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Abstract
Background: Current commercially available hybrid magnetic resonance linear
accelerators (MR-Linac) use 2D+t cine MR imaging to provide intra-fractional
motion monitoring. However, given the limited temporal resolution of cine MR
imaging,target intra-frame motion deterioration effects,resulting in effective time
latency and motion artifacts in the image domain,can be appreciable,especially
in the case of fast breathing.
Purpose: The aim of this work is to investigate intra-frame motion deterioration
effects in MR-guided radiotherapy (MRgRT) by simulating the motion-corrupted
image acquisition, and to explore the feasibility of deep-learning-based com-
pensation approaches, relying on the intra-frame motion information which is
spatially and temporally encoded in the raw data (k-space).
Methods: An intra-frame motion model was defined to simulate motion-
corrupted MR images, with 4D anthropomorphic digital phantoms being
exploited to provide ground truth 2D+t cine MR sequences. A total number
of 10 digital phantoms were generated for lung cancer patients, with randomly
selected eight patients for training or validation and the remaining two for test-
ing. The simulation code served as the data generator, and a dedicated motion
pattern perturbation scheme was proposed to build the intra-frame motion
database, where three degrees of freedom were designed to guarantee the
diversity of intra-frame motion trajectories, enabling a thorough exploration in
the domain of the potential anatomical structure positions. U-Nets with three
types of loss functions:L1 or L2 loss defined in image or Fourier domain,referred
to as NNImgLoss-L1, NNFloss-L1 and NNL2-Loss were trained to extract information
from the motion-corrupted image and used to estimate the ground truth final-
position image, corresponding to the end of the acquisition. Images before and
after compensation were evaluated in terms of (i) image mean-squared error
(MSE) and mean absolute error (MAE),and (ii) accuracy of gross tumor volume
(GTV) contouring, based on optical-flow image registration.
Results: Image degradation caused by intra-frame motion was observed: for
a linearly and fully acquired Cartesian readout k-space trajectory, intra-frame
motion resulted in an imaging latency of approximately 50% of the acquisition
time; in comparison, the motion artifacts exhibited only a negligible contribution
to the overall geometric errors.All three compensation models led to a decrease
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2 COMPENSATION OF INTRA-FRAME MOTION IN MRGRT

in image MSE/MAE and GTV position offset compared to the motion-corrupted
image. In the investigated testing dataset for GTV contouring, the average dice
similarity coefficients (DSC) improved from 88% to 96%,and the 95th percentile
Hausdorff distance (HD95) dropped from 4.8 mm to 2.1 mm. Different models
showed slight performance variations across different intra-frame motion ampli-
tude categories: NNImgLoss-L1 excelled for small/medium amplitudes, whereas
NNFloss-L1 demonstrated higher DSC median values at larger amplitudes. The
saliency maps of the motion-corrupted image highlighted the major contribu-
tion of the later acquired k-space data, as well as the edges of the moving
anatomical structures at their final positions, during the model inference stage.
Conclusions: Our results demonstrate the deep-learning-based approaches
have the potential to compensate for intra-frame motion by utilizing the
later acquired data to drive the convergence of the earlier acquired k-space
components.
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1 INTRODUCTION

Inter- and intra-fractional motion management is an
important issue for precision radiation therapy, which
has driven the development of Image-Guided Radio-
Therapy (IGRT).1 MR-guided radiotherapy (MRgRT)2–5

integrating Magnetic Resonance (MR) imaging in exter-
nal beam delivery provides continuous high soft tissue
contrast MR sequences during the treatment without
ionizing radiation, and offers considerable potential in
real-time treatment adaptation.6

According to the online adaptive MRgRT workflow,4

any introduced error or uncertainty in one step is
propagated to the final dose deposition. As MR
image acquisition is the first step of the whole
feedback chain, image quality represents a domi-
nant factor towards the accuracy of the following
image processing (e.g., contouring), and beam con-
trol via respiratory gating7,8 or MultiLeaf Collimator
(MLC) tracking.9,10 For the current commercially avail-
able magnetic resonance linear accelerators (MR-
Linac)s,2,5 intra-fractional motion monitoring is facilitated
by 2D+t cine MR imaging.5 In the past few years,
evaluation of cine-MR has been focused on the spa-
tial/temporal resolution,11 geometric distortion12,13 and
artifacts.14

In contrast to static imaging, cine-MR depicts mov-
ing structures, and this involves a motion-dependent
sampling of the raw image data during acquisition.
Object motion deterioration effects in radiography have
been thoroughly studied and described mathematically
as impulse responses, which are then represented by
the Modulation Transfer Functions (MTF) formalism to
combine both spatial and temporal deterioration of the
imaging system.15–17 For instance, uniform motion at a
given velocity smears a point into a line, resulting in box-
function impulse response, in which case the system’s

spatial MTF needs to be multiplied with a sinc function.
However, MR imaging is essentially different as the raw
signal is acquired in Fourier domain. Therefore, addi-
tional approaches need to be explored to study these
effects. Since the acquisition of a single cine-MR frame
and the physiological motion are of the same time scale,
the final acquired k-space comprises signals of the tar-
get at different positions. This is reflected in the image
domain, manifesting as motion artifacts and imaging
latency. The latter has been thoroughly investigated by
Borman et al.,18 characterizing the lag effects between
the actual object position at the moment the acqui-
sition is completed and the apparent object position
derived from the MR image. As an additional example,
Liu et al.19 from the Australian MR-Linac project have
further confirmed that the imaging latency (194± 43 ms)
is the largest contribution to the total end-to-end latency
(328 ± 44 ms) in MRgRT treatment delivery; Glitzner
et al.20 have conducted a technical study on the Elekta
Unity MR-Linac and have found that the latency caused
by MR imaging exceed the MLC-related delays by sev-
eral factors, thus confirming the importance of further
research to reduce the MR imaging latency. Hereinafter,
we will refer to the physical motion of objects occurring
within one cine-MR frame acquisition as the intra-frame
motion, and the corresponding combined image degra-
dation effects of both motion artifacts and imaging
latency as intra-frame motion deterioration effects. In
recent years, organ motion due to respiration has been
measured extensively,21 and from the published results,
fast anatomical variations within one breathing cycle
could be expected,especially in a deep breathing mode.
Observations on lung tumor motion showed that the
speed could reach up to 72.6 mm/s,22 and considering
the limited temporal resolution of cine-MR imaging (four
or eight frames per second), the intra-frame motion can
be appreciable.
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COMPENSATION OF INTRA-FRAME MOTION IN MRGRT 3

In Borman and colleagues’ work,18 a reduction of
imaging latency was achieved by changing the phase
encoded ordering scheme in Cartesian readouts, or
by implementing a spatial-temporal (k-t) filter for the
golden angle sequence in radial readouts. However,
the effective high-low ordering scheme suggested in the
literature can introduce more severe eddy current arti-
facts with additional compensation techniques required.
Moreover, in high-low ordering, larger differences in the
higher frequency components between the intra-frame
motion-corrupted image and the final-position image
(i.e., the ideal motion-deterioration-free image) could be
expected, because they are earlier acquired. This also
challenges image quality, as the higher frequency com-
ponents offer useful semantic information which can
be used for contouring.23,24 Retrospectively weighting
the k-space data with the k-t filter halves the imaging
latency but there is still potential for optimization. Over
the past few years, artificial intelligence (AI) algorithms
have been playing an increasingly important role in MRI
or MRgRT regarding multiple application fields, such
as motion correction,25,26 image segmentation,27,28 syn-
thetic CT generation29 and online treatment planning.30

A large number of results have highlighted the promising
contributions of deep learning.31

The aim of this work is to investigate the intra-frame
motion deterioration effects in MRgRT and the feasibil-
ity of deep-learning-based compensation approaches,
by carrying out a breathing MR digital phantom study.
Compared to the clinically acquired cine-MR sequences
which are likely to have been contaminated already
by the intra-frame motion of the target, digital phan-
toms offer several advantages. Firstly, they overcome
the spatial resolution limitation typically found in clin-
ical cine-MR images, which may not be sufficient for
investigating intra-frame motion. Secondly, obtaining the
corresponding ground truth image for motion-corrupted
images remains challenging in clinical settings,whereas
digital phantoms provide precise final-position images
as well as target segmentation for reference and eval-
uation. Additionally, they allow for image reconstruction
with various dedicated k-space readout trajectories
and noise models, facilitating MR imaging optimiza-
tion studies. Moreover, digital phantoms hold great
potential in addressing the issue of limited data for
deep-learning-based model training.

In the following paragraphs, we first explain the gen-
eration of 4D MRI digital anthropomorphic phantoms,
followed by the implemented motion-corrupted image
simulation with the predefined intra-frame motion model.
Unlike previous literature on motion correction, which
involves mainly image restoration to filter out motion
artifacts,25,32 a deep-learning-based intra-frame motion
compensation method is proposed in this work. Specif-
ically, based on the original 2D+t cine MR sequences
selected from the 4D phantoms, a motion pattern per-
turbation scheme is proposed for intra-frame motion

database creation and augmentation; the previous sim-
ulation code serves as the data generator while a
Convolutional Neural Network (CNN)33 is applied to (i)
remove noise by learning the sequence-specific noise
distribution and (ii) to estimate the exact final-position
image from the motion-corrupted image, by correlating
the intra-frame motion information spatially and tempo-
rally encoded in the raw k-space data to the final position
image.

To the best of our knowledge,this study represents the
first attempt to validate the feasibility of deep-learning-
based intra-frame motion compensation for MRgRT.The
contribution of this work can be summarized as follows:

∙ By constructing the intra-frame motion model and sim-
ulating the motion-corrupted MR images, we empha-
size the intra-frame motion deterioration effects on
image quality or the geometric accuracy, highlighting
the practical value of implementing motion com-
pensation, especially for patients with fast breathing
mode.

∙ We propose a dedicated motion pattern perturbation
scheme to fully explore the domain of the potential
anatomical structure positions and ensure the diver-
sity of intra-frame motion trajectories, paving the road
towards the motion database generation and aug-
mentation with real clinical data for deep learning
applications.

∙ We demonstrate the superior performance of the
compensation models through extensive evaluation,
indicating the feasibility of deep learning based
intra-frame motion compensation in MRgRT.

∙ In terms of the network interpretability,we present the
saliency maps that reveal the ability of U-Net to detect
and learn information from the later acquired data in
the k-space, which thereby serves as the image filter
for processing the earlier acquired components. This
behavior is interesting and particularly important in
addressing concerns regarding the potential and relia-
bility of deep learning approaches to be implemented
in clinical applications.

2 METHOD AND MATERIALS

2.1 4D MRI digital anthropomorphic
phantom generation

The 4D MRI digital anthropomorphic phantom is the
MRI version of the extended 4D XCAT phantom,34,35

which generates a moving virtual patient based on a
parametric motion model of each organ. As shown in
Figure 1, the workflow required a static representation
of the virtual patient and the spherical tumor at the ini-
tial position of the breathing cycle. The spherical tumor
here was used for locating and propagating the cen-
troid of a realistic tumor selected among non-small cell
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4 COMPENSATION OF INTRA-FRAME MOTION IN MRGRT

F IGURE 1 Workflow of 4D MRI digital anthropomorphic phantom generation. The phantom is schematically binned in five phases for each
breathing cycle, but in the actual application process, more breathing phases were used.

lung cancer patients.36,37 The realistic tumor shape was
segmented on the treatment planning 4D CT scan, rely-
ing on the exhale phase. A respiratory motion curve
was designed by defining the time-resolved amplitude
of superior-inferior (SI) diaphragm motion and anterior-
posterior (AP) chest-wall expansion, to generate a 4D
CT of the patient and tumor, respectively. By mapping
the centroid positions extracted from the 4D CT of the
spherical tumor to the static 3D realistic tumor, 4D CT
images of a realistic moving tumor could be derived and
finally combined to the anatomical image.

In order to translate 4D CT images to 4D MRI, the
bSSFP (balanced steady state free precession) sig-
nal intensity S was simulated by Equation 1,35 with
the assumption that TR/T1 and TR/T2 tend to 0, as
TR is always much shorter than T1 and T2 in this
sequence:

S = 𝜌 sin𝛼
1

1 + cos𝛼 + (1 − cos𝛼) (T1∕T2)
e−TE∕T2

(1)
where α is the flip angle; T1, T2 and ρ are tissue-specific
values for the longitudinal, transverse relaxation and
proton density, respectively; further details on these val-
ues are given in Table S-1 of the supporting material.
In this work, we considered α = 60◦and TE = 1.27 ms,
to match the acquisition parameters that are used in
the Viewray MRIdian5 at the LMU University Hospi-
tal. After converting the attenuation coefficient values
in the 4D CT to the bSSFP signals of each tissue

based on the corresponding T1, T2 and ρ maps,35 ideal
4D MR images I were hereby generated. Noisy MRI
images I∗ were simulated by adding i.i.d. (independent
and identically distributed) complex Gaussian noise to
the k-space data F(kx, ky) of each slice, which leads to
an additive Rician distributed noise in the magnitude of
the image domain:

I∗ = M−1(F(kx, ky) + 𝛿Re + j𝛿Im); 𝛿Re, 𝛿Im ∼  (0,𝜎2)
(2)

where M−1 represents the inverse Fourier transforma-
tion matrix; σ is the standard deviation of the Gaussian
distribution, which can be derived from the pre-defined
signal-to-noise ratio (SNR) with:

𝜎 =
‖F(kx, ky)‖

2√
N

×
10−

SNR
20√

2
(3)

where N is the matrix size of k-space data. In the follow-
ing sections, 2D+t cine MR sequences (referred to as
original sequences) were obtained by selecting specific
slices from the simulated 4D MRI scans.

2.2 Motion corrupted image simulation
and evaluation

Intra-frame motion deterioration effects should be inves-
tigated as a function of the k-space signal acquisition
process. Figure 2 schematically summarizes the proce-
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COMPENSATION OF INTRA-FRAME MOTION IN MRGRT 5

F IGURE 2 Procedure of intra-frame motion corrupted image simulation. Here ns is the number of time steps within the intra-frame motion.
This schematic diagram only shows the case of ns = 5, but in the actual application process, a much larger number of time steps was used.

dure of simulating intra-frame motion-corrupted images.
In the Amplitude/Time curve, the black dots indicate the
start/end time of acquiring a specific cine-MR frame and
the corresponding anatomical position as determined
by the original sequences (see Section 2.1); the dotted
line between such black dots shows the intra-frame
motion trajectories; ns here represents the number of
time steps within the intra-frame motion, which can
also be interpreted as the number of shots, where a
shot is defined as a subsample of k-space whose
corresponding Fourier components are acquired
simultaneously,38 for example, along the frequency
encoding direction.

Assume the acquisition of one frame began at time
T0, while the target was at its initial position P0 and
the corresponding image is denoted as I0. During the
acquisition time of this frame, the target had moved to
its final position Pns-1, and the acquisition is completed
at Tns-1 which is also assumed to be the start time
of the next frame. With the image at initial position I0
and the intra-frame motion model, the real-valued tem-
poral images (I0, I1, …, Ins-1) of the target throughout
the acquisition time could be derived by image spatial
transformations like affine transformation or free form
deformation. Depending on the k-space readout pat-
terns,Fast Fourier Transformation (FFT) for Cartesian or
Non-uniform Fast Fourier Transformation (NuFFT)39,40

for radial or spiral will be performed to obtain the
complex-valued k-space data (F0, F1, …, Fns-1) of each
temporal image. Their corresponding components were
then sequentially incorporated into the k-space arrays
of the simulated motion-corrupted image over time.This
process can be achieved by designing a tailored set
of sampling matrices (S0, S1, …, Sns-1) based on the
k-space readout trajectories with respect to the shot
number, where MRI acceleration techniques like partial
Fourier or parallel imaging methods41,42 can be consid-
ered.These matrices have only two values,0 and 1,with

1 indicating that the corresponding part of the matrix will
be sampled. In this case, the complex-valued k-space of
the motion-corrupted image Fmotion is formulated as:

Fmotion =

ns−1∑
j=0

Fj◦Sj (4)

where j denotes the shot number, and ◦ is the
Hadamard product (element-wise product) opera-
tor. Finally, the motion-corrupted image Imotion was
created in the form of complex numbers by the related
image reconstruction method like inverse FFT/NuFFT,
GRAPPA,42 etc. For the results part of this study, we
considered a linearly and fully acquired Cartesian k-
space, where FFT was applied. Differences between
Imotion and the ground truth final-position image Ins-1
reflect the intra-frame motion deterioration effects. From
the simulation process, it can also be inferred that the
finally acquired k-space consists of signals from the tar-
get at different positions. Consequently, the intra-frame
motion data is spatially and temporally encoded in the
k-space of the motion-corrupted image.

In the scope of this work, the intra-frame motion
model was built with a linear approximation between
consecutive control points (piece-wise linear approx-
imation). That is, the overall intra-frame motion was
divided into several consecutive time step intervals, with
their end points being referred to as the control points.
Motion between the control points is represented by
the displacement vector field (DVF) between the cor-
responding images, which was then discretized with
respect to the shot number.An optical flow43 deformable
image registration (DIR) algorithm was implemented to
estimate the DVF. In order to minimize the errors intro-
duced by optical flow and depict the most accurate
possible final-position image, for a specific time step
interval [i, i+m] between [0, ns-1], the temporal images Ij
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6 COMPENSATION OF INTRA-FRAME MOTION IN MRGRT

(j = i, i+1, …, i+m) were calculated as:

Ij = Ii+m ⊕

(
i + m − j

m
× DVFm

)
; j = i, i + 1,… , i + m;

DVFm = arg min MSE (Ii+m ⊕ dvf, Ii) ,

dvf ∈ {DVFi+m→i ,−DVFi →i+m} (5)

where the symbol ⊕ represents the image deformation
based on the given DVF; MSE() denotes computing the
mea-squared error (MSE) between two images; Ii+m is
the image of control point i+m, and Ii is that of control
point i;DVFi+m→i represents the DVF from Ii+m to Ii,while
DVFi→i+m represents the DVF from Ii to Ii+m. Theoreti-
cally, DVFi+m→i and −DVFi→i+m should be identical, but
considering the accuracy limit of the optical flow algo-
rithm, we aimed at selecting the one leading to better
residual MSE (i.e.a better Ii restoration) after registration
(see Equation 5).

For the purpose of evaluation, a gross tumor volume
(GTV) contouring error analysis was designed to match
the clinical MR-Linac implementation of online structure
tracking. In clinical practice, before the treatment, a pre-
view cine MRI scan is acquired for selecting a tracking
key frame Ikey; during the treatment, the live cine MRI
frames are aligned to Ikey with DIR and subsequently the
GTV contour defined in the key frame is propagated.5

Similarly, in this work, Ikey as well as its correspond-
ing binary GTV segmentation were defined: Ikey was
directly selected from the original sequences, while its
GTV contour was obtained by choosing the same slice
and frame from the 4D CT realistic tumor files. Then
the GTV of the key frame was warped based on (i)
the reference DVF from Ikey to Ins-1 (DVFref ) and (ii)
the measured DVF from Ikey to Imotion (DVFmeas), to get
GTVref and GTVmeas, respectively. Finally, the contours
were compared quantitatively by means of dice simi-
larity coefficients (DSC), HD95 and centroid shift (COM
shift). This allowed us to quantify the intra-frame motion
deterioration effects in tumor tracking based on cine-MR
images.

2.3 Intra-frame motion compensation
with deep learning

2.3.1 Database

Original sequences
A total number of 10 4D MRI digital phantoms of lung
cancer patients (five females and five males) with differ-
ent anatomy were generated according to the workflow
outlined in Section 2.1. Table 1 lists the basic infor-
mation as well as the motion data assignment for
each simulated patient. In this study, we predominantly
focused on deep respiratory motion, thus tumors were

mostly inserted in the middle or lower lobe of the
lung, where the intra-frame motion was expected to be
larger. We utilized the motion waveform multiplied by an
amplitude amplification coefficient (AAC) to characterize
the original patient-specific respiratory motion pattern.
Specifically, 6 types of diaphragm motion waveforms
were designed using the amplitude w.r.t. frame number
curves,as shown in Figure 3, to mimic regular and irreg-
ular breathing patterns; 20 frames were acquired for
each breathing cycle, in light of a 5s respiration period
imaged with four frames per second (FPS) cine-MR;
the amplitude for the corresponding type of chest-wall
expansion waveforms was obtained following the same
curve but with a different AAC.

From the published observations on the respiratory
motion of the investigated patients, the diaphragm can
move up to 100 mm in a deep breathing mode21;
the peak-to-peak lung tumor motion amplitude ranges
0 ∼ 50 mm in the SI direction and 0 ∼ 24 mm in
the AP direction,21 while the maximum tumor speed
is 72.6 ± 22.5 mm/s.22 Our motion parameter settings
for original sequences were designed based on these
reported data, taking into account both normal and rapid
movements. Table 2 shows the generated tumor motion
data, with the largest intra-frame average motion speed
calculated by dividing the largest intra-frame motion dis-
placement (combining both the SI and AP directions) by
the frame acquisition time of 250 ms.Among all patients,
Patient 10 exhibited the greatest tumor motion in terms
of both the motion range (55.5 mm in the SI direc-
tion) and the largest speed (73.3 mm/s). It should be
noted that these motion data only represent the posi-
tion information of the anatomical structure at the exact
beginning/finishing moment of each frame acquisition
in the original sequence. The more important intra-
frame motion trajectory will be discussed in the following
sections.

During the simulation of noisy MR images, the SNR
was set to 10 dB; for each patient, four original 2D+t
cine-MR sequences were chosen from their 4D MRI dig-
ital phantoms, comprising two sagittal and two coronal
slices, with one sagittal and one coronal slice contain-
ing the tumor centroid being selected; to enhance the
diversity of the selected individual slices, the other two
slices were randomly chosen from the ones without
tumor. These slices were specifically selected to differ
significantly regarding the anatomic structure from the
slices containing the tumor centroid, which had already
been chosen. The image matrices were produced as
512 × 512 pixels, with spatial resolution of 1 mm ×

1 mm; additionally, all of them are represented in the
form of complex numbers,which were finally normalized
through division by their maximum magnitude values.

Intra-frame motion pattern perturbation scheme
In order to build the intra-frame motion database,
making the model able to generalize to various
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COMPENSATION OF INTRA-FRAME MOTION IN MRGRT 7

TABLE 1 Basic information and motion data assignment for the simulated patients.

Patient ID 01 02 03 04 05 06 07 08 09 10

Gender F F F F F M M M M M

Age 63 65 57 65 56 63 70 52 67 50

Weight(kg) 81.3 78.6 105.8 56.0 69.6 72.1 100.4 60.8 89.9 120.0

Height(cm) 153.0 161.1 165.1 164.7 166.8 170.0 173.7 173.0 178.5 177.8

BMI 34.73 30.32 38.81 20.64 25.03 24.95 33.28 20.30 28.22 37.96

Tumor location R/l/P L/l/P R/m/M L/l/A R/m/M L/l/M R/l/A L/l/P R/m/A L/l/P

Waveform type A B E D B A E D C F

AAC of diaphragm 2.0 3.0 4.0 3.0 5.0 4.0 2.0 4.0 5.0 6.0

AAC of chest-wall 1.2 1.1 1.3 1.2 1.0 1.6 0.9 1.2 1.4 1.5

Note: Tumor location in the lung is presented in a way of R-Right, L-Left/ l-lower, m-middle (lobe) / P-Posterior, A-Anterior, M-Middle; AAC indicates amplitude
amplification coefficient.

F IGURE 3 Diaphragm motion waveforms of the original sequences. The waveform is multiplied by an amplitude amplification coefficient
(AAC) to characterize the original patient-specific respiratory motion pattern. The amplitude for the corresponding type of chest-wall expansion
waveforms is obtained following the same curve but with a different AAC. Intra-frame motion trajectory is not considered in this process.

TABLE 2 Tumor motion data along the SI and AP direction for the simulated patients.

Patient ID 01 02 03 04 05 06 07 08 09 10

Peak-to-peak motion amplitude (mm) SI 15.8 23.9 27.1 24.9 30.0 37.7 17.4 31.2 41.5 55.5

AP 9.5 8.8 7.6 10.6 6.0 12.7 8.0 9.4 13.2 10.1

Average tumor motion speed (mm/s) - - 7.4 10.2 11.2 10.8 12.2 15.9 7.7 13.1 17.4 22.6

Largest intra-frame motion displacement (mm) SI 2.9 6.3 8.1 8.6 7.8 7.2 5.3 10.9 10.1 18.0

AP 1.7 2.3 2.0 3.7 1.6 2.5 2.3 3.2 3.2 3.5

Largest intra-frame average motion speed (mm/s) - - 13.6 26.8 33.3 37.4 31.8 30.2 23.2 45.3 42.2 73.3

intra-frame motion trajectories in the domain of all the
potential anatomical structure positions, an intra-frame
motion pattern perturbation scheme was proposed to
determine the image of control points mentioned in
Section 2.2. The scheme is generally divided into two
steps:

Step1 involves defining the control point interval and
the corresponding control point images. To achieve this,
four additional frames were interpolated between two
consecutive frames in the original sequence. Figure 4a
illustrates a schematic view of this step: for the kth frame
in the original sequence (black dot in the figure, labeled
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8 COMPENSATION OF INTRA-FRAME MOTION IN MRGRT

F IGURE 4 Schematic illustration of the intra-frame motion pattern perturbation scheme. (a) Step1: the definition of the kth control point
interval and the corresponding images; (b) Step2: the definition of the intra-frame motion trajectory. All k in (b) refer to randomly selecting one
image from the kth control point interval, and {k} denotes the rigid transformation of the image at k, representing a sudden change in its
position.

as k0), images at k,1 k2,k3,and k4 were generated based
on the linear interpolation of the DVF between the cor-
responding images of k0 and (k+1)0. In this way, five
points were introduced and considered to fall within the
kth control point interval, comprising k0 from the original
sequence,and four interpolated frames k,1 k2,k3,and k.4

This process could also be interpreted as increasing the
temporal resolution of the original cine-MR sequence
by a factor 5: while it is technically possible to directly
generate a digital phantom with a temporal resolution of
20 Hz, we opted to stick with 4 Hz and employed this
additional process to augment the temporal resolution,
considering the limitations in temporal resolution when
constructing the training dataset with real clinical data.
Briefly, by implementing this step, we are able to effec-
tively enhance the position diversity of the reference
final-position images.

Step2 involves defining the intra-frame motion tra-
jectory leveraging the motion model proposed in Sec-
tion 2.2, which will take the defined control point images
in Step1 as inputs. In this step, motion patterns with
2, 3, or 4 control points were developed based on the
scheme shown in Figure 4b,aiming at gradually increas-
ing the degrees of freedom in breathing irregularity. All
the k here referred to randomly selecting one out of
five control point images from the kth control point inter-
val, except in the case of simulating a static scenario
(pattern 1). After this process, the intra-frame motion
displacement is no longer limited to the displacement
between two sequential frames defined by the original
sequence.Cases with 2 control points (patterns 1∼3) will
take i = 0, m = ns-1 in Equation 5; while for cases with
3 or 4 control points (patterns 4∼14), a random inser-
tion moment (denoted as pm) was chosen between [1,
ns-2] for the middle control points, which would split the
shot number into 2 intervals, [0, pm] and [pm+1, ns-1].
Cases with 4 control points were simulating a sudden
position change of the target happening at the middle
control points, represented by a rigid transformation; tak-

ing the image at k, for example, the rigid motion of it
was denoted as k→{k}. Parameters of the rigid motion
were determined by taking a random number between
[-π/20, π/20] as a rotation angle, and [−1, 1] mm as a
translation distance along each axis.Extreme situations,
which may never happen in reality, can be observed
through patterns 9, 10 and 14 to offer lager differences
between Imotion and Ins-1, forcing the potential network to
pay more attention to the dynamic mechanism and keep
robust to the variation in the motion amplitude. Briefly,
three degrees of freedom were introduced in this pro-
cess:the control point range,the insertion moment of the
middle control points, and the rigid motion parameters.
They introduce randomness in the database, thus allow-
ing a thorough exploration in the domain of potential
anatomical structure positions. This step also allowed
us to customize any synthetic but realistic breathing
motion pattern, including a dedicated intra-frame motion
trajectory.

Consequently, the dataset included 11200 (10
patients × 4 slices × 20 frames × 14 patterns) input-
output pairs,with data from randomly selected 8 patients
(Patient 01, 03, 04, 05, 07, 08, 09, 10) used for training or
validation and the remaining 2 patients (Patient 02, 06)
for testing. Since the purpose of this work was to vali-
date the feasibility of deep-learning based intra-frame
motion compensation approaches, only a linearly and
fully acquired Cartesian readout trajectory of k-space
was considered; the k-space phase encoding direction
was along the AP (anterior-posterior) direction for sagit-
tal slices and the LR (left-right) direction for coronal
slices, orthogonal to the main direction of intra-frame
motion; the number of shots was set as 64 (ns = 64),
that is, the target was considered to remain station-
ary (or the motion is negligible) while acquiring every
8 rows in phase encoding direction. To enable both
the intra-frame motion compensation and denoising
capabilities simultaneously, the input-output pair was
the SNR = 10 dB motion-corrupted image I*motion
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COMPENSATION OF INTRA-FRAME MOTION IN MRGRT 9

and the corresponding noiseless final-position image
Ins-1, which were both normalized by dividing by the
maximum magnitude value of the input (I*motion) before
being fed into the network.

2.3.2 U-Net model

As mentioned in Section 2.2, the intra-frame motion
information is spatially and temporally encoded in the
k-space of the motion-corrupted image. The intuitive
idea of intra-frame motion compensation is using later
acquired data to drive the process of filtering ear-
lier acquired data. The properties of CNN make it a
promising model for this application. In addition, with
a Cartesian linear phase encoding ordering scheme,
the later acquired data was corresponding to the
higher frequency components and should be preserved
while capturing the image features. The concatenative
skip connections in the U-Net architecture could pass
features from the encoder to the decoder of same
dimensionality and enable the recovery of fine-grained
details lost during the down-sampling process. Conse-
quently, this study exploited the typical 5-level U-Net
architecture,44,45 with the real and imaginary parts of the
image represented as separate channels.

Each level of the network consisted of a double
convolution block using 3 × 3 convolution kernels, fol-
lowed by batch normalization and ReLU activation. The
first level had 64 feature channels, which were then
sequentially doubled in the subsequent levels. 2 × 2
max pooling operation with stride two was applied
for down-sampling in the contracting path, while “up-
convolution” was implemented for up-sampling in the
expansive path followed by concatenation. A 1×1 con-
volutional layer was set as the final layer of the network,
which ultimately provided the output image. Three loss
functions employing different metrics (mean absolute
error [MAE] and MSE) across either the image or
Fourier domain served to measure the L1 or L2 distance
between the network-estimated final-position image/k-
space (I’ns-1 / F’

ns-1) and the corresponding reference
(Ins-1 / Fns-1), which are: L1 loss in image domain, L1
loss in Fourier domain,and L2 loss. It is expected that, in
accordance with Parseval’s theorem, the L2 loss in the
image and Fourier domains should exhibit equivalence,
assuming uniformity in all other training configurations.
The acquisition of the Fourier loss necessitated the
conversion of both the network output channels and
ground truth target image into the frequency domain,
achieved through the utilization of the differentiable FFT
operation.46,47 Furthermore, we employed the Adam
optimizer throughout the training,and the ratio of training
to validation datasets was set at 7:1,with seven patients
allocated for training and one patient (Patient10) for
validation.

3 RESULTS

3.1 Intra-frame motion deterioration
effects

This section aims to demonstrate how intra-frame
motion deterioration affects GTV contouring accu-
racy in MRgRT. We chose the sagittal and coronal
sequences where the tumor centroid is located for each
patient, comparing the corresponding motion-corrupted
sequence to the reference. The general quantitative
results are summarized in Table 3. In the table, GTV
variations due to intra-frame motion are evaluated by
comparing GTV0 (contoured on initial-position image
I0) to GTVref (contoured on final-position image Ins-1).
Meanwhile, GTVmeas, contoured on motion-corrupted
image Imotion, is compared to GTVref to evaluate the
measured GTV errors. In the table, Imotion is simu-
lated following a linear intra-frame motion from I0 to
Ins-1 (motion pattern 2 in Figure 4), and the quantita-
tive outcomes of GTVmeas including all of the other
motion patterns can be found in Figures 8,10 and
Table 4, evaluated among the network testing patients.
The results for GTVmeas are presented separately for
AP/LR (top) and SI (bottom) phase encoding direc-
tions. For each patient, the average value over all 40
frames (2 slices × 20 frames) and the results corre-
sponding to the largest intra-frame motion (in the square
brackets) are listed, while values at “Mean” show the
average over all 400 frames across the 10 patients.
It can be observed that in most cases, the centroid
shift between GTVmeas and GTVref is around half of
that between GTV0 and GTVref . On average, 3.2 mm
intra-frame tumor motion leads to a centroid positioning
error of 1.5 mm. To understand it from another per-
spective, this means it causes an imaging latency of
approximately 50% of the acquisition time.However, this
ratio tends to be slightly higher in frames containing
larger motion,except for Patient 10.When comparing the
results of phase encoding directions, there is no notice-
able difference. Although GTV errors are a bit higher
with SI encoding direction in frames containing larger
motion, DSC / COM shift differences are less than 2% /
1 mm (pixel). Some patients exhibit extreme intra-frame
motion, resulting in considerable GTV contouring errors,
with DSC values as low as 54% and HD95 values as high
as 6.9 mm (Patient10), indicating severe deterioration
effects.

To visually illustrate the errors in DVF derivation
caused by cine-MR intra-frame motion, Figure 5 takes
exemplary frames from Patient 02 (in sagittal) and
Patient 08 (in coronal), who are respectively partitioned
into the testing and training set in the subsequent deep
learning framework, and displays several DVFs involved
in the process of the frame acquisition and target track-
ing. The measured DVFmeas which is derived from the
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10 COMPENSATION OF INTRA-FRAME MOTION IN MRGRT

TABLE 3 GTV quantitative assessment.

Patient ID 01 02 03 04 05 06 07 08 09 10 Mean

GTV0 DSC (%) 92[84] 90[78] 83[58] 79[46] 80[58] 88[76] 93[77] 84[51] 69[48] 50[20] 81

COM shift (mm) 1.8[3.8] 2.5[6.5] 2.8[8.3] 2.7[9.4] 3.0[7.8] 3.9[7.4] 1.8[5.8] 3.2[11] 4.3[10] 5.6[18] 3.2

HD95 (mm) 2.7[3.6] 2.9[6.1] 3.6[8.5] 3.0[9.2] 3.4[7.2] 5.1[7.3] 2.4[7.1] 3.7[12] 6.1[11] 6.8[18] 4.0

GTVmeas
AP/LR SI

DSC (%) 94[89] 94[89] 91[76] 87[71] 87[76] 93[84] 96[88] 91[73] 81[69] 72[54] 88

94[89] 94[88] 90[74] 87[69] 86[76] 93[85] 96[86] 91[73] 79[67] 72[54] 87

COM shift (mm) 0.9[2.3] 1.2[3.3] 1.5[4.4] 1.3[5.1] 1.3[3.5] 1.8[4.4] 0.9[3.3] 1.4[6.0] 2.0[5.6] 2.3[8.3] 1.5

0.9[2.0] 1.2[3.6] 1.5[4.8] 1.2[5.3] 1.3[4.0] 1.7[4.9] 0.9[3.5] 1.4[6.1] 2.3[6.5] 2.5[8.2] 1.5

HD95 (mm) 1.8[3.1] 2.0[4.2] 2.3[5.4] 2.1[4.5] 2.5[4.1] 3.8[5.0] 1.5[4.2] 2.5[7.0] 3.5[6.4] 3.4[6.9] 2.5

1.9[2.8] 2.3[5.0] 2.9[7.0] 2.2[5.0] 2.7[4.8] 3.2[5.2] 2.0[6.0] 3.1[8.0] 3.8[8.4] 3.6[6.2] 2.8

Note: GTV intra-frame motion is represented by comparing the GTV of I0 (GTV0) to that of Ins-1 (GTVref ), while the measured GTV errors are evaluated by comparing
the GTV obtained from Imotion (GTVmeas) to GTVref . For each patient, the average[largest motion] value over all 20 frames are listed. The “Mean” column is calculated
by averaging the results over all 200 frames across the 10 patients. The results for GTVmeas are presented separately for AP/LR (top) and SI (bottom) phase encoding
directions.

TABLE 4 Quantitative results evaluating the measured GTV contours before and after intra-frame motion compensation.

DSC (%) HD95 (mm)
Motion
Corrupted NNImg-Loss-L1 NNF-Loss-L1 NNL2-Loss

Motion
Corrupted NNImg-Loss-L1 NNF-Loss-L1 NNL2-Loss

Small 93 (4) 98 (2) 97 (2) 97 (2) 3.2 (1.9) 1.4 (1.1) 1.5 (1.3) 1.7 (1.5)

Medium 88 (3) 97 (2) 97 (2) 96 (2) 5.0 (2.2) 1.7 (1.3) 2.0 (1.6) 2.0 (1.5)

Large 80 (3) 95 (2) 95 (2) 95 (3) 7.3 (1.8) 2.5 (1.6) 2.5 (1.8) 2.5 (1.7)

Total 88 (7) 96 (3) 97 (2) 96 (3) 4.8 (3.1) 1.9 (1.7) 1.9 (1.7) 2.1 (1.8)

Note: Mean and (standard deviation) of DSC and HD95 for all the testing slices.

F IGURE 5 Displacement vector fields for Patient 02 (top) and Patient 08 (bottom). From left to right: final-position image Ins-1; DVF from key
frame to initial-position image (Ikey → I0); DVF of the intra-frame motion (I0 → Ins-1); reference DVF (Ikey → Ins-1); measured DVF (Ikey → Imotion),
with phase encoding direction orthogonal (AP/LR) or parallel (SI) to the main direction of intra-frame motion.

motion-corrupted image is compared to the reference
DVFref (i.e., DVF derived from final-position image
Ins-1). To facilitate a more intuitive comparison, the key
frame was exactly selected as the final-position image:
Ikey = Ins-1. In this case, DVFref is 0, and the DVF from
the initial-position image I0 to Ins-1, which reflects the
intra-frame motion, should have the same magnitude

as the DVF from Ikey to I0 but in the opposite direction.
Imotion is also simulated following a linear motion from I0
to Ins-1,with different k-space phase encoding directions
being considered. From the results, residual compo-
nents of the intra-frame motion could be expected from
the measured DVF, indicating the pronounced errors
of DVF determination introduced by intra-frame motion
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COMPENSATION OF INTRA-FRAME MOTION IN MRGRT 11

F IGURE 6 Intra-frame motion corrupted image and GTV contouring errors of exemplary frames from (a) Patient 02 and (b) Patient 08
cine-MR sequences. The top 2 rows are showing the images (1st row) as well as their corresponding GTV contours (2nd row) of initial-position
image I0 (left), final-position image Ins-1 (middle) and motion-corrupted image Imotion with motion pattern 2 (right). The bottom 2 rows are
showing the difference image between Imotion and Ins-1 (3rd row) and their corresponding GTV contouring errors (4th row), where Imotion is
simulated with different motion patterns and phase encoding directions: motion pattern 2 and AP phase encoding direction (left), motion pattern
2 and SI phase encoding direction (middle), and motion pattern 5 with the insertion moment of 65% the acquisition time (pm = 65% ns) and
AP/LR phase encoding direction (right).

deterioration effects. Qualitatively, the dominant com-
ponent of the intra-frame anatomical changes is along
the SI direction, and compared to the orthogonal phase
encoded scheme,slightly greater errors are appreciable
with phase encoded in the SI direction.

Figure 6 shows the motion-corrupted image and the
resulting GTV contouring errors for the same frames as
in Figure 5. During the frame acquisition time, the tumor
is gradually moving from GTV0 (GTV of I0) to GTVref .
Since the frame in Figure 6a is taken during inhale,
the tumor is generally moving downwards, while the
acquisition of Figure 6b frame is happening during
exhale and the tumor is moving upwards. A reference
line was set at the upper and lower boundaries of
GTVref . It can be observed that the contour of the tar-
get is well preserved in Imotion, this is different from
other imaging systems whose signals are acquired in
image domain such as the fluoroscopic system, where
all the passing positions (pixels) of the target during the
acquisition time might be recorded; the GTV contour
derived from Imotion lags behind the actual final posi-
tion of the target, clearly indicating noticeable imaging

latency; in comparison, the motion artifacts (or image
blur) exhibited a negligible contribution to the over-
all geometric errors. Similar to the conclusions drawn
from DVF analysis, qualitatively, the choice of k-space
phase encoding direction slightly impacts the contouring
accuracy, with the SI direction exhibiting slightly more
motion artifacts compared to orthogonal directions. The
intra-frame motion patterns can significantly contribute
to motion degradation, which in turn, yield the errors
in GTV contouring. Specifically, an insertion moment of
65% the acquisition time (pm = 65% ns) in motion pat-
tern 5 (I0→I0→Ins-1) led to worse image quality,because
in this case, the lower frequency components in k-space,
which have much higher orders of magnitude,are mainly
taken from I0.

3.2 Motion compensation with U-Net

The model was built with the PyTorch library,47 trained
and tested on an NVIDIA Quadro P5000 GPU with
the memory of 16GB. For the sake of convenience,
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12 COMPENSATION OF INTRA-FRAME MOTION IN MRGRT

F IGURE 7 Training and validation losses for the U-Net with three distinct loss functions. Note: L2 loss is plotted on logarithmic scale.

the U-Net incorporating the three loss functions (L1
loss in image domain, L1 loss in Fourier domain, and
L2 loss) will be indicated as NNImgLoss-L1, NNFloss-L1,
and NNL2-Loss, respectively. To determine the optimal
learning rate for each model, a hyper-parameter search
was conducted sampling from the set {1×10−3, 1×10−4,
1×10−5}. The selected learning rates were 1×10−4 for
NNImgLoss-L1, 1×10−3 for NNFloss-L1, and 1×10−4 for
NNL2-Loss. All models were trained with a batch size
of 6.

To measure the motion compensation speed of the
network, we calculated the average final-position image
estimation time across the testing dataset. The result
was 6.3 ms per frame.

3.2.1 Image comparison

Figure 7 shows the training and validation losses for
the U-Net using three different loss functions, where L2
loss is shown on logarithmic scale to facilitate the dis-
tinction of subtle differences.Notably,NNFloss-L1 exhibits
a relatively larger discrepancy between the training
and validation datasets compared to the other models.
Nevertheless, all validation loss curves eventually con-
verged to a steady and horizontal line at the end of the
training process. During the final inference stage, the
weights from epoch 100 of all three models were loaded
for testing.

Two evaluation metrics, MSE and MAE, were used to
quantitatively assess the effectiveness of the models
in image quality enhancement through motion com-
pensation. Figure 8 illustrates the results obtained
for all the testing frames grouped by three types of
intra-frame motion patterns. In general, the U-Net exhib-
ited a remarkable reduction in image errors when
compared to the reference image across the testing
dataset. For cases involving type01 and type02 motion
patterns, NNImgLoss-L1 demonstrated a slight tendency
towards a superior performance over the others in terms
of both MAE and MSE: on average, applying the net-

work NNImgLoss-L1 / NNFloss-L1/ NNL2-Loss resulted in
a decrease of MSE (MAE) to 7.3% (11.6%) / 9.8%
(17.6%) / 15.0% (23.5%) of the initial value, respectively.
In the cases with type03 motion pattern, a wider range
of MAE or MSE variations was observed in motion-
corrupted images due to the sudden introduction of rigid
motion. However, the performance of three models was
comparably good, as evidenced by the average MSE
(MAE) values dropping to approximately 9.8% (15.2%)
of the initial value, indicating the effective mitigation of
the intra-frame motion deterioration effect.

Figure 9 presents comparison results of motion-
corrupted images (Imotion) versus the network-
estimated final-position images (I’ns-1) for the testing
patients. The image quality has seen a great enhance-
ment with the help of the U-Net: an advantage of the
network estimated positions over the ones derived from
the motion-corrupted image is visible for the tumor, the
cardiac and the structures in the abdomen. Among the
models, NNImgLoss-L1 exhibited better image contrast
restoration than NNFloss-L1 and NNL2-Loss, showing
closer pixel values to the reference in adipose and mus-
cle tissues. By comparing the motion-corrupted image
to the reference final-position image, it can be observed
that the cardiac image could have undergone a large
intra-frame deformation during the acquisition. However,
all three compensation models were able to estimate
the precise anatomic structure corresponding to the
moment the acquisition is completed. Additionally, the
analysis of k-space discrepancy images suggest that
the U-Net effectively captures the position information
from the later-acquired higher frequency components,
and then utilizes it to guide the fine-tuning of the
lower frequency components, which ultimately led to a
successful compensation of intra-frame motion.

3.2.2 GTV contour comparison

We performed a separate analysis of the slices in the
testing dataset where the tumor centroid is located, to
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COMPENSATION OF INTRA-FRAME MOTION IN MRGRT 13

F IGURE 8 Box plots comparing the MSE (top) and MAE (bottom) for all the testing frames before and after intra-frame motion
compensation. Testing frames are grouped by the type of intr-frame motion pattern. Note: all the images are normalized to [0, 1], and the y-axis
has different scale limits among subfigures.

F IGURE 9 Image comparison before and after intra-frame motion compensation. Exemplary coronal (left) and sagittal (right) frames are
selected from the testing patients. From top to bottom: original image, zoom-in cardiac image, image difference and the magnitude of k-space
difference on logarithmic scale (calculated by subtracting the reference).

assess the impact of motion compensation on GTV
contour estimation accuracy. Results were ordered in
3 categories according to the GTV centroid shift of
the motion-corrupted image from the reference final-
position image: Small, for COM shift ≤ 2 mm; Medium,
for 2 mm < COM shift ≦ 5 mm; Large, for 5 mm < COM
shift < 8 mm. Cases where COM shift > 8 mm were
ignored, as in these cases, the intra-frame tumor motion
speed tends to be greater than the highest velocity
observed in clinical studies.

Figure 10 and Table 4 list the evaluation results for all
the testing slices containing tumors.The results indicate
an evident benefit of applying the deep learning based
intra-frame motion compensation. All models yielded
a notable improvement in DSC, surpassing 95% for
the median of each category. The mean DSC for all
the evaluated cases increased by 8% from the initial
value of 88%. Among the three models, NNImgLoss-L1
demonstrated better performance in the Small and
Medium category,yet a slight tendency towards a higher
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14 COMPENSATION OF INTRA-FRAME MOTION IN MRGRT

F IGURE 10 Box plots comparing the DSC of all the testing slices before and after intra-frame motion compensation. Based on the GTV
centroid shift, the testing dataset was divided into 3 categories: Small, Medium and Large.

F IGURE 11 GTV Centroid Position comparison curve. The constructed breathing motion, including the intra-frame motion trajectory, is
depicted as the red line, with the red dots serving as the reference GTV centroid position at the moment the frame acquisition is terminated.
Results before and after motion compensation are displayed for motion-corrupted results in blue, NNImgLoss-L1 in yellow, NNFLoss-L1 in green and
NNL2-Loss in purple. The difference curves between them and the reference are shown in the panels below.

DSC median value with NNFloss-L1 can be observed in
the Large category. Moreover, NNImgLoss-L1 / NNFloss-L1/
NNL2-Loss brought a decrease in the mean HD95 from
4.8 mm to 1.9/1.9/2.1 mm, respectively. Overall, these
results suggest that while different models show slight
performance variations in different intra-frame motion
amplitude categories,all models are effective in eliminat-
ing the motion-related deterioration effects within cine-
MR, improving the image quality and thereby enhancing
the accuracy of GTV contour position estimation.

With the original sequences and intra-frame motion
pattern perturbation scheme proposed in Section
2.3.1, it is feasible to customize any synthetic but real-
istic breathing motion pattern, including a dedicated
intra-frame motion trajectory. Based on this, a GTV cen-
troid motion curve was constructed for sagittal slices
of Patient02 and Patient06 from the testing dataset,
as shown in Figure 11, which serves as the ground
truth. The absolute GTV centroid position derived from

motion-corrupted images and the network estimated
final-position images are compared to the reference. As
can be seen from this figure, in the motion-corrupted
results, most frames demonstrated an imaging latency
that is approximately half of the frame acquisition time.
However, a longer time delay was noticeable for cer-
tain frames of Patient06, particularly Frame 10, 11, and
13. This can be attributed to the potential degradation
of image quality caused by motion artifacts and noise,
which consequently affects the accuracy of the opti-
cal flow algorithm. The three network estimated results
overlap well with the ground truth in all the cases,
providing an effective GTV position offset. The only
exception was Frame13 for Patient06, where the opti-
cal flow algorithm failed to precisely contour the tumor
from the NNImgLoss-L1 and NNFloss-L1 estimated image.
The intra-frame motion deterioration effects are negligi-
ble or completely vanishing in cases with a very shallow
breathing mode,such as in Frame13 ∼ 18 for Patient 02.
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COMPENSATION OF INTRA-FRAME MOTION IN MRGRT 15

F IGURE 12 Overlaid saliency map in the
image (left) and Fourier (right) domain for
model NNImgLoss-L1 (top), NNFloss-L1 (middle)
and NNL2-Loss (bottom).

3.2.3 Saliency map

To visualize which part of the motion-corrupted image
/ k-space contributes more to the inference, saliency
maps were generated in both the image and Fourier
domain for the three models. Specifically, saliency maps
in the image domain calculated the gradient of the net-
work loss function w.r.t the input motion-corrupted image
utilizing the SmoothGrad48 technique; to obtain saliency
maps in the Fourier domain, input motion-corrupted
image tensors were converted to the frequency domain
and loaded onto the device (GPU) for gradient compu-
tation, which were then converted back to the image
domain before being fed into the network.

The overlaid saliency maps of exemplary testing
patients are shown in Figure 12. On the one hand, the
right part of k-space corresponding to the later acquired
data is highlighted in the heat map, representing a
large contribution to the final results; on the other hand,
saliency maps in the image domain indicate a primary
focus on the edges of the moving structures; Particu-
larly, U-Net can detect the edges in their final position,
as evidenced by the coronal slice, where the model-
highlighted liver edge deviates from the edge perceived
by visual observation.

4 DISCUSSION

From published results of respiration-related organ
motion measurements, it is known that the motion varies
markedly across patients and treatment sites, and both
complex motion patterns and great tumor motion veloc-
ity have been observed.21 Furthermore, despite the
application of imaging acceleration techniques,cine-MR

has limited temporal resolution and the imaging latency
is found to be the largest latency contribution to the
whole feedback chain of MRgRT,19,20 indicating that the
intra-frame motion can be appreciable, especially in the
case of fast anatomical variations. This work investi-
gated intra-frame motion deterioration effects in MRgRT
by conducting a digital phantom study, where the acqui-
sition of motion-corrupted 2D+t cine MR images was
simulated based on the predefined intra-frame motion
model. Currently, real-time beam gating is clinically real-
ized based on the target deformation using the DVF from
the key frame to the live cine MRI frames estimated
by motion tracking algorithms.5,49 Results in Figure 5
demonstrated that pronounced DVF errors may be mea-
sured in the motion-corrupted image compared to the
reference. Additionally, quantitative results in Table 3
show that the GTV contouring errors can push DSC
values as low as 54%, suggesting the necessity of
implementing the intra-frame motion compensation for
fast breathers.

In terms of the phase encoding directions, although
slightly higher errors with an encoding direction parallel
to the main tumor motion direction can be qualitatively
appreciable (results in Figures 5 and 6) compared to
an orthogonal direction, the results in Table 3 indi-
cate a DSC / COM shift difference of less than 2% /
1 mm (pixel).This suggests that the choice of the phase
encoding direction is less critical in 2D+t cine-MR com-
pared to the 3D MR acquisition. The findings in Table 3
show that with a linearly and fully acquired Cartesian
readout k-space trajectory, intra-frame motion results in
an imaging latency of approximately 50% of the acquisi-
tion time. This is consistent with the findings in the work
of Borman et al.18 and Riederer et al.,50 showing that
target position is mostly determined by the moment of
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16 COMPENSATION OF INTRA-FRAME MOTION IN MRGRT

acquiring the central k-space profile. However, the pro-
portion can be a bit higher in certain cases, due to the
higher k-space components and the interplay between
target motion and k-space sampling. A few cases in our
dataset exhibited such a behavior: in Patient06 the cen-
troid position difference is 4.4 mm for a total intra-frame
shift of 7.4 mm. Similar observations can be found from
Figure 11: the GTV centroid position derived from the
motion-corrupted image is in general corresponding to
the position at half of the frame acquisition time, with
the exception of some frames in Patient06, where a
longer latency is observed. Compared to the imaging
latency, which is found to be the primary manifestation
of intra-frame motion deterioration effects, geometric
errors caused by intra-frame motion artifacts can be
assumed insignificant (see Figure 6).

By means of the implemented motion-corrupted
image simulation, we were able to reveal how the intra-
frame motion data has been spatially and temporally
encoded in the k-space relative to the signal acquisi-
tion process. This presents the opportunity to develop
a method for deriving the final-position image directly
from the motion-corrupted image, provided that a model
trained on realistic intra-frame motion patterns is avail-
able. Therefore, we validated the feasibility of deep-
learning based motion compensation approaches: the
intra-frame motion database was built based on our pro-
posed motion pattern perturbation scheme, enabling a
thorough exploration in the domain of potential anatom-
ical structure positions; a U-Net with three types of loss
functions was trained to estimate the exact final-position
image, providing simultaneous intra-frame motion com-
pensation and denoising. While the U-Net was initially
designed for image segmentation,44 it has recently been
adapted for image reconstruction purposes.51 In order
to estimate the final-position image precisely, the net-
work is expected to learn to drive the convergence of the
earlier acquired components utilizing the later acquired
data. With a Cartesian linear phase encoding ordering
scheme, the later acquired data was corresponding to
the higher frequency components, and the concatena-
tive skip connections in the U-Net architecture could
enable the preservation of them while extracting the
image features. Moreover, since the intra-frame motion
pattern has been identified as one of the dominant
contributors to deterioration effects (see Figure 6), its
diversity is crucial during the preparation of the train-
ing dataset. The proposed motion pattern perturbation
scheme could also be regarded as the data augmenta-
tion process to prevent overfitting, and the design with
3 degrees of freedom proved to be sufficient for the
generated patterns.

The network takes around 6.3 ms to complete the
motion compensation,which is far less than the cine-MR
frame acquisition time.Furthermore, this speed depends
highly on the hardware configuration as well as the
matrix size of the input image: with the advancement

of GPU computing performance, the actual processing
time is expected to be further reduced.

The analysis in Section 3.2 shows all NNImgLoss-L1,
NNFloss-L1 and NNL2-Loss models have achieved a
successful motion compensation, with a better image
MSE or MAE, as well as GTV contour DSC and HD95.
In the investigated testing dataset for GTV contouring,
the average DSC improved from 88% to 96%, yet the
HD95 dropped from 4.8 mm to 2.1 mm. Different models
showed slight performance variations across different
intra-frame motion amplitude categories: NNImgLoss-L1
excelled in the Small and Medium cases, whereas
NNFloss-L1 demonstrated a bit higher DSC median
values in the Large category. This outcome aligns with
expectations, as the input-output image pairs of the
network are normalized, resulting in absolute predic-
tion errors that are less than 1. Consequently, the L2
loss is less sensitive to the outliers compared to the
L1 loss. Relatively large deformations in the cardiac
region were observed within a single cine-MR frame
acquisition as depicted in Figure 9. However, the mod-
els exhibited the capability to estimate the precise
anatomic structure corresponding to the moment the
acquisition is completed,presenting potential benefits in
real-time MR imaging of cardiac function. Furthermore,
in Figure 11, the network-estimated results overlap well
with the ground truth, showing a clear benefit. Finally,
the saliency maps of the motion corrupted image in
Figure 12 highlight the far-right part of k-space as
well as the edges of the moving anatomical structures,
and these detected edges are at their final positions
which could deviate from the edges perceived by visual
observation. This makes it more transparent that the
models have learned to detect and extract informa-
tion from the later acquired data, which thereby serve
as the image filter of processing the earlier acquired
components.

This work has its limitations, one of which con-
cerns the accuracy of the implemented optical flow
algorithm. Equation 5 was applied to minimize the
errors introduced by optical flow when simulating the
motion-corrupted images, however, during the eval-
uation process of Table 3, we have found it not
precise enough for GTV contouring in 2 or 3 frames
of Patient 09 and 10. Although this does not signif-
icantly affect our results, and the algorithm is per-
forming well when applied to the network testing
patients (Patient 02 and 06), future research should
strive to seek a more reliable way for contouring or
to provide an additional uncertainty analysis on DIR
algorithms.

Another limitation of this work is that it is currently
limited to the simulation stage and has not yet been
tested with clinical data. A key challenge in extending
the approach to real clinical data is the difficulty in
obtaining training pairs of motion-corrupted images and
ground truth final-position images for patients. Further
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COMPENSATION OF INTRA-FRAME MOTION IN MRGRT 17

investigation into the interpretability of the network
and its generalization to out-of -distribution (OOD) data
can help determine the model’s robustness and poten-
tial to perform well on diverse datasets. Furthermore,
we suggest that the forthcoming practical application
can be divided into two primary aspects: Firstly, V&V
(verification and validation) of the motion-corrupted
image simulator is essential. For a specific facility
with a specific MR acquisition sequence, it is crucial
to ensure that the simulation is consistent with the
machine, for example, featuring the same imaging
latency and spatial resolution. This can be achieved
with a motion phantom study where the imaging latency
and noise are quantified. Other k-space trajectories
like radial or spiral, and MRI acceleration techniques
like partial Fourier or parallel imaging methods could
be explored: the effects of such techniques are yet
to be quantified, especially for acceleration methods
that imply sharing of k-space data across different
coil images, which might impact on the overall latency
and image quality. Secondly, the original sequence, that
is, the real patient image acquisition without motion
corruption (motion-corruption-free) should be available
for training. Based on our findings, patients undergoing
breath hold or a very shallow breathing mode have
negligible intra-frame motion, which can be regarded
as motion-corruption-free. Therefore, images should be
extracted from these stages with varying inhale/exhale
amplitudes, for instance, patients or volunteers can be
instructed to hold their breath at the middle/end of inhale
or exhale; then with the presented motion pattern per-
turbation scheme, it is possible to create the library of
intra-frame motion trajectories for training.More suitable
alternatives would include anthropomorphic physical
motion phantoms or other relatively complex phantoms
such as the porcine lung phantom.52 Moreover, transfer
learning such as patient-specific learning28 could be
investigated.

Further research is necessary to explore the poten-
tial benefits of intra-frame motion compensation for
improving the accuracy of the downstream tasks in
MRgRT such as beam gating, motion prediction53

or real-time tumor tracking. Following the correction
of earlier acquired data, deep-learning-based image
auto-segmentation or reconstruction may see notable
improvements, particularly for models that rely heavily
on higher frequency components.54,55 Recent stud-
ies have shown that the prediction of tumor contours
on cine MRI frames using a convolutional LSTM is
challenging.56 Our intra-frame motion compensation
model works in 2D, providing an efficient time latency
offset for anatomical structure changes, and the net-
work can be trained to estimate the complete intra-frame
motion trajectory by generating output images not only
at the final position but also at intermediate positions,
offering potential information for 2D motion prediction
algorithms. The intra-frame motion compensation could

bypass the issue of inadequate temporal resolution in
MR imaging, a generalization of this technique from
2D+t cine MR to time-resolved volumetric (3D+t) MR8,57

might be investigated in the future.

5 CONCLUSIONS

In this work, we have shown that the intra-frame motion
deterioration effects can be noteworthy in MRgRT,
resulting in pronounced imaging latency and the subse-
quent errors in GTV contouring.Based on the presented
motion pattern perturbation scheme, a U-Net with three
types of loss functions was successfully trained to esti-
mate the exact noiseless final-position image. The pro-
posed models led to an evident image quality and GTV
position accuracy enhancement in simulated images
compared to the motion-corrupted image, confirmed by
a decreased image MSE/MAE and an improvement in
terms of GTV DSC and HD95.
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