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Abstract
Background: Real-time tumor tracking is one motion management method
to address motion-induced uncertainty. To date, fiducial markers are often
required to reliably track lung tumors with X-ray imaging, which carries risks
of complications and leads to prolonged treatment time. A markerless track-
ing approach is thus desirable. Deep learning-based approaches have shown
promise for markerless tracking, but systematic evaluation and procedures to
investigate applicability in individual cases are missing. Moreover, few efforts
have been made to provide bounding box prediction and mask segmenta-
tion simultaneously, which could allow either rigid or deformable multi-leaf
collimator tracking.
Purpose: The purpose of this study was to implement a deep learning-
based markerless lung tumor tracking model exploiting patient-specific training
which outputs both a bounding box and a mask segmentation simultaneously.
We also aimed to compare the two kinds of predictions and to implement
a specific procedure to understand the feasibility of markerless tracking on
individual cases.
Methods: We first trained a Retina U-Net baseline model on digitally recon-
structed radiographs (DRRs) generated from a public dataset containing 875
CT scans and corresponding lung nodule annotations. Afterwards, we used an
independent cohort of 97 lung patients to develop a patient-specific refinement
procedure. In order to determine the optimal hyperparameters for automatic
patient-specific training, we selected 13 patients for validation where the
baseline model predicted a bounding box on planning CT (PCT)-DRR with inter-
section over union (IoU) with the ground-truth higher than 0.7. The final test set
contained the remaining 84 patients with varying PCT-DRR IoU.For each testing
patient, the baseline model was refined on the PCT-DRR to generate a patient-
specific model, which was then tested on a separate 10-phase 4DCT-DRR to
mimic the intrafraction motion during treatment. A template matching algorithm
served as benchmark model. The testing results were evaluated by four met-
rics: the center of mass (COM) error and the Dice similarity coefficient (DSC)
for segmentation masks, and the center of box (COB) error and the DSC for
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2 MARKERLESS LUNG TUMOR TRACKING WITH DL

bounding box detections. Performance was compared to the benchmark model
including statistical testing for significance.
Results: A PCT-DRR IoU value of 0.2 was shown to be the threshold dividing
inconsistent (68%) and consistent (100%) success (defined as mean bounding
box DSC > 0.6) of PS models on 4DCT-DRRs. Thirty-seven out of the eighty-
four testing cases had a PCT-DRR IoU above 0.2.For these 37 cases, the mean
COM error was 2.6 mm, the mean segmentation DSC was 0.78, the mean COB
error was 2.7 mm, and the mean box DSC was 0.83. Including the validation
cases, the model was applicable to 50 out of 97 patients when using the PCT-
DRR IoU threshold of 0.2.The inference time per frame was 170 ms.The model
outperformed the benchmark model on all metrics, and the comparison was
significant (p < 0.001) over the 37 PCT-DRR IoU > 0.2 cases, but not over the
undifferentiated 84 testing cases.
Conclusions: The implemented patient-specific refinement approach based on
a pre-trained baseline model was shown to be applicable to markerless tumor
tracking in simulated radiographs for lung cases.
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1 INTRODUCTION

Respiratory motion of tumors for lung cancer patients
poses challenges for accurate dose delivery in radio-
therapy. Many motion management methods have
been proposed to address this problem, including
motion encompassment,1,2 respiratory gating,3,4 breath
holding,5,6 forced shallow breathing,7,8 and real-time
tumor tracking.9–11 Real-time tumor tracking requires
accurate knowledge of the tumor position while the dose
is delivered. One of the most used tumor tracking tech-
niques is kV X-ray imaging.12–15 The low soft-tissue
contrast of X-ray images,however,often limits the visibil-
ity of the tumor in projection images.A common solution
is to implant fiducial markers at or near the target
site, and then establish a correspondence between the
highly visible fiducials and the target.16,17 This tracking-
with-markers approach is not ideal, because marker
implantation prolongs the treatment period and is an
invasive procedure incurring risks of complications.18

Furthermore, the potential migration of markers sug-
gested by previous studies adds to the uncertainty of
the prebuilt correspondence between the marker and
the target location.18 Research efforts have been put
into markerless tumor tracking using traditional methods
such as template matching19 and using a correlation
model.20 A study investigating the applicability of mark-
erless tracking for lung cases showed that only 66% of
the already pre-selected patients had passed the initial
tumor visualization test and proceeded to be treated with
this approach.21

In recent years, multiple investigations have started
exploring markerless tumor tracking with kV or MV X-ray
imaging using machine learning-based methods.22–26

Considering the difficulty of collecting a large amount

of data to train generic models, most studies22–25

directly employed a patient-specific approach as the
training strategy.For each patient they trained the model
from scratch on digitally reconstructed radiographs
(DRRs) generated from pre-treatment four-dimensional
computed tomography (4DCT) images of the specific
patient, employing various forms of data augmentation.
Zhao et al. investigated the localization of pancreatic22

and prostate23 tumors on 2D DRRs by using Faster R-
CNN and predicting coordinates of the top-left corner
of target bounding boxes. They interpolated 4DCT data
between phases and randomly split the interpolated
4DCT for training and testing. Zhou et al.26 fine-tuned
a Mask R-CNN model, which was pre-trained on a
non-medical dataset (COCO dataset), on augmented
4DCT-DRRs. They employed a deep leaning-based
model to interpolate directly 4DCT images, and did a
similar split of interpolated data as Zhao et al. Although
their Mask R-CNN model could output both bounding
boxes and segmentation masks, they only evaluated
the performance of the segmentation prediction. Taka-
hashi et al.24 used a fully convolutional neural network
(FCN) and conducted both a digital simulation study
and an epoxy chest phantom study for lung tumor
tracking with the prediction output being pixel-wise
segmentation masks. For their digital simulation study,
they trained on augmented 4DCT-DRRs and tested on
original unaugmented 4DCT-DRRs of the same digi-
tal phantom. Therefore, the generalization capabilities
of the developed model were not specifically tested.
The train/test division of datasets is crucial for the
proper and accurate evaluation of machine learning-
based models, thus it is highly important to ensure
the independence between training and testing data.27

On the other hand, the phantom study carried out by
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MARKERLESS LUNG TUMOR TRACKING WITH DL 3

Takahashi et al. used all 4DCT-DRRs of an epoxy respi-
ratory motion phantom for training and tested on X-ray
images of the same phantom. This type of train/test
scheme would fit well into the current treatment pro-
cedure, nevertheless, this study was limited by the
oversimplified phantom anatomy. Without the need of
performing any interpolation, Sakata et al.25 conducted
a lung tumor tracking study on eight patients exploiting
the extremely randomized trees (ERT) method to pre-
dict segmentation masks.They used all 4DCT-DRRs for
training and tested on incoming fluoroscopic images of
the same patient, which represented treatment scenar-
ios the best.However, for markerless tumor tracking with
kV X-ray imaging, current studies lack prediction and
evaluation of both the target bounding boxes and the
segmentation masks. Attempts to investigate the appli-
cability of the proposed models on individual cases are
also missing.

In this paper, we aimed to emulate real-time tumor
tracking on in-room kV X-ray images by tracking tumors
in anterior-posterior DRRs as a first step to examine the
feasibility of simultaneously detecting and segmenting
the target. To this purpose, we trained and evaluated a
Retina U-Net model for markerless lung tumor tracking,
which is able to output simultaneously both the target
bounding boxes and the segmentation masks to provide
redundant information for tracking. A bounding box pre-
diction provides the two-dimensional coordinates of a
rectangular box enclosing the detected target along with
a predicted class label for the target, fulfilling the task
of object detection. A segmentation mask, on the other
hand,gives a pixel-wise classification on the input image
separating the foreground object from the background.
Having both types of predictions allows for better flex-
ibility for dynamic multi-leaf collimator (MLC) tracking.
For rigid target motion, prediction of the target bounding
box is sufficient for adapting the MLC aperture;whereas
for cases where the target deforms while moving, pre-
diction of the target mask conforming to the target’s
changing shape is required. We chose the Retina U-Net
architecture for this, which combines object detection
and segmentation tasks by adding additional semantic
segmentation supervision to its feature extractor.

While other works used the same motion pattern
contained in 4DCT data for training and testing,we sepa-
rated the two by using DRRs from 4DCT data exclusively
for testing while using DRRs from 3D planning CT (PCT)
data for training. In general, two methodologies are pos-
sible for developing models for tumor motion tracking:
one is to develop a general prediction model that is appli-
cable to all patients, the other is to develop a systematic
approach to produce models customized and applicable
to each patient individually. A hybrid method combin-
ing both has also been previously examined.28 Having
a general model ready to work at any time requires less
efforts and time compared to the necessity of adapt-
ing the patient-specific approach to each patient before

treatment. Also, a general model likely has been tested
on many data before application, as opposed to a newly
created patient-specific model. On the other hand, given
that in radiotherapy patients’ pre-treatment data such
as the PCT are usually available, taking advantage of
such prior knowledge to create a patient-specific model
might yield a performance superior to what a generic
model could achieve. In the present study, we devel-
oped patient-specific models by individually fine tuning
a baseline model, that was trained on a large pub-
lic dataset, on DRRs from a given patient’s 3D PCT
image which would be available prior to treatment in a
clinical workflow.

2 MATERIALS AND METHODS

2.1 Datasets

Two separate datasets were used for training the base-
line and patient-specific models. The first dataset was
a public dataset, the Lung Imaging Database Con-
sortium (LIDC),29 that contained 875 CT scans and
corresponding lung nodule annotations. The CT scans
have varying voxel size and CT physical extent but
were resampled to the same voxel size of 0.7 mm× 0.7
mm × 1.25 mm before being used (while preserving
their physical extent). Originally, the LIDC dataset has
multiple versions of annotation for the same nodule,
which were drawn by multiple radiologists separately.
Since inter-observer variability is out of scope of this
study, we randomly selected one annotation for each
nodule as the ground-truth segmentation label.

The second dataset was a cohort of 97 lung-cancer
patients treated at the University Hospital of LMU
Munich. For each of the 97 patients, the dataset con-
tained a PCT with its corresponding gross tumor volume
(GTV) segmentation, and a 10-phase 4DCT. All CT vol-
umes had a voxel size of 1.074 mm × 1.074 mm ×

3 mm in left-right (LR), anterior-posterior (AP), and
superior-inferior (SI) directions. Their voxel arrays had a
size of 512 × 512 in LR and AP directions, and varying
sizes in SI direction. The 97 patients were selected so
that the volumes of their GTVs were between 725 and
26485 mm3, which were respectively the minimal and
maximal volumes of LIDC nodules used during baseline
model training (see section 2.4). We performed B-spline
deformable image registration between PCT and 4DCT
to warp the GTV segmentations of PCT to those of
4DCT (see details in Table A-1 in the supplementary
materials).

2.2 Radiograph simulation

To prepare data for training and testing, all CT volumes
were forward projected into simulated X-ray images,
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4 MARKERLESS LUNG TUMOR TRACKING WITH DL

DRRs, using the open-source software Reconstruc-
tion Toolkit (RTK).30 Before simulation, the Hounsfield
unit (HU) values of the CT volumes were converted
to their corresponding relative attenuation coefficients
according to the formula:

𝜇material

𝜇water
= 0.001 × HU + 1 (1)

where 𝜇material and 𝜇water represent the attenuation coef-
ficients for the material and water respectively.Geometry
settings for the simulation, except the projection angle,
were taken from the ExacTrac Dynamic (Brainlab,
Munich, Germany) X-ray imaging system in our clinic,
which could be used in the future for lung-cancer mark-
erless tracking. The source-to-isocenter distance was
set to 2190 mm, and the source-to-detector distance
was 3509 mm. In this proof of principle study, we chose
0◦ as the projection angle rather than the oblique angles
of the actual imaging system. The detector panel has a
size of 768 × 768 pixels with a pixel size of 0.388 mm×

0.388 mm after a 2 × 2 binning. To get a larger field of
view of the lungs and more patches for our patch-based
training, we chose to simulate DRRs with a double size
of 1536× 1536 in pixels and the same pixel size of 0.388
mm× 0.388 mm. The chosen model architecture of this
study,explained in the next section, can work with DRRs
of any size larger than the patch size (see section 2.4.3
for more details on patch size). At the time of testing
the model, a single patch of size similar to the clinical
detector size was used.

2.3 Model architecture and training
strategy

We used Retina U-Net31 as the model architecture for
the target localization and segmentation task. Retina
U-Net is a one-stage detector, which is able to fuse
an object detection task with a semantic segmenta-
tion task by adding additional segmentation supervision
signals to the feature pyramid network. Its loss func-
tion is composed of three parts: cross-entropy loss for
the classification task, smooth L1 loss for the bound-
ing box regression task, and cross-entropy and soft
Dice loss with equal weights for the segmentation task.
Compared to a regular Retina Net, Retina U-Net has
an additional segmentation loss, which is shown in
Equation (2).

Lseg = LCE −
2|K|

∑
k∈K

∑
i∈Iui,kvi,k∑

i∈Iui,k +
∑

i∈Ivi,k
,

LCE =

{
− log(p) if y = 1

− log(1 − p) otherwise

(2)

where Lseg is the total segmentation loss and LCE rep-
resents the cross-entropy loss with y being a binary
indicator (which is assigned as 1, representing the con-
dition “True”, when the class label is correctly predicted)
and p being the output probability for the class.The sec-
ond term of the total segmentation loss represents the
soft Dice similarity coefficient (DSC) loss (calculated as
1 - DSC), where u is the network’s softmax output and v
is the ground-truth segmentation map in one-hot encod-
ing. u and v have the same shape of I × K with I being
the total number of pixels and K being the number of
classes. The notations, ui,k and vi,k , respectively repre-
sent the i-th pixel for class k in the softmax output and
in the ground-truth one-hot segmentation map.

The input to the model was an image and the out-
put was a target bounding box, a class label along with
confidence score, and a segmentation mask. Figure 1
illustrates the network architecture that can be divided
into three parts. The first part is the feature extractor on
the left, which is built on a symmetric Feature Pyramid
Network (FPN). In Retina U-Net, the FPN is extended
to a full U-Net by adding high resolution pyramid lev-
els enabling the output of a segmentation mask. As
the backbone of the entire network, the FPN extracts
convolutional features from the input image at different
resolution levels (from highest at the bottom to lowest
at the top). Two parallel sub-networks, one for classi-
fication and the other for box regression, are attached
to coarser pyramid levels of the FPN. At inference time
the final bounding box prediction is obtained by merging
and thresholding predictions made on all levels via the
weighted box clustering algorithm.31

In this study only one class, i.e. tumor, is of inter-
est and was labeled as 1 (background as 0). We
used the 2D version of the model since DRRs are
two-dimensional projection images. We used the code
shared by Jaeger on github https://github.com/MIC-
DKFZ/medicaldetectiontoolkit and performed minor
adaptations to enable access to the segmentation
object. We also added post-processing steps for seg-
mentation, which included first performing a connected
component analysis, then filtering out pixels that were
not connected to any pixels inside the predicted
bounding boxes, and finally binary hole filling, closing
and opening.

The training was done in two stages: (1) We first
trained a baseline model using patient data in the LIDC
dataset. (2) Then we refined the baseline model for each
hospital patient by continuing training using patient-
specific 3D PCT-DRRs only. 4DCT-DRRs were never
used for training the model weights.

The code for training, validating and testing was
implemented within an NVIDIA CUDA docker container
(Docker 20.10.12, CUDA 9.0, cuDNN 7.6) that has
PyTorch 0.4.1 and Python 3.6 installed.The experiments
were ran on a server equipped with 376 GB of RAM, an
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MARKERLESS LUNG TUMOR TRACKING WITH DL 5

F IGURE 1 Network architecture. The network input on the left is a 2D DRR. The outputs consist of bounding boxes with labels and scores
on the rightmost part of the figure, as well as a 2D segmentation mask at the end of the decoding arm. Only one of the four classification and
box subnets has been expanded for better visibility. DRR, digitally reconstructed radiograph.

Intel Xeon Gold 6254 CPU (3.10 GHz, 36 cores), and an
NVIDIA Quadro RTX 8000 GPU (48 GB).

2.4 Training of baseline model

2.4.1 Training data selection

To explore the feasibility of detecting tumors on DRRs
with Retina U-Net, we first targeted high-visibility cases
from the LIDC data defined by two criteria: (1) The
tumor volume was greater than 700 mm3. (2) The tumor
had a good contrast against its background in DRRs,
which was subjectively judged by visually checking
all the DRRs. Of 2625 distinct LIDC nodules, approxi-
mately 14% satisfied the volume criterion, and of these
volume-filtered nodules, around 22% passed the visual
inspection. Finally, we selected 82 patients with high-
visibility tumors among 863 LIDC patients (12 patients
had cone beam computed tomography scans and were
excluded).

2.4.2 Data augmentation

Given the small remaining dataset size and inspired by
Schultheiss et al.,32 we synthesized a larger amount of
CT volumes with nodules that matched both the vol-
ume and contrast standards by inserting nodules of
those high-visibility patients into CT volumes of other
low-visibility patients. The procedure is illustrated in
Figure 2. Before insertion, nodules from the 82 high-
visibility cases were extracted from their original CT
volumes and split into two pools: 80% training and 20%
validation. In parallel, CT volumes of the rest of the 781
low-visibility cases first went through nodule removal,
in which voxel values of nodules were replaced with
normal lung tissue’s HU value of −850. Then their
nodule-free CTs were divided into training and validation
pools according to the same 80:20 ratio. Nodules in the
training pool were only inserted into CT volumes of the
training pool,and the same for the validation pool.All CT

volumes and nodules were resampled to have the same
voxel size of 0.7 mm× 0.7 mm × 1.25 mm.

Upon insertion, nodules were randomly scaled by a
ratio within 0.9 and 1.2, randomly rotated within 0◦ to
360◦ in all three axes, and inserted at a randomly sam-
pled location within the lung mask of the selected CT
volume. These lung masks were eroded with a kernel
radius of 20 × 20 × 20 pixels to ensure that nodules
stayed properly within the lungs and were not too close
to the mediastinal region after insertion. To mimic the
natural nodule number distribution in the original LIDC
dataset, 80%, 15%, and 5% of the clean CT volumes
were inserted with 1, 2, or 3 nodules, respectively. The
nodule-only masks for the synthetic CT volumes were
obtained by padding the much smaller binary nodule
masks extracted before insertion to the same size of
their corresponding inserted CTs and setting their new
origin coordinates as those of the inserted CTs.

After insertion, all synthetic CT volumes and their cor-
responding nodule masks were forward projected to
generate DRRs and their nodule segmentations, which
were then screened by their nodules’ foreground-to-
background contrast in the projection image to ensure
high visibility. The foreground-to-background contrast
was calculated as the difference between the median
pixel values of the nodule foreground and the nodule’s
surrounding background region (defined by a bounding
box centered at the nodule center with its length and
width being 1.2 times the nodule’s length and width).
Only DRRs with contrasts higher than 5.0 were used for
baseline model training, which amounts to 61% of the
total generated DRRs.

In total, we generated 15 452 synthetic DRRs with
corresponding nodule masks for training and 1429 for
validation.At train-time the input further went through an
on-the-fly augmentation pipeline consisting of rotation,
scaling, and elastic deformation, using the python pack-
age Batchgenerators.33 The rotation angle was between
0◦ and 360◦ and the scaling range was between 0.8
and 1.1. For elastic deformation, we used the default
parameters for alpha and sigma as (0, 1500) and (30,
50).34 Values were randomly sampled from the given
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6 MARKERLESS LUNG TUMOR TRACKING WITH DL

F IGURE 2 An example of the nodule insertion procedure.

intervals during augmentation. The generated DRRs
had a pixel intensity range of 0 to 300, and no intensity
normalization was involved.

2.4.3 Training and validation

To account for the potential discrepancy between origi-
nal LIDC data and synthesized LIDC data,we introduced
another validation set composed of 16 unmodified LIDC
patients, who were from the 20% validation pool of
the initial 82 high-visibility patients. This unmodified
validation set served as an indicator of how well the
baseline model will work on DRRs of unmodified CT
scans.

The input DRRs had a size of 1536 × 1536 in
pixels. Since the model’s prediction is patched-based,
cropping of the input images would become neces-
sary when a patch size different from the input image
size is selected. For the baseline model, we tuned the
following hyperparameters: the image patch size, the
learning rate, the matching IoU threshold, image inten-
sity clipping, and augmentation probability. After tuning
the baseline model hyperparameters, we set the pre-
crop size to 700 × 700 and the patch size to 672 ×

672. At runtime, the data loading pipeline first cropped
every 1536 × 1536 input image into nine sub-images of
size 700 × 700 with overlap between each other, then
sampled these sub-images to make a training batch
with a 50:50 balance between target-containing and
non-target-containing patches. Afterwards, during the
on-the-fly data augmentation, the pre-cropped patches
were centrally cropped to slightly smaller patches of size
672 × 672. The second cropping avoids potential bor-
der artifacts induced by the spatial augmentation. The
Adam optimizer was used and the learning rate was set
to 0.0001. The matching intersection over union (IoU),
defined as the overlapping area of the predicted and the

ground-truth target bounding boxes over the combined
area of the two boxes, was set to 0.1. This hyperparam-
eter is used during training, where the evaluation of the
Retina U-Net classification loss function assumes true
positive detection for IoU > 0.1.

The baseline model was evaluated in terms of aver-
age precision (AP) and detection accuracy. AP is a
commonly used metric for object detection tasks and
captures the precision-recall curve. It is defined as
the weighted sum of precisions at each confidence
score threshold with the weights being the increase in
recall from the previous score threshold, as described in
Equation (3):

AP =
∑

n
(Rn − Rn−1)Pn (3)

where Pn denotes the precision determined at con-
fidence score threshold n, and Rn and Rn−1 are
respectively the recalls at score threshold n and n-
1. The other metric, detection accuracy, is defined as
the percentage of tumors detected with IoU higher
than the matching IoU per patient. Among positive
detections, the mean absolute error of centers of pre-
dicted boxes, the mean distance between centers of
mass (COM) and the DSC between ground-truth and
predicted segmentations were further evaluated.

2.5 Training and testing of
patient-specific models

2.5.1 Evaluation metrics

For patient-specific models, we focused on metrics that
are more relevant to the tracking purpose of this study:
center of mass (COM) error for segmentation pre-
diction, center of box (COB) error for box prediction,
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MARKERLESS LUNG TUMOR TRACKING WITH DL 7

and DSC for both box and segmentation predictions.
The COM error (the COB error) was calculated as
the Euclidean distance at isocenter plane between pre-
dicted and ground-truth (GT) segmentations (bounding
boxes).

2.5.2 Data partition

The second LMU dataset containing 97 patients was
used for investigating a scheme of patient-specific train-
ing. The baseline model was applied to each of the 97
patients’ PCT-DRR. For each patient, we recorded the
IoU value with which the baseline model detected the
tumor in the PCT-DRR. We labelled this as the PCT-
DRR IoU. In the scenario of tracking tumors in real time
on kV X-ray images,no X-ray images are acquired at the
treatment planning stage. Because of this, the patient-
specific training procedure cannot be validated during
training and needs to be fully automated in order to be
meaningful for clinical scenarios. This necessitates find-
ing optimal hyperparameters for patient-specific training
prior to final testing, similar to the idea explored by Teo
et al.28 Hence,we selected 13 patients with higher PCT-
DRR IoU (all greater than 0.7) among the 97 patients
for hyperparameter tuning and validation of the patient-
specific training approach. We chose this relatively high
IoU threshold to ensure that hyperparameter selection
was not biased by cases for which tracking is not pos-
sible. The 84 remaining patients, with PCT-DRR IoU
ranging from 0.0 to 0.9, were reserved for final testing.
The four evaluation metrics were calculated respectively
per PCT-DRR IoU intervals of 0.1 width.

2.5.3 Training and hyperparameter tuning

Each incoming patient’s PCT-DRR and its tumor seg-
mentation mask were taken as input by the already
pre-trained baseline model for patient-specific fine-
tuning. The single image went through the same
augmentation pipeline as that of the baseline model
training (see section 2.4.2) on the fly, but with slightly
different parameters for rotation and elastic deforma-
tion. The maximal rotation angle was limited to 10◦ for
all patient-specific training. A refined model specific to
a given patient was obtained at the end of the patient-
specific training. Afterwards, to simulate the tracking
scenario, the patient-specific model was applied on the
10-phase 4DCT-DRRs, which were obtained from the
10-phase 4DCT through forward projection. Figure 3
describes the complete procedure.

As explained in section 2.5.2, hyperparameters
should be shared across all patients. To search for the
optimal set of hyperparameters,we experimented on 13
patients to determine the best learning rate, magnitude
of elastic deformation during augmentation and num-

ber of epochs for patient-specific training. Essentially,
we evaluated the average performance on the 4DCT-
DRRs of the 13 patients for different combinations of
hyperparameters and chose the best configuration for
final testing using the metrics mentioned above.

2.5.4 Testing

Following the procedure shown in Figure 3, we refined
the baseline model on each of the 84 remaining test-set
patients’ PCT-DRR using the pre-determined hyperpa-
rameters, and finally tested on their 4DCT-DRRs. To
speed up the inference step, 4DCT-DRRs were directly
cropped to the patch size of 672 × 672 beforehand while
keeping the image center unchanged. This choice of
patch size was optimized at the baseline model stage
and it does not differ much from the regular image size
768 × 768 of our X-ray imaging system after binning.

2.5.5 Benchmarking

As a benchmark, we implemented the template match-
ing method with fast normalized cross-correlation (using
the Python package scikit-image35). For each of the
84 test-set patients, the PCT-DRR and its ground-truth
tumor segmentation mask were used to extract the
bounding box template for the patient. At test time, the
location in the testing image that had the highest cross-
correlation value with the pre-extracted template was
computed and considered as the location of the bound-
ing box. The method was tested on the same 84 test-set
patients’ 4DCT-DRRs and evaluated in terms of COB
errors and box DSC for the resulting box predictions.
The COB error per phase and the box DSC per phase
were calculated and compared via boxplots for patient-
specific models and the template matching method,and
for two groups of test-set patients: the full group of 84
patients and the subgroup made up of 37 patients with
PCT-DRR IoU > 0.2.The Wilcoxon signed-rank test was
performed on the paired per-phase results for the two
methods in order to test the statistical significance.

3 RESULTS

As presented in Figure 4,over the course of training, the
baseline model showed slight overfitting in terms of total
loss and no overfitting in terms of AP on the unmodified
LIDC validation set. The baseline model reached an AP
of 69% and a detection accuracy of 71% on the unmodi-
fied validation set that included 16 LIDC patients and 21
nodules in total. Figure 5 showcases two success/miss
examples of the model’s predictions on two patients
from the unmodified validation set. The top row shows
a successful case where the baseline model correctly
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8 MARKERLESS LUNG TUMOR TRACKING WITH DL

F IGURE 3 The patient-specific training procedure.

F IGURE 4 Loss curves (solid lines) and AP curves (dashed lines) for the training set (blue), the validation set (orange), and the unmodified
validation set (green) over baseline training epochs. AP, anterior-posterior.

identified all three of the nodules present in this patient
with relatively high confidence scores. Predictions for
the two nodules in the lower part show good agreement
with the ground truth for both boxes (2.2 mm and 1.7
mm for COB distance, respectively) and contours (0.78
and 0.77 for DSC, respectively). Prediction for the nod-
ule at the top was slightly shifted upwards compared to
the ground-truth, and its confidence score, 79, is lower
than those of the other two nodules, which are both
very close to the full score of 100. The bottom row
shows a failed case where the baseline model missed
the true target located at the patient’s right lung and
incorrectly predicted an oval-shaped structure in the
DRR in the lower left lung as target. Among all true
positive detections of the 16 LIDC validation patients,
the mean absolute COB error was 1.5 and 2.1 mm in
left-right and superior-inferior directions, the mean COM

distance calculated from the segmentation was 3.0 mm
and the mean segmentation DSC was 0.71.

For a consistent training setup of patient-specific (PS)
models, the hyperparameter tuning results suggested a
learning rate of 1e-5, an alpha of 1500 for deforma-
tion augmentation, and a patient-specific training epoch
number of 15. With these parameters, 84 PS models
were trained for each of the 84 test-set patients and then
tested on these patients’ respective 10-phase 4DCT-
DRRs. The inference time per frame running on an
Nvidia GPU (Quadro RTX 8000 with 48 GB of memory)
was approximately 170 ms.

All PS models and the baseline model were applied on
patients’10-phase 4DCT-DRRs.Figure 6 shows the fail-
ure/success occurrences for baseline and PS models on
84 test-set patients individually,excluding the 13 patients
selected for fine tuning experiments in section 2.5.3.
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MARKERLESS LUNG TUMOR TRACKING WITH DL 9

F IGURE 5 Examples of predictions made by the baseline
model. Top and bottom rows show a successful case and a missed
case, respectively. Ground-truth bounding boxes and segmentation
contours are drawn in red; predicted bounding boxes and contours in
blue; ground-truth/predicted centers of mass are drawn as
greed/yellow crosses respectively. Numbers next to the boxes
represent the nodule’s class label, which is always 1 in this case. For
predicted boxes, the confidence score related to the detection
ranging from 0 to 100 is given next to the class label. All images
shown in this figure have a size of 1536 × 1536 in pixels.

Specifically in this figure, we defined the failed condi-
tion as having the mean box DSC averaged over the
patient’s 10 4DCT phases lower than or equal to 0.6.
One can observe from the figure that while the baseline
model failed on some cases, PS models could improve
performance for several cases. To determine for which
patient PS tracking is successful, we established an IoU
threshold of 0.2,above which there were no failed cases
in Figure 6. For cases below the threshold, the base-
line model failed on all patients except one, and the PS
models succeeded in 32 out of 47 patients (68%).

The performance of PS models was further evalu-
ated in terms of the four metrics averaged over the 10
4DCT phases of each patient and over patients within
each PCT-DRR IoU interval. The results are presented
in Table 1 and Table 2. Table 1 presents results for the
test-set patients with PCT-DRR IoU threshold of 0.2 (37
cases). Further details of these 37 patients are summa-
rized in Table B-2 in the supplementary materials. 30
out of 37 patients’ PCT-DRR IoUs fell within the middle
range between 0.3 and 0.7,with (0.5,0.6] being the most
populated interval,and all patients’ IoUs were below 0.9.
All seven IoU groups above 0.2 gave similar results. On
average, for the 37 cases, the mean COM error was
2.6 mm, mean segmentation DSC was 0.78, mean COB
error was 2.7 mm, and mean box DSC was 0.83.

TABLE 1 Testing results of patient-specific models on
4DCT-DRRs for various PCT-DRR IoU groups (above 0.2) of
patients. Best results of evaluation metrics are highlighted in bold.

PCT-DRR
IoU
interval

Number
of
patients

Mean
COM
error
[mm]

Mean
seg.
DSC

Mean
COB
error
[mm]

Mean
box
DSC

(0.2, 0.3] 2 1.9 0.74 2.6 0.72

(0.3, 0.4] 6 2.3 0.80 2.2 0.84

(0.4, 0.5] 7 2.9 0.76 3.1 0.83

(0.5, 0.6] 12 2.4 0.79 2.5 0.85

(0.6, 0.7] 5 3.4 0.70 3.2 0.76

(0.7, 0.8] 4 2.2 0.84 2.6 0.87

(0.8, 0.9] 1 3.4 0.83 3.4 0.88

(0.2, 0.9] 37 2.6 0.78 2.7 0.83

Abbreviations: 4DCT, four-dimensional computed tomography; COB, center of
box; COM, center of mass; DRR, digitally reconstructed radiograph; DSC, Dice
similarity coefficient; IoU, intersection over union; PCT, planning CT.

TABLE 2 Testing results of patient-specific models on
4DCT-DRRs for patients with PCT-DRR IoU below 0.2. Patients were
separated into two groups representing failure and success
respectively: mean box DSC ≤ 0.6 and mean box DSC > 0.6.

Mean box
DSC
interval

Number
of
patients

Mean
COM
error
[mm]

Mean
seg.
DSC

Mean
COB
error
[mm]

Mean
box
DSC

(0., 0.6] 15 29.2 0.22 61.6 0.22

(0.6, 1.0] 32 3.0 0.70 2.8 0.81

(0., 1.0] 47 11.0 0.54 21.5 0.62

Abbreviations: 4DCT, four-dimensional computed tomography; COB, center of
box; COM, center of mass; DRR, digitally reconstructed radiograph; DSC, Dice
similarity coefficient; IoU, intersection over union; PCT, planning CT.

Testing results of PS models on the remaining 47 test-
set patients with PCT-DRR IoU in the [0,0.2] interval are
presented in Table 2. These cases were further divided
into two groups according to their mean box DSC aver-
aged over 4DCT phases representing failure (mean box
DSC below 0.6) and success (mean box DSC above
0.6) respectively. The 15 failed cases (DSC ≤ 0.6) had
notably worse performance for all four metrics. For the
other 32 cases (mean box DSC > 0.6) where PS models
succeeded, PS models achieved a fairly good perfor-
mance (second row):mean COM error of 3.0 mm,mean
seg.DSC of 0.70,mean COB error of 2.8 mm,mean box
DSC of 0.81. The last two box-related scores were even
comparable to those for the PCT-DRR IoU interval (0.2,
0.9] (mean COB error at 2.7 mm,mean box DSC at 0.83,
as listed in the last row of Table 1).

Since several PS models failed on the low PCT-DRR
IoU group [0, 0.2], the rest of the testing results will only
be shown for patients with PCT-DRR IoU above 0.2.

The comparison of testing results using the base-
line model (in blue) and patient-specific (in orange)
models are illustrated in Figure 7. PS models clearly
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10 MARKERLESS LUNG TUMOR TRACKING WITH DL

F IGURE 6 Baseline vs PS models in terms of mean box DSC averaged over the 10 4DCT-DRR phases for each patient. Every rectangular
tile represents one patient tracked by the baseline or the PS model. Patients are lined up from left to right along the x axis in ascending order of
PCT-DRR IoU. Top row represents patients with PCT-DRR IoU ≤ 0.2 (totaling 47) and bottom represents those with PCT-DRR IoU > 0.2
(totaling 37). Patients tracked with mean box DSC > 0.6 were considered success and marked as green tiles; patients tracked with mean box
DSC ≤ to 0.6 were considered failures and marked as red tiles. 4DCT, four-dimensional computed tomography; DRR, digitally reconstructed
radiograph; DSC, Dice similarity coefficient; IoU, intersection over union; PCT, planning CT; PS, patient-specific.

F IGURE 7 Comparison between testing results on 4DCT-DRRs of baseline model (blue) and PS models (orange) by PCT-DRR IoU
intervals. Top left: COM errors calculated from segmentations on 4DCT-DRRs, the black arrow next to the blue box at the (0.6, 0.7] interval
signifies that the baseline’s maximal COM error went up to 50 mm, bottom left: DSC between ground-truth and predicted segmentation, top
right: COB errors for bounding box detection, bottom right: DSC between ground-truth and predicted boxes for bounding box detection. 4DCT,
four-dimensional computed tomography; COB, center of box; COM, center of mass; DRR, digitally reconstructed radiograph; DSC, Dice similarity
coefficient; IoU, intersection over union; PCT, planning CT; PS, patient-specific.

outperformed the baseline model in all aspects, except
being slightly worse in the (0.7, 0.8] interval for mean
COB errors. The maximal mean COM errors in the
interval (0.6, 0.7] ranged up to 50 mm for the baseline
model. At higher IoU intervals above 0.7, the baseline
model and PS models had comparably good perfor-
mance on all four metrics. Overall, the baseline model
had higher accuracy in box detection (blue in the right
column) than in segmentation (blue in the left column),
while PS models performed similarly in both tasks.

To demonstrate lung tumor tracking with PS mod-
els using 4DCT-DRRs, Figure 8 shows three examples

of patients for the start and end of exhalation. These
three patients were selected based on the per-patient
analysis of box DSC over 10 phases (Figure 9) so
that they respectively represent good (Patient 23, mean
box DSC: 0.91), average (Patient 30, mean box DSC:
0.81), and poor (Patient 17, mean box DSC: 0.61)
box agreement to the ground truth. Patient 23 showed
consistently good box alignment with the ground-truth
boxes across phases, although its segmentation predic-
tions suffered from artifacts near the end of exhalation
around the lower boundary of the tumor. Patient 30,
on the other hand, had compromised box agreement
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MARKERLESS LUNG TUMOR TRACKING WITH DL 11

F IGURE 8 Examples of predictions on 4DCT-DRRs made by PS models. DRRs overlaid with bounding boxes (first and third columns) or
segmentations (second and fourth columns) of patients 23, 30, and 17, respectively, showcasing good, medium, and bad cases, are plotted in
top, middle, and bottom rows. Ground-truth segmentation (boxes) and COM are shown as red contours (boxes) and green crosses; predicted
segmentation (boxes) and COM as blue contours (boxes) and yellow crosses. The first two and the last two columns respectively represent the
start and end of exhalation phases of the 10-phase 4DCT-DRRs. To aid the illustration of tumor motion, cyan lines were drawn at the same
location in each image of the same patient. All images shown in this figure have a size of 672 × 672 in pixels. 4DCT, four-dimensional computed
tomography; COM, centers of mass; DRR, digitally reconstructed radiograph; PS, patient-specific.

near the start of exhalation, while its predicted and
ground-truth segmentation contours, as well as their
centers of mass,consistently followed each other across
phases, regardless of the obscured tumor location by
the heart. Patient 17 in the bottom row represents
one of the worst cases, where predictions of both
boxes and segmentations exhibited different degrees
of overall upward shift across phases. Sizes of pre-
dicted boxes and shapes of predicted segmentation
contours in general correspond to those of the ground
truth. Full animation of all 10 phases of the three
patients are available in the supplementary materials
(see Figures B-4, B-5, B-6). Figures reporting the PS
models’ performance per patient for the other three
evaluation metrics are also provided in the supplemen-
tary materials (see Figures B-1, B-2, B-3). In general,

no correlation between the motion amplitude and the
performance of any evaluation metric was found.

Figure 10 compares the performance of PS models
and the template matching method for the whole group
of test-set patients (top row) and for a subset,37 in total,
of the test-set patients that have been identified before
by their PCT-DRR IoU value (>0.2).Over the 84 test-set
patients,PS models had slightly better accuracy than the
template matching method but the differences were not
significant, with its median COB error at 2.7 mm com-
pared to 3.0 mm for template matching and median of
box DSC at 0.82 compared to 0.80. Over the 37 test-
set patients, PS models showed significantly better (p <
0.001) accuracy than the template matching method for
both metrics, with its median COB error at 2.3 mm ver-
sus 3.0 mm for the template matching method, and its
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12 MARKERLESS LUNG TUMOR TRACKING WITH DL

F IGURE 9 Box DSC of PS models evaluated for the 10 phases of 4DCT-DRRs per patient (for patients with PCT-DRR IoU > 0.2). Boxes
are colored in terms of patients’ motion amplitude in the coronal projection plane (calculated as the Euclidean distance formed of LR motion
and SI motion). The patient index ranges over the number of cases which passed the PCT-DRR IoU threshold of 0.2. 4DCT, four-dimensional
computed tomography; COB, center of box; COM, center of mass; DRR, digitally reconstructed radiograph; DSC, Dice similarity coefficient; IoU,
intersection over union; PCT, planning CT LR, left-right; PS, patient-specific; SI, superior-inferior.

F IGURE 10 Comparison between testing results on 4DCT-DRRs of PS models (blue) and the TM method (orange). Top row: COB error
(left) and box DSC (right) per phase and per patient for all 84 test-set patients. Bottom row: COB error (left) and box DSC (right) per phase and
per patient for a subset of test-set patients, 37 in total, that had PCT-DRR IoU > 0.2. 4DCT, four-dimensional computed tomography; COB,
center of box; DRR, digitally reconstructed radiograph; DSC, Dice similarity coefficient; IoU, intersection over union; PCT, planning CT; PS,
patient-specific; TM, template matching.

 24734209, 0, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16705 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [31/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MARKERLESS LUNG TUMOR TRACKING WITH DL 13

median box DSC at 0.84 versus 0.82. PS models also
achieved a better robustness on this subset than the
template matching method, having a smaller spread of
data points for both metrics.

4 DISCUSSION

In this study, we implemented a markerless lung tumor
tracking approach that performs simultaneous bound-
ing box detection and target segmentation using retina
U-Net, which was never tried before. We trained the
model on public data serving as the baseline, then
developed a patient-specific refinement procedure of
this baseline model to check the applicability of the
approach, and finally evaluated the performance of the
resulting PS models.

According to the testing results, the PCT-DRR IoU
threshold of 0.2 was an effective predictor of PS mod-
els’ performance on patients’ 4DCT-DRRs. It is worth
pointing out that the PCT-DRR IoU threshold 0.2 and the
matching IoU threshold 0.1 mentioned in section 2.4.3
have different meanings and were used differently. The
PCT-DRR IoU value for a patient is an evaluation of the
baseline model’s performance on this specific patient,
and 0.2 is the threshold where we observed consistent
performance of PS models on 4DCT-DRRs.The match-
ing IoU threshold, on the other hand, was used during
training to determine whether a detection made by the
model was true positive. A lower value of matching IoU
could lead to a lower accuracy of the box coordinates
(COB error) but higher average precision and detection
accuracy. The value 0.1 not only was in agreement with
Jaeger et al.,31 but also was chosen partly because it
was the best result of our fine tuning and partly because
once the baseline managed to roughly locate the target
in as many cases as possible, the subsequent patient-
specific training could help boost the accuracy,rendering
more cases trackable.

The PCT-DRR IoU threshold thus served as a good
criterion for selecting patients suitable to track with the
PS models. Quantitatively, for patients with PCT-DRR
IoU higher than 0.2 and tumor volumes greater than 700
mm3, PS models could achieve on average a segmen-
tation COM error of 2.6 mm and a segmentation DSC
of 0.78. To put the results into perspective, the median
inter-observer DSC of multiple LIDC nodule annotations
was 0.90, which represents the variation of the nodule
annotations randomly selected as ground truth to feed
into the baseline model and can be considered the upper
limit of the model performance. Since we can iden-
tify and exclude patients having PCT-DRR IoU lower
than 0.2 prior to treatment, applying the baseline model
on patients’ PCT-DRR provides certain confidence in
the performance of PS models. 37 out of the 84 test-
ing patients had a PCT-DRR IoU higher than 0.2. By
adding the 13 validation patients with PCT-DRR IoUs
higher than 0.7 chosen for hyperparameter fine tuning,

it amounts to 50 patients in total, out of the cohort of 97
lung-cancer patients pre-selected based on their tumor
sizes. This means our model was applicable to 52%
of the patients with tumor volume within the volume
range of LIDC nodules. This percentage is lower than
the successful tumor visualization rate (66%) reported
by Bahig et al.,21 but they performed a much more rig-
orous patient pre-selection than a bare volume filtering,
where every patient case was discussed and chosen
by a professional group composed of physicians and
physicists based on multiple aspects and staff experi-
ence. Considering the 37 test patients in the PCT-DRR
IoU range above 0.2, patients were primarily concen-
trated in the middle range between 0.4 and 0.7. This
uneven distribution was partly caused by the fact that
prior to testing, we reserved 13 high PCT-DRR-IoU (>
0.7) patients for hyperparameters tuning and validation
due to limited computational resources. Consequently, it
is possible that insufficient data points in the high PCT-
DRR IoU range skewed the conclusion on PS models’
performance in this range. Additionally, statistics in the
low IoU range [0, 0.2] also suggest that many patients
(up to 68% or 32 cases) below the threshold of 0.2 could
be salvaged in case they could be identified in advance,
for example, when X-ray images would be available for
testing so that patients’ 4DCT-DRRs can be used to
verify PS models’ performance.

The evaluation results of PS models per IoU
interval (Table 1) exhibited an overall similar perfor-
mance between segmentation and box detection.During
the post-processing of segmentation predictions, fore-
ground pixels that were isolated from the predicted
bounding box region were filtered out to force agreement
between segmentation and box detection. The decision
of outweighing the validity of the box detection over that
of the segmentation throughout the study was based
on the fact that the model architecture, Retina U-Net,
was originally proposed for the task of detection and
categorization rather than semantic segmentation. The
addition of the auxiliary segmentation task was pro-
posed by Jaeger et al.31 to improve the detection and
categorization performance. It is therefore expected that
the box detection is slightly more robust than the seg-
mentation over 4DCT phases, which is confirmed by the
smaller average standard deviation for the box DSC (at
0.37) across the 37 patients (PCT-DRR IoU above 0.2)
compared to that of the segmentation DSC (at 0.45).
On the other hand, the readily available box detection
can be considered as an alternative choice for tracking,
especially when the segmentation fails,which happened
once in one phase of a patient (Patient 32 in Figures 7,
B-1, B-2, B-3) where the predicted segmentation mask
had zero foreground pixel.

The benchmarking experiment against the template
matching method revealed that when considering
the broader, more generic patient groups without any
prior patient differentiation, our approach did not sig-
nificantly outperform the template matching method.
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14 MARKERLESS LUNG TUMOR TRACKING WITH DL

However, after restricting the patients to PCT-DRR IoU
> 0.2, a significant performance gain in box detection
with respect to the template matching method was
observed. Furthermore, the unique advantage of our
approach, which is the capability to identify applicable
cases in advance of treatment, assures a higher level
of robustness.

Inference-time wise, our PS models take approxi-
mately 170 ms per frame of size 672 × 672. Although
slower than the above-mentioned studies,24–26 it has
the same order of magnitude as the system latency
reported by a dynamic multi-leaf collimator (DMLC)-
linac study10 and several magnetic resonance imaging
(MRI)-linac studies36–38 and is thus still suitable for real-
time markerless tracking, especially when considering
the potential latency compensation enabled by existing
fast target motion prediction algorithms.28,39

The good agreement between the AP curves of
validation set and unmodified validation set supports
that synthesizing LIDC data in the way we reported in
section 2.4.2 was effective as a measure of data aug-
mentation for training the baseline model. According
to the comparison between PS models and the base-
line model (Figure 7), the former ones outperformed
the baseline model in all metrics. The baseline model
exhibited an unstable performance as suggested by
the large spread of its boxes (in blue) in the boxplots,
whereas PS models showed great improvement both in
accuracy and in robustness after being refined on the
PCT-DRR. This signifies the importance of PS train-
ing as part of the training strategy. This performance
gap, nevertheless, decreased considerably for the five
patients with PCT-DRR IoU higher than 0.7 to the extent
that the baseline model’s performance became com-
parable to that of PS models in this high IoU range,
though more samples are needed in order to draw a
definitive conclusion.

One inevitable source of errors in our investigation
was the uncertainty of deformable image registration
(DIR), which was used for obtaining the GT segmenta-
tion masks for the 10 phases of the 4DCT based on the
available PCT segmentation.The quality of the obtained
GT segmentation masks could directly impact the eval-
uation of the model’s segmentation ability, including the
COM error and segmentation DSC. Moreover, the GT
segmentations of the LIDC CT scans used for building
the baseline model and the PCT scans collected for the
study of PS models were drawn by multiple physicians.
The diverse GT annotation source implies that the inter-
physician variability might also be a factor contributing
to the model uncertainty. Additionally, all CT scans used
for training and testing PS models had a slice thickness
of 3 mm in the SI direction. This resulted in the coarse
resolution in motion sampling for DRRs, hence the
blurry image quality, and inherently limited the accuracy
of PS models, especially because PS models derived
their predictions from anterior-posterior DRRs and the
major component of tumor motion was mostly SI motion.

Image quality-wise, two aspects should be taken
into consideration. (1) DRRs are only a simulation of
the X-ray images, and the image quality difference
between them caused by beam hardening, scattering
and image noise cannot be ignored. Though the pro-
posed approach has been extensively tested on DRRs,
how well it performs on actual X-ray images remains
to be investigated, which is considered one limitation
of this study. An evaluation on kV X-ray images should
be performed in future studies. (2) Factors like the
target-to-background contrast and the target occlusion
caused by other anatomical structures such as heart,
mediastinum and diaphragm, could impact the model
performance. Moreover, the projection angle of DRRs
used in this study was limited to 0◦, and other projec-
tion angles arising from fixed or gantry-mounted X-ray
imaging devices could also impact the target visibility.
Analysis of baseline model performance showed that
among the 47 failed patients (with PCT-DRR IoU below
0.2), 51% had occlusion, 68% had low contrasts (below
5.0), and 83% had at least one of the two conditions.
Still, 9 occlusion-bearing patients and 18 low-contrast
patients had PCT-DRR IoUs higher than 0.2, making up
24% and 49% of the 37 successful cases, respectively.
Further examining the 37 successful cases, PS models
performed better on high contrast (above 5.0) patients
than on low contrast patients, and performed compara-
bly for patients with and without tumor occlusion.Overall,
it can be concluded that the baseline model worked
best on occlusion-free and high-contrast cases,and that
although the PS models tend to perform better on high-
contrast cases than others, they were efficient for all
cases despite low contrast and occlusion once the PCT-
DRR IoU had passed 0.2. This confirmed again that the
baseline model’s PCT-DRR IoU was a good index to
estimate the tracking effectiveness of our approach for
a specific patient.

In terms of train/test division, our study differs from
other studies22,25,26 in that we did not use patients’
4DCT data in any form during training. Zhao et al.22,23

and Zhou et al.26 interpolated frames between consec-
utive respiratory phases, respectively, by using linearly
interpolated motion vector fields and by using a deep
learning-based interpolation model, and then randomly
divided the generated DRRs into train and test sets.
Zhao et al. reached a mean absolute difference (MAD)
of 1.58 mm jointly averaged over horizontal and ver-
tical directions for DRRs projected with 0◦ X-ray tube
angle over 10 prostate-cancer patients.23 This accu-
racy is roughly equivalent to 2.27 mm in mean 2D error,
which is approximated as the Euclidean distance cal-
culated from the average prediction errors in the two
dimensions. Another work by Zhao et al. applied the
same method on two pancreatic cases and all MADs
in both directions were less than 2.60 mm for DRRs
at 0◦ X-ray tube angle,22 which amounts to 2.52 mm
on average for 2D error. The mean segmentation COM
error of our study, 2.6 mm, is comparable to those of
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MARKERLESS LUNG TUMOR TRACKING WITH DL 15

these two studies. The best accuracy of all retrospec-
tive patient studies was reported by Zhou et al.,26 with
a mean 3D error of 0.29 mm and a mean segmentation
DSC of 0.98 over 14 pancreatic cases and 12 different
X-ray tube angles. However, it is important to note that
the random train/test partition scheme of the densely
interpolated 4DCT-DRR data can diminish the indepen-
dence between train and test sets, the degree of which
depends on the interpolation density, because informa-
tion contained in the test set would have been too closely
approximated by information already seen by the model
in the training set to truly test the model’s generalizing
capability. To avoid this drawback, we chose to reserve
the single 4DCT scan of each patient for the testing of
their PS model.Only the static PCT was used for refining
the baseline model, which was trained on population-
based data, into a tailored PS model. Nevertheless,
the 3D PCT was separately acquired immediately after
the 4DCT acquisition. The temporal proximity entails
a high anatomical similarity between PCT and 4DCT,
which may not represent well the potential varia-
tions between a pre-treatment scan and the treatment
session.

Distinct from other studies, Sakata et al. trained on
all 10 phases of the 4DCT-DRRs and tested on fluo-
roscopic images acquired during treatment delivery.25

This train/test division scheme is free of interpolation
dependency, and is representative of clinical tracking
scenarios. An accuracy of 1.03 mm in mean 3D error
(Euclidean distance of COM) was achieved over 8 lung
cancer patients. They manually annotated the COM of
tumors on all fluoroscopic images as the ground truth,
and thus did not provide contour evaluation such as
DSC calculation. Their superior COM accuracy com-
pared to ours may be explained by their higher image
quality:(1) The 4DCT-DRRs that their model was trained
on were derived from 4DCT with a voxel size of 1 mm
in SI direction, compared to the 3 mm of our PCT and
4DCT data. (2) They tested on fluoroscopic images
which intrinsically had a higher resolution than DRRs
simulated from CT data. Furthermore, our model was
not aware of the motion pattern of the tumor in question
due to the separation of 4DCT-DRRs from training data,
while their model was able to fully exploit the 4DCT to
actively learn the specific motion pattern of the patient. It
is speculated that the performance of our model may be
improved by including 4DCT-DRRs as training data,pro-
vided that subsequent X-ray images can be acquired for
testing. We plan to conduct experiments in the future to
explore the gain of training on motion patterns contained
in 4DCT-DRRs.

Besides DL-based approaches, numerous other
studies have investigated non-DL-based image tracking
techniques for markerless lung tumor tracking, including
well-established methods such as image registration,40

template matching,41 and optical flow42,43. Other less
common methods like short arc tumor tracking44 and

hidden Markov model45 have also been proposed.Some
studies were exclusively conducted on digital or experi-
mental phantoms with tumor motions that were mechan-
ically controlled following either simulated breathing
patterns42 or patient-measured motion traces.45,46

They were often able to achieve sub-millimeter accuracy,
which might potentially be biased by the often simpler
geometry of phantom anatomy and tumor shape/size.
Several other studies like Rozario et al,40 Bruin et al.,41

Shieh et al.44 and Ichiji et al.43 included retrospective
studies on real patients’ data such as beam’s eye view
(BEV) images, CBCT projection images, or clinical x-ray
image sequences. Rozario et al.40 tested their image
registration-based method on over 5000 frames of MV
BEV images of 5 patients and reported rather unstable
performance, with tumors’ average 2D position devia-
tions at 180 degrees gantry angle for a single fraction
ranging from 4.6 mm up to 7.9 mm (6 fractions from 3
patients). Shieh et al.44 specifically targeted challenging
tracking cases by validating on 4DCBCT projection
images of 4 patients with central tumors attached to the
mediastinum and with very low contrast of tumors in
the projection images. Despite the low visibility of tumor
in projection images, they were able to track the tumors
at all gantry angles in all 11 CBCT scans and achieved
a mean 3D tracking error ranging from 2.2-9.9 mm. The
time resolution of their approach is however limited by
the gantry speed,ranging from 1.5–9 s and leaving room
for improvement in order to enable real-time tracking.
Bruin et al.41 used a template matching approach and
tested in a qualitative manner due to the lack of ground-
truth data on the CBCT projections of 18 patients
with 20 tumors in total. 65% tumors were deemed
successfully tracked by judging the correspondence of
the predicted longitudinal tumor trajectories manually
overlaid with the motion of an external Real-time Posi-
tion Management (RPM) marker. Ichiji et al.43 proposed
a new method that used the optical flow technique to
track key points on the tumor, and tested on clinical
X-ray image sequences. They achieved an average root
mean square error of 2.46 mm for kV X-ray images
and 1.53 mm for MV X-ray images, and discovered that
the accuracy of their method linearly decreased with
the motion range of the target tumor, which has not
been observed in our approach. Compared to these
non DL-based studies, we evaluated our approach on a
larger set (84 testing patients) of patients’ data covering
a wider range of tumor visibilities, despite using the
non-ideal DRRs, and achieved an average 2D tracking
error of 2.6 mm (mean COM error) over 37 patients.
The accuracy of our approach was independent of the
tumor motion amplitude.More importantly, our approach
allowed the systematic identification of suitable patients
prior to treatment via applying the pre-built baseline
model on patients’ PCT-DRR to obtain the PCT-DRR
IoU value, which was proven to be a strong predictor of
PS models’ performance.
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16 MARKERLESS LUNG TUMOR TRACKING WITH DL

5 CONCLUSIONS

We trained a deep learning-based model for markerless
lung tumor tracking that is able to perform simultane-
ous bounding box detection and tumor segmentation.
We implemented a novel patient-specific refinement
procedure exploiting a pre-trained baseline model and
leveraging clinically available pre-treatment PCT data
of patients. The patient-specific models achieved an
accuracy of 2.6 mm in mean segmentation COM error
and 0.78 in mean segmentation DSC at an inference
time of approximately 170 ms per frame, rendering the
method suitable for real-time tumor tracking. The pro-
posed approach was consistently applicable to 52% of
the patients with tumor volumes within the volume range
of LIDC nodules.
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