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Abstract

Background: Magnetic resonance imaging (MRI)-guided radiotherapy with
multileaf collimator (MLC)-tracking is a promising technique for intra-fractional
motion management, achieving high dose conformality without prolonging treat-
ment times. To improve beam-target alignment, the geometric error due to
system latency should be reduced by using temporal prediction.

Purpose: To experimentally compare linear regression (LR) and long-short-
term memory (LSTM) motion prediction models for MLC-tracking on an
MRI-linac using multiple patient-derived traces with different complexities.
Methods: Experiments were performed on a prototype 1.0 T MRI-linac capa-
ble of MLC-tracking. A motion phantom was programmed to move a target in
superior-inferior (SI) direction according to eight lung cancer patient respiratory
motion traces. Target centroid positions were localized from sagittal 2D cine
MRIs acquired at 4 Hz using a template matching algorithm. The centroid posi-
tions were input to one of four motion prediction models. We used (1) a LSTM
network which had been optimized in a previous study on patient data from
another cohort (offline LSTM). We also used (2) the same LSTM model as a
starting point for continuous re-optimization of its weights during the experiment
based on recent motion (offline+online LSTM). Furthermore, we implemented
(3) a continuously updated LR model, which was solely based on recent motion
(online LR). Finally, we used (4) the last available target centroid without any
changes as a baseline (no-predictor). The predictions of the models were used
to shift the MLC aperture in real-time. An electronic portal imaging device (EPID)
was used to visualize the target and MLC aperture during the experiments.
Based on the EPID frames, the root-mean-square error (RMSE) between the
target and the MLC aperture positions was used to assess the performance of
the different motion predictors. Each combination of motion trace and prediction
model was repeated twice to test stability, for a total of 64 experiments.
Results: The end-to-end latency of the system was measured to be (389 +
15) ms and was successfully mitigated by both LR and LSTM models. The
offline+online LSTM was found to outperform the other models for all inves-
tigated motion traces. It obtained a median RMSE over all traces of (2.8 +
1.3) mm, compared to the (3.2 + 1.9) mm of the offline LSTM, the (3.3 + 1.4) mm
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of the online LR and the (4.4 + 2.4) mm when using the no-predictor. Accord-
ing to statistical tests, differences were significant (p-value < 0.05) among all
models in a pair-wise comparison, but for the offline LSTM and online LR pair.
The offline+online LSTM was found to be more reproducible than the offline
LSTM and the online LR with a maximum deviation in RMSE between two
measurements of 10%.

Conclusions: This study represents the first experimental comparison of
different prediction models for MRI-guided MLC-tracking using several patient-
derived respiratory motion traces. We have shown that among the investigated
models, continuously re-optimized LSTM networks are the most promising
to account for the end-to-end system latency in MRI-guided radiotherapy

with MLC-tracking.
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1 | INTRODUCTION

Magnetic resonance imaging (MRI) guided radiotherapy
(MRIgRT) offers high soft-tissue contrast visualization
and the opportunity to adapt to changes in patient
anatomy prior and during irradiation.”? MRI-linac sys-
tems, which are linear accelerators with an embedded
MRI unit, are increasingly being used clinically over
the past years® To adapt to intra-fractional changes,
for instance due to respiratory motion, current clinical
systems rely on motion monitoring* with gated beam
delivery® In this type of treatment, the irradiation tar-
get is visualized in real-time using cine MRI and the
beam is automatically stopped if the target exits a pre-
defined area, thus recovering the conformality of static
treatments and avoiding an increase of dose to healthy
tissues surrounding the tumor. A disadvantage of this
approach are the increased treatment times, with duty
cycle efficiencies of 20% or 50% having being reported
in clinics, depending on patient compliance®’ An alter-
native approach with comparable dose conformality
but increased treatment efficiency is multileaf-collimator
(MLC)-tracking, during which the MLC aperture is con-
tinuously shifted to follow the target motion? However,
it has been shown that a factor which is critical to the
accuracy of MRIgRT with MLC-tracking is the system
latency.’

The system latency is defined as the time lag between
the physical motion of the target and the execution of
beam adaptation, which in the case of MLC-tracking is
the time when the MLC leaves reach their desired posi-
tions. According to the AAPM Task Group 264, a latency
< 500 ms is necessary to meet the definition of real-
time motion compensation.'® For MRI-linacs capable of
MLC-tracking it has been experimentally measured to
range from 205 ms to 411 ms,>'" mainly depending on
the acquisition frequency of the cine MRlIs. To overcome
the system latency, temporal prediction models can be

linear regression, long short-term memory, MLC-tracking, motion prediction, MRI-linac, respiratory

used. Over the past decade, several respiratory motion
prediction models have been implemented in-silico for
MRIgRT'>"'* or RT in general.">"'" In a comparative
computational study, Johl et al. used 93 respiratory
motion traces to show that among 18 motion predictors
ranging from Kalman filters to artificial neural networks,
linear regression (LR) models were the best candidates
for respiratory motion prediction for various time hori-
zons and noise levels.'” When computationally possible,
models were retrained at every time step (i.e., online)
as this approach had been shown to improve perfor-
mance. Recently, a class of machine learning algorithms
called long short-term memory (LSTM) networks, which
is ideally suited to deal with sequential input data, has
been shown to be very promising for motion predic-
tion both in RT'®'° and in MRIgRT?%2" Specifically,
LSTMs were shown to outperform LR models for the
prediction of superior-inferior (Sl) target centroid posi-
tions based on patient data acquired on a 0.35 T MRI
-linac.2°

While all aforementioned studies were in-silico, to the
best of our knowledge there are four studies which
experimentally investigated motion prediction for MLC-
tracking during MRIgRT. In an early phantom study by
Yun et al??, it was shown that motion prediction using
artificial neural networks and sinusoidal motion led to
MLC-tracking with similar dosimetric accuracy as in
the static scenario. Uijtewaal et al?® showed that an
online LR can compensate the latency for the deliv-
ery of intensity modulated radiotherapy (IMRT) plans
with MLC-tracking to a phantom moving with Lujan
motion (cos?). In two follow up studies with the same
motion predictor, they used Lujan motion and addi-
tionally one patient-derived motion trace to investigate
MLC-tracking with VMAT plans?* and with a hybrid
2D/4D-MRI methodology?® A limitation of all four stud-
ies is that either sinusoidal or a single patient-derived
trace was used.
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This study aimed at experimentally validating the
in-silico comparison of LSTM and LR motion pre-
diction models?® for MLC-tracking with a prototype
MRI-linac. Compared to previous MRIgRT studies with
MLC-tracking and motion prediction,?>=2° this was the
first time multiple motion traces with different complexi-
ties were used and conventional and machine learning
based predictors were compared. Specifically, we com-
pared models trained on retrospective data (i.e., offline)
with online models updated in real-time during the
experiments. The performance of the motion predictors
with the different motion traces was evaluated in terms
of geometric accuracy of the MLC-tracking.

2 | METHODS

21 | Experimental setup

All experiments were performed on a prototype MRI-
linac system featuring a 1.0 T open bore magnet (Agi-
lent, UK) with a control system based on a Magnetom
Avanto spectrometer (Siemens, Erlangen, Germany)
and a 6 MV industrial linac (Linatron, Varex Imaging,
Utah,USA). The radiation beam generated by the linac is
aligned with the By field (fixed beam line, no gantry) and
shaped by a MLC with 120 leaves (Millennium, Varian,
Palo Alto, California, USA).2® The motion for the exper-
iments was executed with the MRI-compatible Quasar
phantom (Modus Medical Devices, Ontario, Canada),
positioned at a source-to-surface distance of 2.4 m.
The phantom (same as in Liu et al?) contained a sin-
gle MRI-visible target and was placed inside the bore
such that the target was located at the isocenter. During
the experiments, the target was moved by a motor in Si
direction according to the provided motion traces (see
Section 2.2). During irradiation, the target was imaged
and localized as described in Section 2.3. The extracted
target positions were given as input to one of the motion
prediction models (Section 2.4). Prior to the motion pre-
diction experiments, a sinusoidal trace was tracked three
times to characterize the end-to-end latency of the sys-
tem, analogously to Liu et al®: A sinusoidal was fitted
to the centroid positions of the targets and apertures
(moved by the no-predictor, see Section 2.4) and the
latency was calculated as the time difference between
the two fits. We then performed motion prediction with
four models on eight motion traces. Each experiment
was repeated twice to test the stability of the models,
for a total of 64 experiments. MLC-tracking driven by
the model predictions was used to compensate for the
observed motion (Section 2.5) and an electronic portal
imaging device (EPID) was used to quantify the geomet-
ric accuracy of tracking when using the different models
(Section 2.6). The overall experimental setup is shown in
Figure 1.
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2.2 | Motion traces

In this study, eight publicly available motion traces
previously exploited in a multi-institutional marker-
less lung target tracking study were used?’ The
traces were obtained from seven different lung tumor
patients and feature different motion amplitude, com-
plexity and frequency, all factors known to influence
the accuracy of tracking. Four traces were taken
from a clinical study using measurements of the
centroid position of implanted Calypso beacons?®
These 3D motion traces were originally acquired at
10 Hz and represent motion with high complexity,
high motion amplitude, mean complexity and mean
motion amplitude (https://github.com/MarcoMueller-
MCT/AAPM_GrandChallenge_ MATCH/tree/master).
The other four traces were acquired during treatments
with a Cyberknife Synchrony system (Accuray Incorpo-
rated, Sunnyvale, California, USA) in 3D at a sampling
rate of 25 Hz?° These traces include evident baseline
shifts, right-left (RL) dominant, high frequency and typ-
ical lung target motion (https://cloudstor.aarnet.edu.au/
plus/index.php/s/iHz0aoTGBho3yu2?path=%2FLung%
2F4DLungTrajectories). Additionally to the patient
traces, a sinusoidal trace with an amplitude of 20 mm
and a period of 7.5 s was used to characterize the
end-to-end latency of the system.

During the experiments, the S| component of the
traces was used to rigidly move the target but for the
“baseline shift” and the “dominant RL” traces, for which
the lateral component was used. Independently of the
component used, the target was always moved in Sl
direction. For each trace, motion was executed for about
2 min, however, during analysis, we did not use the first
and last 30 s of data to exclude for instance buffering
of the motion prediction models (i.e., the time needed
until enough input positions are accumulated to start
prediction) or the time for starting the radiation/EPID.
The motion characteristics of the remaining 1 min of
each trace, which was effectively used to assess the
tracking accuracy, are shown in Table 1. While the name
of the traces was the same as in Mueller et al.?’
the period is slightly different as a different subset of
each trace has been used. Also the displacement of
each trace is different as in our experiments we re-
scaled each trace to have a peak-to-peak amplitude
over the entire trace of 30 mm to avoid very small MLC
motion (arising from the large source-to-surface dis-
tance) and limitations of the EPID (spatial and temporal
resolution).

2.3 | Imaging and localization

The moving target was visualized in real-time using cine
MRI. Sagittal 2D slices were acquired using a balanced
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Experimental setup for MRI-guided MLC-tracking with motion prediction. A target inside a 1D motion phantom (photo on the top

left) is moved following one of the eight patient respiratory motion traces. The moving target is imaged at 4 Hz using cine MRI. The target
centroid position is then extracted with template matching and sent to the motion prediction model. The model outputs the future centroid
position which is used to shift the MLC aperture in real-time. Finally, an EPID is used to characterize the geometric accuracy of MLC-tracking.
EPID, electronic portal imaging device; MLC, multileaf collimator; MRI, Magnetic resonance imaging.

TABLE 1 Motion characteristics of the eight patient traces used
for the experiments.

IQR of Period
Motion trace displacement [mm] [s]
High complexity 7.3 53
High motion 8.0 4.5
Mean complexity 7.4 4.0
Mean motion 10.6 2.6
Baseline shift 6.9 3.3
Dominant RL 9.8 4.2
High frequency 13.6 2.7
Typical lung 6.0 5.4

Note: As described in the main text, both the inter-quartile-range (IQR) of dis-
placement and the period can differ from Mueller et al>” due to re-scaling and
usage of a subset of each trace.

steady state free precession (bSSFP) sequence with a
repetition time (TR) of 3.86 ms, an echo time (TE) of
1.92 ms and a flip angle of 28°. The slice thickness
was 7 mm, the in-plane resolution 128 x 128 pixels and
the field of view 300 mm, resulting in a voxel size of
2.34 x2.34 x 7 mm3. Using these sequence parame-
ters, an imaging frequency of 4 Hz was obtained. As

in Liu et al.’” a modified MRI reconstruction pipeline
was used to stream raw image frames from the recon-
struction computer to the target localization computer,
where the images were analyzed in real-time. Using
in-house software, target centroid positions in S| direc-
tion were obtained for each cine MRI frame using a
cross-correlation based template matching algorithm
(Figure 2, left panel). The template target for the match-
ing process was defined on an MRI acquired prior to the
motion experiments. Using the User Datagram Proto-
col (UDP), the target centroid positions were sent to the
motion prediction computer. To avoid data loss inherent
to the UDP, redundancy was introduced by sending the
positions at 100 Hz.

2.4 | Motion prediction

The Sl target centroid positions were pre-processed and
used by a prediction model to obtain the future target
centroid position in real-time, as described in the next
sections. These tasks were implemented as different
co-routines, such that they could run in an overlapping
manner without blocking the main execution.
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FIGURE 2 (Left) Cine MRI frame acquired during irradiation with real-time target localization (yellow) using template matching. (Right)
EPID frame acquired during irradiation with post-irradiation template matching analysis to obtain the target centroid positions (black) and the
MLC aperture centroid positions (blue) needed for the evaluation. EPID, electronic portal imaging device; MLC, multileaf collimator; MRI,

Magnetic resonance imaging.

2.4.1 | Data pre-processing

First, the data redundancy introduced by the UDP send-
ing process was taken out by checking if the received
target position differed from the previous one, thus
recovering the original imaging frequency of 4 Hz.
Then, target positions were accumulated until an input
sequence of 8 s was formed (first buffering time). The
input sequence had fixed length, that is, every time a new
target position was available, the oldest target position
in the input sequence was dropped and the new posi-
tion was added. The input sequence was then smoothed
using a moving average filter, to decrease the impact
of noise arising from imaging/target localization on the
prediction models. The moving average filter acted on
a sliding window of three data points. To avoid bound-
ary effects for the last two points of each sequence (the
most recent and relevant for the prediction), we left the
last point unchanged and set the penultimate point to
the average between the unchanged penultimate point
and the point one would obtain with the moving average
filter. Finally, each input sequence was normalized in the
range from —1 to +1. The scaling factor for the normal-
ization was temporarily saved for each sequence to later
re-normalize the predictions.

2.4.2 | Prediction models

Three respiratory motion prediction models previously
compared in-silico?® and a baseline no-predictor were
implemented in this study and applied to the eight
unseen motion traces:

1. Offline LSTM: this model had been previously trained
and validated using motion traces extracted from

4 Hz cine MRIs of 70 patients treated with a 0.35
T MRI-linac (13.1 h of data).2° It was applied without
any changes to hyper-parameters or weights to the
unseen experiment traces and predicted the future
target centroid position in 250 and 500 ms. Linear
interpolation between these two points was used to
obtain a prediction matching the end-to-end latency
measured for the system. The interpolated prediction
was then used for MLC-tracking.

. Offline+online LSTM: this model was based on the

offline LSTM described above. However, in this case
we loaded the weights obtained from the optimiza-
tion with the cohort of 70 patients and additionally
re-optimized based on recent motion during the
experiments. This worked by accumulating 20 s of
target positions (second buffering time), which were
subdivided into sets of input and output sequences.
These pairs of input and output were used to iter-
atively train the LSTM using the mean-square-error
loss between the output and predicted sequences.
Every time a new target position was available (i.e.,
every 250 ms), the set of input/output sequences was
updated and a new training was started for 250 ms,
which allowed the completion of about 10 epochs.
A more detailed explanation of the online optimiza-
tion can be found in Lombardo et al?® As for the
offline LSTM, the interpolated prediction was used for
MLC-tracking.

. Online LR: similarly to the offline+online LSTM, this

model was continuously updated during the exper-
iments based on recent motion. In contrast to the
LSTM, the LR does not require iterative optimization,
as an analytical solution exists? For this reason, the
online LR was solely based on the last 20 s of data
and was solved from scratch on the updated set of
sequences every 250 ms, that is, every time a new
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target position was available, as in the previous in-
silico study?? Also for the LR, linear interpolation
between the 250 and 500 ms predictions provided the
target position which was used for MLC-tracking.

4. No-predictor: to compare the three motion
prediction models with a baseline without
any prediction, we utilized the last available
target centroid position for the subsequent
MLC-tracking.

The LSTM models were run (and optimized) on an
A5000 GPU with 24 GB of VRAM while the LR was
run and solved using an Intel Xeon W-1250 CPU with
6 cores and 64 GB of RAM. A table showing the hyper-
parameters taken over from the previous in-silico study
can be found in the supplementary Table S1.

2.5 | MLC-tracking

In this study, a rigid single-target MLC-tracking software
based on previous work was used3! Prior to irradia-
tion,a rectangular MLC aperture was loaded and aligned
with the target center. During irradiation, the predicted
target position was used to calculate a displacement
vector with respect to the target’s original position. This
displacement vector was then used to calculate an
ideal aperture update which in turn was used by a
leaf fitting algorithm to calculate the closest matching
deliverable MLC aperture, taking into account physi-
cal limitations of the MLC such as finite leaf speed.
The updated leaf positions were sent at 20 Hz to the
MLC controller which shifted the aperture to compen-
sate for the observed motion in real-time, as in previous
MLC-tracking studies 8-

2.6 | Accuracy evaluation

To evaluate the geometric accuracy of MLC-tracking
with different motion predictors, EPID images were
acquired at 3.5 Hz during irradiation and then ana-
lyzed after the experiments following Liu et al.® Using
in-house software, we first applied a low-pass filter to the
EPID frames to reduce the noise introduced by the mag-
netic field of the MRI-linac and then leveraged template
matching to extract the target centroid positions and the
MLC aperture centroid positions for each EPID frame
automatically (see Figure 2, right panel). The template
for the aperture and target were defined on a selected
EPID frame once. All positions were scaled taking de-
magpnification from the EPID plane to the isocenter into
account. The root-mean-square error (RMSE) between
the target and the MLC aperture positions (representing
the motion predictions) was used to assess the per-
formance of the different motion prediction models. As
mentioned in Section 2.2, the RMSE was computed for

all prediction models on the same 1 min of each trace
to enable a fair comparison.

To find out whether there was a significant difference
between the RMSEs obtained by the four models for the
different motion traces, a non-parametric Friedman test
was used.®? If the Friedman test was significant (p-value
< 0.05), a post-hoc Nemenyi test>* was used to infer
which model performed significantly better than another
in a pair-wise fashion.

3 | RESULTS

3.1 | Latency measurements

When repeating the MLC-tracking experiments using
no-predictor with the sinusoidal trace three times, an
average end-to-end latency of (389 + 15) ms was
obtained. We then computationally shifted the acquired
aperture centroid curve by the calculated latency and
obtained a baseline RMSE between aperture and target
of (1.1 +£0.1) mm.

3.2 | Patient traces

Table 2 shows the RMSEs obtained for all prediction
models and traces for each of the two measurements.
MLC-tracking using the offline+online LSTM as motion
predictor resulted in the best accuracy for all investi-
gated motion traces. When calculating the mean and
standard deviation of the RMSE over all motion traces,
the offline LSTM led to (3.3 + 1.0) mm, the offline+online
LSTM to (2.8 + 0.7) mm, the online LR to (3.3 + 0.7) mm
and the no-predictor to (4.5 + 1.4) mm. The mean RMSE
over all traces and for each trace (two measurements
combined) for the different models are displayed as a
bar plot in Figure 3.

Comparing the RMSE obtained from a measurement
with its repetition revealed that the offline+online LSTM
was also the most reproducible model with a deviation of
up to 10%, compared to the offline LSTM with up to 14%
and the online LR with up to 18%. Repeating the same
trace using the no-predictor led to a maximum devia-
tion of up to 6%, which can be considered the baseline.
Differences between all models were significant accord-
ing to the Friedman test (p-value = 2e-9). The post-hoc
Nemenyi test showed that there was a significant differ-
ence between all models in a pair-wise comparison but
for the offline LSTM and the online LR pair, as shown in
Table 3.

Figure 4 shows the centroid positions of the MLC
aperture and the target obtained with the analysis
of the EPID frames for four different models and a
selected motion trace. Qualitatively, it can be noticed
that the offline LSTM was more robust to the irregu-
larity present at the end of the shown trace while the
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TABLE 2 MLC-tracking RMSE obtained when using different motion prediction models.

MEDICAL PHYSICS -2

Offline LSTM Offline+online LSTM Online LR No-predictor

Motion trace RMSE [mm]

High complexity 2.2;2.1 1.9; 2.0 2.6;2.9 3.2;34
High motion 3.5;3.8 3.0; 3.0 3.6;4.2 48,47
Mean complexity 2.3;2.4 2.0; 2.0 2.8;2.3 3.2;3.3
Mean motion 5.1;4.4 3.6; 3.7 4.4;4.1 6.3;6.2
Baseline shift 2.2;2.2 21;21 2.3;24 2.9;3.0
Dominant RL 3.4;35 2.8;3.1 4.0;3.3 4.9;5.0
High frequency 4.8;4.9 3.8;3.6 4.2;3.8 6.9;7.0
Typical lung 3.0;3.0 2.8;2.7 3.2;3.1 3.8;4.0

Note: Repeated measurements are separated by a semicolon. The best RMSE on average for each trace is shown in bold.
Abbreviations: LR, linear regression; LSTM, long-short-term memory; MLC, multileaf collimator; RMSE, root-mean-square error.

7, mmm Offline LSTM
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I No-predictor
5
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FIGURE 3 Plot with the mean (bar) and standard deviation (error bar) of the RMSE obtained from the two measurements for the four
models and eight motion traces used in this study. Additionally, the mean and standard deviation of the RMSE over all traces for each model is

shown. RMSE, root-mean-square error.

TABLE 3 p-values obtained from the post-hoc Nemenyi test for
all possible pairwise model comparisons.

Model 1 Model 2 p-value
offline LSTM offline+online LSTM 0.01*
offline LSTM online LR 0.9
offline LSTM no-predictor 0.002*
offline+online LSTM online LR 0.002*
offline+online LSTM no-predictor 0.001*
online LR no-predictor 0.01*

Note: Significant p-values (< 0.05) are denoted with an asterisk.
Abbreviations: LR, linear regression; LSTM, long-short-term memory.

online LR overshot less during regular breathing. The
offline+online LSTM seemed to combine the advan-
tages of the two models while for the no-predictor

the system latency was clearly visible. For the same
trace, we show in the online supplementary materi-
als an EPID video displaying the target and the MLC
aperture driven by the no-predictor (‘pass_through_
high_complexity_1.avi) or the offline+online LSTM
(online_Istm_smooth_high_complexity_1.avi).

4 | DISCUSSION

The experiments performed in this study showed that
accurate MLC-tracking using motion prediction is possi-
ble for a variety of different breathing patterns. We were
able to successfully compensate for a measured end-to-
end system latency of (389 + 15) ms, which is slightly
increased compared to the latency of (328 +44) ms
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FIGURE 4 MLC aperture centroid (blue) and target centroid (black) obtained from the EPID for a selected part of the “high complexity”
motion trace for one of the two measurements. The MLC is moved according to one of the four motion prediction models. The same four models
but for the other seven traces are shown in the online supplementary (mp16770-sup-0001-SuppMat.pdf). EPID, electronic portal imaging

device; MLC, multileaf collimator.

measured by Liu et al. on the same system? but still
within what is expected for MLC-tracking on MRI-linacs
in other studies.'’?? The latency corrected baseline
RMSE of (1.1 £ 0.1) mm is comparable with the RMSE
of (1.2+0.1) found by Liu et al’ and includes exper-
imental limitations such as imaging resolution, MLC
performance and EPID accuracy/analysis.

The offline+online LSTM model was found to be the
best motion predictor for all eight investigated motion
traces, being significantly better than both its offline
version, that is without continuous re-optimization, and
an online LR. The offline LSTM and online LR per-
formed similarly, with one model being better than the
other depending on the motion trace. The no-predictor
was significantly worse than all other models, con-
firming the value of motion prediction during MRIgRT
with MLC-tracking. In general, absolute performance
differences were also dependent on the motion trace.

For the “typical lung” trace, which is the one with the
smallest IQR of motion (Table 1), we found a maximum
RMSE difference between any two experiments with the
offline+online LSTM and the offline LSTM/online LR/no-
predictor of 0.3 mm/0.5 mm/1.3 mm (Table 2). On the
other hand, for the “high frequency” trace, which is very
regular but presents high amplitude and frequency, we
found an RMSE difference between the offline+online
LSTM and the offline LSTM/online LR/no-predictor of
1.3 mm/0.6 mm/3.4 mm. Based on this trace, we hypoth-
esize that the online LR, which is solely based on the last
20 s of motion, performs particularly well if the motion is
regular, compared to the offline LSTM which has been
trained on data which presented on average a different
frequency. The offline+online LSTM might have outper-
formed all other models because it combined training
on a large set of different breathing patterns with being
able to adapt to for example a patient-specific breathing
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frequency. We also investigated reproducibility of the
models by repeating each experiment twice and found
the online LR to be the least reproducible with a devi-
ation of 18%. We hypothesize that this originates from
the fact that this is the only model which solely relies
on current data (no prior training on large datasets)
and is therefore the most sensible to variations in the
input centroids due to for example acquisition noise or
imperfections of the template matching.

While this work investigated MLC-tracking with motion
prediction using MRI-guidance, the proposed methods
could also be used with x-ray guidance. The reduced
soft-tissue contrast might require more advanced tar-
get localization algorithms than template matching in a
markerless setting3®> As the motion prediction models
are based on centroid positions, only small modifi-
cations would be needed such as training on other
temporal resolutions to reflect the different imaging fre-
quency and adjustment of the prediction horizon to
smaller latencies.

The current study presents a few limitations. The
motion phantom allows for 1D rigid shifts only, neglecting
the fact that motion occurs in all three directions and that
deformation or rotations can be observed.3%3” Assum-
ing the cine MRI is acquired in a single 2D slice as in
this study, MLC-tracking to compensate for in-plane dis-
placement/deformation/rotation could be implemented
in future studies by leveraging a deformable target local-
ization algorithm,>® a 2D contour prediction algorithm?’
and a deformable MLC-tracking algorithm 3 Beam’s eye
view 2D cine MRI with tumor-volume projection might
be used to ensure better beam conformality*%-4" To fully
compensate motion in all three directions, time-resolved
volumetric MRIs would be needed, which are currently
being investigated by several groups*>~* and would
lead to an increment in latency, which in turn increases
the relevance of motion prediction. Another limitation
consists in the fact that we had to re-scale the motion
traces to 30 mm peak-to-peak amplitude due to lim-
itations in the experimental setting, the original mean
peak-to-peak amplitude over all traces being 16.4 mm
(range 9.4-23.8 mm). This means that the obtained
RMSEs represent in absolute terms an overestimation
of the error which would have been obtained with the
original traces while all relative comparisons between
the models hold true. Finally, the fact that the target in
the phantom is visible with high contrast on the cine MRI
facilitated its localization. However, imaging a real tumor
would have affected the target localization and there-
fore all models in the same manner, so the results of our
comparison should hold true.

5 | CONCLUSIONS

In this study, we experimentally compared conven-
tional and machine learning motion prediction models

for MLC-tracking in Sl direction based on 4 Hz cine
MRI. We showed for eight patient-derived respiratory
motion traces with different complexity that all mod-
els significantly improved the MLC-tracking performance
compared to a baseline no-predictor. A continuously re-
optimized LSTM model was found to perform the best
for all motion traces, confirming the in-silico result that
this model is an ideal candidate to mitigate the latency
and therefore improve the accuracy of MLC-tracking
during MRIgRT.
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