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Abstract
Cholesterol crystal (CC) embolism is a complication of advanced atherosclerotic 
plaques located in the major arteries. This pathological condition is primarily in-
duced by interventional and surgical procedures or occurs spontaneously. CC can 
induce a wide range of tissue injuries including CC embolism syndrome, a spon-
taneous or intervention- induced complication of advanced atherosclerosis, while 
treatment of CC embolism has remained empiric. Vascular occlusions caused by 
CC embolism may exceed the ischemia tolerance of many tissues, particularly 
when small arteries are affected. The main approach to CC embolism is primary 
prophylaxis in patients at risk by stabilizing atherosclerotic plaques and avoid-
ing unnecessary catheter interventions. During CC embolism, the use of plate-
let inhibitors to avoid abnormal activation and aggregation and anticoagulants 
may reduce the risk of vascular occlusions and tissue ischemia. This probably 
explains the relatively low prevalence of clinical manifestations of CC embolism, 
which are frequently found in autopsy studies. In this review, we summarized 
the current knowledge on the pathophysiology of CC embolism syndrome deriv-
ing from clinical observations and experimental mouse models. Furthermore, we 
described the risk factors of CC embolism in humans as well as the experimental 
studies based on empiric treatments. We also discuss potential therapeutic inter-
ventions based on recent experimental data and emerging drug options evolv-
ing from other research domains. Given the substantial unmet medical need to 
improve the outcomes of CC embolism, the identification of effective treatment 
strategies is urgently needed.
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1  |  INTRODUCTION

Cholesterol crystal (CC) embolism is a complication of ad-
vanced atherosclerosis and can affect almost every organ 
through microvascular obstructions and ischemic tissue 
necrosis.1,2 CC embolism originating from the atheroma-
tous plaques of the abdominal aorta affects lower limbs 
(“blue toe syndrome”) as well as solid organs such as the 
kidney (AKI), the pancreas (ischemic pancreatitis), and 
the small intestines (intestinal ischemia).3,4 When the 
source of CC is plaques in the ascending aorta, ocular or 
cerebral embolism can occur as well as ischemic lesions 
in the upper limbs.5 The pathological consequences of CC 
embolism are frequently fatal when ischemic necrosis of 
the small intestines leads to bacterial peritonitis or when 
bilateral kidney embolism leads to uremia.6 Milder epi-
sodes of CC embolism to non- vital organs are frequently 
undetected. Indeed, autopsy studies report a high preva-
lence of CC embolisms which are not recognized during 
a lifetime.7

So far, treatment of CC embolism has remained em-
piric due to a limited number of randomized controlled 
trials.8 Hence, only three trials are available (www.clini 
caltr ials.gov) in this pathological context: a study testing 
prednisolone therapy (NCT01452100), a study testing the 
efficacy of blood purification (NCT01726868), and a di-
agnostic study of magnetic resonance imaging following 
angiographies and angioplasty- stenting of the renal artery 
(NCT00027469).

In this review, we describe the risk factors and patho-
physiological nature of CC embolism syndrome. We pres-
ent new experimental and conceptual progress about 
the different steps of disease pathogenesis, including the 
molecular mechanisms of CC embolism initiation, CC 
embolism- induced thrombosis and thromboinflamma-
tion, ischemic injury, and cell death. In addition, we an-
alyze the effects of anti- inflammatory and anti- platelet 
agents at each stage of CC embolism progression, po-
tentially providing novel preventive and therapeutic 
approaches for patients diagnosed with CC embolism 
syndrome.

2  |  RISK FACTORS FOR CC 
EMBOLISM

The incidence of clinically evident CC embolism syn-
drome has been reported to vary between 0.09% and 
2.9%.9– 11 Notably, the true incidence is probably much 
higher since many cases of CC embolism syndrome are 
often overlooked as reported by autopsy studies.12,13 Sev-
eral risk factors contribute to the development of CC 
embolism syndrome, including interventional vascular 

procedures, cardiovascular surgery, hypertension, diabe-
tes mellitus, gender, age, and the use of anticoagulants 
and thrombolytic treatments (Figure 1).14– 17

Gender- specific risk factors not only contribute to dif-
ferent development of atherosclerosis but also indirectly 
promote CC embolism, associated with other risk factors, 
such as smoking, dyslipidemia, hypertension, and diabetes 
mellitus.18 Males tend to develop atherosclerotic plaques 
earlier and have a higher plaque burden compared to fe-
males.19– 21 Males also develop more non- culprit lesions, 
coronary artery lesions, frequent plaque ruptures, larger 
total necrotic core volume, and more comorbidities.19,22

Age is another important risk factor in CC embolism 
syndrome. Spontaneous plaque ruptures are predomi-
nantly observed in patients over 60 years old, with an inci-
dence of 0.79%– 3.4%.23

Smoking is another risk factor for CC embolism syn-
drome. Various chemical components, such as nicotine, 
present in tobacco smoke directly cause endothelial dam-
age and enhance inflammatory responses in the vascular 
wall due to the oxidant and proinflammatory properties 
of nicotine molecules.24– 27 The size of calcified athero-
sclerotic plaques is directly proportional to the number 
of cigarettes consumed per day. Moreover, smoking cessa-
tion is one of the most important health interventions for 
reducing the risks of cardiovascular diseases, cancer, and 
mortality at any age.28

Surgical interventions involving the aorta or its major 
branches are associated with the highest risk of plaque 
rupture and CC embolism. Abnormalities consistent with 
CC embolism were observed in 21.7% of the autopsy series 

F I G U R E  1  Risk factors for CC embolism. Several modifiable 
and non- modifiable risk factors are involved in CC embolism 
syndrome.
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from patients who underwent myocardial revasculariza-
tion or heart valve surgery.29 Coronary revascularization 
surgery- related CC embolism (26.1%) was three times 
more common than valve surgery (8.9%).29 In a prospec-
tive study of 1786 patients undergoing cardiac catheter-
ization in Japan, the incidence of CC embolism syndrome 
was reported as 1.4%.8 Abdominal aortic aneurysm (AAA) 
is also a causative factor for the development of CC em-
bolism, 2.9% of AAA patients with CC embolism was de-
tected.11 However, coronary angioplasty is a lower risk 
factor, only 0.09% of patients developed CC embolism.30 
Interventional procedures or cardiovascular surgery are 
the most common risk factors, it may also trigger sponta-
neous plaque rupture, and the outcome is in 70% of cases 
generally.30

Thrombolytic therapy is also associated with CC em-
bolism syndrome.31 Anticoagulants and fibrinolytics may 
promote CC embolism syndrome by causing plaque hem-
orrhage and plaque rupture.6,32 However, the exact patho-
mechanisms, linking anticoagulants/fibrinolytics and CC 
embolism syndrome remain unclear.8,33

Increased inflammation is also a critical risk factor for 
CC embolism syndrome. Patients with CC embolism syn-
drome have often significantly higher levels of C reactive 
protein (CRP) in their plasma compared to those without 
CC embolism syndrome (0.7 vs 2.4 mg/dL).8 Therefore, in-
creased CRP levels are considered an independent predic-
tor of CC embolism syndrome (OR 4.6).8

3  |  CLINICAL MANIFESTATIONS 
OF CC EMBOLISM

The kidney is a commonly affected organ by CC emboli, 
but only around 50% of patients experience noticeable 
clinical symptoms.34 The onset of symptoms can vary, i.e. 
some patients exhibit symptoms shortly after CC embo-
lism, while others may experience a delay of several weeks 
to months.6,34,35 Kidney CC embolism primarily mani-
fests in the following conditions: (i) AKI accompanied by 
symptoms originating from multiple sites or organs, typi-
cally resulting from either larger arteries or the emboli, 
(ii) subacute kidney injury attributed to either the inflam-
matory response caused by CC emboli or the consecutive 
lodging of new emboli, (iii) chronic kidney disease, char-
acterized by kidney ischemia or vascular sclerosis, is often 
asymptomatic because CC emboli are mainly detected in 
kidney biopsies or autopsies.36 CC embolism can affect the 
cerebral and retinal arteries, deriving from the ascending 
aorta and proximal aortic arch. Symptoms include psy-
chological disturbances, headaches, neurological deficits, 
temporary vision loss and mild paralysis of the lower ex-
tremities.37 Hollenhorst plaques are known as diagnostic 

features of CC embolism occurring in retinal arteries.38 
Embolism affecting the arteries of the kidneys and arteries 
below the abdomen, including the legs and feet, typically 
originates from the descending thoracic and abdominal 
aorta.37,39 Patients with CC embolism can also experience 
gastrointestinal complications, characterized by mucosal 
ulceration, bleeding, diarrhea, and stomach pain.40 Skin 
lesions, such as livedo reticularis, cyanosis, and ulcers, are 
observed in 35– 96% of patients.41 Other symptoms asso-
ciated with CC embolism are hemoptysis, femoral head 
necrosis, dyspnea and rhabdomyolysis.41

4  |  MOLECULAR MECHANISMS 
AND PATHOGENESIS OF CC 
EMBOLISM

4.1 | Rupture of vulnerable plaques

The relationship between CC embolism and aortic ath-
erosclerosis was first suggested in 1945 by Flory.42 This 
concept was later studied by Kealy who demonstrated the 
presence of advanced plaques in several cases of periph-
eral embolism, often accompanied by the formation of 
aneurysms.43 CC embolism occurs when small atheromas 
found in major arteries, including the aorta, break and 
release CC into smaller arteries.44 The central pathology 
underlying atherosclerosis, a chronic condition, involves 
the formation of atheromatous or fibrofatty plaques. 
These plaques are the primary pathological feature in ath-
erosclerosis, and their instability can lead to the release 
of CC emboli, contributing to CC embolism. Lipids, in-
flammatory infiltrates, smooth muscle cells (SMCs) and 
connective tissues are present within the plaques. Two si-
multaneous mechanisms contribute to plaque rupture: the 
gradual loss of SMCs from the fibrous cap and the degra-
dation of the collagen- rich cap matrix, leading to thinning 
of the fibrous cap.45 At the rupture site, SMCs are usually 
absent and ruptured caps contain fewer SMCs than intact 
caps.46 Activated macrophages and foam cells can degrade 
the collagen matrix components of the fibrous cap in the 
lesion.47 Once the atherosclerotic plaque ruptures, it be-
comes exposed to the vascular endothelium bloodstream, 
leading to partial or complete occlusion of the blood vessel 
lumen. In addition, macrophages and SMCs at the rup-
ture site can produce tissue factors (TF), contributing to 
the procoagulant phenotype and the development of acute 
coronary syndrome, which is the main clinical manifesta-
tion of atherosclerotic progression (Figure 2). The onset of 
acute coronary diseases can be triggered by simple daily 
activities or the circadian rhythm, which has a higher 
incidence in the morning.48 Increased heart rate and 
blood pressure can lead to plaque rupture, with enhanced 
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coagulability and platelet reactivity further amplifying the 
thrombotic response to the ruptured plaques.49,50 Various 
factors influence the vulnerability of plaques to rupture, 
including the expression of adhesion molecules, local 
cytokine release, endothelial cell dysfunction, activation 
of monocytes and macrophages, complement activation 
and the presence of proteolytic enzymes. Collectively, 
these factors contribute to the destabilization of plaques, 
thereby increasing the risk of rupture.51

4.2 | CC- induced vascular occlusion

During CC embolism, the hemostatic balance is disturbed 
by the rupture of the endothelial layer, leading to the expo-
sure of the vascular extracellular matrix. Following vessel 
injury, subendothelial matrix proteins, including colla-
gen, become exposed to the flowing blood.52 Exposed col-
lagen anchors von- Willebrand- Factor (vWF) and initiates 

interactions between platelet glycoprotein (GP) Ibα and 
vWF, as well as GPVI and collagen, which are crucial steps 
in platelet activation.52 Platelets also express various inte-
grins on their surface, which, upon outside- in activation 
by their extracellular ligands, promote platelet adhesion 
to the injured vessel wall. Additionally, activated plate-
lets release numerous bioactive molecules and secondary 
mediators, such as fibrinogen (FGN), vWF, adenosine di-
phosphate/adenosine triphosphate (ADP/ATP), and sero-
tonin, from their alpha (α) and dense delta (δ) granules.53 
These molecules further enhance the prothrombotic pro-
cess, promoting the recruitment of circulating platelets to 
the developing thrombi. The extrinsic and intrinsic blood 
coagulation pathways trigger the second wave of hemo-
stasis, leading to the generation of thrombin. Thrombin, 
in turn, converts soluble fibrinogen into fibrin, thereby re-
inforcing platelet activation and clot formation. Activated 
platelets also expose phosphatidylserine (PS) on their sur-
face, facilitating the binding of coagulation factors that 

F I G U R E  2  The progression of atherosclerotic plaque in the artery. LDL retention in the intima initiates atherosclerosis development, 
where they can undergo oxidative and other modifications that can render them pro- inflammatory and immunogenic. Accumulation of LDL 
leads to the upregulation of adhesion molecules on the endothelial surface and the recruitment of monocytes to the forming lesion. In the 
subendothelial space, monocytes differentiate into macrophages in response to M- CSF and GM- CSF produced by endothelial cells. These 
macrophages express scavenger receptors that can uptake lipoproteins leading to the formation of foam cells. Cholesterol crystals form in 
foam cells resulting in the release of IL- 1β and IL- 6. Both IL- 1β and IL- 6 exert proinflammatory effects. As the lesion advances, SMCs and 
macrophages can undergo cell death including apoptosis. The debris from dead and dying cells accumulates, forming the necrotic, lipid- rich 
core of the atheroma. LDL: low- density lipoprotein, M- CSF: Macrophage colony- stimulating factor, GM- CSF: Granulocyte- macrophage 
colony- stimulating factor, IL- 1β: Interleukin 1 beta, IL- 6: Interleukin 6. SMC: Smooth muscle cell.
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stimulate thrombin generation and activate the coagula-
tion cascade. Recently, we provided compelling evidence 
regarding the significant impact of CC on platelet adhesion 
and activation, thereby promoting prothrombotic func-
tions. While CC alone does not induce platelet activation 
or adhesion, upon stimulation with thrombin, CC exerts 
a potent effect on platelets, leading to their activation and 
degranulation. This dynamic process results in the release 
of mediators such as FGN and ATP, thereby fostering a 
prothrombotic microenvironment. CC stimulates platelet 
activation through the GPVI- ITAM and PAR- Gq signal-
ing pathways, ultimately leading to the inside- out activa-
tion of integrin αIIbβ3 and the exposure of P- selectin.54,55 
Collectively, these intricate mechanisms contribute to en-
hanced platelet reactivity and the formation of fibrin clots.

Thromboinflammation, a term used to describe the si-
multaneous activation of thrombotic and inflammatory 
responses, is observed in various diseases, including CC 
embolism.56,57 The presence of CC emboli within arteri-
oles triggers a series of inflammatory reactions, including 
endothelial dysfunction, cytokine release, immune re-
sponse and the formation of intravascular thrombi.54,56 In 
the initial 24 h, neutrophils are the first inflammatory cells 
to infiltrate the affected arterioles, followed by the infil-
tration of monocytes that differentiate into macrophages 
and form foreign body giant cells responsible for engulfing 
large CCs. Platelet– neutrophil interactions contribute to 
the activation and release of proinflammatory cytokines 
and chemokines, which further promote thrombus forma-
tion and exacerbate the inflammatory response.58 Using 
the kidney CC embolism model, we recently showed that 
extracellular traps play a critical role in the formation of 
emboli. Indeed, the observed immunothrombotic com-
plication was associated with the presence of platelets, 
red blood cells, leukocytes, fibrin mesh and extracellular 
DNAs that are released by damaged endothelial cells, 
neutrophils and activated platelets.54,56 Thus, the recip-
rocal interaction between platelets, innate immune cells 
and activated vascular endothelium influences both the 
thrombotic potential and immune response, thereby link-
ing thrombosis to the inflammatory site (Figure 3).

Although thrombosis is a characteristic feature of 
thrombotic microangiopathies (TMAs) observed in CC 
embolism syndrome, not all cases of thrombosis are clas-
sified as TMAs. TMAs were introduced to specifically refer 
to a group of disorders that share the common feature of 
microvascular thrombosis and associated organ dysfunc-
tion. Other forms of TMAs can be regulated by different 
mechanisms depending on underlying conditions (plate-
let consumption, erythrocyte fragmentation, ischemic 
injury, thrombotic thrombocytopenic purpura (TTP), an-
tiphospholipid syndrome, hemolytic uremic syndrome 
(HUS).59

4.3 | Programmed cell death pathways in 
CC embolism

The subsequent inflammatory response can be influenced 
by the programmed cell death pathways, detected in the 
parenchymal and tubular cells during kidney ischemia. 
The molecular and cellular mechanisms of ischemic 
necrosis are well- studied in many thromboinflamma-
tory diseases, including myocardial infarction, ischemic 
stroke, and acute kidney injury. The measurement of 
infarct size is the primary endpoint of most experiments 
predicting long- term organ functionality in the heart, 
brain, or kidney. Tissue hypoxia in the kidney first im-
pairs the functional capacity of parenchymal cells by de-
pleting ATP but prolonged ischemia leads to ischemic cell 
necrosis. Different tissues have a different sensitivity to 
ischemia time but without therapeutic revascularization, 
CC embolism- related vascular occlusions may exceed is-
chemia tolerance of most tissues, especially when small 
ends are affected, e.g., in the brain, the skin, the small in-
testine, and the kidney. Ischemic necrosis is not a passive 
process but involves numerous signaling pathways of reg-
ulated necrosis discovered and characterized during the 
last decade (Figure 4). This chapter describes the various 
types of reprogrammed cell deaths that arise in response 
to proinflammatory and prothrombotic stimuli during CC 
embolism.

4.3.1 | Necroptosis

Necroptosis is a programmed form of necrosis, or in-
flammatory cell death, triggered by outside- in signal-
ing pathways downstream effectors of pro- inflammatory 
death receptors such as tumor necrosis factor receptor 
1 (TNFR1).60,61 When caspase- 8- mediated apoptosis is 
deactivated, receptor- interacting protein (RIP)- kinase 1 
and RIP- kinase 3 dissociate from the receptor complex.61 
Consistently, Mlkl- deficient mice are protected from CC 
embolism- related ischemic necrosis of the kidney, indi-
cating the central role of necroptosis in this process. Mlkl- 
deficient mice are also protected from ischemic necrosis 
of the kidney induced by transient kidney pedicle clamp-
ing as well as from ischemic necrosis in the brain and the 
heart induced by other means, e.g., arterial ligation.54 This 
suggests a general contribution of the necroptosis signal-
ing pathway to ischemic tissue necrosis.

4.3.2 | Apoptosis

The first known form of programmed or regulated cell 
death was apoptosis, which for a long was defined by 
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TUNEL positivity, an analytical method detecting breaks 
in double- stranded DNA.62 However, the discovery of 
other forms of regulated necrosis clarified the unspecific 
nature of TUNEL positivity, which is now considered 
more a general marker of cell death. Currently, each 
form of regulated cell is defined by a unique signaling 
pathway. For example, apoptosis is characterized by cell 
death that occurs in the presence of caspase- 3 cleavage 
and can be inhibited by caspase- 3 inhibitors.63 With 
the use of these analytical tools, it appears that apop-
tosis does not contribute significantly to ischemic cell 
necrosis. Indeed, apoptosis is a non- immunogenic form 
of homeostatic cell death, e.g., with major importance 
in the silent deletion of autoreactive immune cells or of 
cells with significant DNA damage to prevent malignant 
transformation.

4.3.3 | Netosis

In 2004, the group of Arturo Zychlinsky first described an 
alternative form of neutrophil bacterial killing, i.e., the 
release of NETs. NETosis has two distinct forms, suicidal 
and vital NETosis. NET release is frequently associated 
with neutrophil necrosis, driving necroinflammation in 
many pathological conditions, including ischemic tissue 
necrosis NETs mostly form inside the microvasculature, 
and primarily cause direct endothelial cell injury and 
intravascular thrombosis.56,64 Activated platelets can di-
rectly induce NETosis, thereby amplifying necroinflam-
matory and thrombotic events.65

NETosis does not only imply the release of nuclear DNA 
and histones but also the release of toxic proteases from neu-
trophil granules. DNase I treatment has been proposed as an 

F I G U R E  3  Ruptured vulnerable plaque- induced vascular occlusion. In the smaller arteries, the plaque not only mechanically restricts 
blood flow but also can damage vascular walls releasing tissue factor and extracellular DNA, following platelet activation and aggregation, 
immune cell activation, cytokine release, etc.
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effective tool to neutralize NETs but this treatment does not 
influence lytic enzymatic activities. Systemic administration 
of DNase I is potent to prevent ischemic tissue necrosis in 
CC embolism to dissolve the chromatin mesh contributing 
to intravascular thrombosis at the site of the crystal clot.54 It 
has been proposed that perilesional neutrophil infiltrates in 
the kidney may be involved in NET formation. Therefore, 
we speculate that inhibiting NETosis may help to limit the 
size of tissue infarction in CC embolism.

Neutrophil infiltration and consequent tissue necro-
sis are regulated by the circadian rhythm, which was 
explained by the differential expression of adhesion 
molecules and cytokine on vascular endothelium and 
immune cells during CC embolism.66 Indeed, the ex-
pression of adhesion molecules (Icam- 1, Vcam- 1) on en-
dothelial cells is lower during the day than at night, the 
release of chemokine (CXCL1) from neutrophils cells 
is less than at night, the expression of CXCR2 is lower, 
while CXCR4 is high, which leads to more tissue necro-
sis during the night.66

4.3.4 | Necroinflammation

Ischemic necrosis is accompanied by rapid neutrophil re-
cruitment followed by pro- inflammatory macrophages, 
which both contribute to perilesional inflammation. 
The auto- amplification loop between ischemic ne-
crosis and perilesional inflammation also referred to 
as necroinflammation, involves damage- associated 

molecular patterns (DAMPs) and proinflammatory cy-
tokines (interleukins), as well as cytotoxic DAMPs such 
as extracellular histones that trigger both cell death and 
inflammation.

CC- induced TMAs are a complex pathological pro-
cess, involving thrombosis, tissue necrosis and inflam-
mation. Thrombosis within the microvasculature leads to 
the release of cytokines and chemokines from activated 
platelets.67 These mediators activate endothelial cells and 
attract leukocytes to the site of injury.56,67

Patients with metabolic syndromes often have a pro- 
inflammatory state, due to the accumulation of several 
disease conditions, such as atherosclerotic cardiovascu-
lar disease, insulin resistance and diabetes mellitus.68– 70 
Recently, we showed that hyperglycemia aggravated 
TMA and glomerular filtration rate by increasing neu-
trophil recruitment, necroinflammation and infarct 
size during CC embolism.55 In line with this, CC en-
hanced the prothrombotic response of hyperglycemic 
platelets.55 Altogether, these studies indicate that a CC- 
induced prothrombotic environment can exacerbate 
necroinflammation. Of note, the long- term outcomes of 
renal TMA depend on the regenerative capacity of dif-
ferent cell types through intrinsic or extrinsic progenitor 
potential. In general, the suppression of necroinflamma-
tion can be achieved by blocking proinflammatory and 
prothrombotic mediators or pathways that regulate ne-
crosis.71 However, the efficacy of these treatments may 
vary depending on the degree of injury and the stage of 
the disease.

F I G U R E  4  CC embolism- induced programmed cell death pathways in the kidney. Ischemia triggers primary tubular injury through 
different pathways, damaged tubular cells release DAMPs, IL- 1α, histone, cytokine and chemokines, which lead to inflammatory responses, 
like leukocyte recruitment, complement activation, vasodilation and change the permeability of vascular endothelium. Most importantly, 
the inflammation in turn induces further tubule injury. DAMP: damage- associated molecular patterns, IL- 1α: Interleukin 1 alpha, GPX- 
4: Glutathione peroxidase 4, RIPK: Receptor- interacting serine/threonine- protein kinase, MLKL: Mixed Lineage Kinase Domain Like 
Pseudokinase, NF- kβ: Nuclear Factor Kappa B.
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5  |  TARGETED TREATMENTS OF 
CC EMBOLISM

The adhesion and activation of immune cells and platelets 
are tightly regulated at different steps of CC embolism, 
thereby influencing the inflammatory response, thrombus 
formation and ischemia in patients with CC embolism. 
Several signaling receptors and bioactive mediators from 
immune cells, platelets and vascular endothelium are in-
volved in this process (Table 1). In this chapter, we discuss 
the potential of anti- inflammatory, anti- coagulant and fi-
brinolytic therapies at different steps of CC embolism.

5.1 | The site of CC emission

Statins are commonly used to reduce atherosclerotic le-
sions by effectively decreasing the levels of low- density 
lipoproteins (LDL) and stabilizing or regressing the 

established atherosclerotic plaque.72 Furthermore, 
statins have pleiotropic effects, such as reducing inflam-
mation and oxidative stress in the vascular system.72 
Statins also block cholesterol synthesis in the liver by 
inhibiting 3- hydroxy- 3- methylglutaryl coenzyme A 
(HMG- CoA) reductase, thereby reducing the production 
of mevalonate, which is an essential metabolic product 
for cholesterol synthesis.80 Other studies suggested that 
statins not only limit hyperlipidemia but also decrease 
oxidative stress, activating anti- inflammatory and anti-
proliferative mechanisms on vascular endothelial and 
smooth muscle cells.81 It was shown that atorvastatin 
and simvastatin exert a positive effect on nitric oxide 
(NO) levels by increasing the synthesis and activity of 
endothelial NO synthase 3 (eNOS) via the inhibition of 
miRNA- 221 and miR- 222. Increased levels of NO are 
associated with a low concentration of ROS, reduced 
vascular endothelium permeability and inflammatory 
response (Figure  5).73 Statins also exert antiplatelet 

T A B L E  1  Possible therapeutic interventions in CC embolism syndrome.

Targeted Pathomechanism Specific pathway Pharmacological inhibitor/device Ref.

Stabilization of vulnerable plaque [72– 78]

Arterial occlusion by crystal clots [54]

Ischemic necrosis
Necroinflammation

MPT- driven necrosis Cyclosporin A
NIM811

[79]

Necroptosis Necrostatins, phenytoin, … [60,61]

Autophagy 3- methyladenine [79]

F I G U R E  5  Targeted treatments at the site of CC emission. The mechanism of statin therapy on endothelial cells. On one hand, statin 
therapy can reduce inflammation and oxidative stress in the vascular system, because it regulates endothelial proinflammatory factors such 
as ROS release by inhibiting miR- 222, and miR- 221, and decreasing the levels of LDL. On the other hand, statin can also enhance the activity 
of KLF2 decreasing the thrombomodulin and fibrinolytic activity. ROS: Reactive oxygen species, KLF2: Kruppel- like transcription factor 2, 
LDL: low- density lipoprotein, NO: nitrogen oxide, eNOS: Endothelial nitric oxide synthase.
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effects by inhibiting the release and expression of throm-
boxane A2, ox- LDL and CD36 receptors and enhancing 
the production of eNOS, which improves the production 
of platelet NO. In its turn, the NO inhibits platelet acti-
vation and aggregation, thereby suppressing blood clot-
ting and coagulation by downregulating the tissue factor 
expression and activity.74– 78 In addition, statins can in-
hibit thrombosis by upregulating Krüppel- like Factor 2 
(KLF2) levels, which promotes the expression of throm-
bomodulin and fibrinolytic activity.82,83 Whether statins 
may have anti- inflammatory and anti- thrombotic effects 
in CC embolism awaits future investigation.

5.2 | The sites of peripheral 
occlusion and ischemic necrosis

The presence of the crystal component, which occupies 
only a small fraction of the vascular lumen, results in 
arterial thrombosis and vascular occlusion, thereby 

inducing acute kidney injury, which is followed by a 
sudden drop in glomerular filtration rate (GFR), and 
ischemic kidney infarction (Figure  6).54 This thrombo-
inflammatory process involves the complex interplay 
between platelets, neutrophils and vascular endothe-
lium.54 During CC embolism, the hemostatic balance is 
disturbed by the rupture of the endothelial layer, leading 
to the exposure of the vascular ECM. CC can enhance 
platelet attachment to the exposed collagen, further am-
plifying platelet reactivity by promoting the exposure of 
P selectin, the release of fibrinogen and ATP and the in-
creasing the adhesion of circulating platelets to the CC- 
induced thrombi.54 Consequently, the prothrombotic 
environment becomes abundant in FGN and thrombin, 
leading to the generation of a fibrin clot, which can fur-
ther induce the recruitment of circulating platelets to 
the growing thrombus sites. Accordingly, preemptive 
injection of fibrinolytic drugs, anticoagulants, DNase I 
and antiplatelet agents was shown to completely prevent 
crystal clot formation, acute kidney injury and kidney 

F I G U R E  6  Targeted treatments at the peripheral vascular occlusion. Damaged endothelium release tissue factor (TF) and ecDNA 
activate platelets, meanwhile, the role of ecDNA as a DAMP can also trigger an inflammatory response. Activated platelets release granule 
contents, and cause blood coagulation. DNase I can degrade ecDNA released from damaged endothelial cells to prevent platelet activation 
and inflammation. DNase I prevents ecDNA mesh formation, platelet activation, and aggregation. Clopidogrel can be combined with P2Y12 
to prevent platelet activation and aggregation, urokinase prevents coagulation via balancing the plasmin in the system, and heparin involves 
in various steps of coagulation.
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infarction without affecting the crystal component in-
side the arteries.54

Ischemic necrosis is a common form of tissue injury, 
e.g., in stroke, myocardial infarction or limb ischemia but 
despite a myriad of experimental studies demonstrating 
tissue- protective effects from targeted interventions, the 
medical practice remains focused on revascularization or 
fibrinolytic and antithrombotic drugs. One of the reasons 
is that whenever ischemic necrosis is a consequence of 
vascular occlusion, tissue- protective interventions have 
limited potential as long as vascular occlusion and isch-
emia persist. For example, genetic or pharmacological 
inhibition of CC embolism- related ischemic necrosis of 
the kidney did not improve the early decline of kidney 
function as further proof that vascular obstruction is an 
upstream mechanism of CC embolism.54 Therefore, the 
drug pipeline of necrosis inhibitors at best may help to 
increase the window of opportunity for revascularization 
strategies, e.g., with fibrinolytic or antithrombotic drugs, 
in established CC embolism.84

5.2.1 | Fibrinolysis

Fibrin- rich clot formation plays an important role in the 
process of hemostasis, serving as the main product of 
the coagulation cascade and also acting as the ultimate 
substrate for fibrinolysis. The process of fibrinolysis 
involves the conversion of plasminogen into plasmin 
by either tissue- type plasminogen activator (tPA) or 
urokinase- type plasminogen activator and the break-
down of fibrin degradation through the hydrolytic action 
of plasmin.85 However, the intrinsic fibrinolytic system 
cannot effectively reduce thrombus growth and intra-
vascular coagulation during CC embolism to restore 
blood flow and revascularization. Platelet- rich thrombi 
are resistant to tPA- induced thrombolysis, compared 
to red blood cell- rich clots.86 This resistance is linked 
to the presence of the platelet- derived alpha subunit of 
factor XIII and protease inhibitors.86 Therefore, fibrino-
lytic therapies are used in the treatment of thrombotic 
disease conditions, such as stroke, pulmonary embolism 
and deep vein thrombosis, thereby helping to dissolve 
blood clots and restoring blood flow and promoting tis-
sue healing and revascularization. We showed that after 
24 hours, urokinase significantly reduced the number of 
occlusions in the arteries, while the crystal component 
persisted. Urokinase treatment could improve GFR loss 
and significantly reduce the size of kidney infarcts, kid-
ney injury, neutrophil infiltration, vascular injury, and 
kidney tubular cell death.

Although fibrinolytic drugs could completely prevent 
crystal clot formation, acute kidney injury and kidney 

infarction without affecting the crystal component inside 
the arteries.54 However, these interventions can be associ-
ated with bleeding complications, thereby limiting their 
effectiveness in clinical settings. Recently, we showed that 
Glu- plasminogen extracts from human plasma injected 
intravenously 4 h after CC injection into the left kidney ar-
tery of mice attenuated thrombotic angiopathy, AKI, and 
cortical necrosis in a dose- dependent manner.87 An inter-
mediate dose had a transient effect, which renders Glu- 
plasminogen a well- controllable intervention although no 
bleeding complications occurred during operatory or post- 
operatory periods.87 Therefore, Glu- plasminogen substitu-
tion could be a potential therapeutic approach in patients 
with CC embolism syndrome. Although Glu- plasminogen 
treatment can restore balance to local fibrinolysis in the 
injured kidney arteries, inhibiting fibrin- rich blood clot 
formation, it may probably require continuous anticoag-
ulant therapy to prevent recurrent crystal clot formation.

5.2.2 | Anticoagulant therapies

Heparin is an anti- coagulant to prevent blood clotting 
during surgical interventions, kidney dialysis, and for the 
management of various diseases such as VTE, heart at-
tacks, and angina. Heparin affects the blood coagulation 
pathway by inactivating thrombin.88 Heparin induces a 
conformational change in antithrombin III, thereby fa-
cilitating a complex formation with thrombin. Although 
heparin is considered an anti- coagulant, it can also have 
anti- inflammatory and anti- proliferative and profibrino-
lytic effects.88 Heparin has also been shown to protect 
against organ and tissue damage caused by histones, as 
well as decrease the levels of NETs in a mouse model of 
sepsis.89 Similar to urokinase, heparin could also prevent 
crystal clot formation, improving GFR loss and reduc-
ing acute kidney injury and infraction during crystal clot 
embolism.54 However, heparin treatment may cause ad-
verse effects such as hemorrhagic diathesis, intra- organ 
bleeding, osteoporosis and thrombocytopenia. Heparin- 
induced thrombocytopenia is frequently caused by the 
production of antibodies against heparin- platelet factor 4 
(PF4) complexes, which can also activate neutrophils and 
promote NET formation, thereby enhancing thrombosis.90 
Low- molecular- weight heparin (LMWH) offers several 
benefits compared to heparin, including decreased risks of 
HIT and osteoporosis, longer bioavailability and half- life, 
and predictable anticoagulant response. However, both 
LMWH and unfractionated heparin (UFH) can increase 
the risk of bleeding in patients with kidney disease, due to 
their accumulation in kidney tissue.91

In order to minimize the bleeding risk, various clinical 
therapies have been recommended, including reducing 
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the dosage, adjusting treatment based on anti- Xa heparin 
levels, and using lower doses of LMWH.92 Nonetheless, 
the risk of bleeding may differ depending on the partic-
ular clinical circumstance. For example, patients with 
venous disease may experience lower bleeding risks with 
LMWH compared to UFH, whereas those with acute cor-
onary syndrome may be at higher risk for bleeding with 
LMWH.92

5.2.3 | Anti- P2Y12- based antiplatelet  
therapies

The platelet P2Y12 receptor is a Gi- coupled ADP binding 
receptor that regulates thrombus stability by amplifying 
platelet aggregation and activation, granule secretion and 
procoagulant activity.93 The P2Y12 receptor is considered a 
prime candidate for antithrombotic medication, due to its 
central role in the purinergic signaling pathway.94 Clopi-
dogrel is a selective P2Y12 receptor antagonist, which is 
used in the treatment and prevention of heart attacks, is-
chemic stroke and peripheral artery diseases.94 In the CC 
embolism model, preventive injection of clopidogrel com-
pletely protected mice from intravascular obstructions, 
GFR loss, acute kidney injury and kidney infarction with-
out affecting the crystal component inside the arteries. 
However, clopidogrel treatment could be associated with 
bleeding complications, which complicates their usage in 
clinical settings. In line with this, genetic or functional de-
ficiency of the P2Y12 receptor in mice or humans induces 
longer bleeding times and severe hemorrhage.94,95 Mice 
treated with a high dose of clopidogrel displayed bleed-
ing times that can last up to 30 minutes and even result 
in death from bleeding.95 Hence, bleeding risks represent 
the major drawbacks when clopidogrel is administered, 
either alone or in combination with aspirin.94,96 These 
challenges led to the development of new anti- P2Y12 
drugs, such as prasugrel, ticagrelor and cangrelor. More 
recently, in patients with myocardial infarction, selatogrel 
emerged as a new potent, selective and reversible P2Y12 
blocker, inducing a rapid and strong platelet inhibition 
without major bleeding complications. Further studies 
are needed to test the effect of selatogrel on CC- induced 
AKI and thromboinflammation.

5.2.4 | DNase I- based anti- thrombotic  
therapy

DNase I is an enzyme that degrades DNA, leading to the 
dissolution of extracellular DNA and NET formation. Al-
though DNase I treatment has a strong impact on NETo-
sis during immunothrombosis, it also prevents thrombus 

growth without the involvement of neutrophils.54,97 Inter-
estingly, platelet activation, P- selectin exposure, aggrega-
tion in response to collagen, collagen- related peptide, or 
thrombin were suppressed when washed platelets were 
preincubated with DNase I.54 In addition, DNase I treat-
ment strongly inhibited CC- induced fibrin production 
and ATP release from activated platelets.54 In line with 
this, in vivo neutrophil depletion in peripheral blood did 
not affect the severity of disease in the mouse model of 
CC embolism, whereas DNase I treatment dramatically 
reduced the number of occluded arteries, ischemic organ 
failure and kidney infarction in vivo.54

Tissue- factor- expressing neutrophils contribute to 
thrombosis in the laser- induced arterial injury model.98 
DNase I treatment could also prevent thrombosis in this in 
vivo model.97 The electron microscopy studies could not 
detect neutrophil- associated extracellular trap structures. 
DNase I treatment also affects platelet functions, probably 
reducing fibrin formation and increasing ATP/ADP hydro-
lysis.97 DNase treatment also limits the venous thrombus 
growth in a mouse model of HIT. DNase I administrated 
systematically could potentially serve as an effective treat-
ment for preventing ischemic tissue necrosis in CC embo-
lism. However, its inhibitory effect is limited to the early 
CC embolism (i.e., the first 3 h).54 Extracellular DNA also 
plays a significant role in the hemostatic system, as it acti-
vates factor XI and factor XII.99 Furthermore, extracellular 
DNA can be incorporated into the fibrin clot thereby in-
hibiting the anticoagulant activities of drugs such as un-
fractionated heparin and enoxaparin.100 Conversely, RE31 
DNA aptamers have been shown to inhibit the generation 
of thrombin formation, thereby accelerating fibrinolysis 
and suppressing thrombosis.101,102 Damaged endothelial 
cells can also release potent procoagulant molecules, TF, 
extracellular DNA and the endogenous fibrinolysis inhib-
itor (plasminogen activator inhibitor 1).103 Extracellular 
DNA can activate platelet aggregation and contribute to 
thrombus formation.54 Future studies are required to test 
the effects of DNA aptamers in CC- induced thrombosis 
and thromboinflammation.

5.2.5 | Other potential targets

CC embolism disrupts the hemostatic balance by rup-
turing kidney vasculature, exposing the subendothelial 
collagen matrix. This results in platelet adhesion and ag-
gregation, causing abnormal fibrin clot formation, kidney 
ischemia, and perilesional inflammation. Activated plate-
lets initiate a procoagulant surface, thereby triggering the 
recruitment of neutrophils and initiating thromboinflam-
mation.54 CC strongly increases platelet aggregation re-
sponse to thrombin and GPVI- specific agonists (collagen, 
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collagen- related peptide). Additionally, a significant in-
crease in P- selectin exposure and αIIbβ3 integrin activa-
tion was observed indicating that CC embolism activates 
PAR- Gq (protease- activated receptor) and GPVI- ITAM 
(GPVI- immunoreceptor tyrosine- based activation motif) 
signaling.54 These findings suggest that CC- induced pro-
coagulant and thromboinflammatory phenotypes may be 
regulated by multiple platelet activation pathways. Fur-
ther investigations are necessary to elucidate the specific 
roles of platelet- derived molecules, including key adhe-
sion receptors and secondary mediators, and to determine 
their therapeutic potential in modulating renal hemosta-
sis, thrombosis, and thromboinflammation.

6  |  CONCLUSIONS

CC embolism- related vascular occlusions and tissue is-
chemia are the consequences of CC- induced TMA. En-
dothelial injury, complement- mediated intravascular 
clotting involving platelet activation, NET release and for-
mation of a fibrin and chromatin mesh as in other forms 
of TMA or arterial thrombosis. The main approach to CC 
embolism is primary prophylaxis in patients at risk by 
stabilizing atherosclerotic plaques and avoiding unneces-
sary catheter interventions. The broad use of platelet ag-
gregation inhibitors and anticoagulants may reduce the 
risk of vascular occlusions and tissue ischemia in case CC 
embolism occurs, which probably explains the relatively 
low prevalence of clinical manifestations of CC embolism, 
which are frequently found in autopsy studies. Clinical 
manifestations of CC embolism have crystal clots as the 
primary therapeutic target and may respond to platelet ag-
gregation inhibitors, anticoagulants, and fibrinolytic drugs.

In analogy to other forms of TMA, complement inhibi-
tors may have a future in this context. Animal studies sug-
gest that a single prophylactic dose of necrosis inhibitors 
can increase the window of opportunity for vascular inter-
ventions but if this could implement into the clinical prac-
tice of high- risk patients remains unknown. Nevertheless, 
the availability of an animal model of CC embolism- 
induced ischemic necrosis, tissue infarction, and organ 
failure improves our knowledge about CC embolism.

Like CC embolism syndrome, severe SARS- CoV- 2 infec-
tion involves neutrophils, platelets, and complement activa-
tion in coagulation, organ injury, and immunothrombosis.104 
This process is triggered by the release of proinflammatory 
cytokines, and NET formation, thereby activating platelets 
and enhancing fibrin generation. Despite the viral etiology, 
the composition of the clot, including platelet and fibrin- 
rich thrombi, extracellular DNA, vascular obstruction, tis-
sue damage, and organ injury, shows similarities with CC 
embolism.104,105 Consistently, administrating therapeutic 

doses of anticoagulants was shown to reduce the occurrence 
of thrombotic events and mortality rates in patients with 
moderate SARS- CoV- 2 infection.79 Understanding these 
mechanisms and the impact of anti- inflammatory and anti- 
thrombotic drugs can help to interconnect treatment strate-
gies and propose new modalities for preventing and treating 
immunothrombotic complications.
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