DESMOSOMAL ADHESION 
VIA PHOSPHORYLATION OF 
PLAKOGLOBIN

Similar to cardiomyocytes, AJ and desmosomes provide 
intercellular adhesion to keratinocytes.1,185,186 In con-
trast, desmosomal cadherins, Dsg1-4 and Dsc1-3, which 
are the adhesion molecules in desmosomes, are expressed 
in a differentiation dependent manner in human epider-
mis. Intracellularly, desmosomal cadherins are linked 
via the desmosomal plaque proteins plakoglobin (Pg), 

plakophilins (Pkp), and desmoplakin (Dp) to the keratin 
filament cytoskeleton.1,187

With regard to cAMP signaling, keratinocytes comprise 
the complete adrenergic signaling machinery including 
several adenylyl cyclases such as AC3, 7, and 9188,189 and 
PDE4.190 Interestingly, β2-adrenergic receptors are also ex-
pressed in keratinocytes of the human epidermis191 and 
were initially identified to increase intracellular Ca2+ and 
in turn to activate PKC.30 Downstream signaling of cAMP 
involves PKA and Epac1, both of which are expressed 
in keratinocytes.192 Furthermore, cAMP signaling was 
shown to be involved in the regulation of several processes 
of keratinocyte cell biology including homeostasis and mi-
gration. For instance, directional migration was promoted 
by the decrease of cellular cAMP193 and β2-adrenergic 
stimulation accelerated skin barrier recovery.194 In addi-
tion, TGFβ1-induced cell scattering and invasiveness were 
inhibited by cAMP increase.195 It is important to note that 
cAMP decrease promotes migration and invasive behav-
ior, both of which are processes that lead to downregula-
tion of adhesion molecules.196 In the bullous autoimmune 
disease pemphigus, autoantibodies mainly against the 
desmosomal cadherins, Dsg1 and Dsg3 (Figure 4), cause 
blistering of the skin and the mucous membranes.197 
Therefore, pemphigus is an autoimmune desmosome 
disease. Morphologically, blistering is accompanied by 

F I G U R E  4   Mechanisms by which cAMP and other signaling pathways involved in pemphigus regulate cytoskeletal anchorage of 
desmosomes. cAMP via PKA-mediated Pg-S665 phosphorylation enhances desmosome anchorage to the intermediate filament cytoskeleton. 
This outbalances the signaling triggered by pemphigus autoantibodies which bind to Dsg1 and Dsg3. Finally, PKC phosphorylates Dp at 
S2849 and thereby reduces the cytoskeletal coupling of desmosomes. Therefore, phosphorylation of Pg and Dp serves as molecular switches 
to balance desmosomal adhesion.
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depletion of Dsg1 and Dsg3 from the cell membrane and 
alterations of the keratin cytoskeleton, both of which con-
tribute to loss of intercellular adhesion.198,199 The ultra-
structural correlate of these changes is reduced number 
and size of desmosomes, alterations in the keratin inser-
tion as well as desmosome splitting.183,200,201 Therapeutic 
strategies in pemphigus mainly focus on suppression of 
autoantibody production and thus on the immune system. 
In contrast, therapies directly targeting keratinocyte co-
hesion are not established yet but would fulfill an unmet 
clinical need.197,202,203

Mechanisms causing loss of intercellular adhesion in 
pemphigus comprise direct inhibition of Dsg3 interac-
tions as well as dysregulation of a plethora of signaling 
pathways.202,204 Among the signaling pathways, several 
were identified which were activated upon autoantibody 
binding and contribute to the loss of adhesion such as 
p38MAPK,205–207 Src,208,209 PLC,210,211 and Erk203,212,213 in 
vivo. Inhibition of these signaling pathways abolished loss 
of intercellular adhesion and epidermal blistering.183,214,215

In contrast, cAMP signaling was also increased in re-
sponse to pemphigus autoantibodies but seems to repre-
sent an insufficient cellular rescue mechanism which can 
be pharmacologically augmented to abolish loss of kerat-
inocyte cohesion216 (Figure 4). The AC activator forskolin 
in combination with the PDE4 inhibitor rolipram (F/R) 
or the β-receptor agonist isoprenaline protected keratino-
cytes from loss of intercellular adhesion in vitro and in 
vivo,216 but are unsuitable for the use in patient due to 
expected severe cardiovascular side effects. β2-adrenergic 
stimulation of the skin was also associated with PKA-
dependent increase of differentiation markers keratin K1 
and K10 and involucrin217 showing cross-regulation of 
keratin filaments and adrenergic signaling, which explains 
how desmosomal cadherins regulate epidermal differenti-
ation via cAMP signaling. In this context, it is important to 
note that β2 receptors are downregulated in psoriatic skin, 
where epidermal differentiation is also disturbed.218

Meanwhile, further drugs were developed such as 
the selective PDE4 inhibitor apremilast, which is clin-
ically approved for psoriasis and Behcet's disease, the 
effects of which primarily were attributed exclusively 
to the immune system.219–223 However, recently it was 
shown that apremilast was protective against pemphigus 
autoantibody-induced blister formation in vivo in mouse 
and ex vivo in human skin and abrogated loss of keratino-
cyte cohesion.224 Additionally, apremilast was successfully 
applied and tested for its efficacy in a patient suffering 
from therapy-resistant pemphigus vulgaris.225

cAMP increase by apremilast or F/R restored alter-
ations of the keratin cytoskeleton in cell culture and also 
in epidermis from a human ex vivo model.224 Additionally, 
cAMP drove keratin filament anchorage to desmosomes 

via recruitment of Dp.224 Interestingly, high levels of cAMP 
induced by F/R in addition ameliorated Dsg depletion. 
Similarly, autoantibody-induced activation of p38MAPK 
was also abolished by F/R but not by apremilast which is 
conclusive given a direct connection of p38MAPK signal-
ing and Dsg-dependent signaling as well as Dsg depletion 
in pemphigus.213,214,216,226,227 Furthermore, a connection 
of cAMP and p38MPAK activity was observed in models 
of other skin diseases such as atopic dermatitis.228

Downstream signaling of cAMP in pemphigus is de-
pendent on PKA and importantly, PKA-dependent cAMP 
signaling accelerated adhesion recovery of keratinocytes 
exposed to pemphigus autoantibodies.216 Furthermore, 
apremilast caused PKA-dependent phosphorylation of Pg 
at Ser665 along cell borders in vitro (Figure  3). Pg-S665 
phosphorylation was crucial for epidermal integrity as 
revealed by a phospho-deficient Pg-S665A mouse model, 
where keratin filament organization and intercellular ad-
hesion were severely compromised.224

Taken together, adrenergic signaling in keratinocytes 
regulates both Dsg membrane localization and keratin 
filament organization. Mechanistically, a PKA-dependent 
phosphorylation of Pg at S665 is involved. In pemphigus, 
additional mechanisms may regulate Dsg internalization 
and p38MAPK signaling. The broad clinical application of 
PDE4 inhibitors such as apremilast in skin diseases may 
suggest that adrenergic signaling also is important for 
modulation of keratinocyte biology in other diseases.229 
For instance, coincidences of psoriasis and pemphigus 
and elevated risk in psoriasis patients to become affected 
by pemphigus may argue for similar mechanisms driving 
pathogenesis.230–232

6   |   PG AND DP SERVE AS 
MOLECULAR SWITCHES FOR 
MODULATION OF DESMOSOME 
ADHESION

As outlined earlier, in both keratinocytes and cardiomyo-
cytes, cAMP enhances cell cohesion via anchorage of the 
desmosomal plaque to the intermediate filament cytoskel-
eton. In both cell types, cAMP induces PKA-dependent 
Pg phosphorylation on S665,167,224 which drives bind-
ing of intermediate filaments to Dp by a yet unknown 
mechanism. In contrast, phosphorylation of Dp at S2849 
by PKC is known to regulate Dp–keratin interaction 
negatively and thereby to reduce keratinocyte adhesion, 
which is important because Ca2+ signaling and PLC as 
regulators of PKC can also be activated by pemphigus au-
toantibodies.233,234 In accordance, inhibition of PKC or a 
phospho-deficient mutant of Dp S2849G protected from 
pemphigus autoantibody-induced keratin retraction and 
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loss of cell adhesion in vitro235 and abrogated skin blister-
ing in vivo.236 Similarly, the multikinase inhibitor PKC412 
ameliorated Dp phosphorylation, keratin aggregation and 
loss of cell adhesion in cell lines from epidermolysis bul-
losa simplex patients in vitro.237 It was proposed that en-
hanced interaction of dephosphorylated Dp with keratins 
traps desmosomal proteins within the desmosome and 
thereby reduces protein exchange with the extradesmo-
somal pool.238 Taken together, phosphorylation of the 
plaque proteins Pg and Dp serves as opposing molecular 
switches to regulate desmosome cytoskeletal anchorage 
and thereby allows desmosomes to react to different envi-
ronmental cues such as wounding and migration.

In contrast, in endothelial cells, cadherin binding is 
strengthened by cAMP and Rac1 via enhanced anchor-
age to the cortical actin cytoskeleton, for which the role 
of Pg and its PKA-dependent phosphorylation is un-
known at present. It is possible that some mechanisms 
outlined above for cAMP-mediated adhesion regulation 
in endothelial cells may also be relevant for desmosomal 
adhesion. For instance, recently it was proposed that Dp 
regulate RhoA-mediated contractile forces at AJs via re-
cruitment of myosin VI and p114Rho GEF239 indicating 
that desmosomes and AJ undergo a functional cross-talk, 
especially since RhoA and Rac1 are also known to regu-
late Dsg binding and desmosome stability.240,241

7   |   OUTLOOK: cAMP TO 
STABILIZE CELL ADHESION IN 
DISEASE

The cAMP signaling cascade was shown to be a drugga-
ble pathway. Studies in endothelial cells provided knowl-
edge on cAMP-dependent regulation of the endothelial 
barrier by regulation of Rac1 and AKAP-dependent actin 
dynamics which were later transferred to the in vivo sit-
uation. Similarly, in cardiomyocytes and keratinocytes, 
studies on the cAMP signaling were strengthened by 
using in vitro, in vivo and ex vivo approaches to iden-
tify targets for therapeutic approaches. Most recently, 
the PDE4 inhibitor apremilast was applied to stabilize 
cadherin-mediated adhesion in the desmosome disease 
pemphigus in mice and also to treat a first patient.224,225 
Interestingly, signaling traits regulating cell adhesion 
are shared in different desmosome-related diseases.14 
Since signaling by p38MAPK and EGFR have been 
found to be upregulated in models of both pemphigus 
and arrhythmogenic cardiomyopathy and ADAM17 was 
found to regulate desmosomal adhesion in keratinocytes 
in pemphigus and also in cardiomyocytes,214,242–244 it is 
possible that cAMP signaling may also serve as a possible 
target in other desmosome-related diseases. In addition, 

cAMP signaling may be employed to regulate the behav-
ior of other cells. For instance, E-cadherin expression in 
Schwann cell development is regulated by cAMP signal-
ing and myelination is Rac1 dependent.245,246 In addition, 
N-cadherin expression in ovarian surface epithelium is 
regulated by gonadotropins in a cAMP-dependent fash-
ion247 and cAMP is involved in N-cadherin expression 
regulating trophoblast function.248,249 Dysregulation 
of cadherin expression and distinct components of the 
cAMP signaling cascade were reported in certain tumors 
such as soluble E-cadherin in salivary gland carcinoma250 
and prostate carcinoma cells, where Epac inhibition 
was suggested as a potential therapeutic approach.251 
Furthermore, AKAP4 was identified as an oncogene 
in non-small cell lung cancer and was associated with 
dysregulation of cadherin expression and cAMP signal-
ing.252 However, systematic studies are missing and may 
be subject of further scientific studies to reveal whether 
modulation of cadherin binding in these cell types can be 
employed to modulate diseases.
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