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Abstract
Quantification of evolving uncertainties is required for both probabilistic fore-
casting and data assimilation in weather prediction. In current practice, the
ensemble of model simulations is often used as a primary tool to describe
the required uncertainties. In this work, we explore an alternative approach,
the so-called stochastic Galerkin (SG) method, which integrates uncertainties
forward in time using a spectral approximation in stochastic space. In an ideal-
ized two-dimensional model that couples nonhydrostatic weakly compressible
Navier–Stokes equations to cloud variables, we first investigate the propagation
of initial uncertainty. Propagation of initial perturbations is followed through
time for all model variables during two types of forecast: the ensemble forecast
and the SG forecast. Series of experiments indicate that differences in perfor-
mance of the two methods depend on the system state and truncations used.
For example, in more stable conditions, the SG method outperforms the ensem-
ble of simulations for every truncation and every variable. However, in unstable
conditions, the ensemble of simulations would need more than 100 members
(depending on the model variable) and the SG method more than a truncation at
five to produce comparable but not identical results. As estimates of the uncer-
tainty are crucial for data assimilation, secondly we instigate the use of these two
methods with the stochastic ensemble Kalman filter. The use of the SG method
avoids evolution of a large ensemble, which is usually the most expensive com-
ponent of the data assimilation system, and provides results comparable with
the ensemble Kalman filter in the cases investigated.

K E Y W O R D S

convective scale, data assimilation, ensembles, forecasting (methods), stochastic Galerkin,
uncertainty quantification

1 INTRODUCTION

Quantifying the uncertainty of weather and climate pre-
dictions is necessary and of crucial importance, especially

for highly variable fields such as precipitation. Due to the
chaotic atmosphere, probabilistic approaches to prediction
have become standard in weather and climate forecasting,
describing the evolution of initial condition uncertainty
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and its combination with model uncertainty, ultimately
providing the end forecast uncertainty on various time and
spatial scales.

The current method used for probabilistic forecasting
utilizes an ensemble of initial conditions, which are then
disturbed further by either perturbing relevant parame-
ters, using stochastic parameterizations, or using dynamic
perturbations (see (Palmer, (2019) for a recent overview).
The predictability of a chaotic system is flow-dependent
and contingent on the atmosphere’s initial state. Some
weather regimes may be highly volatile, while others may
contain substantial predictability. Ensemble simulations
provide a range of plausible forecasts, offering an esti-
mate of trust in predictions and probabilities of possible
outcomes. Richardson (2000) argues that additional infor-
mation in ensemble prediction systems provides benefits
to users equivalent to improvements in forecast models
and assimilation systems over many years.

However, ensuring that the ensemble spread encom-
passes a true atmospheric state has been quite diffi-
cult. Uncertainties in the model itself and its biases lead
to restricted sampling of the forecast space. Further-
more, numerical weather prediction models are reaching
increasingly higher resolutions, even globally resolving
physical processes that were previously unrepresented. To
encompass more physical processes, the atmospheric state
that we describe with these models will have more vari-
ables and parameters in the future. Therefore, the higher
resolution will lead to increased nonlinearity of the system,
a higher number of processes that are (partially) resolved,
and a greater number of variables in the state vector that
are highly non-Gaussian in nature (Gustafsson et al., 2018;
Janjić et al., 2021). For example, for properly representing
microphysical processes, variables such as rain, graupel,
and snow, which are highly non-Guassian, are required.
Both increased nonlinearity, allowing for more complex
dynamics, and an increase in the number of such prog-
nostic variables would require more ensemble members
to describe the non-Gaussian error statistics well. These
effects require more ensemble members for the represen-
tation of uncertainty, (Ruckstuhl and Janjić, (2018)) and
hence are even more costly in computational time.

We explore here an alternative approach, the so-called
stochastic Galerkin (SG) method, for evolution of uncer-
tainties forward in time. Uncertainty propagation in
complex models, with the goal of systematically quan-
tifying uncertainties and errors in models, simulations,
and experiments and their impact on predicted quanti-
ties of interest, forms an active and innovative area of
mathematical research. In recent years, a wide variety
of uncertainty quantification methods have been pro-
posed and investigated in the context of physical and
engineering applications. These methods include SG

methods based on generalized polynomial chaos (Xiu and
Karniadakis, 2002a; Wan and Karniadakis, 2006; Poëtte
et al., 2009; Tryoen et al., 2010; Després et al., 2013),
stochastic collocation methods (Xiu and Hesthaven, 2005;
Ma and Zabaras, 2009; Witteveen et al., 2009), and
multilevel Monte Carlo (MC) methods (Mishra and
Schwab, 2012; Mishra et al., 2013). Each of these method
groups has its own pros and cons. While the results
obtained by the ensemble (MC) simulations are gener-
ally very robust, the approach is not efficient due to the
large number of simulations required (Elman et al., 2011;
Mishra et al., 2013; Šukys et al., 2013). As argued above, this
approach will become extremely costly for future atmo-
spheric applications. In the present article, we propose
an alternative approach based on the spectral methodol-
ogy in stochastic space that is efficient and accurate if the
number of uncertain data/parameters remains moderate.

In this article, we consider and compare the standard
MC method and SG to propagate uncertainties through a
two-dimensional cloud model. In Section 2, we describe
the model that we will use to illustrate similarities and
differences between the two approaches and discuss how
to consider the model’s uncertainties. For this first com-
parison study, we chose a simple model in order to be
able to compute many ensemble members and therefore
calculate more accurate statistics. Section 3 describes two
uncertainty quantification methods explored in our study:
the MC (ensemble) and SG methods. The SG method
integrates uncertainties forward in time using a spectral
approximation in stochastic space (i.e., random direc-
tion). The methods are compared for different truncation
numbers in stochastic space for SG and differnt numbers
of ensemble members for MC in Section 4. In Section 5,
the data assimilation results using a stochastic ensemble
Kalman filter (EnKF) with and without SG, as well as with
and without model error caused by unknown parameters,
are compared. Conclusions from the study are drawn in
Section 6.

2 MATHEMATICAL MODEL AND
ITS UNCERTAINTY

For our study, we use a two-dimensional mathematical
model of cloud dynamics, which is based on the compress-
ible nonhydrostatic Navier–Stokes equations for a moist
atmosphere:

𝜌
′
t + ∇ ⋅ (𝜌u) = 0,
(𝜌u)t + ∇ ⋅

(
𝜌u ⊗ u + p′ Id − 𝜇m𝜌

(
∇u + (∇u)⊤

))

= −𝜌′ge2,

(𝜌𝜃)′t + ∇ ⋅ (𝜌𝜃u − 𝜇h𝜌∇𝜃) = S𝜃, (M1.a)
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(𝜌qv)t + ∇ ⋅
(
𝜌qvu − 𝜇q𝜌∇qv

)
= 𝜌(−C + E),

(𝜌qc)t + ∇ ⋅
(
𝜌qcu − 𝜇q𝜌∇qc

)
= 𝜌(C − A1 − A2),

(𝜌qr)t + ∇ ⋅
(
−vq𝜌qre2 + 𝜌qru − 𝜇q𝜌∇qr

)

= 𝜌(A1 + A2 − E). (M1.b)

The model is a combination of Equation (M1.a), which
realizes basic physical principles, and the equations for
liquid water phases (Equation M1.b), which model warm
cloud dynamics. We denote the time variable by t and
the space vector by x; x = (x1, x2). For simplicity, we often
omit the time and space dependence. We use the following
notation: 𝜌 is the density, u = (u, v)⊤ is the velocity vector,
𝜃 is the moist potential temperature, p is the pressure, g
is the acceleration due to gravity, e2 = (0, 1)⊤. Further, 𝜇m
is the dynamic viscosity, 𝜇h is the thermal conductivity,
𝜇q is the cloud diffusivity. In the simulations presented
below we choose 𝜇m = 10−3 Pa⋅ s and 𝜇h = 𝜇q = 10−2 Pa⋅ s,
but other physically relevant values can be used as well.
The dynamics of interest is described by a perturba-
tion 𝜌

′
,u, (𝜌𝜃)′ of a background state (the hydrostatic

equilibrium) to avoid numerical instabilities solving the
Navier–Stokes equations (M1.a) in a weakly compressible
regime. Thus, we use primes to denote perturbations of
hydrostatic equilibrium. For a detailed description of the
model, we refer the reader to Chertock et al. (2019). The
cloud variables representing the mass concentration of
water vapor, cloud droplets, and rain drops, qv, qc, and qr,
respectively, are given by

q𝓁 =
mass of the respective phase

mass of dry air
for 𝓁 ∈ {v, c, r}.

The terms C and E represent phase changes between vapor
and cloud water (droplets), A1 and A2 represent collision
processes, which lead to the formation of large droplets
and thus precipitation, and vq is the raindrop fall velocity.

Note that the systems (M1.a) and (M1.b) are coupled
through the source term S𝜃 , which represents the impact
of phase changes and is given by

S𝜃 = 𝜌
L𝜃
cpT

(C − E).

For a detailed description of S𝜃 and the terms E, C, A1, A2,
and vq, see Chertock et al. (2019). The temperature T can
be obtained from the moist adiabatic ideal gas equation:

T = R
Rm

𝜃

(
p
p0

)Rm∕cp

,

where p0 = 105 Pa is the reference pressure at sea level.
In addition to the usual definition of potential temper-
ature, we use Rm = (1 − qv − qc − qr)R + qvRv, with the
ideal gas constant of dry air R = 287.05 J ⋅ kg−1 ⋅ K−1, the

gas constant of water vapor Rv = 461.51 J ⋅ kg−1 ⋅ K−1, and
the specific heat capacity of dry air at constant pressure
cp = 1005 J ⋅ kg−1 ⋅ K−1. In order to close the system, we
determine the pressure from the equation of state that
includes moisture:

p = p0

(
R𝜌𝜃
p0

)𝛾m

with 𝛾m =
cp

cp − Rm
. (2)

We note that in the dry case, that is, when qv = qc = qr = 0,
Rm reduces to R, S𝜃 = 0, and the moist ideal gas equation as
well as the moist equation of state becomes its dry analog.

In Figure 1 we depict a selection of the modeled fields
in the setup of the well-known meteorological bench-
mark describing the free convection of a smooth warm
air bubble (see, e.g., (Davies and Taylor, 1950; Bryan and
Fritsch, 2002)).

Meteorological applications typically inherit several
sources of uncertainties, such as model parameters, initial,
and boundary conditions. Consequently, purely determin-
istic models are insufficient in such situations and more
sophisticated methods need to be applied to analyze the
influence of uncertainties on numerical solutions. In gen-
eral, there are different ways to represent and take into
account a model’s uncertainty. In this article, we choose a
widely used approach, namely to describe the uncertainty
by a random variable 𝜔. We will consider the case of a sin-
gle random input and leave the case with multiple random
input parameters for future research.

We apply a widely used approach to represent the
uncertainty by means of random fields. To this end we
define an abstract probability space (Γ,Σ,P) and denote an
outcome by 𝜔, 𝜔 ∈ Γ. We assume that the initial data are
random variables depending on 𝜔, that is,

(𝜌qv)
|||t=0

= (𝜌qv)(x, t = 0, 𝜔). (3)

Consequently, the solution at later time is also a vector of
random variables depending on 𝜔, that is, (𝜌q𝓁)(x, t, 𝜔) for
𝓁 ∈ {v, c, r}. Due to the coupling of the source term S𝜃 in
the energy equation, the fluid components are also random
variables that depend on 𝜔, that is,

𝜌
′(x, t, 𝜔), (𝜌u)(x, t, 𝜔) and (𝜌𝜃)′(x, t, 𝜔).

Thus, the fully stochastic cloud model is a system of ran-
dom partial differential equations given through

(𝜌′(𝜔))t + ∇ ⋅ ((𝜌u)(𝜔)) = 0,
((𝜌u)(𝜔))t + ∇ ⋅

(
(𝜌u)(𝜔)⊗ u(𝜔) + p′(𝜔) Id

−𝜇m𝜌(𝜔)
(
∇u(𝜔) + (∇u(𝜔))⊤

))
= −𝜌′(𝜔)ge2,

((𝜌𝜃)′(𝜔))t + ∇ ⋅ ((𝜌𝜃)(𝜔)u(𝜔) − 𝜇h𝜌(𝜔)∇𝜃(𝜔)) = S𝜃(𝜔),
(M2.a)
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2898 JANJIĆ et al.

F I G U R E 1 Potential temperature 𝜃, water vapor concentration qv, cloud drop concentration qc, and rain concentration qr at times
t = 100 (left column) and 200 s (right column) simulated on a 320 × 320 mesh. [Colour figure can be viewed at wileyonlinelibrary.com]
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((𝜌qv)(𝜔))t + ∇ ⋅
(
(𝜌qv)(𝜔)u(𝜔) − 𝜇q𝜌(𝜔)∇qv(𝜔)

)

= 𝜌(𝜔)(−C + E)(𝜔),
((𝜌qc)(𝜔))t + ∇ ⋅

(
(𝜌qc)(𝜔)u(𝜔) − 𝜇q𝜌(𝜔)∇qc(𝜔)

)

= 𝜌(𝜔)(C − A1 − A2)(𝜔),
((𝜌qr)(𝜔))t + ∇ ⋅

(
(𝜌qr)(𝜔)(−vq(𝜔)e2 + u(𝜔))

−𝜇q𝜌(𝜔)∇qr(𝜔)
)
= 𝜌(𝜔)(A1 + A2 − E)(𝜔). (M2.b)

Note that it is also possible to start with additional
uncertain initial fluid variables or even uncertain param-
eters which will lead to the same fully stochastic sys-
tem (M2). The system (M2) can be understood in the
so-called distributional sense. It means that we do not
require that the equations hold for each (t, x, 𝜔). It suf-
fices that an integral (weak) formulation holds for almost
all t ∈ [0,T] and almost surely in 𝜔. Consequently, we
consider the so-called weak (distributional) solution in
physical space/time. With respect to 𝜔 ∈ Γ, we speak
about a (stochastically) strong solution. It can be proved
that the numerical methods presented below converge
to such distributional solutions, at least for simplified
model problems. We refer the reader to our recent works,
where we have proved the convergence of finite-volume
uncertainty quantification methods for the compressible
Navier–Stokes equations (Feireisl et al., 2022; Feireisl
and Lukáčová-Medviďová, 2023) and convergence and
error estimates of the mixed finite-element–finite-volume
method for the Navier–Stokes equations with potential
temperature transport (M1.a) (Lukáčová-Medviďová and
Schömer, 2022; Lukáčová-Medviďová and Schömer, 2023).

3 UNCERTAINTY
QUANTIFICATION METHODS

In this section, we briefly introduce two uncertainty quan-
tification approaches that we will be using in our study,
the MC (ensemble) approach and the SG method. For a
more detailed description of the SG method applied to
model (M2), we refer the reader to (Chertock et al., 2019;
Wiebe, 2021; Chertock et al., 2023).

3.1 The MC method

The well-known MC method belongs to a group of sam-
pling methods that are widely used to propagate uncer-
tainties in nonlinear problems. This sampling technique is
nonintrusive, in the sense that existing numerical model
codes do not need to be modified, and is very intu-
itive, as randomly sampling from input distributions con-
structs an ensemble from which response statistics can be

computed. Additionally, the efficiency is independent of
the number of parameters, since one can sample simulta-
neously from many parameter distributions. A drawback
of sampling methods is that they typically exhibit relatively
slow convergence rates, for the MC method of the order
1∕
√

N toward the expected value and variance, where N is
the number of simulations. This is due to the solely statisti-
cal nature of the method and the fact that it does not exploit
regularity associated with the parameter space. Thus, a
large number of response realizations are required to con-
struct a reasonable statistical ensemble. The Latin hyper-
cube (Stein, 1987; Loh, 1996), and quasi-MC sampling
methods (Niederreiter, 1992; Morokoff and Caflisch, 1995)
exhibit higher convergence rates, but they are often infea-
sible for computationally complex problems such as appli-
cations involving coupled physics.

3.2 The SG method

The SG method belongs to the group of stochastic spec-
tral methods, the objective of which is to reduce signif-
icantly the number of deterministic model simulations
required to construct moments of quantities of interest.
The SG method represents uncertain inputs in a way that
facilitates the evaluation of moments and distributions
of the quantities of interest. This is achieved by employ-
ing spectral expansions in stochastic space: one projects
the governing equations onto a finite-dimensional sub-
space spanned by the polynomial basis functions and ends
up with deterministic equations for the spectral expan-
sion coefficients. The choice of polynomials depends on
the probability distribution of the random variable 𝜔. A
favorable choice is the utilization of polynomials that are
orthogonal with respect to the probability density func-
tion, which in the following we will denote by 𝜇. This
choice yields the best error constant. The latter stands
in the error estimate in front of 1∕Mp, where M denotes
the number of basis polynomials and p the convergence
order related to the smoothness (regularity) of the exact
solution. Indeed, if the latter is infinitely differentiable
with respect to the random variable, then the estimate
holds for any p ≥ 1 and we obtain an exponential con-
vergence rate. In this article, we will assume a normal
distribution, which implies that the use of the follow-
ing Hermite polynomials is an optimal choice (Xiu and
Karniadakis, 2002b):

Φk(𝜔) = 2−k∕2Hk

(
𝜔 − 𝜇H
√

2𝜎H

)

with

Hk(𝜔) = (−1)ke𝜔2 dk

d𝜔k
e−w2

, (4)
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where 𝜇H and 𝜎H are the mean value and standard devi-
ation of probability distribution 𝜇. This implies that the
following orthogonal property holds:

⟨Φk(𝜔),Φk′ (𝜔)⟩ =
∫Γ
Φk(𝜔)Φk′ (𝜔)𝜇(𝜔) d𝜔 = k!𝛿kk′

for 0 ≤ k, k′ ≤ M, (5)

where 𝛿kk′ is the Kronecker symbol, Γ = R, and 𝜇 is the
corresponding probability density function.

Each variable of the model will be approximated using
M basis polynomials, as follows:

𝜌
′(x, t, 𝜔) ≈

M∑

k=0
(𝜌′)k(x, t)Φk(𝜔), 𝜌u(x, t, 𝜔)

≈
M∑

k=0
(𝜌u)k(x, t)Φk(𝜔), (𝜌𝜃)′(x, t, 𝜔)

≈
M∑

k=0
((̂𝜌𝜃)′)k(x, t)Φk(𝜔) (6)

and

𝜌q𝓁(x, t, 𝜔) ≈
M∑

k=0
(𝜌q𝓁)k(x, t)Φk(𝜔) with 𝓁 ∈ {v, c, r}.

(7)
To decribe the SG method in more detail, we fol-

low Chertock et al. (2023). Projecting (M2) onto the
finite-dimensional space spanned by the Hermite basis
polynomials, we obtain, for k = 0, … ,M,

⟨
(𝜌′)t + ∇ ⋅ (𝜌u),Φk

⟩
= 0,

⟨
(𝜌u)t + ∇ ⋅

(
𝜌u ⊗ u + p′Id − 𝜇m𝜌

(
∇u + (∇u)T

))
,Φk

⟩

=
⟨
−𝜌′ged,Φk

⟩
,

⟨
(𝜌𝜃)′t + ∇ ⋅ (𝜌𝜃u − 𝜇h𝜌∇𝜃),Φk

⟩
= ⟨S𝜃,Φk⟩,

and
⟨
(𝜌qv)t + ∇ ⋅

(
𝜌qvu − 𝜇q𝜌∇qv

)
,Φk

⟩
= ⟨𝜌(−C + E),Φk⟩,

⟨
(𝜌qc)t + ∇ ⋅

(
𝜌qcu − 𝜇q𝜌∇qc

)
,Φk

⟩

= ⟨𝜌(C − A1 − A2),Φk⟩,
⟨
(𝜌qr)t + ∇ ⋅

(
𝜌qr(−vqed + u) − 𝜇q𝜌∇qr

)
,Φk

⟩

= ⟨𝜌(A1 + A2 − E),Φk⟩.

Now, substituting (6) and (7) and using the orthogonality
property (5) yields M + 1 deteministic equations for each
previous equation:

((𝜌′)k)t + ∇ ⋅ (𝜌u)k = 0,

((𝜌u)k)t + ∇ ⋅
(
�̂�k + (p̂′)kId

)
− 𝜇m(d̂1)k = −(𝜌′)kged,

(((̂𝜌𝜃)′)k)t + ∇ ⋅
(
𝜃(𝜌u)k + �̂�k

)
− 𝜇h(d̂2)k = (Ŝ𝜃)k, (8)

and

((𝜌qv)k)t + ∇ ⋅ (( ̂𝜼q
1)k) − 𝜇q( ̂dq

1)k = (r̂1)k,

((𝜌qc)k)t + ∇ ⋅ (( ̂𝜼q
2)k) − 𝜇q( ̂dq

2)k = (r̂2)k,

((𝜌qr)k)t + ∇ ⋅ (( ̂𝜼q
3)k) − 𝜇q( ̂dq

3)k = (r̂3)k, (9)

for k = 0, … ,M. The coefficients that appear in Equations
(8) and (9) are defined as follows:

𝜌u ⊗ u =
M∑

k=0
�̂�kΦk, p′ =

M∑

k=0
(p̂′)kΦk,

∇ ⋅
(
𝜌

(
∇u + (∇u)T

))
=

M∑

k=0
(d̂1)kΦk,

𝜃
′
𝜌u =

M∑

k=0
�̂�kΦk, ∇ ⋅ (𝜌∇𝜃) =

M∑

k=0
(d̂2)kΦk,

S𝜃 =
M∑

k=0
(Ŝ𝜃)kΦk,

𝜌qvu =
M∑

k=0
( ̂𝜼q

1)kΦk, ∇ ⋅ (𝜌∇qv) =
M∑

k=0
( ̂dq

1)kΦk,

𝜌(−C + E) =
M∑

k=0
(r̂1)kΦk,

𝜌qcu =
M∑

k=0
( ̂𝜼q

2)kΦk, ∇ ⋅ (𝜌∇qc) =
M∑

k=0
( ̂dq

2)kΦk,

𝜌(C − A1 − A2) =
M∑

k=0
(r̂2)kΦk,

𝜌qru − 𝜌qrvqed =
M∑

k=0
( ̂𝜼q

3)kΦk,

∇ ⋅ (𝜌∇qr) =
M∑

k=0
( ̂dq

3)kΦk,

𝜌(A1 + A2 − E) =
M∑

k=0
(r̂3)kΦk,

and are computed via discrete and inverse discrete Her-
mite transforms, which work in a manner analogous to the
well-known Fourier transforms.

Note that Equations (8) and (9) mean that one needs to
solve M + 1 equations for each previous equation in (M2)
and that these coefficients in the equations are still depen-
dent on both space and time. However, in contrast to the
ensemble approach, M can be chosen much smaller than
N, since spectral methods converge faster than sampling
ones. Indeed, the spectral methods have an exponential
convergence rate with respect to M, while the rate of the
MC method is

√
N,where N denotes the size of the ensem-

ble set. Furthermore, the choice of M does not depend on
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JANJIĆ et al. 2901

the size of the atmospheric state vector, but rather on how
well we can represent the distribution of dynamical vari-
ables with M components. The resulting system for the
expansion coefficients then has to be solved by an accu-
rate and efficient spatio-temporal approximation. Since
the structure of the system of expansion coefficients is sim-
ilar to that of the deterministic cloud model (Equation 1),
one can adapt the deterministic numerical methods used
for the space and time approximation in a suitable way.
For more details on the resulting system and its approx-
imation, we refer the reader to Chertock et al. (2019),
Wiebe (2021), Chertock et al. (2023). From the coeffi-
cients obtained, one can compute the stochastic solution
for each event 𝜔 by evaluating the respective expansions
in Equations (6) and (7) and by using the Hermite polyno-
mials from Equation (4). Also, a statistical and sensitivity
analysis can be performed directly with minimal computa-
tional effort from the coefficients. For example, the mean
and variance of 𝜌q𝓁(x, t, 𝜔), 𝓁 ∈ {v, c, r} are as follows.

• Mean:

E[𝜌q𝓁(x, t, 𝜔)] ≈
∫

R

M∑

k=0
(𝜌q𝓁)k(x, t)Φk(𝜔)𝜇(𝜔) d𝜔

=
M∑

k=0
(𝜌q𝓁)k(x, t)

∫

R

Φk(𝜔)1𝜇(𝜔) d𝜔

=
M∑

k=0
(𝜌q𝓁)k(x, t)

∫

R

Φk(𝜔)Φ0(𝜔)𝜇(𝜔) d𝜔

= (𝜌q𝓁)0(x, t). (10)

• Variance:

Var(𝜌q𝓁(x, t, 𝜔))
= E

[
(𝜌q𝓁(x, t, 𝜔) − E[𝜌q𝓁(x, t, 𝜔)])2

]

≈ E

[(
𝜌q𝓁(x, t, 𝜔) − (𝜌q𝓁)0(x, t)

)2
]

≈ E

⎡
⎢
⎢
⎣

( M∑

k=1
(𝜌q𝓁)k(x, t)Φk(𝜔)

)2⎤
⎥
⎥
⎦

=
∫

R

( M∑

k=1
(𝜌q𝓁)k(x, t)Φk(𝜔)

)

×

( M∑

𝑗=1
(𝜌q𝓁)𝑗(x, t)Φ𝑗(𝜔)

)

𝜇(𝜔) d𝜔

=
M∑

k=1

M∑

𝑗=1
(𝜌q𝓁)k(x, t)(𝜌q𝓁)𝑗(x, t)

∫

R

Φk(𝜔)Φ𝑗(𝜔)𝜇(𝜔) d𝜔

=
M∑

k=1

(
(𝜌q𝓁)k(x, t)

)2k! . (11)

Higher-order moments and correlation functions can
then be computed in a similar manner.

4 FORECAST UNCERTAINTIES

In order to compare these two uncertainty quantification
methods, we first consider the evolution of forecast uncer-
tainties using Equation (M2). The initial conditions of
the SG and MC simulations are chosen such that their
respective probability density functions are identical. Since
uncertainties in water and all of its phases are considered
as one of the largest uncertainties in numerical weather
prediction (NWP), we chose to start with a perturbation
in qv, caused, for example, by an uncertain parameter, and
to consider how this uncertainty propagates to other vari-
ables in our model. We start our simulations with 20%
normally distributed error in qv, that is, for SG,

qv(x, t = 0, 𝜔) = (q̂v)0(x, 0) + 0.2𝜔(q̂v)0(x, 0),

where𝜔 ∈ R. Correspondingly, MC simulations start with
an ensemble of N independent and identically distributed
(i.i.d.) initial data:

qi
v(x, t = 0, 𝜔i) = (q̂v)0(x, 0) + 0.2𝜔i(q̂v)0(x, 0),

i = 1, … ,N,

ensuring the statistics of qv is consistent between the two
methods. The initial conditions of the other variables are
assumed to be known and are therefore deterministic,
yielding the following initial conditions.

• SG: For the cloud variables we use

(q̂v)0(x, 0) = 0.005 (𝜃′)0(x, 0),
(q̂v)1(x, 0) = 0.2 (q̂v)0(x, 0),
(q̂v)k(x, 0) = 0 for 2 ≤ k ≤ M,

(q̂c)0(x, 0) = 10−4 (𝜃′)0(x, 0), (q̂c)k(x, 0) = 0
for 1 ≤ k ≤ M,

(q̂r)0(x, 0) = 10−6 (𝜃′)0(x, 0), (q̂r)k(x, 0) = 0
for 1 ≤ k ≤ M,

and for the Navier–Stokes variables

(𝜌′)0(x, 0) = −𝜌(x)
(𝜃′)0(x, 0)

𝜃(x) + (𝜃′)0(x, 0)
,

(𝜌′)k(x, 0) = 0 for 1 ≤ k ≤ M,

(𝜌u)k(x, 0) = 0 for 0 ≤ k ≤ M,

((̂𝜌𝜃)′)0(x, 0) = 𝜌(x)(𝜃′)0(x, 0) + 𝜃(𝜌′)0(x, 0)

+ (𝜃′)0(x, 0)(𝜌′)0(x, 0),

((̂𝜌𝜃)′)k(x, 0) = 0 for 1 ≤ k ≤ M,
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2902 JANJIĆ et al.

where

(𝜃′)0(x, 0)

=
⎧
⎪
⎨
⎪
⎩

2cos2
(
𝜋r
2

)
, r ≔

√
(x1−2500)2 + (x2 − 2000)2

≤ 2000,
0, otherwise,

(𝜃′)k(x, 0)=0 for 1 ≤ k ≤ M.

The background state is given through 𝜃 = 285 K, p0 =
p = 105 Pa, and

𝜌(x) =
p0

R𝜃(x)
𝜋e(x)1∕(𝛾−1)

, 𝜋e(x) = 1 −
gx2

cp𝜃
,

with cp = 1005 J ⋅ kg−1 ⋅ K−1, cv = 718 J ⋅ kg−1 ⋅ K−1,
and 𝛾 = cp∕cv.

• MC: We compute the initial conditions by evaluating
the expansions in Equations (6), (7) for the above SG
initial coefficients and samples 𝜔i, i = 1, … ,N. Note
that, for all variables except qv, the initial conditions do
not depend on 𝜔 and will therefore have the same value
across the ensemble.

Note that we chose a normal distribution to represent
an uncertain parameter in the initial conditions, since this
is the usual choice for probabilistic forecasting and data
assimilation. To avoid negative concentrations, we dis-
miss all MC samples starting with a negative water vapor
concentration, and in SG we also dismiss all evaluations
at quadrature points having a negative concentration. In
general, we have not observed that this leads to major
errors in our experiments, since the mean and standard
deviation of the normal distribution were chosen in such
a way that negative concentrations only occur with low
probability.

We start in this experiment with nonzero values for the
cloud drop concentration qc and the rain concentration qr
to avoid values close to machine precision, since we want
to investigate the errors. Furthermore, we apply the no-slip
boundary conditions for the velocities and zero Neumann
boundary conditions for the remaining variables, that is,
∇𝜌′ ⋅ n = 0, ∇(𝜌𝜃)′ ⋅ n = 0, ∇(𝜌q𝓁) ⋅ n = 0, 𝓁 ∈ {v, c, r}.

The simulations are performed on 200× 200 grid points
in a squared domain [0,5000] × [0,5000] m2, and for time
[0,200] s, without data assimilation for now, which is dis-
cussed later in Section 5.

In Figure 2, the mean and standard deviations of the
mass densities of water vapor 𝜌qv, cloud drops 𝜌qc, and rain
𝜌qr at time t = 200 s at each grid point of the domain are
shown, simulated with the MC method using 50 and 105

members and the SG method using two and 10 basis poly-
nomials. Figure 3 illustrates the evolution of the averaged

sum of standard deviations (trace scaled with number of
grid points) with time for MC simulations of 50 and 105

members and SG with one, five, and 10 basis polynomials.
As exhibited in Figures 2 and 3, uncertainty as repre-
sented with mean, standard deviation, and evolution of
the trace through time provides almost identical results if
a 105-member ensemble is used and truncation of the SG
method is made at 10. However, some small differences
are still seen for both mean and standard deviations: for
example, for the cloud droplets in Figure 2 or water vapor
in Figure 3.

However, in NWP such large ensembles are not pos-
sible due to the high dimensionality of the problem that
needs to be solved and the required computational time
and costs. Therefore it is instructive to compare these
two approaches once 50 ensemble members are used or
SG is truncated at two. The 50 ensemble member statis-
tics and statistics of SG truncated at two are not directly
comparable via computational costs, but illustrate the sit-
uation of one taking a smaller than needed ensemble
size (respectively smaller than needed truncation) in two
methods. The results are illustrated in Figure 2 for the final
time of the simulation at t = 200 s. In this case, the dif-
ferences in standard deviations become significant in the
two approaches. Figure 2 reveals that, in this case, using
50 ensemble members provides larger areas of underesti-
mated uncertainties compared with the simulation with
105 members, while comparing standard deviations of M =
10 and M = 2 simulations suggests that SG underestimates
or overestimates the uncertainty in certain areas. The time
evolution in Figure 3 shows large deviations in the nor-
malized trace (gray lines) between 105 and 50 simulations,
depending on which 50 of the 105 members are chosen,
indicating that both over- and underestimation of the total
trace is possible.

The differences in performance of the two methods
depend on the system state. This dependence is shown in
Figure 4 for three time instances, through a comparison
of the error of the mean and error of the standard devi-
ations, where the error is defined as the difference from
105 members for MC and the difference from M = 10 for
SG. Early in the simulation (at time t = 20 s), in more sta-
ble conditions, the SG method outperforms an ensemble
of simulations for every truncation and every variable. In
unstable conditions (at the end of the simulation) and in
the presence of turbulence, an ensemble of simulations
would need more than 100 members (depending on the
model variable) and the SG method more than a trun-
cation at five, to produce results below the gray line in
Figure 4 that depicts the difference between mean and
standard deviations calculated from 105 ensembles and SG
with M = 10. Note that, as time progresses, this difference
increases as well. At the end of the simulation, the increase
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JANJIĆ et al. 2903

F I G U R E 2 Mean (top) and standard deviations (bottom) of the mass densities of (a) water vapor 𝜌qv, (b) cloud drops 𝜌qc, and (c) rain
𝜌qr at time t = 200 s simulated with the MC method (50 and 105 members) and the SG method (two and 10 basis polynomials). [Colour figure
can be viewed at wileyonlinelibrary.com]
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2904 JANJIĆ et al.

F I G U R E 3 Evolution of the domain-averaged standard deviation (i.e., normalized trace of the covariance matrix) of the potential
temperature 𝜌𝜃, the horizontal velocity 𝜌u, and the mass densities of water vapor 𝜌qv and cloud drops 𝜌qr simulated with the 105-member
ensemble and the SG method for M = 1, 5, and 10. Note that the green line for M = 5 is not seen on the plot, since the pink line (M = 10) is
on top of it. Gray lines indicate traces of 50 members chosen randomly from the 105-member ensemble. [Colour figure can be viewed at
wileyonlinelibrary.com]

is especially strong (order of magnitude) for u and qv,
indicating that for some variables in the case of unstable
and turbulent flow we would need even more than M = 10
modes to represent the true solution with SG, and possibly
even more than 105 ensemble members.

5 DATA ASSIMILATION

In this section, we investigate the value of an SG uncer-
tainty quantification method for data assimilation. To this
end, we perform twin experiments. In an identical twin
configuration, a model run is chosen as the nature run,
to describe the evolution of the true state w, consisting of
density, velocity vector, moist potential temperature and
concentration of water vapor, cloud droplets, and rain
drops at each grid point of the model. Synthetic obser-
vations wobs are created from the nature run by adding
observation errors 𝝐obs as random perturbations. We chose
to observe the qr field every 20 s and at every 50th grid

point in each direction. Observations contain Gaussian
observation noise with zero mean and standard deviation
of 0.5 × 10−5. The observation-error covariance matrix R
is taken to be diagonal, with values on the diagonal
corresponding to the variance of the distributions used for
generating the observation-error vector 𝜖obs. The observa-
tion operator H in our case is a matrix with elements zero
or one, which determines the location and physical nature
of the observations.

The stochastic EnKF (Evensen, 1994; Evensen, 2003)
will be used for data assimilation in our experiments. The
EnKF employs an ensemble of predictions (backgrounds)
{wb,i}N

i=1 to calculate the sample background-error covari-
ance matrix Pb:

Pb = 1
N − 1

N∑

i=1

[
wb,i −wb

][
wb,i −wb

]T
, (12)

with wb representing the ensemble mean, and N denoting
the number of ensemble members. At the times for which
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JANJIĆ et al. 2905

F I G U R E 4 Comparison at t = 20 s (left), t = 120 s (middle), and t = 200 s (right) of the error of the mean (red) and standard deviation
(blue) obtained with MC (solid) as a function of ensemble size and SG (dotted) as a function of M for density-weighted potential temperature,
horizontal velocity, and the mass densities of water vapor 𝜌qv and cloud drops 𝜌qr. The error is defined as the difference from 105 members
for MC and the difference from M = 10 for SG. Note that the x-axis is on a log scale for MC and linear for SG. For each ensemble size of MC,
experiments were repeated 100 times. The standard deviations of these 100 experiments are shown through red (mean) and blue (std)
shading. Gray lines depict the difference between mean (solid) and standard deviations (dotted) calculated from 105 ensembles and SG with
M = 10. [Colour figure can be viewed at wileyonlinelibrary.com]

observations are available, each background ensemble is
updated based on observations using the Kalman filter
formula, as

wa,i = wb,i + PbHT(HPbHT + R)−1(wobs,i −Hwb,i), (13)

where wobs,i = wobs + 𝜖obs,i are perturbed observations.
Note that the sample covariance Pb is singular when N is
smaller than the size of the state vector, and due to the
sampling error many of its elements will be inaccurate.
This control experiment based on the MC method will be
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2906 JANJIĆ et al.

compared with the EnKF modified for use with the SG
method, as described next.

5.1 EnKF with SG (SGEnKF)

We follow Li and Xiu (2009) and calculate the
background-error covariance directly from the state vector
of the SG coefficients ŵ as

Pb,SG =
M∑

k=1
k!
[
ŵk(ŵk)⊤

]
,

and, with formula (13), produce an analysis ensemble in
the physical space. Note that, since the ensemble {wb,i}NSG

i=1
is not evolved in time in this approach, we can generate
many members cheaply, using

wb,i =
M∑

k=0
ŵkΦk(𝜔i), i = 1, · · · ,NSG.

The analysis ensemble {wa,SG,i}NSG
i=1 from Equation (13) is

used for obtaining M SG coefficients by using the orthog-
onality property (5) and evaluating the expected value:

ŵak =
1
k!

E[wa,SGΦk(𝜔)] =
∫

R

wa,SGΦk(𝜔)𝜇(𝜔) d𝜔. (14)

The expected value can be approximated either by an
averaged discrete sum

1
k!NSG

NSG∑

i=1
wa,SG,iΦk(𝜔i),

where 𝜔
i are drawn randomly, or, since 𝜔 is normally

distributed, the expectation could be calculated using
Gauss–Hermite quadrature, where 𝜔

i are quadrature
points. We find the second approach to be less expensive
and use it in our experiments with 100 quadrature points.
Comparable results with M = 3 for the first approach
would require us to generate NSG = 10 000 members. We
also note that, if M increases, more synthetic members
would be needed in the first approach to obtain all of the
SG coefficients correctly, since their norms decay exponen-
tially with M.

5.2 Accuracy of analysis and short term
forecasts

The EnKF with SG (SGEnKF) with M = 3 has already
produced accurate results, as illustrated with the

root-mean-square error (RMSE) in Figure 5 (left) for fore-
casts of u and qr, although the RMSE–spread ratio for
u with M = 6 is better than for M = 3. We attribute the
already good performance of the SGEnKF with M = 3 to
the ability of SG with the choice of normally distributed
𝜔 to represent the analysis uncertainty well (this is calcu-
lated using the Kalman filter equations and therefore by
design steered toward a Gaussian distribution). The RMSE
and RMSE–spread ratio for the EnKF with Nens = 10, 50
and the SGEnKF with M = 6 are shown in Figure 5 (right).
The SGEnKF with M = 3 and M = 6 shows higher accu-
racy than the EnKF with 10 or 50 members. However,
when reducing M to 2, the accuracy deteriorates. Figure 4
and the divergence of data assimilation results for two
random modes shown in Figure 5 indicate that such a
small number of modes is not sufficient to describe the
evolution of the covariances, as the dynamics starts to be
more complex and vortex structures arise.

In Figure 6, the RMSE and RMSE–spread ratio of the
EnKF with Nens = 10, 50 and the SGEnKF with M = 6 are
shown as a function of the initial accuracy of the qv field.
Although the initial uncertainty of qv is fixed to 20%, the
initial error depends on the realization of the truth and,
in the case of the EnKF, on the realization of the initial
ensemble. For example, high initial error can result in a
scenario of an unusual weather situation, that is, a true
field being a realization in tails of the distribution. If the
initial error is high, the RMSE and RMSE–spread ratios at
the end of the data assimilation experiment are higher as
well, for both methods. However, the EnKF is much more
sensitive to the initial error. Repeating the experiment for
various initial RMSEs shows that the RMSE of the EnKF
with different initial realizations, even with 50 members,
is higher than that of the SGEnKF with M = 6, especially
for higher initial error. Therefore, the SGEnKF seems to
be more robust than the EnKF with respect to realization
of the truth.

Although the EnKF is used with both uncertainty
quantification methods, differences in the data assimila-
tion algorithm exist. For one, ensemble methods require
localization in practice, to increase the rank of covari-
ances (Janjić et al., 2011), while the SGEnKF can generate
many synthetic members, which are needed for accurate
reconstruction of the SG analysis coefficients. Further, dif-
ferences between these two methods can appear in the
case of nonlinear observation operators. While, for the
SGEnKF, nonlinear observation operators can be used on
each wb,i in Equation (13), calculation of the analysis
with Pb,SG would require linearization of the nonlinear
observation operator for approximating matrices PbHT

and HPbHT. An alternative approach would be to use
NSG members and calculate these covariances following
Equation (12), which might be costly, depending on the

 1477870x, 2023, 756, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4537 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [06/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



JANJIĆ et al. 2907

F I G U R E 5 Evolution of the log of forecast root-mean-square error (RMSE) and RMSE–spread ratio (dashed lines) for SGEnKF with
M = 2, 3, and 6 (left) and for EnKF with Nens = 10, 50 and SGEnKF with M = 6 (right). Results are shown for variables u (upper) and qr

(lower). Logs of RMSE are plotted as solid lines (see legend), with the gray tick line representing a perfect RMSE–spread ratio of one. [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 6 RMSE (upper) and
RMSE–spread ratio (lower) for u (left)
and qr (right) at the end of the data
assimilation experiment depending on
initial accuracy in the qv field. [Colour
figure can be viewed at
wileyonlinelibrary.com]

 1477870x, 2023, 756, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4537 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [06/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


2908 JANJIĆ et al.

F I G U R E 7 Evolution of the log of forecast RMSE and RMSE–spread ratio (dashed lines) for SGEnKF with M = 3 and for EnKF with
Nens = 25. The case in which the true field contains the model error is marked with ME. Results are shown for variables 𝜌, u, qc (upper) and
𝜃, qv, qr (lower). Logs of RMSEs are plotted as solid lines (see legend), with a gray tick line representing a perfect RMSE–spread ratio of one.
[Colour figure can be viewed at wileyonlinelibrary.com]

number of observations. In this case, the computational
cost of the method increases. However, the SGEnKF would
require a model evolution for only M + 1 coefficients,
which is much smaller than the N ensemble members
needed for the EnKF. Note that the model evolution is usu-
ally the most expensive component of the data assimilation
system.

Finally, we compare the two methods in the case in
which the truth is generated with a parameter value that
is different from the one used in the numerical model,
mimicking the case of the presence of model error. We
chose to perturb the parameter that influences the termi-
nal velocity of a droplet (Chertock et al., 2019). In Cher-
tock et al. (2019), the sensitivity of the cloud variables to
this parameter (paramenter 𝛼 in their study) was investi-
gated. To generate the truth field for the data assimilation
experiments, a 10% random perturbation was added to the
parameter. The setup is otherwise the same as for the per-
fect model experiments, so only qr is observed. Figure 7
illustrates the results for forecasts of 𝜌, u, qc, 𝜃, qv, qr, for
the SGEnKF with M = 3 and the EnKF with 25 members,
in cases with and without model error. In the presence of
model error, the behavior of both methods is very simi-
lar for all model variables, indicating that one algorithm
is not more sensitive to the presence of model error than
the other. Although not done in our experiment, for both
methods the same techniques could be used to take into
account model error due to the unknown parameter dur-
ing data assimilation.

6 CONCLUSIONS

In order potentially to use the SG method (Chertock
et al., 2023) for the evolution of uncertainty through time

in atmospheric applications, we performed a first compar-
ison study between the ensemble approach and the SG
method on an idealized two-dimensional model that cou-
ples nonhydrostatic weakly compressible Navier–Stokes
equations to cloud variables. The two methods are com-
pared for probabilistic forecasting and in data assimilation
settings. In this first step, the numerical model is chosen to
be simple, to be able to compute ensemble statistics accu-
rately. Further, in this article the uncertainty arises only
as a parameter in the initial data; however, the SG method
presented also applies directly to other uncertain param-
eters in the model, for example in the cloud parametriza-
tions. For efficiency reasons, we have only considered
one-dimensional uncertainty. However, the same strategy
as described for the forecast uncertainty, as well as the
data assimilation, can be used when moderate (approxi-
mately 10) independent uncertainties are considered. In
such a case we end up with a multidimensional stochas-
tic space and 𝜔 will be a vector of independent random
variables. Despite the clarity of such an approach, there is
a limitation in its realization, since the high-dimensional
stochastic space may yield a curse of dimensionality: see,
for example, (Doostan and Iaccarino, 2008). One way to
overcome these restrictions is the use of a special sparse
approximation and adaptive approximation in stochastic
space. Nevertheless, for a moderate number of uncertain
data/parameters, the SG method presented in this article
is an attractive alternative for forecast uncertainty as well
as for data assimilation.

A series of experiments indicates that differences in
the performance of the two methods depend on the sys-
tem state and truncations used. Once approximations are
applied, for example with 50 ensemble members, or the
SG expansion is truncated at two, differences in standard
deviations become significant in the two approaches. The
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differences in performance of the two methods depend
on the system state as well. For example, in more sta-
ble conditions, the SG method outperforms the ensemble
of simulations for every truncation and every variable. In
unstable conditions, the ensemble of simulations would
need more than 100 members (depending on the model
variable) and the SG method more than five modes to
produce comparable but not identical results. Further, in
unstable conditions the uncertainty as represented with
mean and standard deviation between the 105-member
ensemble and the truncation of the SG method at 10 basis
polynomials still exists.

We also used the SG method instead of an ensem-
ble of simulations within data assimilation. Our exper-
iments concentrated on the ability of both methods to
correct unobserved variables through their representa-
tion of covariances, therefore we only observed qr. Fore-
cast RMSEs resulting from the EnKF when increasing
the number of ensemble members converged towards the
RMSEs resulting from the SGEnKF. The SGEnKF with
M = 3 already produced accurate results. This good per-
formance with a nonlinear model is probably due to both
the ability of SG to represent analysis uncertainty well with
a low number of modes and its exponential convergence
rates. Note that, since we used Kalman filter equations
to calculate the analysis uncertainty, which by design is
Gaussian-distributed, it was already possible for SG to rep-
resent this initial uncertainty well with a low number of
modes. Although RMSEs with M = 3 with the SGEnKF
were already small, improvement was still possible in the
RMSE–spread ratio for all variables by increasing to M = 6.
We also showed that SGEnKF is less sensitive in a perfect
model scenario to possible extreme realizations of the true
field. In the presence of model error, in our case due to
an unknown parameter, the SGEnKF and the EnKF pro-
duced very similar results. Additive inflation as well as
other algorithms used in EnKF settings to treat model error
could additionally be applied to the SGEnKF if needed. It is
also important to note that, for data assimilation, nothing
limits the use of the SG method with other sample methods
more appropriate for the highly non-Gaussian problem
found in this application, such as the quadratic program-
ming ensemble (Janjić et al., 2014), the quadratic filter
(Hodyss, 2012), or particle filters (van Leeuwen, 2009),
rather than the EnKF as in this study.
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(2023) Stochastic Galerkin method for cloud simulation. Part II:
a fully random Navier-stokes-cloud model. Journal of Computa-
tional Physics, 479, 111987.

Craig, G.C., Fink, A.H., Hoose, C., Janjić, T., Knippertz, P., Lau-
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