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Abstract
We establish a formula for the L-theory spectrum of real
𝐶∗-algebras fromwhich we deduce a presentation of the
L-groups in terms of the topological K-groups, extend-
ing all previously known results of this kind. Along the
way, we extend the integral comparison map 𝜏∶ k →
L obtained in previous work by the first two authors
to real 𝐶∗-algebras and interpret it using topological
Grothendieck–Witt theory. Finally, we use our results to
give an integral comparison between the Baum–Connes
conjecture and the L-theoretic Farrell–Jones conjecture,
and discuss our comparison map 𝜏 in terms of the
signature operator on oriented manifolds.
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1452 LAND et al.

1 INTRODUCTION

This paper is concerned with certain invariants of real 𝐶∗-algebras. A classical and powerful
invariant of real 𝐶∗-algebras is topological K-theory. However, any 𝐶∗-algebra is a ring with invo-
lution and as such also has an associated (projective) algebraic L-theory. The relation between
these two invariants has been an object of investigation for a long time and the purpose of this
paper is to give a definitive treatment of this relation.
One of the prominent results in this direction is a theorem due to Karoubi, Miller, and

Rosenberg [28, 45, 55] which states that for complex 𝐶∗-algebras 𝐴, there are natural group
isomorphisms

K𝑛(𝐴) ≅ L𝑛(𝐴) (1.1)

for all integers 𝑛. It is, however, well-known that the (topological) K-theory spectrum K(𝐴) and
the (algebraic) L-theory spectrum L(𝐴) are not equivalent and that the isomorphism (1.1) does not
hold true for real 𝐶∗-algebras 𝐴. In previous work of the first two authors, the relation between
the topological K- and L-spectra of complex 𝐶∗-algebras was studied [40]. Neglecting 2-torsion,
or more precisely after inverting 2, this relation extends to real 𝐶∗-algebras and one can summa-
rize the situation as follows: On complex 𝐶∗-algebras, there is a unique lax symmetric monoidal
natural transformation 𝜏∶ k → L that induces an equivalence K[1

2
] → L[1

2
], and this latter equiv-

alence extends in a compatible way to real𝐶∗-algebras. Here, k denotes the connective topological
K-theory spectrum functor, that is, the connective cover ofK. Themap 𝜏𝐴 ∶ k(𝐴) → L(𝐴) induces
an isomorphism on 𝜋0 and 𝜋1, so that by 2-periodicity of the two theories, one recovers the fact
that all L-groups are isomorphic to the corresponding topological K-groups. However, under this
isomorphism the map 𝜏ℂ ∶ k(ℂ) → L(ℂ) induces multiplication by 2 on 𝜋2, so integrally, the peri-
odicity in K-theory does not match up with the periodicity in L-theory. Explicitly left open in
[40] was an integral comparison between K- and L-theory for real 𝐶∗-algebras, a gap that will be
reconciled in this paper.
For the rest of this paper, 𝐶∗-algebras are now agreed to be real 𝐶∗-algebras, we will add

the adjective complex when we need it. The purpose of this paper is to explain in full gen-
erality how to describe the L-theory of 𝐶∗-algebras in terms of their topological K-theory and
in particular how to express the L-groups in terms of topological K-groups. We emphasize
that L-theory refers to projective L-theory. We will also discuss free L-theory of unital alge-
bras in Section 5 but stick to the case of projective L-theory for this introduction. We note
that both K- and L-theory of a complex 𝐶∗-algebra depend only on the underlying (real) 𝐶∗-
algebra, so the case of complex 𝐶∗-algebras is treated implicitly. To follow standard notation
in homotopy theory, we shall write KO and KU for K(ℝ) and K(ℂ), respectively, and likewise
ko and ku for their connective covers k(ℝ) and k(ℂ), respectively. The following are our main
results.

TheoremA. There is a unique lax symmetric monoidal transformation 𝜏∶ k → L and the induced
map

k(𝐴) ⊗ko L(ℝ)⟶ L(𝐴)

is an equivalence of spectra for each 𝐶∗-algebra 𝐴.
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L-THEORY OF 𝐶∗-ALGEBRAS 1453

Theorem B. Let 𝐴 be a 𝐶∗-algebra. There are natural isomorphisms of abelian groups

(1) L0(𝐴) ≅ K0(𝐴),
(2) L1(𝐴) ≅ coker(K0(𝐴)

⋅𝜂
��→ K1(𝐴)),

(3) L2(𝐴) ≅ ker(K6(𝐴)
⋅𝜂
��→ K7(𝐴)),

(4) L3(𝐴) ≅ K7(𝐴).

Here 𝜂 is the nontrivial element in K1(ℝ) = 𝜋1(KO).

Remark. For a 𝐶∗-algebra 𝐴, there is the generalized Wood exact sequence

⋯⟶K𝑛−1(𝐴)
𝜂
⟶ K𝑛(𝐴)

𝑐
⟶ K𝑛(𝐴ℂ)

𝑢𝛽−1
ℂ
⟶ K𝑛−2(𝐴)

𝜂
⟶ K𝑛−1(𝐴)⟶⋯

Consequently, we also find canonical isomorphisms

(1) L1(𝐴) ≅ ker(K−1(𝐴ℂ)
𝑢
→ K−1(𝐴)), and

(2) L2(𝐴) ≅ coker(K0(𝐴)
𝑐
→ K0(𝐴ℂ)).

By the fourfold periodicity of L-theory, Theorem B gives a natural description of all L-groups
in terms of topological K-groups, see Theorem 4.5 for a more canonical formulation. Under
these isomorphisms, we also describe the effect on homotopy groups of the map 𝜏𝐴 ∶ K𝑛(𝐴) →
L𝑛(𝐴) from Theorem A for 𝑛 ⩾ 0 (see Proposition 5.1) as well as the exterior multiplication
maps on the L-groups in terms of the exterior multiplication maps on the K-groups (see
Proposition 5.3). In Section 6, we discuss a number of examples and calculate L-groups using
Theorem B.

Remark. We note that Theorem A implies that two real 𝐶∗-algebras 𝐴0 and 𝐴1 whose K-theory
spectra are equivalent as module spectra over ko have equivalent L-theory spectra. Likewise, The-
orem B implies that if the K-groups of 𝐴0 and 𝐴1 are isomorphic as graded ℤ[𝜂]-modules, where|𝜂| = 1 and 𝜂 acts in the canonical way on the K-groups, then also the L-groups of 𝐴0 and 𝐴1
are isomorphic.

Kasparov’s KK-theory is a central tool for studying the K-theory of 𝐶∗-algebras. It there-
fore comes as no surprise that one would also like to study L-theory of 𝐶∗-algebras by
KK-theoretic means. In the case of complex 𝐶∗-algebras, this was done in [40] but at the
time of writing [40], it was not known whether L-theory of 𝐶∗-algebras is KK-invariant in
general. Even the fact that it is KK-invariant on complex 𝐶∗-algebras is a result that we
still find quite surprising, as KK-theory is an intrinsically analytic theory, whereas L-theory
depends only on the underlying algebraic structure of a 𝐶∗-algebra. Even more, L-theory
commutes with filtered colimits of involutive rings and thus only depends on the underly-
ing algebraic structure of proper involutive subalgebras, which do not themselves need to be
𝐶∗-algebras.
It is an immediate consequence of Theorem A that L-theory is a KK-invariant functor

on 𝐶∗-algebras. Our proof works the other way around though: instead of deducing KK-
invariance from Theorem A, we use it as an input for the proof of Theorem A, and we
give an argument for KK-invariance based on a description for 2-complete L-theory instead.
Indeed, L[1

2
] was shown to be KK-invariant in [40], so it remains only to see that L(−)∧

2
is
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1454 LAND et al.

KK-invariant. This is a direct consequence of the following result, which we derive from [32,
Theorem D.1].

Theorem C. For every Banach algebra with involution, the canonical map L(𝐴) → k(𝐴)𝑡𝐶2 is a
2-adic equivalence.

This is a topological version of Thomason’s homotopy limit problem in hermitian algebraic
K-theory. This algebraic homotopy limit problem has been studied extensively, see, for example,
[6, 7, 13, 19] for the case of fields, schemes over ℤ[1

2
], and Dedekind rings.

Assembly maps

As in [40], a major motivation for studying the relation between K- and L-theory of 𝐶∗-algebras is
to obtain a precise relationship between the Baum–Connes conjecture and the L-theoretic Farrell–
Jones conjecture, inspired by the observation that both of these conjectures imply the Novikov
conjecture. In [40] such a relationwas understood after inverting 2 andwe offer here the following
integral refinement:

Theorem D. The map 𝜏∶ k → L induces a commutative diagram

where BC and FJ denote the Baum–Connes and Farrell–Jones assembly maps.

After inverting the Bott element 𝛽ℝ and 2, one recovers [40, TheoremD]. In addition, the kernel
and cokernels of the vertical maps can in principle be described using our identification of 𝜏 on
homotopy groups. For the left-hand vertical map this is most effective in the case where 𝐺 is
torsion-free as explained in Section 7.
Before our work [40], there have already been made several fruitful efforts to relate the surgery

theoretic and the analytic approach to the Novikov conjecture, most notably the work of Higson
and Roe [22–24]. There, a central idea is to consider the signature operator 𝐷𝑀 of an oriented
manifold𝑀 as an appropriate K-theory class and use this to construct a comparisonmap from the
surgery exact sequence to a 2-inverted exact sequence of topological K-groups. It has been known
for a long time that the signature operator of an orientedmanifold, unlike the spin Dirac operator,
does not give rise to a map of spectraMSO → ko, due to factors of 2 appearing for the signature
operator on a boundary†, see [57, Remark 4]. The following theorem expresses the fact that, with
appropriate modifications, the signature operator does give rise to an 𝔼∞ mapMSO → ko[1

2
] and

clarifies its relation with the Sullivan–Ranicki orientation; a version of this theorem discarding
𝔼∞-structures was discussed in [57].

†Also, any map between those spectra induces the trivial map on homotopy groups as follows from the fact thatMSO at
primes 2 vanishes 𝐾(1)-locally.
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L-THEORY OF 𝐶∗-ALGEBRAS 1455

Theorem E. The association𝑀2𝑛 ↦ 2−⌊𝑛∕2⌋ ⋅ [𝐷𝑀] refines uniquely to a map of 𝔼∞-ring spectra
ℒ𝐴𝑆 ∶ MSO → ko[

1

2
]. This map participates in the following commutative diagram of 𝔼∞-rings

where 𝜎ℝ is the Sullivan–Ranicki orientation.

Here, themapℒ𝐴𝑆 induces on homotopy groups a version of the L-genus, precisely the version
of the L-genus that has been employed by Atiyah and Singer in their index-theoretic proof of
Hirzebruch’s signature theorem [3]. Themap 𝜎ℝ on the other hand induces Hirzebruch’s original
L-genus. Thus, the result says that the two differ exactly by our comparison map.

2 PRELIMINARIES

In this section, we will briefly recall the notions of 𝐶∗-algebras, KK-theory, and L-theory.

𝑪∗-algebras

A nice reference for 𝐶∗-algebras over ℝ and their K-theory is Schroeder’s book [58], further
references include [14, 17, 34] and [61–63] for complex 𝐶∗-algebras.

Definition 2.1. A 𝐶∗-algebra is Banach algebra 𝐴 equipped with an involution (−)∗ ∶ 𝐴 → 𝐴op
with 𝑥∗∗ = 𝑥 such that the following two conditions hold.

(1) For all 𝑥 ∈ 𝐴, we have ||𝑥∗𝑥|| = ||𝑥||2.
(2) For all 𝑥 ∈ 𝐴, the element 1 + 𝑥∗𝑥 is invertible in the unitalization 𝐴+.

A complex 𝐶∗-algebra is a complex Banach algebra 𝐴 whose underlying real Banach algebra is a
𝐶∗-algebra and where the involution is complex sesquilinear, that is, (𝜆𝑥)∗ = 𝜆̄𝑥∗.

Remark 2.2. The condition that 1 + 𝑥∗𝑥 is invertible might be a bit surprising at first glance. We
note that it is a consequence of spectral calculus that this condition is automatically fulfilled for
complex 𝐶∗-algebras, see, for example, [61]. In the real case, it can, however, not be left away, as,
for example, ℂ equipped with the identity involution satisfies the other conditions but 1 + 𝑖2 = 0
is not invertible.

Remark 2.3. The well-known structure theorems for complex 𝐶∗-algebras have the following real
analogues.

(1) Every 𝐶∗-algebra has a faithful representation on a real Hilbert space , that is, is
isometrically isomorphic to a ∗- and norm-closed subalgebra of ().
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1456 LAND et al.

(2) Every commutative and unital 𝐶∗-algebra is isometrically isomorphic to the 𝐶∗-algebra of 𝐶2-
equivariant continuous functions 𝑋 → ℂ for a compact Hausdorff space 𝑋 equipped with a
𝐶2-action, where 𝐶2 acts on ℂ by complex conjugation.

Remark 2.4. A number of remarks are in order.

(1) Together with ∗-homomorphisms, 𝐶∗-algebras form a category C∗Alg, and likewise com-
plex 𝐶∗-algebras form a category C∗Algℂ. We emphasize that 𝐶∗-algebras are not assumed
to be unital, nor that ∗-homomorphisms are assumed to preserve a unit if it exists. Requiring,
however, algebras to have a unit and morphisms to preserve units, one obtains similarly the
categories C∗Alg+ and C∗Alg+

ℂ
of unital 𝐶∗-algebras.

(2) We note that ∗-homomorphisms are automatically contractive and hence continuous.
(3) By construction, there is a forgetful functor C∗Algℂ → C∗Alg, which we call the realifica-

tion, moreover, the construction 𝐴 ↦ 𝐴ℂ
def
= 𝐴 ⊗ℝ ℂ extends to a natural functor C∗Alg →

C∗Algℂ, which we call the complexification.
(4) There are unitalization functors (−)+

ℝ
∶ C∗Alg → C∗Alg+ and (−)+

ℂ
∶ C∗Algℂ → C

∗Alg+
ℂ
that

come with natural split exact sequences

0⟶ 𝐴⟶𝐴+
ℝ
⟶ ℝ⟶ 0 and 0⟶ 𝐵⟶ 𝐵+

ℂ
⟶ ℂ⟶ 0,

respectively. If 𝐴 is unital, then 𝐴+
ℝ
is canonically isomorphic to 𝐴 × ℝ, and likewise in the

complex case.
(5) The complexification functor is compatible with unitalization, whereas the realification func-

tor is not compatible with unitalization.More precisely the solid diagram commutes, whereas
the diagram involving dashed arrows does not.

(6) The categories C∗Alg and C∗Algℂ are each equipped with a canonical symmetric monoidal
structure, themaximal tensor product overℝ andℂ, respectively. Themaximal tensor product
preserves short exact sequences of 𝐶∗-algebras and topological K-theory is canonically lax
symmetric monoidal.

Definition 2.5. A 𝐶∗-algebra is called separable if it contains a countable and dense subset. The
full subcategory of C∗Alg(ℂ) on separable 𝐶∗-algebras will be written C∗Alg

sep

(ℂ)
.

The complexification and realification functors restrict to the subcategory of separable algebras.
In addition, we note that every 𝐶∗-algebra is the union of its separable 𝐶∗-subalgebras and that
the collection of separable 𝐶∗-subalgebras forms a filtered poset. For technical reasons, we will
restrict our attention to separable algebras momentarily. However, all invariants 𝐹 of 𝐶∗-algebras
we shall consider (i.e., topological K-theory and L-theory) send an algebra 𝐴 to the filtered col-
imit of 𝐹 applied to the separable subalgebras of 𝐴, and consequently, we can get rid of the
separability assumptions.
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L-THEORY OF 𝐶∗-ALGEBRAS 1457

2.1 KK-theory

In his seminal work on the Novikov conjecture [29], Kasparov invented (equivariant) bivariant
topological K-theory, known as KK-theory. Phrased in categorical language, Kasparov’s machine
allowed to construct a tensor triangulated category KK and a functor

C∗Algsep ⟶ KK

that was later shown to be a localization (necessarily at the KK-equivalences, that is, those ∗-
homomorphisms whose induced map in the KK-category is an isomorphism) [15] and to be the
initial functor to an additive category that is split exact and stable [18], see, for example, [4]
for more precise statements and a guide through (parts of) the literature. In [40], it was then
observed that the∞-categorical localization of C∗Algsep at the KK-equivalences is a stably sym-
metric monoidal ∞-category whose homotopy category is canonically equivalent to the tensor
triangulated category KK of Kasparov. This observation has also been taken up in [4] (including
extensions of these results to possibly nonseparable 𝐶∗-algebras) in the equivariant case and was
used in [5] in a proof of an equivariant form of Paschke duality.

Definition 2.6. We denote by KK = C∗Algsep[KK−1] the∞-categorical localization of C∗Algsep

at the KK-equivalences. Likewise, we denote by KKℂ = C∗Alg
sep
ℂ
[KK−1] the variant for complex

𝐶∗-algebras.

Remark 2.7. In [40], different notation was used: In this reference, the authors were focused
mostly on the complex case and therefore denoted C∗Algsep

ℂ
[KK−1] by KK∞, and its real variant

by KKℝ∞; the subscript∞ was added to make clear that one was now working with an appropri-
ate∞-category rather than a triangulated category. We refrain from adding this subscript in this
paper, however.

Definition 2.8. The topological K-theory functor for separable 𝐶∗-algebras is given by the
composite

K∶ C∗Algsep ⟶ KK⟶ Sp

where the first functor is the localization functor, the second is the corepresented functor
mapKK(ℝ,−), and Sp denotes the∞-category of spectra.

Remark 2.9. There are of course other, more classical definitions of topological K-theory functors
[26, 27], and itwas shown in [40] that they are canonically equivalent to the definition given above.
These more classical definitions are in fact given for possibly nonseparable algebras and satisfy

K(𝐴) ≃ colim
𝐴′⊆sep𝐴

K(𝐴′)

sowemay also view the above definition as describingK-theory of possibly nonseparable algebras.
In [4], this was formalized by considering the ind-completion of KK and again considering the
functor corepresented by ℝ.
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1458 LAND et al.

This definition, however, does not give all structure that topological K-theory has: For instance,
it is a purely formal consequence of the definitions that K-theory sends certain short exact
sequences (e.g., where the surjection is a Schochet fibration or admits a cpc split) to fiber
sequences, but it is not a priori clear that it sends all short exact sequences of 𝐶∗-algebras to fiber
sequences. However, this is known to be true, for example, as a special case of [4, Theorem 1.15]
(for 𝑋 =∗ in the notation of [4]).

2.2 L-theory

In this subsection, we review some basic properties of L-theory that we will use throughout this
paper, see also [40, section 2.2] for a further summary.
For our purposes, L-theory is most naturally considered as a functor introduced by Ranicki in

[54]

Ringinv ⟶ Sp,

where Ringinv is the category of involutive rings with ring homomorphisms preserving the
involution. In fact, this functor can be written as the composition

Ringinv ⟶ Cat
p
∞⟶ Sp,

where Catp∞ is the∞-category of Poincaré categories on which L-theory is a natural invariant, see
[11–13] for applications of this formalism to Grothendieck–Witt theory of number rings. Together
with Calmès et al. (forthcoming), or using results of Laures–McClure [37, 38], L-theory is canoni-
cally endowed with a lax symmetric monoidal structure. The first functor in the above composite
sends a ring with involution 𝑅 to the pair (𝒟𝑝(𝑅), Ϙs), so more precisely we are considering pro-
jective, 4-periodic symmetric L-theory of involutive rings in the sense of [54]. Prior to the work
[11–13], the third author had introduced L-spectra for dg-categories over ℤ[1

2
] with weak equiva-

lences [60, section 7]. In [12, appendix B.2], it is shown that for ℤ[1
2
]-algebras with involution, the

two constructions of L-spectra are naturally equivalent.
There are natural forgetful functors

C∗Alg+ ⟶ Ringinv

ℤ

[
1

2

]⟶Ringinv

which define L-theory of unital 𝐶∗-algebras. Asmany of the possibly different notions of L-theory
agree on rings in which 2 is invertible, and as this paper is concerned with 𝐶∗-algebras, we shall
from now on restrict our attention to ℤ[1

2
]-algebras with involution as the domain of L-theory.

L-theory for nonunital algebras

For our applications, which involve KK-theory, it is necessary to define L-theory for possibly
nonunital algebras. For this, we define a unitalization of nonunital rings in the usual way

Ringinv

ℤ

[
1

2

]
,nu

⟶ Ringinv

ℤ

[
1

2

] 𝑅 ↦ 𝑅+

ℤ

[
1

2

]
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L-THEORY OF 𝐶∗-ALGEBRAS 1459

and note again that for unitalℤ[1
2
]-algebras 𝑆, we have 𝑆+

ℤ[
1

2
]
≅ 𝑆 × ℤ[1

2
]. We then define L-theory

on nonunital ℤ[1
2
]-algebras as follows

L(𝑅)
def
= f ib

⎛⎜⎜⎝L
⎛⎜⎜⎝𝑅+ℤ[ 12 ]

⎞⎟⎟⎠→ L
(
ℤ
[
1

2

])⎞⎟⎟⎠.
As L-theory commutes with finite products [40, Corollary 4.4] (for this to be true it is crucial

to work with projective L-theory, rather than free L-theory that appears in the h-cobordism clas-
sification program in surgery theory), we have not changed the definition of L-theory on unital
rings, up to canonical equivalence.
However, from the point of view of applying L-theory to 𝐶∗-algebras, we now have constructed

two functors

C∗Alg⟶ Ringinv

one given by 𝐴 ↦ 𝐴+
ℝ
and the other one given by 𝐴 ↦ 𝐴+

ℤ[
1

2
]
, that is, we can either unitalize

in ℝ-algebras or in ℤ[1
2
]-algebras. Moreover, for complex algebras, we have three such functors,

by adjoining a unit in ℂ-algebras, ℝ-algebras, or ℤ[1
2
]-algebras, respectively†. We note that for a

𝐶∗-algebra 𝐴, there is a natural pullback diagram

where the right most vertical part only exists if 𝐴 is a complex 𝐶∗-algebra and where the vertical
maps are split surjective. It is a theorem of Ranicki [53], see, for example, [40, Corollary 4.3] that
both squares induce pullback squares on L-theory. Consequently, extending L-theory to nonunital
(complex) 𝐶∗-algebras can be performed either by adjoining a unit in ℂ-algebras, or by forgetting
to the underlying real 𝐶∗-algebra and then adjoining a unit in ℝ-algebras, or by forgetting to the
underlying ℤ[1

2
]-algebra and adjoining a unit there.

Remark 2.10. We do not expect the diagram

to be a pullback for every ℤ[1
2
]-algebra𝐴. As a consequence, we do not expect the definition of L-

theory for nonunital rings to be independent of the base over which the unitalization is performed

†Of course, one could also unitalize in ℤ-algebras, but see Remark 2.10.
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1460 LAND et al.

in general. Ranicki, however, shows that this square is a pullback if symmetric L-theory is replaced
by quadratic L-theory, see [53, 6.3.1].

Finally, as explained in [40, appendix], the fact that L-theory is lax symmetric monoidal on uni-
tal𝐶∗-algebras allows to deduce that L-theory as defined above is in fact canonically lax symmetric
monoidal on all 𝐶∗-algebras.

3 PROOF OF THEOREM C

For convenience, we state again the theorem we shall prove in this section. We emphasize that
KK-theory is not used in this proof.

Theorem 3.1. Let𝐴 be a Banach algebra with involution. Then the canonical map L(𝐴) → k(𝐴)𝑡𝐶2
is a 2-adic equivalence.

In the proof of this theorem and in fact also of Theorem A, we will make use of the topological
Grothendieck–Witt spectra introduced in [60, section 10]whichwe denote byGWtop(𝐴).We recall
that the family of topological𝑛-simplices {Δ𝑛}𝑛∈Δ form, via the canonical coface and codegeneracy
maps, a cosimplicial topological space. Hence, by considering algebras of continuous functions
one obtains a simplicial involutive Banach algebra 𝐶0(Δ𝑛, 𝐴) (with pointwise involution) and one
defines GWtop(𝐴) as the geometric realization

GWtop(𝐴) = colim
𝑛∈Δop

GW(𝐶0(Δ𝑛, 𝐴))

of the resulting simplicial spectrum, where GW is the (algebraic) Grothendieck–Witt functor.
We recall from [60, Proposition 10.2] that connective topological K-theory k(𝐴) admits a similar
description in terms of connective algebraic K-theory Kalg:

k(𝐴) = colim
𝑛∈Δop

Kalg(𝐶
0(Δ𝑛, 𝐴)).

For any ring with involution 𝑅 with 2 ∈ 𝑅×, there is a natural fiber sequence

(Kalg(𝑅))ℎ𝐶2 ⟶ GW(𝑅)⟶ L(𝑅), (3.1)

see, for example, [12, Main Theorem] or [60, Theorem 7.6] using that the Grothendieck–Witt spec-
tra of [12] and of [60] agree, see [12, appendix B.2].More specifically, in the notation of [12],GW(𝑅)
is given by GW(𝑅; Ϙs

𝑅
), and likewise L(𝑅) is given by L(𝑅; Ϙs

𝑅
); we remark here that by assumption

2 is invertible in 𝑅, many of the a priori different versions of Grothendieck–Witt theory studied in
[12, 13] collapse to the same object, which we here simply denote byGW(𝑅), see, for example, [13,
Remark R.4]. By [12, Corollary 4.4.14], this fiber sequence can also be encoded in the following
natural pullback diagram.

(3.2)

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12564 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [30/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



L-THEORY OF 𝐶∗-ALGEBRAS 1461

We may then likewise define

Ltop(𝐴) = colim
𝑛∈Δop

L(𝐶0(Δ𝑛, 𝐴)).

An astonishing feature of algebraic L-theory is the following homotopy invariance statement.

Proposition 3.2. For every Banach algebra with involution, the canonical map L(𝐴) → Ltop(𝐴) is
an equivalence.

Proof. As L-theory is 4-periodic, it suffices to show that L(𝐴) → Ltop(𝐴) induces an isomorphism
on negative homotopy groups. Recall that a sequence of spectra is a fiber sequence if and only if
it is a cofiber sequence. As colimits commute with colimits, we find that geometric realizations
preserve cofiber sequences and homotopy orbits for group actions. Consequently, from the fiber
sequence (3.1) and the definitions, we have a fiber sequence

k(𝐴)ℎ𝐶2 ⟶ GWtop(𝐴)⟶ Ltop(𝐴). (3.3)

As the first term in this sequence is connective, the latter map induces isomorphisms on negative
homotopy groups. [60, Remark 10.4] gives that GW(𝐴) → GWtop(𝐴) induces an isomorphism on
negative homotopy groups, so the proposition is proven. □

Combining Proposition 3.2 with the fiber sequence (3.3), we obtain the following corollary.

Corollary 3.3. There is a natural fiber sequence of functors

k(−)ℎ𝐶2 ⟶ GWtop(−)⟶ L(−).

Proof of Theorem C. We first claim that there is the following natural square of spectra

(3.4)

and that this square is a pullback square. To see this, we use Proposition 3.2 to replace L(𝐴) by
its topological variant and by taking the geometric realization of (3.2) we get a diagram as desired
(using the canonical colimit interchange map for the lower two corners). To see that it is a pull-
back, we use that the canonical map induced on horizontal fibers is an equivalence, as homotopy
orbits commute with the geometric realization. We wish to show that the right vertical map is an
equivalence modulo 2. To do so, we first note that as the transformation L(−) → k(−)𝑡𝐶2 is lax
symmetric monoidal, the map L(𝐴) → k(𝐴)𝑡𝐶2 is one of L(ℝ)-modules so its fiber is 4-periodic.
Then we consider the Bott-periodic analog 𝔾Wtop(𝐴) of GWtop(𝐴) also used in [32, appendix D]
that participates in the following commutative diagram.
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1462 LAND et al.

One defines a functor 𝕃top† as the cofiber of the lower horizontal map in the above square. By
Corollary 3.3, one obtains a map from the left to the right following square

(3.5)

again using the definition of the Tate construction. One directly checks that the square of fibers is
cartesian, so that the induced map of total fibers of the above squares is an equivalence. Further-
more, from [32, Lemma D.2], it follows that 𝕃top(𝐴)∕2 = 0 = K(𝐴)𝑡𝐶2∕2. Consequently, modulo 2
there is a canonical equivalence between the total fiber of the left square in (3.5) and the fiber of
L(𝐴) → k(𝐴)𝑡𝐶2 . Now, the top horizontal map of the left square in (3.5) induces an equivalence on
connective covers, see [32, Proof of Theorem D.1], so its fiber is coconnected. Likewise, the bot-
tom horizontal fiber is (𝜏<0K(𝐴))ℎ𝐶2 that is coconnected because coconnected spectra are closed
under limits in spectra. Hence, the total fiber of the left square in (3.5) is coconnected. In total,
it follows that the fiber modulo 2 of the map L(𝐴) → k(𝐴)𝑡𝐶2 is bounded above and 4-periodic,
hence trivial.‡Theorem C is therefore proven. □

Corollary 3.4. The functor L descends to a functor KK → Sp.

Proof. The arithmetic fracture square provides a pullback square of functors

so it suffices to show that L[1
2
] and L∧

2
are KK-invariant. The former is a direct consequence of the

natural isomorphism between K𝑛(−)[
1

2
] and L𝑛(−)[

1

2
] (see also [40]) and the latter follows from

Theorem C. □

Remark 3.5. In what follows, we will crucially use different variants of the∞-categorical Yoneda
lemma. We will make these different variants explicit now. To that end, assume that𝒞 is a stable
∞-category, the relevant example for this paper is 𝒞 = KK, and let 𝑐 ∈ 𝒞 be an object. Then the
mapping space functorMap𝒞(𝑐, −)∶ 𝒞 → Spc admits an essentially unique refinement to a limit
preserving functormap𝒞(𝑐, −)∶ 𝒞 → Sp. Here, refinement means that it is equipped with a nat-
ural equivalence Ω∞map𝒞(𝑐, −) ≃ Map𝒞(𝑐, −). The spectrum map𝒞(𝑐, 𝑑) is called the mapping
spectrum in𝒞, it recovers the mapping space upon applying Ω∞.

†We warn the reader that this object is not given by the topological version of Karoubi-invariant L-theory sometimes
denoted by 𝕃 in the literature.
‡ In fact, the total fiber is 4-periodic integrally: This is because diagram involving 𝕃, 𝕃top, k(𝐴)𝑡𝐶2 and K(𝐴)𝑡𝐶2 is one of
L(ℝ)-modules, but for sake of shortness, we omit an argument here.
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L-THEORY OF 𝐶∗-ALGEBRAS 1463

Now we have the following versions of the Yoneda lemma (see, e.g., [40, Lemma 3.6] for refer-
ences and proofs of (1)–(3) and [48] for (4)). In all instances, the natural equivalences are induced
by evaluating a natural transformation on the identity.

(1) For any functor 𝐹∶ 𝒞 → Spc, we have a natural equivalence

MapFun(𝒞,Spc)(Map𝒞(𝑐, −), 𝐹) ≃ 𝐹(𝑐).

(2) For any finite product preserving functor 𝐹∶ 𝒞 → Sp⩾0, we have a natural equivalence

MapFun(𝒞,Sp⩾0)(𝜏⩾0map𝒞(𝑐, −), 𝐹) ≃ Ω
∞𝐹(𝑐).

(3) For any finite product preserving functor 𝐹∶ 𝒞 → Ab, we have a natural isomorphism

HomFun(𝒞,Ab)(𝜋0map𝒞(𝑐, −), 𝐹) ≃ 𝜋0𝐹(𝑐).

(4) If 𝒞 is equipped with a symmetric monoidal structure, 𝐹∶ 𝒞 → Sp⩾0 is lax symmetric
monoidal and preserves finite products and 𝟙 is the tensor unit, then the space

MapFunlax(𝒞,Sp⩾0)
(𝜏⩾0map𝒞(𝟙, −), 𝐹)

of lax symmetric monoidal transformations is contractible, that is, there is a unique lax sym-
metric monoidal transformation 𝜏⩾0map𝒞(𝟙, −) → 𝐹. Under the identification of (2) this
corresponds to the element 1 in the algebra 𝜋0(𝐹(𝟙)).

In particular from (2) and (3) together, we deduce that for any finite product preserving func-
tor 𝐹∶ 𝒞 → Sp⩾0 we have a bijection between homotopy classes of natural transformations
𝜏⩾0map𝒞(𝑐, −) → 𝐹 and natural transformations 𝜋0map𝒞(𝑐, −) → 𝜋0𝐹. This bijection is given
by taking the effect on 𝜋0 of a natural transformation, as follows from the explicit descrip-
tion of the equivalences in (2) and (3). In other words: every transformation 𝜋0map𝒞(𝑐, −) →
𝜋0𝐹 can be uniquely (up to homotopy) extended to a transformation of connective spectrum
valued functors. In fact, if 𝐹 were finite limit preserving then one could even extend to a nat-
ural transformation of spectrum valued functors, by the following stable version of the Yoneda
lemma, which says that for any finite limit preserving functor 𝐹∶ 𝒞 → Sp we have a natural
equivalence

MapFun(𝒞,Sp)(map𝒞(𝑐, −), 𝐹) ≃ Ω
∞𝐹(𝑐).

In our case of interest, the functor 𝐹 will be L-theory that does not preserve finite limits (unless
one inverts 2). This is the ultimate reason why we can only produce functors from connective
K-theory to L-theory (and see Theorem 9.3 which implies that this is the best one can achieve).

Corollary 3.6. The functor 𝜏⩾0GWtop ∶ KK → Sp⩾0 is canonically equivalent to k ⊕ k.

Proof. From the fiber sequence

kℎ𝐶2 ⟶ GWtop ⟶ L
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1464 LAND et al.

and Corollary 3.4, we deduce that GWtop is a KK-invariant functor. In addition, we now show
that the induced functor 𝜏⩾0GWtop ∶ KK → Sp⩾0 is excisive, that is, sends pushout diagrams to
pullback diagrams. For this, we consider again the pullback diagram

of functors taking values in connective spectra.Wewish to show that, as such 𝜏⩾0GWtop is excisive.
Note that thismeans that pullbacks are taken in connective spectra, so being excisive as connective
spectrum valued functor is not the same as being excisive when viewed as a spectrum valued
functor (via the canonical inclusion of connective spectra in all spectra). We now observe that
𝜏⩾0k

ℎ𝐶2 is excisive, so it suffices to show that the fiber of the right vertical map is excisive as well.
For this, let us consider a pullback diagram of 𝐶∗-algebras

whose vertical maps are surjections with a completely positive contractive split (any pullback dia-
gram inKK is the image of such a diagram, e.g., by [4, Theorem 1.4(2) and Lemma 2.14]). We need
to show that the fiber of 𝜏⩾0L → 𝜏⩾0k𝑡𝐶2 sends this square to a pullback diagram of connective
spectra. We then consider the commutative square

(3.6)

both of whose horizontal cofibers are given by[
coker(k0(𝐴

′) ⊕ k0(𝐵) → k0(𝐵
′)
]𝑡𝐶2 ,

see [40, Theorem4.2] for the upper horizontal one. In fact, the proof in [40, Theorem4.2] gives that
the induced map on horizontal cofibers is an equivalence, therefore diagram (3.6) is a pullback
diagram. Consequently, themap on vertical fibers is also an equivalence. This shows that f ib(L →
k𝑡𝐶2) is excisive when viewed as a spectrum valued functor, and consequently its connective cover,
which agrees with the fiber of 𝜏⩾0L → 𝜏⩾0k𝑡𝐶2 , is excisive when viewed as a connective spectrum
valued functor.
We now observe that 𝜋0(GWtop(𝐴)) is naturally isomorphic to 𝜋0(k(𝐴) ⊕ k(𝐴)), induced by

sending a tuple (𝑃1, 𝑃2) of projectivemodules over𝐴 to the hermitian formwhich is the canonical
positive definite form on 𝑃1 and the canonical negative definite form on 𝑃2, see [28, Theorem 2.3].
Ask is the connective cover ofK, which is corepresented byℝ, andGWtop is product preserving the
natural transformation 𝜋0(k(𝐴) ⊕ k(𝐴)) → 𝜋0(GWtop(𝐴)) extends to a transformation k ⊕ k →
GWtop(𝐴) that induces an isomorphism on 𝜋0, see Remark 3.5. As both sides are excisive when
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L-THEORY OF 𝐶∗-ALGEBRAS 1465

viewed as taking values in connective spectra, we deduce that this map induces an isomorphism
in 𝜋𝑛 for all 𝑛 ⩾ 0: Indeed the just described canonical transformation induces a commutative
diagram

whose vertical maps are equivalences after taking connective covers (by the established fact that
both functors are excisive with values in connective spectra). Now the upper horizontal map
induces an isomorphism on 𝜋0, consequently so does the lower horizontal map. This establishes
that k(𝐴) ⊕ k(𝐴) → GWtop(𝐴) also induces an isomorphism on 𝜋𝑛 as claimed. □

Remark 3.7. One can also give a direct argument for a natural equivalence 𝜏⩾0GWtop(𝐴) ≃
k(𝐴) ⊕ k(𝐴), see [28, Theorem 2.3] for the version on homotopy groups. Informally, themap from
right to left is obtained as follows: First, one shows that 𝜏⩾0GWtop(𝐴) is the group completion of
the topological categoryUnimod(𝐴) of unimodular hermitian forms over𝐴, see, for example, [60,
Corollary A.2]. Then one shows that the functor Proj(𝐴) × Proj(𝐴) → Unimod(𝐴), given by send-
ing (𝑃1, 𝑃2) to (𝑃1 ⊕ 𝑃2, 𝜎pos ⊕ 𝜎neg) is an equivalence of topological categories; here, 𝜎pos denotes
the canonical positive definite form on 𝑃1 and 𝜎neg its negative definite variant. The main state-
ment here is to see that the group of isometries of (𝑃, 𝜎pos) is homotopy equivalent to the group
of isomorphisms of 𝑃; a shadow of this fact is [28, Lemma 2.9].
This perspective shows that the equivalence in fact holds more generally for 𝐶-algebras in the

sense of [28, Definition 2.2], but we shall not make use of this fact in this paper.
Having this equivalence, one deduces that 𝜏⩾0GW is KK-invariant. From the fiber sequence

kℎ𝐶2 ⟶ 𝜏⩾0GWtop ⟶ 𝜏⩾0L

it then follows that 𝜏⩾0L, and therefore by periodicity also L, is also KK-invariant. However, this
perspective does not immediately give a proof of Theorem C. We have decided to deduce the
description of GWtop in the way presented rather than showing the equivalence 𝜏⩾0GWtop(𝐴) ≃
k(𝐴) ⊕ k(𝐴) by hand, which might in fact be the more natural thing to do.

4 PROOF OF THEOREMS A AND B

In this section, we prove TheoremsA and B from the introduction. Again, we recall the statements
here for convenience.We emphasize at this point that the proofs of TheoremsA and B rely only on
the consequence of Theorem C that L-theory is a KK-invariant functor, not on Theorem C itself.
In particular, Theorems A and B can also be derived using the argument outlined in Remark 3.7.
This approachmakes no use of the fact that L[1

2
] is KK-invariant, which was deduced in [40] from

the fact that L is KK-invariant on complex 𝐶∗-algebras, which in turn was proven by using that
Theorem B was known previously for complex 𝐶∗-algebras as indicated in the introduction [28,
45, 56].
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1466 LAND et al.

Theorem4.1. There is a unique lax symmetricmonoidal transformation 𝜏∶ k → 𝓁 and the induced
maps

k(𝐴) ⊗ko 𝓁(ℝ)⟶ 𝓁(𝐴) and k(𝐴) ⊗ko L(ℝ)⟶ L(𝐴)

are equivalences for each 𝐶∗-algebra 𝐴.

Proof of Theorem 4.1. As the canonicalmap𝓁(𝐴) ⊗𝓁(ℝ) L(ℝ) → L(𝐴) is an equivalence, the second
displayedmap is obtained from the first by applying the functor−⊗𝓁(ℝ) L(ℝ). It therefore suffices
to prove that the first of the two displayed maps is an equivalence†
By the results of the previous section, we know that we may view L as a functor KK → Sp. As

such, it is canonically lax symmetric monoidal, because L-theory is lax symmetric monoidal on
𝐶∗-algebras. In other words, L is canonically an object of Alg(Fun(KK, Sp)) where algebras are
formed with respect to the Day convolution symmetric monoidal structure on Fun(KK, Sp). As
such it receives a unique algebra map from the unit, which is given by the functormapKK(ℝ,−) ≃
k. Therefore, as in [40] there is a unique lax symmetric monoidal transformation 𝜏∶ k → L.
We now consider the cofiber sequence

kℎ𝐶2
hyp
⟶ 𝜏⩾0GWtop ⟶ 𝜏⩾0L, (4.1)

see Corollary 3.3, and identify 𝜏⩾0GWtop with k ⊕ k using Corollary 3.6. First, we show that the
𝐶2-action on k is trivial: To this end, we note that k is corepresented by the tensor unit ℝ of KK
and that the action is lax symmetric monoidal, so the action is equivalently given by an action
on the tensor unit ℝ in KK. As the unit in any symmetric monoidal ∞-category is the initial
commutative algebra object, there is exactly one such action which is thus necessarily the trivial
action. We deduce that under the equivalence 𝜏⩾0GWtop ≃ k ⊕ k, the map hyp∶ kℎ𝐶2 → k ⊕ k
can equivalently be described by a 𝐶2-equivariant map 𝑟∗(k) → 𝑟∗(k ⊕ k) where 𝑟∶ 𝐵𝐶2 →∗ is
the unique map. Therefore, the map hyp is equivalently described by a map in the category
Fun(KK, Fun(𝐵𝐶2, Sp)) ≃ Fun(𝐵𝐶2, Fun(KK, Sp)). The Yoneda lemma induces the fully faithful
inclusion

Fun(𝐵𝐶2, KK
op)⟶ Fun(𝐵𝐶2, Fun(KK, Sp))

and the map hyp is a map between objects in the image. Therefore, the map hyp in the fiber
sequence (4.1) is uniquely determined by the associated element of

Map(𝐵𝐶2,Ω
∞(ko ⊕ ko))

corresponding to hyp(ℝ) evaluated on the element 1 ∈ Ω∞(ko). Similarly, we consider the map

k(𝐴) ⊗ko koℎ𝐶2

k(𝐴)⊗kohyp(ℝ)
��������������→ k(𝐴) ⊗ko (ko ⊕ ko) .

† The statement that the first map is an equivalence is equivalent to the statement that the second map is an equivalence
and the statement that k(𝐴) ⊗ko 𝜏<0L(ℝ) is coconnected. Using theWhitehead filtration of 𝜏<0L(ℝ) that has graded pieces
given by ℤ[4𝑘] for 𝑘 ⩽ −1, and the presentation ℤ = (ko∕𝜂)∕𝛽ℂ one finds that k(𝐴) ⊗ko 𝜏<0L(ℝ) is indeed coconnected,
so the two statements of Theorem 4.1 are in fact equivalent.
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L-THEORY OF 𝐶∗-ALGEBRAS 1467

Source and target are canonically equivalent to source and target of ourmaphyp and thus thismap
is also determined by an element in the spaceMap(𝐵𝐶2,Ω∞(ko ⊕ ko)). By construction these two
elements in this space agree, as for𝐴 = ℝ, the twomaps under investigation agree. So, we deduce
that the map hyp(𝐴) identifies with the map idk(𝐴) ⊗ko hyp(ℝ). Therefore, we deduce that

𝓁(𝐴) = cof ib(hyp(𝐴)) = k(𝐴) ⊗ko cof ib(hyp(ℝ)) = k(𝐴) ⊗ko 𝓁(ℝ)

as claimed. To see that the map is the one we claimed, it suffices to note that the induced map

k(𝐴)⟶ k(𝐴) ⊗ko 𝓁(ℝ)
≃
⟶ 𝓁(𝐴)

is natural in 𝐴 and for 𝐴 = ℝ agrees with the map 𝜏ℝ ∶ ko → 𝓁(ℝ). □

Remark 4.2. Let us consider the following commutative diagram

(4.2)

where the left vertical map is is the canonical projection map and the middle vertical map is the
equivalence of Remark 3.7. As a consequence, the (induced) map Δ is indeed the diagonal map.
We obtain a canonicalmap 𝜏̂ induced onhorizontal cofibers. Nowwemay consider the composite

k
(id,0)
⟶ k⊕ k

≃
⟶ 𝜏⩾0GWtop

considered as a map from the top right term in the above diagram. This map has the following
interpretation: It arises by observing that k(𝐴) can be described as the K-theory of the topolog-
ical category of positive definite forms on projective 𝐴-modules. The canonical inclusion to the
category of all unimodular forms then induces the map k → 𝜏⩾0GWtop just explained. With this
interpretation, one sees that this map is canonically a lax symmetric monoidal transformation.
Using that also the map GWtop → L is lax symmetric monoidal, see Calmès et al. (forthcoming)
for a general statement along these lines, we find that the composite

k → 𝜏⩾0GWtop → 𝓁

on the one hand agrees with 𝜏̂ (by construction) and is canonically lax symmetric monoidal. By
the uniqueness part of Theorem 4.1, we deduce that 𝜏̂ = 𝜏. By expanding out vertical (co)fibers of
diagram (4.2), we find that 𝓁 is described as the cofiber of a transformation

k̃ℎ𝐶2 ⟶ k

where the tilde denotes reduced 𝐶2-orbits, that is, the cofiber of the projection map k → kℎ𝐶2 .
This transformation is, similarly as before, determined by its induced map k̃oℎ𝐶2 → ko. A natural
guess is that this map is given as follows. We recall that the 𝐶2-action on ko is trivial, so that the
above map is equivalently described by a map 𝐵𝐶2 → End(ko), landing in the component of the
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1468 LAND et al.

zero map. We can then consider the canonical map

𝐵𝐶2 ⟶ gl1(ko) ⊆ End(ko)

that lands in the component of the identity, and shift it to the component of the zero map using
the additive structure on End(ko). We note that precomposing this map with the canonical map
𝐵ℤ → 𝐵𝐶2, we obtain a map Σko → ko that is given by the multiplication by 𝜂. This would be
compatible with the discussion at the end of this section, but we refrain from attempting to prove
that the map k̃oℎ𝐶2 → ko is indeed given by this construction.

Next, we aim to prove Theorem B from the introduction. Following standard topological nota-
tion we write KSp = K(ℍ) for the topological K-theory spectrum of the quaternions and denote
by ksp its connective cover. As a further preparation we denote by 𝜂∶ Σko∕2 → ko a ko-linear
extension of the 𝜂-multiplicationmap 𝜂∶ Σko → ko to Σko∕2. Such an extension exists as 2𝜂 = 0,
but is not unique.† Regardless which extension is chosen, we have the following symplectic ana-
logue ofWood’s theorem, recall thatWood’s theorem states that cof ib(𝜂) = ku or equivalently that
the cofiber of the periodic version 𝜂 ∶ ΣKO → KO is KU. For a proof of Wood’s theorem see [42,
Theorem 3.2], but note that the argument was cut from the published version [43].

Lemma 4.3. There is an equivalence cof ib(𝜂) ≃ ksp.

Proof. As KSp ≃ Σ4KO, we may equivalently show that there is a fiber sequence

ΣKO∕2
𝜂
⟶ KO⟶ Σ4KO.

We will deduce this from the periodic version of Wood’s theorem. To this end, consider the
commutative diagram

where𝐶 = cof ib(𝜂). The upper left square is filled by the chosen nullhomotopy of 2𝜂 and themap
𝑐∶ KO → KU is the complexificationmap that sends 1 to 1. The vertical and horizontal sequences
are all fiber sequences, the middle horizontal one by Wood’s theorem, the rest by definition.
The right vertical sequence is obtained from the left part of the diagram by forming horizontal
cofibers. In particular, we see that 𝐶 is the cofiber of the map Σ2KO ⤏ KU. By construction, this
map is KO-linear, as all maps and homotopies in the diagram are KO-linear. Thus, the map is
determined by its value on the generator 1 ∈ 𝜋2(Σ2KO) = 𝜋0(KO). By looking at the long exact
sequences associated to the horizontal fiber sequences, we see that this generator is sent to a gen-
erator in𝜋2(KU) ≅ ℤ. Thus, (after postcomposing with the invertible andKO-linearmap given by

†Up to homotopy, there are two extensions because 𝜋2(ko) = ℤ∕2.
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L-THEORY OF 𝐶∗-ALGEBRAS 1469

multiplication with this generator) the map Σ2KO ⤏ KU is equivalent to Σ2 of the complexifica-
tion map 𝑐∶ KO → KU. By another application of Wood’s theorem, we deduce that the cofiber 𝐶
is given by Σ4KO as needed. □

Corollary 4.4. There is a ko-linear map ksp → 𝓁(ℝ) that induces an isomorphism on 𝜋0 and
consequently an equivalence 𝜏⩽3ksp ≃ 𝜏⩽3𝓁(ℝ) on Postnikov 3-truncations.

Proof. As the canonical map ko → ksp induced by the map ℝ → ℍ is a 𝜋0 isomorphism, any
extension of 𝜏∶ ko → 𝓁(ℝ) along ko → ksp is also a 𝜋0 isomorphism. Therefore, by Lemma 4.3,
it suffices to show that the composite

Σko∕2
𝜂
⟶ ko

𝜏
⟶ 𝓁(ℝ)

is ko-linearly null-homotopic. But we have

Mapko(Σko∕2,𝓁(ℝ)) ≃ Mapko(Σko,Ω𝓁(ℝ)∕2) ≃ Ω
∞+2𝓁(ℝ)∕2

which is connected. The final equivalence on 3-truncations follows because both spectra have
𝜋1 = 𝜋2 = 𝜋3 = 0. □

We are now ready to prove Theorem B from the introduction, which we state here in a form
better suited for describing the comparisonmap 𝜏 on homotopy groups in all nonnegative degrees,
see Proposition 5.1. We denote by K∗(𝐴)[𝜂] the 𝜂-torsion of K∗(𝐴), that is, the kernel of the map
K∗(𝐴) → K∗+1(𝐴) given bymultiplication by 𝜂. The cokernel of thismap is denoted byK∗+1(𝐴)∕𝜂.

Theorem4.5. Let𝐴 be a𝐶∗-algebra. For all𝑛 ∈ ℤ, there are canonical andnatural isomorphisms

(1) L4𝑛(𝐴) ≅ K8𝑛(𝐴),
(2) L4𝑛+1(𝐴) ≅ K8𝑛+1(𝐴)∕𝜂,
(3) L4𝑛+2(𝐴) ≅ K8𝑛+6(𝐴)[𝜂], and
(4) L4𝑛+3(𝐴) ≅ K8𝑛+7(𝐴).

Proof. First, we note that it suffices to prove the theorem for 𝑛 = 0, as the L-groups are natu-
rally 4-periodic and the K-groups are naturally 8-periodic. Moreover, we note that the periodicity
generators 𝑏 ∈ L4(ℝ) and 𝛽ℝ ∈ K8(ℝ) are canonical (not only up to sign), for instance, because
they are determined by squares in L4(ℂ) and K8(ℂ), respectively.† Using the presentation 𝓁(𝐴) ≃
k(𝐴) ⊗ko 𝓁(ℝ) obtained in Theorem A and Corollary 4.4, we deduce that the map ksp → 𝓁(ℝ)
induces the equivalence

𝜏⩽3(k(𝐴) ⊗ko ksp)
≃
⟶ 𝜏⩽3𝓁(𝐴).

We now utilize that k(𝐴) = 𝜏⩾0K(𝐴) is the connective cover of a KO-module and proceed with
the following general observation. We let𝑀 be a KO-module and are then interested in the low

† Indeed, there are ring maps L(ℝ) → L(ℂ) and ko → ku, sending 𝑏 to 𝑏2
ℂ
and 𝛽ℝ to 𝛽4ℂ, respectively, for any choice of

generators 𝑏ℂ ∈ L2(ℂ) and 𝛽ℂ ∈ K2(ℂ).
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1470 LAND et al.

degree homotopy of the ko-module

(𝜏⩾0𝑀) ⊗ko ksp.

From the fiber sequence Σko∕2 → ko → ksp obtained in Lemma 4.3, we deduce that

(1) 𝜋0(𝜏⩾0𝑀 ⊗ko ksp) ≅ 𝜋0(𝑀), and

(2) 𝜋1(𝜏⩾0𝑀 ⊗ko ksp) ≅ coker(𝜋0(𝑀)
𝜂
→ 𝜋1(𝑀)).

To calculate 𝜋2 and 𝜋3, we consider the following diagram of horizontal and vertical fiber
sequences

from which we deduce that 𝜋𝑖(𝐶) = 0 for 𝑖 ⩾ 3 and that

𝜋2(𝐶) ≅ 𝜋1(Σ(𝜏<0𝑀)∕2) ≅ 𝜋−1(𝑀)[2].

In addition, we note that KSp ≃ Σ4KO. We therefore have a fiber sequence

𝜏⩾0𝑀 ⊗ko ksp⟶ Σ4𝑀⟶ 𝐶

whose long exact sequence on homotopy groups reveals that 𝜋3(𝜏⩾0𝑀 ⊗ko ksp) ≅ 𝜋3(Σ4𝑀) ≅
𝜋−1𝑀 and that there is an exact sequence

0⟶ 𝜋2(𝜏⩾0𝑀 ⊗ko ksp)⟶ 𝜋−2(𝑀)⟶ 𝜋−1(𝑀).

Here, we have used that 𝜋2(𝐶) ⊆ 𝜋−1(𝑀). The latter map in this exact sequence is a natural
transformation of functors 𝜋−2 → 𝜋−1 on KO-modules, and is therefore either trivial or the
𝜂-multiplication. We claim that it is the 𝜂-multiplication, which then shows the theorem.
The claim is equivalent to the statement that the map

𝜋2(𝜏⩾0𝑀 ⊗ko ksp)⟶ 𝜋−2(𝑀)

appearing above is in general not an isomorphism. Therefore, it suffices to find an example of
a KO-module 𝑀 where 𝜋−2(𝑀) ≠ 0 but 𝜋2(𝜏⩾0𝑀 ⊗ko ksp) = 0. First, we note that there is an
isomorphism

𝜋2(𝜏⩾0𝑀 ⊗ko ksp) ≃ 𝜋2(𝜏[0,2]𝑀 ⊗ko ℤ).

Choosing𝑀 = KO[−3], we find 𝜋[0,2]𝑀 = ℤ[1], so that

𝜋2(𝜏[0,2]𝑀 ⊗ko ℤ) ≅ 𝜋1(ℤ ⊗ko ℤ) = 0,
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L-THEORY OF 𝐶∗-ALGEBRAS 1471

in fact, asℤ ≃ (ko∕𝜂)∕𝛽ℂ, we haveℤ⊗ko ℤ ≃ (ℤ∕𝜂)∕𝛽ℂ ≃ ℤ⊕ Σ2ℤ ⊕ Σ3ℤ ⊕ Σ5ℤ because 𝜂 and
𝛽ℂ are zero on ℤ. However, 𝜋−2(𝑀) = 𝜋1(KO) ≠ 0, so the claim is shown. □

We end this section with the following perspective on the map k(𝐴) ⊗ko ksp → 𝓁(𝐴) that was
used in the proof of Theorem 4.5. Namely, as a consequence of Theorem 4.1 and Lemma 4.3, there
is a commutative diagram

and the fact that the right vertical map induces an equivalence of 3-truncations can be used to
show that the cofiber of the left most vertical map is 3-connective with 𝜋3 given by k0(𝐴)∕2. As
this map is obtained from the map Σ𝕊∕2 → 𝕊ℎ𝐶2 upon applying the functor −⊗ k(𝐴), this result
also follows from the following lemma.

Lemma 4.6. There is a map Σ𝕊∕2 → Σ∞𝐵𝐶2 whose cofiber is 3-connective with 𝜋3 isomorphic to
ℤ∕2.

Proof. First, we recall the low-dimensional homotopy groups of 𝕊∕2 and Σ∞𝐵𝐶2: We have that
𝜋0(𝕊∕2) = ℤ∕2, 𝜋1(𝕊∕2) = ℤ∕2 and 𝜋2(𝕊∕2) = ℤ∕4. In addition, the 𝜂-multiplications

𝜋0(𝕊∕2)⟶ 𝜋1(𝕊∕2)⟶ 𝜋2(𝕊∕2)

are injective, as follows from comparingwith𝕊 along the canonicalmap𝕊 → 𝕊∕2. Now, according
to [35], we have 𝜋1(Σ∞𝐵𝐶2) = ℤ∕2, 𝜋2(Σ∞𝐵𝐶2) = ℤ∕2 and 𝜋3(Σ∞𝐵𝐶2) = ℤ∕8. The Atiyah–
Hirzebruch spectral sequence then shows that the map Σ𝕊 = Σ∞𝐵ℤ → Σ∞𝐵𝐶2 induces the
projection on 𝜋1 an isomorphism on 𝜋2 and an injection on 𝜋3. In particular, this map descends
to a map Σ𝕊∕2 → Σ∞𝐵𝐶2 and the induced map then induces an isomorphism on 𝜋0 and 𝜋1. On
𝜋3, the composite Σ𝕊 → Σ𝕊∕2 → Σ∞𝐵𝐶2 identifies with

ℤ∕2⟶ ℤ∕4⟶ ℤ∕8,

where the composite is the nontrivialmap. It follows thatℤ∕4 → ℤ∕8must be injective as claimed.
This calculation also shows that the cofiber of the map Σ𝕊∕2 → Σ∞𝐵𝐶2 has 𝜋3 isomorphic to
coker(ℤ∕4 ⊆ ℤ∕8) ≅ ℤ∕2 as claimed. □

5 ALGEBRAIC STRUCTURE OF 𝐋∗(−)

In this section, we will describe the algebraic structure on the L-theory groups under the isomor-
phisms obtained in Theorem 4.5 and compare our results to previously known results. We will
freely use the isomorphisms of Theorem 4.5, which identifies all L-groups.
Recall that the homotopy groups KO∗ = K∗(ℝ) are 8-periodic with the (invertible) real Bott

element 𝛽ℝ in degree 8. We fix the generator 𝑥 ∈ K4(ℝ) ≅ ℤ whose complexification is 2𝛽2ℂ and
recall the relations 𝑥2 = 4𝛽ℝ and 𝜂𝑥 = 0.
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1472 LAND et al.

Proposition 5.1. For a 𝐶∗-algebra 𝐴, the map 𝜏𝐴 ∶ k(𝐴) → 𝓁(𝐴) induces the following maps on
homotopy groups 𝜋𝑛 for 𝑛 ⩾ 0:

(2𝑥)𝑛 ∶ K4𝑛(𝐴)⟶ K8𝑛(𝐴) ≅ L4𝑛(𝐴)

(2𝑥)𝑛 ∶ K4𝑛+1(𝐴)⟶ K8𝑛+1(𝐴)∕𝜂 ≅ L4𝑛+1(𝐴)

(2𝑥)𝑛 ⋅ 𝑥∶ K4𝑛+2(𝐴)⟶ K8𝑛+6(𝐴)[𝜂] ≅ L4𝑛+2(𝐴)

(2𝑥)𝑛 ⋅ 𝑥∶ K4𝑛+3(𝐴)⟶ K8𝑛+7(𝐴) ≅ L4𝑛+3(𝐴) .

Remark 5.2. In particular, in degree 8𝑛 and 8𝑛 + 1 the map under investigation is given by multi-
plication by 16𝑛, up to Bott periodicity isomorphisms. As the mapK4(ℝ) → K4(ℂ) sends 𝑥 to 2𝛽2ℂ,
Proposition 5.1 also shows that for complex 𝐶∗-algebras, the map induces multiplication by 2𝑛 on
𝜋2𝑛 and 𝜋2𝑛+1. This was previously obtained in [40, Theorem 4.1] and we shall make use of this
fact below.

Proof of Proposition 5.1. We note that the assignment𝐴 ↦ K𝑛(𝐴) viewed as a functorKK → Ab is
corepresented by an 𝑛-fold shift (i.e., suspension) of ℝ, which we denote by ℝ[𝑛]. Therefore, the
Yoneda lemma for product preserving functors KK → Ab implies that natural transformations
K𝑛 → L𝑛 are in 1–1 correspondence to classes in L𝑛(ℝ[𝑛]). By TheoremB, this group is isomorphic
toK0(ℝ) = ℤ andK4(ℝ) = ℤ{𝑥}when 𝑛 ≡ 0, 1, 6, 7 mod 8 and 𝑛 ≡ 2, 3, 4, 5 mod 8, respectively.
We deduce that maps K𝑛(𝐴) → L𝑛(𝐴) have to be given by multiplication with a multiple of 𝑥 or a
multiple of 1 (under the respective identifications depending on 𝑛 described above). From the case
of complex 𝐶∗-algebras as discussed in Remark 5.2, we immediately deduce the precise form of
themultiple: we simply note that for a complex𝐶∗-algebra𝐴 the element 𝑥 acts as 2𝛽2

ℂ
. Therefore,

(2𝑥)𝑛 acts as 22𝑛, and (2𝑥)𝑛 ⋅ 𝑥 acts as 22𝑛+1. Therefore, the formulae described in the statement of
Proposition 5.1 are correct for complex 𝐶∗-algebras (this is the content of Remark 5.2), and hence
by the above analysis in general. □

Next, we want to explain how the lax symmetric monoidal structure on L∗(−) is described in
terms of the lax symmetric monoidal structure on K∗(−) under the isomorphisms provided by
Theorem B. To state the result, we have to describe the maps

L𝑖(𝐴) ⊗ L𝑗(𝐵)⟶ L𝑖+𝑗(𝐴 ⊗ 𝐵)

for 𝑖, 𝑗 = 0, 1, 2, 3 mod 4 as everything is multiplicatively 4-periodic. By graded symmetry, it is
enough to do this for 0 ⩽ 𝑖 ⩽ 𝑗 ⩽ 3. We denote the lax symmetric monoidal structure of K-theory
as

K𝑖(𝐴) ⊗ K𝑗(𝐵)⟶ K𝑖+𝑗(𝐴 ⊗ 𝐵) (𝑎, 𝑏) ↦ 𝑎 ∗ 𝑏

and the induced KO∗ = K∗(ℝ)-module structure on K∗(𝐴) by the multiplication sign.

Proposition 5.3. Under the isomorphisms of Theorem 4.5 the exterior multiplication maps on the
L-groups are maps of the following kind.

(1) K8𝑛(𝐴) ⊗ K8𝑚(𝐵)⟶ K8𝑛+8𝑚(𝐴 ⊗ 𝐵).
(2) K8𝑛(𝐴) ⊗ K8𝑚+1(𝐵)∕𝜂⟶ K8𝑛+8𝑚+1(𝐴 ⊗ 𝐵)∕𝜂.
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L-THEORY OF 𝐶∗-ALGEBRAS 1473

(3) K8𝑛(𝐴) ⊗ K8𝑚+6(𝐵)[𝜂]⟶ K8𝑛+8𝑚+6(𝐴 ⊗ 𝐵)[𝜂].
(4) K8𝑛(𝐴) ⊗ K8𝑚+7(𝐵)⟶ K8𝑛+8𝑚+7(𝐴 ⊗ 𝐵).
(5) K8𝑛+1(𝐴)∕𝜂 ⊗ K8𝑚+1(𝐵)∕𝜂⟶ K8𝑛+8𝑚+6(𝐴 ⊗ 𝐵)[𝜂].
(6) K8𝑛+1(𝐴)∕𝜂 ⊗ K8𝑚+6(𝐵)[𝜂]⟶ K8𝑛+8𝑚+7(𝐴 ⊗ 𝐵).
(7) K8𝑛+1(𝐴)∕𝜂 ⊗ K8𝑚+7(𝐵)⟶ K8𝑛+8𝑚+8(𝐴 ⊗ 𝐵).
(8) K8𝑛+6(𝐴)[𝜂] ⊗ K8𝑚+6(𝐴)[𝜂]⟶ K8𝑛+8𝑚+8(𝐴 ⊗ 𝐵).
(9) K8𝑛+6(𝐴)[𝜂] ⊗ K8𝑚+7(𝐴)⟶ K8𝑛+8𝑚+9(𝐴 ⊗ 𝐵)∕𝜂.
(10) K8𝑛+7(𝐴) ⊗ K8𝑚+7(𝐴)⟶ K8𝑛+8𝑚+14(𝐴 ⊗ 𝐵)[𝜂].

For 𝑎 belonging to the left tensor factor and 𝑏 belonging to the right tensor factor, thesemaps are given
by the following formulae:

K8𝑚(𝐵) K8𝑚+1(𝐵)∕𝜂 K8𝑚+6(𝐵)[𝜂] K8𝑚+7(𝐵)

K8𝑛(𝐴) 𝑎 ∗ 𝑏 𝑎 ∗ 𝑏 𝑎 ∗ 𝑏 𝑎 ∗ 𝑏

K8𝑛+1(𝐴)∕𝜂 𝑥 ⋅ (𝑎 ∗ 𝑏) 𝑎 ∗ 𝑏 2(𝑎 ∗ 𝑏)

K8𝑛+6(𝐴)[𝜂]
𝑥

2𝛽ℝ
(𝑎 ∗ 𝑏) 𝑥

2𝛽ℝ
(𝑎 ∗ 𝑏)

K8𝑛+7(𝐴) 2(𝑎 ∗ 𝑏)

Here, the abusive term 𝑥

2𝛽ℝ
(𝑎 ∗ 𝑏) denotes an element depending naturally on 𝑎 and 𝑏 and whose

multiplication with 2 is given by 𝑥
𝛽ℝ
(𝑎 ∗ 𝑏). Part of the statement is the claim that there is a unique

such element.

Proof. We take a step back again and recall that the exterior multiplication maps on L-theory are
natural transformations

L𝑖 ⊗ L𝑗 → L𝑖+𝑗 .

If 𝑖 and 𝑗 are 0 or 3 modulo 4, then the L-groups are isomorphic to K-groups and thus the source
L𝑖 ⊗ L𝑗 is corepresentable by shifts of ℝ (on the category ℎKK⊗ ℎKK whose objects are pairs of
𝐶∗-algebras and whose hom abelian groups are the tensor products of the hom abelian groups
in ℎKK). Consequently, the exterior multiplication L𝑖 ⊗ L𝑗 → L𝑖+𝑗 is given by an element in
L𝑖+𝑗(ℝ[𝑚]) for appropriate𝑚. This group is isomorphic toK0(ℝ) = ℤ andK0(ℝ)[𝜂] = 2ℤ (depend-
ing on the precise values of 𝑖 and 𝑗) so that in these cases the multiplication has to be given by a
multiple of 𝑎 ∗ 𝑏 and 2(𝑎 ∗ 𝑏), respectively. Using that the map of Proposition 5.1 is to be compat-
ible with external products, we immediately get the desired multiples. This proves cases (1), (4),
and (10).
By Theorem B and the remark following Theorem B in the introduction, we have natural sur-

jections K1(𝐴) → L1(𝐴) and K0(𝐴ℂ) → L2(𝐴). The functor 𝐴 ↦ K0(𝐴ℂ) is corepresentable by ℂ
and the functor𝐴 ↦ K1(𝐴) by ℝ[1]. We deduce that for any values of 𝑖 and 𝑗 we have a surjection
𝐹𝑖(𝐴) ⊗ 𝐹𝑗(𝐴) ↠ L𝑖(𝐴) ⊗ L𝑗(𝐴) where 𝐹𝑖 and 𝐹𝑗 are corepresentable. Any natural transforma-
tion with source L𝑖 ⊗ L𝑗 is then uniquely determined by its restriction to 𝐹𝑖 ⊗ 𝐹𝑗 . Computing
natural transformations 𝐹𝑖 ⊗ 𝐹𝑗 → L𝑖+𝑗 the resulting groups are given by

K0(ℝ), K0(ℂ), K4(ℝ), K0(ℂ ⊗ℝ ℂ).

Using again that the comparison map 𝜏 is compatible with external products and Proposition 5.1,
we obtain cases (2), (3), (5), (6), and (7). It remains to treat case (8) and (9). We shall argue case
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1474 LAND et al.

(8) and leave the details of case (9) to the reader. We consider the following diagram of natural
transformations

the left diagram commutes because the forgetful map 𝑢∶ K(𝐴ℂ) → K(𝐴) is KO-linear. The right
diagram commutes because the vertical maps are induced by 𝜏, see Proposition 5.1, and 𝜏 is com-
patible with exterior multiplications. The lower right horizontal map 𝑚 is the one we wish to
describe as 𝑚(𝑎, 𝑏) = 𝑥

2𝛽ℝ
(𝑎 ∗ 𝑏). As the lower left horizontal arrow is surjective, it suffices to

show that the equality holds after precomposing with this surjective map. Doing this, both terms
are natural transformations that, by corepresentability of the source, are given by elements of
K0(ℂ ⊗ ℂ). As this group is torsion-free, we may equivalently show that

16𝑚(𝑢(𝑎), 𝑢(𝑏)) = 8𝑥

𝛽ℝ
(𝑢(𝑎) ∗ 𝑢(𝑏)),

where 𝑎 ∈ K6(𝐴ℂ) and 𝑏 ∈ K6(𝐵ℂ). Using the above commutative diagram, and the fact that the
on the K-theory of complex 𝐶∗-algebras, 𝑥 acts via 2𝛽2

ℂ
, we see that

4𝑚(𝑢(𝑎), 𝑢(𝑏)) = 2𝑥 ⋅ (𝑢(𝛽−2
ℂ
𝑎) ∗ 𝑢(𝛽−2

ℂ
𝑏)),

so it suffices to show that

4𝛽ℝ ⋅ (𝑢(𝛽−2
ℂ
𝑎) ∗ 𝑢(𝛽−2

ℂ
𝑏)) = 4(𝑢(𝑎) ∗ 𝑢(𝑏)).

This follows from the facts that 4𝛽ℝ = 𝑥2,− ∗ − isKO-bilinear,𝑢 isKO-linear, and that𝑥𝑎 = 2𝛽2ℂ𝑎
as already used earlier. Case (9) can be shown by a similar argument. □

Remark 5.4. In this remark, we collect what was previously known about the L-groups of 𝐶∗-
algebras.

(1) There is a canonical signature-type isomorphism L0(𝐴) → K0(𝐴), see, for example, [56,
Theorem 1.6].

(2) There are canonical isomorphisms K𝑛(𝐴)[
1

2
] ≅ L𝑛(𝐴)[

1

2
], see [56, Theorem 1.11] and [40] for

the more general statement that there is a canonical equivalence K[1
2
] ≃ L[1

2
] of spectrum

valued functors.
(3) For a unital real 𝐶∗-algebra 𝐴, there is a canonical surjection K1(𝐴) → Lℎ1(𝐴) whose ker-

nel is generated by the image of K1(ℝ) → K1(𝐴), see [56, Theorem 1.9]. Here, Lℎ refers to
free L-theory. We give a new proof of this presentation of Lℎ

1
(𝐴) in Corollary 5.8. With the

arguments used there, an observation about the Rothenberg sequence for 𝐶∗-algebras [56,
Remark 1.7], and some additional work, one can in fact conversely recover an isomorphism
L1(𝐴) ≅ K1(𝐴)∕𝜂 for any 𝐶∗-algebra 𝐴.

To the best of our knowledge, no conjectural relation between L𝑛(𝐴) and K𝑛(𝐴) has been made
for 𝑛 ⩾ 2 without inverting 2. We also note that, by construction, the isomorphism in (1) is the
inverse of the canonical isomorphism induced by the map 𝜏 of Theorem A.
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L-THEORY OF 𝐶∗-ALGEBRAS 1475

Wewill now also comment how our results imply statements about the higher free L-groups of
unital 𝐶∗-algebras and in particular reprove part (3) above in Corollary 5.8. First, we describe the
free L-theory of a unital 𝐶∗-algebra as follows. We recall that 𝑆𝐴 = 𝐶0((0, 1); 𝐴) denotes the 𝐶∗-
algebraic suspension of the algebra 𝐴 and note that 𝑆 descends to the loop functor on the stable
∞-category KK.

Proposition 5.5. Let 𝐴 be a unital 𝐶∗-algebra. There is a canonical fiber sequence

ΣL(𝑆𝐴)⟶ Lℎ(𝐴)⟶ 𝐶(𝐴)𝑡𝐶2 ,

where 𝐶(𝐴) = ker(K0(𝐴) → K̃0(𝐴)) = Im(K0(ℝ) → K0(𝐴)) is a cyclic group.

Proof. By [40, Proposition 4.6] and the Rothenberg sequence for Lℎ(−) and L(−) [52, section 9], we
have a commutative diagram of fiber sequences (the left vertical dashed map is the one induced
from the right solid square)

(5.1)

from which the proposition follows immediately. □

The following is an amusing consequence.

Corollary 5.6. Suppose𝐴 is a unital 𝐶∗-algebra in which the element [𝐴] ∈ K0(𝐴) has odd order†.
Then the map ΣL(𝑆𝐴) → Lℎ(𝐴) is an equivalence.

Proof. The element [𝐴] ∈ K0(𝐴) generates the kernel of the map K0(𝐴) → K̃0(𝐴). Therefore,
under the assumptions of the corollary, 𝐶(𝐴) is a finite group of odd order, so its 𝐶2-Tate
cohomology vanishes. □

We then investigate the long exact sequence associated to the fiber sequence of Proposition 5.5.
To do so, we first analyze the top horizontal fiber sequence in diagram (5.1) and recall that, as
the 𝐶2-action on K0(𝐴) is trivial‡, we have 𝐻̂ev(𝐶2; K0(𝐴)) ≅ K0(𝐴)∕2 and 𝐻̂odd(𝐶2; K0(𝐴)) ≅
K0(𝐴)[2].

Proposition 5.7. Under the isomorphisms provided by Theorem B, the natural maps L𝑛(𝐴) →
𝜋𝑛(K0(𝐴)

𝑡𝐶2) appearing in the long exact sequence associated to the top horizontal fiber sequence
of diagram (5.1) are the following ones:

(1) the projection K0(𝐴) → K0(𝐴)∕2 for 𝑛 ≡ 0 mod 4,
(2) the trivial map K1(𝐴)∕𝜂 → K0(𝐴)[2] for 𝑛 ≡ 1 mod 4,

† For example, 𝐴 = 𝒪ℝ
2𝑛
.

‡Any finitely generated projective 𝐴-module 𝑃 admits a positive definite unimodular form, giving an isomorphism from
𝑃 to 𝑃∨. See also the proof of Theorem 4.1 for the triviality of the 𝐶2-action on the spectrum k(𝐴).
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1476 LAND et al.

(3) the unique, nontrivial natural map K6(𝐴)[𝜂] → K0(𝐴)∕2 for 𝑛 ≡ 2 mod 4† , and
(4) the multiplication by 𝜂 map K7(𝐴) → K0(𝐴)[2] for 𝑛 ≡ 3 mod 4.
Proof. First, we note that all maps appearing are natural in 𝐴. Next, we recall that the map under
consideration is the composite of the natural transformations L → Kalg(−)𝑡𝐶2 → K0(−)𝑡𝐶2 , both of
which are canonically lax symmetric monoidal transformations. We deduce that the map under
consideration is 4-periodic (as everything is a module over L(ℝ)), hence it suffices to treat the
cases 𝑛 = 0, 1, 2, 3. The case 𝑛 = 0 follows from a direct inspection. The case 𝑛 = 1 is obtained by
considering the natural maps

K1(𝐴)⟶ K1(𝐴)∕𝜂⟶ K0(𝐴)[2] ⊆ K0(𝐴)

and observing that any such natural map is given by multiplication by an element of K−1(ℝ) = 0.
As the first map above is surjective and the last map is injective, the middle map is trivial as
claimed. The case 𝑛 = 2 is obtained by noting that the composite

K6(𝐴ℂ)⟶ K6(𝐴)[𝜂]⟶ K0(𝐴)∕2

is again natural and the first map is surjective by the generalized Wood sequence discussed in
the remark following Theorem B. Furthermore, as before, the source is, as a functor in 𝐴, corep-
resented by ℂ. Therefore, natural such maps are given by an element in K0(ℂ)∕2 = ℤ∕2. It then
suffices to show that the map under investigation is not trivial. This follows from the case of com-
plex 𝐶∗-algebras: The 2-periodicity of L-theory for complex 𝐶∗-algebras indeed shows that this
map identifies with the map for 𝑛 = 0 that is nontrivial by the first part. This construction also
shows that the description given in footnote 5 is correct: the map K6(𝐴ℂ) → K0(𝐴)∕2 given by
thenontrivial elementK0(ℂ)∕2 = ℤ∕2 factors asK6(𝐴ℂ) → K0(𝐴ℂ) → K0(𝐴) → K0(𝐴)∕2 because
the element in K0(ℂ)∕2 lifts through the induced maps K0(ℂℂ) → K0(ℂ) → K0(ℂ)∕2 in the
prescribed manner.
Finally, the case 𝑛 = 3must, by the same reasoning as earlier, be given by multiplication with

a 2-torsion element of K1(ℝ) = ℤ∕2{𝜂}. It then suffices to know that this map is nontrivial, which
follows from considering the algebra 𝐴 = 𝑆ℝ. □

Corollary 5.8. Let 𝐴 be a unital 𝐶∗-algebra. Then

(1) there is a canonical isomorphism Lℎ
1
(𝐴) ≅ K1(𝐴)∕⟨𝜂⟩, and

(2) there is a canonical isomorphism Lℎ
3
(𝐴) ≅ K7(𝐴) ×K8(𝐴) 𝐶(𝐴), where the maps appearing in

the pullback are given by the 𝜂 multiplication K7(𝐴) → K8(𝐴) and the canonical map 𝐶(𝐴) →
K0(𝐴) ≅ K8(𝐴).

Proof. To prove part (1), we consider the following diagram

† The assertion is that there is exactly one such natural map. An explicit description can be given as follows: lift an element
in𝐾6(𝐴)[𝜂] to an element in𝐾6(𝐴ℂ) along the “forgetful” map𝐾∗(𝐴ℂ) → 𝐾∗(𝐴). Thenmultiply the lift with 𝛽−3 to obtain
an element in 𝐾0(𝐴ℂ) and apply the forgetful map followed by the mod 2 reduction.
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L-THEORY OF 𝐶∗-ALGEBRAS 1477

and note first that L0(𝑆𝐴) ≅ K1(𝐴) by Theorem B. Then we observe that the right most vertical
arrow is injective, simply because 𝐶(𝐴) → K0(𝐴) is. Furthermore, the right most bottom horizon-
tal arrow is injective, see [56, Remark 1.10] and the argument used in the proof of [40, Proposition
4.6] via diagram (1) therein. It follows that the right most top horizontal arrow is trivial, so that
Lℎ
1
(𝐴) is a natural quotient of K1(𝐴). To see which precise quotient it is, we observe again by nat-

urality, that the second to left most bottom horizontal arrow is given by multiplication by 𝜂: It is
either that or trivial, and the case of 𝐴 = ℝ shows that the map is nontrivial because L2(ℝ) = 0.
To prove part (2), we consider the same exact sequences shifted in the appropriate degrees:

where the left most bottom arrow is surjective by Proposition 5.7. Consequently, themap Lℎ
3
(𝐴) →

L3(𝐴) is injective. The claim then follows from the isomorphism L3(𝐴) ≅ K7(𝐴) of Theorem 4.5
and the fact established in Proposition 5.7 under this isomorphism, the map L3(𝐴) → K0(𝐴)
appearing in the above diagramas the rightmost bottomhorizontalmap is given bymultiplication
by 𝜂. □

Finally, we say as much as we can about Lℎ
2
(𝐴):

Proposition 5.9. Let 𝐴 be a unital 𝐶∗-algebra. Then there is an exact sequence

𝐶(𝐴)[2]⟶ K2(𝐴)∕𝜂
𝑥̃
⟶ Lℎ2(𝐴)⟶ 𝐶(𝐴)∕2

𝜂
⟶ K1(𝐴),

where 𝑥̃ is a map whose composition with the canonical map Lℎ
2
(𝐴) → L2(𝐴) ≅ K6(𝐴)[𝜂] is given by

multiplication by 𝑥.

Proof. We inspect the long exact sequence associated to the fiber sequence of Proposition 5.5
and use that L1(𝑆𝐴) ≅ K2(𝐴)∕𝜂 and L0(𝑆𝐴) ≅ K1(𝐴) by Theorem 4.5. To see the claim about the
composite of 𝑥̃ with the map Lℎ

2
(𝐴) → L2(𝐴) ≅ K6(𝐴)[𝜂], we note that again by naturality, this

composite is given by amultiple of the𝑥multiplication. The case𝐴 = ℂ then shows the claim. □

Remark 5.10. The sequence of Proposition 5.9 can of course simplify: For instance, if 𝐶(𝐴) has
odd order, or when 𝐶(𝐴)[2] = 0 and 0 ≠ 𝜂 ∈ K1(𝐴), we find that Lℎ2 (𝐴) ≅ K2(𝐴)∕𝜂.
Remark 5.11. Themap 𝐶(𝐴)[2] → K2(𝐴)∕𝜂 appearing in the sequence of Proposition 5.9 picks out
a particular element of the target (recall that 𝐶(𝐴)[2] is either cyclic of order 2 or trivial). Under
the isomorphism

K2(𝐴)∕𝜂 ≅ ker
(
K0(𝐴ℂ) → K0(𝐴)

)
induced by the Wood sequence, this element is given by the composite

𝐶(𝐴)[2]⟶ K0(𝐴)[2]⟶ ker(K0(𝐴ℂ) → K0(𝐴)),
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1478 LAND et al.

where we claim that the latter map is induced the canonical map K0(𝐴) → K0(𝐴ℂ) (which, when
restricted to 2-torsion lands in the indicated kernel because the composite K0(𝐴) → K0(𝐴ℂ) →
K0(𝐴) is given by multiplication by 2). Indeed, this map induces a natural map

K1(𝐴∕2)⟶ K0(𝐴)[2]⟶ ker(K0(𝐴ℂ) → K0(𝐴)) ⊆ K0(𝐴ℂ),

which in turn determines the map in question, as the first map is surjective. This composite
is determined by an element of K0(ℂ∕2) ≅ ℤ∕2, as the source is corepresented by ℝ∕2. It then
suffices to note that the map in question and the proposed map are both natural and nontriv-
ial. To see that the map 𝐶(𝐴)[2] → K2(𝐴)∕𝜂 appearing in Proposition 5.9 is nontrivial, we can
consider the case 𝐴 = 𝒪ℂ

3
. It satisfies K0(𝐴) = ℤ∕2 and K̃0(𝐴) = 0. In particular 𝐶(𝐴) = ℤ∕2

and the map Lℎ(𝐴) → L(𝐴) is an equivalence. As K1(𝐴) = 0 we deduce that L1(𝐴) ≅ Lℎ3 (𝐴) = 0.
This shows that the map 𝐶(𝐴)[2] → K2(𝐴)∕𝜂 is injective (and therefore in fact bijective). The
same example also shows that the map K0(𝐴)[2] = K0(𝐴) → K0(𝐴ℂ) is nontrivial: Indeed, as 𝐴
is complex there is an isomorphism 𝐴ℂ ≅ 𝐴 × 𝐴 under which the map from 𝐴 corresponds to
the diagonal.

Remark 5.12. Finally, we explain that for a unital 𝐶∗-algebra𝐴, the map 𝜏∶ k(𝐴) → L(𝐴), on pos-
itive homotopy groups factors canonically through the canonical map Lℎ(𝐴) → L(𝐴). Indeed, we
shall argue that there is a canonicalmap kfree(𝐴) → Lℎ(𝐴), where kfree(𝐴) denotes the group com-
pletion of the topological category of free𝐴-modules, participating in the following commutative
diagram.

The left vertical map is induced by the canonical inclusion of free into projective modules and
induces an equivalence on connected covers. Indeed, there is a commutative diagram

where the maps from K-theory to Grothendieck–Witt theory equip a module over 𝐴 with its
unique positive definite form as described earlier.
Under the isomorphisms of Corollary 5.8, the map kfree → Lℎ on low homotopy groups is then

given as follows:

(1) the canonical projection K1(𝐴) → K1(𝐴)∕⟨𝜂⟩ ≅ Lℎ1(𝐴),
(2) the map K2(𝐴) → K2(𝐴)∕𝜂

𝑥̃
→ Lℎ

2
(𝐴) where 𝑥̃ is as in Proposition 5.9, and

(3) the map K3(𝐴) → K7(𝐴) ×K8(𝐴) 𝐶(𝐴) ≅ L
ℎ
3
(𝐴) given by the 𝑥-multiplication, note that 𝜂𝑥 =

0, so the 𝑥 multiplication on K3 indeed has image in the claimed subgroup of K7(𝐴).
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L-THEORY OF 𝐶∗-ALGEBRAS 1479

6 EXAMPLES

In this section, we present a number of examples where we calculate L-groups of 𝐶∗-algebras.
We note here, that due to the fact that the (graded) cohomological dimension of 𝜋∗(L(ℝ)) is 1,
an L(ℝ)-module spectrum is (noncanonically) determined by its homotopy groups. Below, we
shall therefore concentrate on calculating L-groups, and sometimes construct in addition canon-
ical fiber sequences describing the L-spectrum. To do so efficiently, we begin with the following
lemma.

Lemma 6.1. We have a canonical equivalence ℤ⊗ko L(ℝ) ≅ L(ℂ)∕2.

Proof. There is a canonical fiber sequenceΣ2ku
𝛽
→ ku⟶ ℤ. Therefore, applying−⊗ko L(ℝ) and

Theorem A, there is a canonical fiber sequence

Σ2L(ℂ)
2𝑏ℂ
⟶ L(ℂ)⟶ ℤ⊗ko L(ℝ),

where 𝑏ℂ ∈ L2(ℂ) ≅ ℤ denotes the generator such that 𝜏(𝛽) = 2𝑏ℂ, see [40, Lemma 4.9]. As 𝑏ℂ is
invertible in L∗(ℂ), the lemma follows. □

Example 6.2. Let 𝐴 be a complex 𝐶∗-algebra. Then

L(𝐴) ≃ k(𝐴) ⊗ko L(ℝ) ≃ k(𝐴) ⊗ku ku ⊗ko L(ℝ) = k(𝐴) ⊗ku L(ℂ).

Furthermore, we recover that L0(𝐴) ≅ K0(𝐴) and L1(𝐴) ≅ K1(𝐴), as 𝜂 is trivial on ku-modules.

Example 6.3. We have Σ𝑛L(ℝ)
≃
→ L(ℝ[𝑛]) for 0 ⩽ 𝑛 ⩽ 3. Here, the notation 𝐴[𝑛] refers to the

𝑛-fold suspension of𝐴 in the stable∞-categoryKK; we again note that this construction is imple-
mented by an appropriate 𝐶∗-algebraic suspension, that is, 𝐴[−1] is represented by 𝑆𝐴. Indeed,
the example follows from the fiber sequence

ΣL(𝐴[−1])⟶ L(𝐴)⟶ K0(𝐴)
𝑡𝐶2

obtained in [40, Proposition 4.6] and the fact thatK𝑛(ℝ) = 0 for 𝑛 = 5, 6, 7. We note that the proof
of [40, Proposition 4.6] applies verbatim to real 𝐶∗-algebras, now that we know that L-theory
factors through KK also for real 𝐶∗-algebras.

Example 6.4. Letℍ be the quaternions. Then we have k(ℍ) = ksp ≃ 𝜏⩾0Ω4ko, and hence 𝓁(ℍ) ≃
ksp ⊗ko 𝓁(ℝ). Consequently, the L-groups are given by

(1) L0(ℍ) = K0(ℍ) ≅ ℤ,
(2) L1(ℍ) = coker(K0(ℍ) → K1(ℍ)) = coker(ℤ → 0) = 0,
(3) L2(ℍ) = ker(K6(ℍ) → K7(ℍ)) = ker(ℤ∕2 → 0) = ℤ∕2, and
(4) L3(ℍ) = K7(ℍ) = 0.

In addition, from the fiber sequence Σ4ko → ksp → ℤ and Lemma 6.1, we obtain a canonical fiber
sequence

L(ℝ)⟶ L(ℍ)⟶ L(ℂ)∕2,

where the first map classifies 2 times a generator of L0(ℍ).
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1480 LAND et al.

Example 6.5. As ℍ ≃ ℝ[4] in KK, we have already determined L(ℝ[𝑛]) for 0 ⩽ 𝑛 ⩽ 4. In addi-
tion, similarly as in Example 6.3, we have that ΣL(ℍ) ≃ L(ℍ[1]) ≃ L(ℝ[5]) because K3(ℝ) = 0. As
ℝ[𝑛] ≃ ℝ[𝑛 + 8] in KK by real Bott periodicity, we shall now also calculate the L-groups of the
remaining shifts of ℝ, namely ℝ[6] and ℝ[7]. Here, we find

(1) L0(ℝ[6]) = ℤ∕2 and L0(ℝ[7]) = ℤ∕2,
(2) L1(ℝ[6]) = 0 and L1(ℝ[7]) = 0,
(3) L2(ℝ[6]) = ℤ and L2(ℝ[7]) = 0, and
(4) L3(ℝ[6]) = ℤ∕2 and L3(ℝ[7]) = ℤ.

Example 6.6. As spectra, there is an equivalence L(ℂ[1]) ≃ ΣL(ℂ). However, the canonical map
ΣL(ℂ) → L(ℂ[1]) is not an equivalence, as follows again from [40, Proposition 4.6]: its cofiber is
given by ℤ𝑡𝐶2 . In other words, the canonical map identifies with the times 2 map on ΣL(ℂ).

Example 6.7. Consider the algebra 𝐶(𝕋) of continuous real valued functions on the circle. Then
we have an equivalence in KK given by 𝐶(𝕋) = ℝ⊕ ℝ[−1]. From this, the fact that L-theory
preserves products, and Example 6.5 we obtain the following L-groups.

(1) L0(𝐶(𝕋)) = ℤ⊕ ℤ∕2.
(2) L1(𝐶(𝕋)) = 0.
(3) L2(𝐶(𝕋)) = 0.
(4) L3(𝐶(𝕋)) = ℤ.

Example 6.8. Let 𝐺 be a torsion-free group for which the Baum–Connes conjecture holds. Then
we get

(1) L0(𝐶∗𝑟 𝐺) = KO0(𝐵𝐺),
(2) L3(𝐶∗𝑟 𝐺) = KO−1(𝐵𝐺).

By Anderson duality, this shows that one can recover the abelian group KO4(𝐵𝐺) from L∗(𝐶∗𝑟 𝐺).
Indeed, there is a short exact sequence

0⟶ Ext1
ℤ
(KO−1(𝐵𝐺), ℤ)⟶ KO4(𝐵𝐺)⟶ Homℤ(KO0(𝐵𝐺), ℤ)⟶ 0,

which splits noncanonically; see, for example, [21] for a review of Anderson duality and the fact
that the Anderson dual of KO is given by Ω4KO.

Example 6.9. The Baum–Connes conjecture is known to be true for free groupsℱ𝑛 of rank 𝑛 ⩾ 1.
In particular, we have an equivalence K(𝐶∗𝑟ℱ𝑛) ≃ KO⊕

⨁
𝑛 KO[1], and therefore obtain

L(𝐶∗𝑟ℱ𝑛) ≃ L(ℝ) ⊕
⨁
𝑛

L(ℝ)[1].

Remark 6.10. We warn the reader that, contrary to the complex case, 𝐶∗𝑟 ℤ is not isomorphic to
𝐶(𝕋), but rather to the algebra of 𝐶2-equivariant continuous functions 𝕋 → ℂ, where 𝕋 and ℂ
both carry the complex conjugation action.

Example 6.11. Let Σg be an orientable surface of genus g ⩾ 1 and 𝜋 its fundamental group. The
Baum–Connes conjecture is known for surface groups, so we find that

K(𝐶∗𝑟 𝜋) ≃ Σg ,+ ⊗ KO ≃ KO⊕KO[1]
⊕2g ⊕KO[2].
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L-THEORY OF 𝐶∗-ALGEBRAS 1481

Consequently, we obtain

L(𝐶∗𝑟 𝜋) ≃ L(ℝ) ⊕ L(ℝ) ⊕ L(ℝ)[1]
⊕2g ⊕ L(ℝ)[2].

Example 6.12. Let𝑊 be a right angled Coxeter group associated to a flag complex Σ as studied,
for example, in [30]. Then [30, Theorem 7.16] shows that K(𝐶∗𝑟𝑊) ≃ KO

𝑟, where 𝑟 is the number
of simplices of Σ, including the empty simplex. Therefore, we find L(𝐶∗𝑟𝑊) ≃ L(ℝ)

𝑟.

Remark 6.13. In fact, [30] shows that there are explicit maps 𝛼𝑖 ∶ ℝ → ℝ𝑊 ⊆ 𝐶∗𝑟𝑊, for 𝑖 = 1, … , 𝑟,
such that the induced maps⨁

𝑟

KO⟶ K(𝐶∗𝑟𝑊) and
⨁
𝑟

L(ℝ)⟶ L(ℝ𝑊)

are equivalences. Combined with Theorem A, we deduce that among the following two maps⨁
𝑟

L(ℝ)⟶ L(ℝ𝑊)⟶ L(𝐶∗𝑟𝑊)

both the first map and the composite are equivalences. Therefore, so is the second map. This
gives a nontrivial example where the completion conjecture of [40, Conjecture after Corollary
5.7], which states that the map L(ℝ𝐺) → L(𝐶∗𝑟 𝐺) is an equivalence after inverting 2, is in fact true
without inverting 2.

Example 6.14. Let 𝐴 be a real 𝐶∗-algebra equipped with an automorphism 𝜑∶ 𝐴 → 𝐴. Then
there is a fiber sequence

𝐴
id−𝜑
⟶ 𝐴⟶𝐴⋊𝜑 ℤ

in KK, this is essentially the Pimsner–Voiculesu sequence in KK-theory, see, for example, [8,
section 19.6]. If id − 𝜑∗ is injective on K−1(𝐴), one also obtains a fiber sequence

k(𝐴)
1−𝜑∗
⟶ k(𝐴)⟶ k(𝐴⋊𝜑 ℤ)

of ko-modules. Consequently, there is then also a fiber sequence

L(𝐴)
1−𝜑
⟶ L(𝐴)⟶ L(𝐴⋊𝜑 ℤ).

More generally, there is a similar (conditional) fiber sequence describing the L-theory of reduced
crossed products by free groups.

Example 6.15. An example of a crossed product byℤ is the real rotation algebra𝐴𝜃 = 𝐶(𝕋)⋊𝜃 ℤ
where 𝜃 is a real number and acts on functions on the circle group 𝕋 by a rotation by 𝜃. However,
by homotopy invariance, in KK we have an equivalence 𝐴𝜃 ≃ 𝐶(𝕋) ⊕ 𝐶(𝕋)[1] ≃ ℝ⊕ ℝ[−1] ⊕
ℝ[1] ⊕ ℝ. We therefore obtain

L(𝐴𝜃) ≃ L(ℝ)
⊕2 ⊕ L(ℝ[−1]) ⊕ L(ℝ[1]).
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1482 LAND et al.

Using our previous calculations, we finally obtain

(1) L0(𝐴𝜃) = ℤ2 ⊕ ℤ∕2,
(2) L1(𝐴𝜃) = ℤ,
(3) L2(𝐴𝜃) = 0, and
(4) L3(𝐴𝜃) = ℤ.

We note that the order structure on K0(𝐴) gives additional information (also on 𝜃), and that by
the isomorphismK0(𝐴) ≅ L0(𝐴), this order structure is also present in L-theory.We are not aware
of a description of the order structure on L-theory that does not make use of the isomorphism
to K-theory.

Example 6.16. We consider the real Cuntz algebras𝒪ℝ
𝑛+1

. InKK, there is a canonical equivalence
𝒪ℝ
𝑛+1
≃ ℝ∕𝑛. In particular, k(𝒪ℝ

𝑛+1
) ≃ ko∕𝑛. Therefore, we find

L(𝒪ℝ𝑛+1) ≃ ko∕𝑛 ⊗ko L(ℝ) = L(ℝ)∕𝑛.

Likewise, one can consider the tensor poducts 𝒪ℝ
𝑛+1
⊗ℝ 𝒪ℝ

𝑚+1
, where one finds

L(𝒪ℝ𝑛+1 ⊗ℝ 𝒪ℝ𝑚+1) ≃ L(ℝ)∕ gcd(𝑚, 𝑛) ⊕ ΣL(ℝ)∕ gcd(𝑚, 𝑛)

contrary to the case of K-theory, where the real K-groups of𝒪ℝ
𝑛+1
⊗ℝ 𝒪ℝ

𝑚+1
do not only depend on

the greatest common divisor of𝑚 and 𝑛, simply because (ko∕𝑛)∕𝑚 does not only depend on this
number; see [9] for explicit calculations.
Therefore, not surprisingly, L-theory of real 𝐶∗-algebras is a strictly weaker invariant than K-

theory: The real 𝐶∗-algebras 𝒪ℝ
3
⊗ℝ 𝒪ℝ5 and 𝒪ℝ

3
⊗ℝ 𝒪ℝ

3
are distinguished by their K-groups, but

not by their L-groups.

Example 6.17. Letℰℝ
2𝑛
denote the simple separable nuclear real form of the Cuntz-algebra𝒪ℂ

2𝑛+1
considered in [10]. Its topological K-theory is given by

K(ℰℝ2𝑛) ≃ KO∕𝑛𝑥,

where 𝑥 ∈ 𝜋4(KO) is a generator. Note that its complexification is given by KU∕2𝑛𝛽2 ≃ KU∕2𝑛,
compatible with the equivalence K(𝒪ℂ

2𝑛+1
) ≃ KU∕2𝑛. There is a fiber sequence

ℤ⟶ ko∕𝑛𝑥⟶ k(ℰℝ2𝑛),

where the firstmap inducesmultiplication by 4𝑛 on𝜋0.We conclude that there is a fiber sequence

L(ℂ)∕2⟶ L(ℝ)∕8𝑛⟶ L(ℰℝ2𝑛)

in which the first map induces the nonzero map on 𝜋4𝑖 . In particular, the L-groups are given by

(1) L0(ℰℝ2𝑛) = ℤ∕4𝑛,
(2) L1(ℰℝ2𝑛) = 0,
(3) L2(ℰℝ2𝑛) = ℤ∕2,
(4) L3(ℰℝ2𝑛) = ℤ∕2.
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L-THEORY OF 𝐶∗-ALGEBRAS 1483

Example 6.18. We end with a number of following structural examples.

(1) The L-groups of a𝐶∗-algebra withK1(𝐴ℂ) = K7(𝐴) = K6(𝐴) = 0, are concentrated in degrees
divisible by 4.

(2) If the K-groups of a 𝐶∗-algebra are finitely generated, then so are the L-groups.
(3) If the K-groups of a 𝐶∗-algebra vanish after inverting a number 𝑛 (e.g., when they are 𝑛-

primary torsion), then so do the L-groups.
(4) In Example 6.16, we have seen that there are algebras that cannot be distinguished by their

L-theories, but by their K-theories. However, we record here that a map 𝑓∶ 𝐴 → 𝐵 of 𝐶∗-
algebras induces an equivalence on K-theory if and only if it does so on L-theory: Indeed the
only if part follows immediately from Theorem A, so let us argue the if part. By passing to the
cofiber of the map associated to 𝑓 in KK, we may equivalently show that L(𝐴) = 0 implies
K(𝐴) = 0. By Theorem B, we deduce from L(𝐴) = 0 that K𝑛(𝐴) = 0 for 𝑛 = −2,−1, 0, 1. By
the generalized Wood sequence (see the Remark after Theorem B), we deduce that K(𝐴ℂ) =
0 (the generalized Wood sequence reveals that K1(𝐴ℂ) = 0 = K0(𝐴ℂ)) and therefore that
𝜂∶ ΣK(𝐴) → K(𝐴) is an equivalence, and consequently 𝜂𝑛 is also an equivalence for any
𝑛 ⩾ 1. However, 𝜂3 = 0, showing that K(𝐴)must be zero.

7 INTEGRAL BAUM–CONNES AND FARRELL–JONES
COMPARISON

In [40], we have used the equivalence K[1
2
] ≃ L[1

2
] to compare the Baum–Connes assembly map

and the L-theoretic Farrell–Jones assembly maps after inverting 2. The purpose of this section is
to prove the following integral refinement of this result.

Theorem 7.1. The map 𝜏∶ k → L induces the commutative diagram

To explain the terms in the theorem, we will first briefly recall the setup for assembly maps as
proposed by Davis and Lück [16].
The Davis–Lück picture for assembly maps starts with a discrete group 𝐺 and an equivariant

homology theory 𝐸, encoded as a functor Orb(𝐺) → Sp, where Orb(𝐺) is the orbit category of 𝐺,
that is, the full subcategory of𝐺-sets consisting of transitive𝐺-sets (i.e.,𝐺-sets isomorphic to𝐺∕𝐻
for a subgroup 𝐻 of 𝐺). A familyℱ of subgroups of 𝐺 is a collection of subgroups closed under
conjugation and passing to further subgroups. Associated to any such familyℱ, we may form the
ℱ-orbit category Orbℱ(𝐺) which is the full subcategory on all transitive 𝐺-sets whose stabilizers
belong toℱ (i.e.,𝐺-sets isomorphic to𝐺∕𝐻 for𝐻 ∈ ℱ). Theℱ-assemblymap for𝐺 and 𝐸 is then
given by the canonical map

𝐸𝐺(𝐸ℱ𝐺)
def
= colim
𝐺∕𝐻∈Orbℱ𝐺

𝐸(𝐺∕𝐻)⟶ 𝐸(𝐺∕𝐺).
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1484 LAND et al.

Given an inclusion of familiesℱ ⊆ ℱ′, there is an evident factorization of theℱ-assemblymap
as follows:

𝐸𝐺(𝐸ℱ𝐺)⟶ 𝐸𝐺(𝐸ℱ′𝐺)⟶ 𝐸(𝐺∕𝐺)

in which the first map is referred to as the relative assembly map (with respect to the inclusion of
familiesℱ ⊆ ℱ′) and the second map is theℱ′-assembly map. Following standard notation we
shall also write 𝐸ℱin𝐺 = 𝐸𝐺 and 𝐸𝒱cyc𝐺 = 𝐸𝐺.
Relevant for us will be the functors given by equivariant topological K-theory and equivariant

L-theory. These are functors

K𝐺, L𝑅𝐺 ∶ Orb(𝐺)⟶ Sp , 𝐺∕𝐻 ↦ 𝐾(𝐶∗𝐻), L(𝑅𝐻)

for an involutive ring𝑅, see, for example, [40] for further details. For the family of finite subgroups
ℱin, we shall denote these assembly maps by

BC∶ K𝐺∗ (𝐸𝐺)⟶ K∗(𝐶
∗𝐺) and FJ∶ L𝑅𝐺∗ (𝐸𝐺)⟶ L(𝑅𝐺).

We also note that the map FJ factors as the composite

L𝑅𝐺∗ (𝐸𝐺)⟶ L𝑅𝐺∗ (𝐸𝐺)⟶ L(𝑅𝐺),

whose second map we shall later also denote by FJ.

Remark 7.2. We warn the reader that the L-theoretic Farrell–Jones conjecture is more specifically
about the assembly map for the family𝒱cyc of virtually cyclic subgroups and for a related (but
in general different) functor 𝐺∕𝐻 ↦ 𝕃q(𝑅𝐻) where 𝕃q is the Karoubi-localization of Lq in the
sense of Calmès et al. (forthcoming), also known as universally decorated L-theory, denoted by
L⟨−∞⟩,q in the literature, where the superscript q refers to quadratic rather than symmetric L-
theory. We show in Theorem 7.6, that for a regular ring 𝑅 and a torsion-free group 𝐺, the Farrell–
Jones conjecture implies that the map denoted FJ above is also an isomorphism (in fact, for either
of the two maps denoted FJ above, as the first map in the composite is an isomorphism under the
assumptions made, see Proposition 7.7); to the best of our knowledge, this had not been observed
so far.

Remark 7.3. The assembly map in topological K-theory described above is related to the Baum–
Connes conjecture that was originally phrased in terms of equivariant Kasparov theory. First and
foremost, this conjecture is more specifically about the composite

K𝐺∗ (𝐸𝐺)
BC
⟶ K∗(𝐶

∗𝐺)⟶ K∗(𝐶
∗
𝑟 𝐺),

where 𝐶∗𝐺 → 𝐶∗𝑟 𝐺 is the canonical morphism. We note here that the association 𝐺 ↦ 𝐶
∗
𝑟 𝐺 is not

functorial in group homomorphisms, as famously the reduced group 𝐶∗-algebra 𝐶∗𝑟ℱ𝑛 of a non-
abelian free group is a simple algebra [50]. Therefore, the Davis–Lück picture for the assembly
map in topological K-theory uses the full group 𝐶∗-algebra instead.
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L-THEORY OF 𝐶∗-ALGEBRAS 1485

Now, it was shown in [31] (and later and with different methods in [4]) that the assembly
map for 𝐺, the family ℱin of finite subgroups of 𝐺, and the functor K𝐺 is isomorphic to the
Baum–Connes assembly map, and in [33] that for torsion-free groups, this assembly map has
an interpretation as taking a Mishchenko–Fomenko index (this latter result was a folklore result
known to the experts for a long time).
In addition, the assembly map in topological K-theory is often performed using the complex

group 𝐶∗-algebra rather than the real one, but see [59] for a relation between the two which says
that there is a comparison square for the real and complex assemblymaps, and that either of these
two assembly maps is an isomorphism (in all degrees) if and only if the other is.

The natural map k → L as functors on the category KK induces a natural transformation
k𝐺 → Lℝ𝐺 as functors on the orbit category, see [40] for the details. Consequently, we obtain the
following theorem, which is an integral analog of [40, Theorem D].

Theorem 7.4. The map 𝜏∶ k → L of Theorem 4.1 induces the following commutative diagram.

Proof of Theorem 7.1. There is a canonical map 𝐶∗𝐺 → 𝐶∗𝑟 𝐺 from the full to the reduced group
𝐶∗-algebra. As 𝜏 is natural, we obtain the commutative diagram

which is the content of Theorem 7.1. □

Remark 7.5. Upon inverting 2 and the Bott element 𝛽ℝ, the diagram of Theorem 7.1 becomes
equivalent to the diagram

which is the one obtained earlier in [40, Theorem D]. This uses in particular that the comparison
map Lℝ𝐺∗ (𝐸𝐺) → Lℝ

𝐺
∗ (𝐸𝐺) is an isomorphism after inverting 2 [41, Proposition 2.18]. Theorem 7.1

in addition provides some finer information about the comparison, as, for instance, the kernels
and cokernels of the vertical maps appearing in the diagram of Theorem 7.1 can be analyzed by
means of Proposition 5.1.
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1486 LAND et al.

To put Theorem 7.1 into context, we note that the diagram in it participates in the following
larger diagram:

The map labeled 𝜏 in the diagram factors as

ko𝐺∗ (𝐸𝐺)⟶ Lℝ𝐺∗ (𝐸𝐺)⟶ Lℝ𝐺∗ (𝐸𝐺),

where the second map is split injective, see the argument below, and the first map is in princi-
ple understandable by means of Theorems A and B. We shall argue that the full Farrell–Jones
conjecture for 𝐺 implies that†

(1) the map FJℝ is an isomorphism, and
(2) the map FJℤ is an isomorphism if 𝐺 is torsion-free.

To see statement (1) and the claim about the split injectivity above, we first note that there is a
commutative diagram

where for a ring 𝑅, 𝕃(𝑅) is what is denoted by L⟨−∞⟩(𝑅) in the literature, see [41, Remark 1.21] and
Calmès et al. (forthcoming) for the notation. There is a canonical map L(𝑅) → 𝕃(𝑅) which is an
equivalence, for instance, if𝐾(𝑅), the algebraic𝐾-theory of 𝑅, is connective, see, for example, [41,
Remark 1.22]. We claim that the vertical maps in the above diagram are all equivalences: Indeed,
the K-theoretic Farrell–Jones conjecture together with the fact that ℝ is a regular ℚ-algebra and
[41, Proposition 2.14] implies that𝐾(ℝ𝐺) is connective, so that L(ℝ𝐺) → 𝕃(ℝ𝐺) is an equivalence,
see [41, Conjecture 3.3]. To see that alsomiddle and left vertical maps are equivalences, we use the
same argument for𝐺 replaced by virtually cyclic subgroups and finite subgroups of𝐺, respectively,
note here that the class of group for which the (full) Farrell–Jones conjectures hold is closed under
taking subgroups.

† That is, we assume that 𝐺 is a Farrell–Jones group in the sense of [20, section 5.2].
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L-THEORY OF 𝐶∗-ALGEBRAS 1487

Now, the Farrell–Jones conjecture implies that the right lower horizontal map is an equiva-
lence, and [41, Proposition 2.16] states that the left lower horizontal map is split injective.
Statement (2) requires different methods, as the Farrell–Jones conjecture is a conjecture about

quadratic L-theory, whereas we make a statement about symmetric L-theory. Note that this sub-
tlety does not appear for group rings over ℝ since there, quadratic and symmetric L-theory
agree. We give a proof of statement (2) in Theorem 7.6, relying on some recent developments
in hermitian K-theory.
The big diagram appearing above simplifies if the group 𝐺 is torsion-free, see also Proposi-

tion 7.7: In this case, one obtains the following diagram.

In addition, for torsion-free groups, the Farrell–Jones conjecture in quadratic L-theory implies
the one in symmetric L-theory, see the subsection below. However, the lower vertical comparison
maps that change the base ring in the L-theoretic FJ conjecture from ℤ to ℝ are quite subtle to
analyze, in particular integrally, but even after inverting 2, see, for example, [41, Remark 3.20]. If
furthermore 𝐵𝐺 has an 𝑛-dimensional classifying space, then the left top most vertical map is an
equivalence in degrees ⩾ 𝑛 + 1.

Farrell–Jones for symmetric L-theory

In this section, we prove the following result we have indicated above andwhichmight be of some
independent interest.

Theorem 7.6. Let 𝐺 be a torsion-free group and 𝑅 a regular ring. Assume that the FJ conjecture
holds for 𝐺. Then the assembly map

𝐵𝐺 ⊗ Ls(𝑅)⟶ Ls(𝑅𝐺)

is an equivalence.

To connect itmore explicitly to the statement (2) above, we also record here the following result.

Proposition 7.7. Let 𝑅 be a regular ring and 𝐺 a torsion-free group. Then the relative assembly
map

𝐵𝐺 ⊗ Ls(𝑅)⟶ Ls𝑅𝐺(𝐸𝐺)

is an equivalence.
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1488 LAND et al.

Proof. By the transitivity principle for assembly maps [41, Theorem 2.9], we need to show
that for each virtually cyclic subgroup 𝑉 of 𝐺, the assembly map 𝐵𝑉 ⊗ Ls(𝑅) → Ls(𝑅𝑉) is an
equivalence. Now, as 𝐺 is torsion-free, so is 𝑉, and therefore 𝑉 is either trivial or isomor-
phic to ℤ [41, Lemma 2.15]. We therefore need to show that the Shaneson–Ranicki splitting
holds for symmetric L-theory, which is, for instance, done in the generality of bordism invari-
ant Verdier localizing invariants of Poincaré categorie in Calmès et al. (forthcoming), see [47]
for an earlier proof of the splitting result for symmetric L-theory. Note that we also use that
K0(𝑅𝑉) ≅ K0(𝑅) in order to ensure that no decoration problems appear in the Shaneson–Ranicki
splitting. □

Inwhat follows,wewill freelymake use of the language andnotation developed in the sequence
of papers [11–13] and Calmès et al. (forthcoming). Suffice it to say here that for a space† 𝑋 and a
Poincaré category (𝒞, Ϙ), we write

(𝒞, Ϙ)𝑋 = colim
𝑋
(𝒞, Ϙ)

for the tensor of (𝒞, Ϙ) with 𝑋. We call (𝒞, Ϙ)𝑋 the visible Poincaré category associated to 𝑋
and (𝒞, Ϙ), see [11] for some explanation of the terminology and how its L-theory connects to
previously studied versions of visible L-theory. In the proof of the following result, which we
initially learned from Yonatan Harpaz, we will describe the Poincaré category (𝒞, Ϙ)𝑋 in more
detail.

Lemma 7.8. Let 𝑋 be a space, 𝒞 be a stable∞-category and Ϙ→ Ϙ′ a map of Poincaré structures
on𝒞 inducing an equivalence on the bilinear parts of Ϙ and Ϙ′. Then the diagram

is a pullback, where the vertical maps are the assembly maps.

Proof. Let 𝑇 = cof ib(Ϙ→ Ϙ′), which is by assumption an exact functor 𝒞op → Sp. It is therefore
a filtered colimit of representables. All terms in the diagram appearing in the lemma preserve
filtered colimits of Poincaré categories, so it suffices to prove the lemma in the case where 𝑇 is
represented by an object 𝑡 of𝒞, that is, where 𝑇 = map𝒞(−, 𝑡). In this case, 𝑇𝑋 = cof ib(Ϙ𝑋 → Ϙ′𝑋)
is given as follows.
We recall that 𝒞𝑋 is the subcategory of Fun(𝑋op, Pro(𝒞))‡ generated under finite limits from

the right Kan extensions of functors ∗→ 𝒞 → Pro(𝒞) along inclusions ∗→ 𝑋op.We then have that
for 𝜑 ∈ 𝒞𝑋 ⊆ Fun(𝑋

op, Pro(𝒞))

𝑇𝑋(𝜑) = colim
𝑥∈𝑋

𝑇(𝜑(𝑥)) = colim
𝑥∈𝑋

map(𝜑(𝑥), 𝑡)

†Here, best to be thought of as an∞-groupoid.
‡Of course,𝑋op ≃ 𝑋, but in order to get op’s and colimits versus limits correct, it is best not to identify𝑋 with𝑋op just yet.

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12564 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [30/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



L-THEORY OF 𝐶∗-ALGEBRAS 1489

so that 𝑇𝑋 is represented by the object 𝑟∗(𝑡) in Fun(𝑋op,𝒞) ⊆ Fun(𝑋op, Pro(𝒞)), where 𝑟∶ 𝑋 →∗
is the unique map. Now in general, 𝑟∗(𝑡) is not contained in 𝒞𝑋 (though it is the case if 𝑋 is
compact towhich the general case reduces again by using that all functors in sight preserve filtered
colimits). Regardless, one can write it as a filtered colimit of objects in𝒞𝑋 .
The formula for relative L-theory of Harpaz, Nikolaus, and Shah (forthcoming) says that there

is an equivalence

L(𝒞; Ϙ, Ϙ′) = Eq
(
Ϙ′(𝐷𝑡) ⇉ 𝐵Ϙ(𝐷𝑡, 𝐷𝑡)

)
,

where 𝐷 denotes the (common) duality of 𝒞, here, one of the maps is the canonical forgetful
map Ϙ′(𝐷𝑡) → 𝐵Ϙ(𝐷𝑡, 𝐷𝑡)ℎ𝐶2 → 𝐵Ϙ(𝐷𝑡, 𝐷𝑡), and the other one is the canonical map Ϙ′(𝐷𝑡) →
𝐵Ϙ(𝐷𝑡, 𝐷𝑡)

ℎ𝐶2 → 𝐵Ϙ(𝐷𝑡, 𝐷𝑡)
𝑡𝐶2 ≃ ΛϘs (𝐷𝑡) → Λ𝑇(𝐷𝑡) = mapℂ(𝐷𝑡, 𝑡) ≃ 𝐵Ϙ(𝐷𝑡, 𝐷𝑡). Likewise, we

obtain

L(𝒞𝑋; Ϙ𝑋, Ϙ
′
𝑋) = Eq

(
Ϙ′𝑋(𝐷(𝑟

∗(𝑡))) ⇉ 𝐵Ϙ𝑋 (𝐷(𝑟
∗(𝑡)), 𝐷(𝑟∗(𝑡)))

)
.

Now 𝐷(𝑟∗(𝑡)) = 𝑟∗𝐷𝑡, and therefore, as Ϙ𝑋(𝜑) = colim𝑋 Ϙ(𝜑(𝑥)), and likewise for the bilinear
functor [11, Proposition 6.4.3], we find that

L(𝒞𝑋; Ϙ𝑋, Ϙ
′
𝑋) = colim𝑋

Eq
(
Ϙ′(𝐷𝑡) ⇉ 𝐵Ϙ(𝐷𝑡, 𝐷𝑡)

)
= 𝑋 ⊗ L(𝒞; Ϙ, Ϙ′)

and one checks that the maps are again the ones indicated above. The lemma then follows. □

Recall that for a ring 𝑅 with involution we have the stable∞-category 𝒟𝑝(𝑅) of perfect com-
plexes over 𝑅. The involution on 𝑅 induces a canonical duality on𝒟𝑝(𝑅), giving rise to homotopy
quadratic and homotopy symmetric Poincaré structures Ϙq and Ϙs that are related by the canon-
ical symmetrization map Ϙq → Ϙs. This map is an equivalence on cross effects. Let us define, for
ease of notation, for any space 𝑋, the visible symmetric and visible quadratic L-theory of 𝑋 with
coefficients in 𝑅 as follows.

Lvs(𝑋; 𝑅) = L((𝒟𝑝(𝑅), Ϙs)𝑋) and Lvq(𝑋; 𝑅) = L((𝒟𝑝(𝑅), Ϙq)𝑋).

By analyzing the linear part of the visible Poincare structure, we find that there is a canonical map
of Poincaré categories

(𝒟𝑝(𝑅)𝑋, Ϙ
q) → (𝒟𝑝(𝑅), Ϙq)𝑋

is an equivalence, that is, that visible quadratic L-theory is simply quadratic L-theory of the cat-
egory 𝒟𝑝(𝑅)𝑋 with its induced duality; we will therefore also write Lq(𝑋; 𝑅) for Lvq(𝑋; 𝑅). We
note that𝒟𝑝(𝑅)𝑋 ⊆ 𝒟𝑝(𝑅[Ω𝑋]) so that in total we obtain an equivalence Lvq(𝑋; 𝑅) ≃ Lq𝑐 (𝑅[Ω𝑋])
and using the 𝜋-𝜋-theorem, see, for example, [13, Corollary 1.2.33(i)], even a further equivalence†
L
q
𝑐 (𝑅[Ω𝑋]) ≃ L

q
𝑐 (𝑅𝜋) where 𝜋 = 𝜋1(𝑋) and the subscript 𝑐 stands for an appropriate control,

namely the one given by the image of the map K0(𝑅) → K0(𝑅𝜋).

†Under the assumption that 𝑋 is connected and pointed.
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1490 LAND et al.

Corollary 7.9. The diagram

is a pullback.

Proof. This is a special case of Lemma 7.8. □

The following is now the remaining piece in the proof of Theorem 7.6.

Lemma 7.10. Let 𝑅 be an involutive ring and 𝐺 be a 2-torsion-free group. Then there is a canonical
equivalence

Lvs(𝐵𝐺; 𝑅)⟶ Ls𝑐(𝑅𝐺).

Here the subscript 𝑐 stands for control in the subgroup Im(𝐾0(𝑅) → 𝐾0(𝑅𝐺)) ⊆ 𝐾0(𝑅𝐺).

Proof. We first note that the visible symmetric Poincaré structure, for connected and pointed
𝑋, in one on 𝒟𝑝(𝑅)𝐵𝐺 ⊆ 𝒟𝑝(𝑅𝐺) where the subcategory is the one associated to the subgroup
Im(𝐾0(𝑅) → 𝐾0(𝑅𝐺)). As Poincaré structures extend uniquely to idempotent completions, it suf-
fices to argue that on the category𝒟𝑝(𝑅𝐺), the visible Poincaré structure Ϙvs agrees with the Ϙs.
As the bilinear parts agree, it suffices to compare the linear terms. In this case, we have

Λvs(𝑀) = map𝑅𝐺(𝑀, 𝑅
𝑡𝐶2), whereas Λs(𝑀) = map𝑅𝐺(𝑀, (𝑅𝐺)

𝑡𝐶2),

where 𝑅𝐺 has the 𝐶2-action given induced by the involution on 𝑅 and the inversion action on 𝐺.
The map from left to right is induced by the map {𝑒} → 𝐺. Now, as a module with 𝐶2-action, 𝑅𝐺
therefore decomposes according to the decomposition of 𝐺 into transitive 𝐶2-sets as follows:

𝑅𝐺 =
⨁

g∈𝐺[2]

𝑅 ⊕
⨁

[g]∈𝐺⧵𝐺[2]

ind
𝐶2
𝑒 (𝑅).

In particular, if 𝑒 is the only 2-torsion element in 𝐺, the map 𝑅 → 𝑅𝐺 induces an equivalence
after applying (−)𝑡𝐶2 . Therefore, in this case we find that the canonical map of Poincaré structures
Ϙvs → Ϙs is an equivalence. □

Proof of Theorem 7.6. We consider the following commutative diagram.

The left vertical map is an equivalence because K(𝑅) is assumed to be connective. The lower
horizontal map is the map which is predicted to be an equivalence by the FJ conjecture. The
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L-THEORY OF 𝐶∗-ALGEBRAS 1491

right vertical map is an equivalence if K(𝑅𝐺) is connective (though this is not and if and only if).
Now the K-theoretic FJ conjecture implies that K(𝑅𝐺) ≃ 𝐵𝐺 ⊗ K(𝑅) that is again connective by
assumption.We conclude that the top horizontal map is an equivalence. Nowwe use the pullback
diagram

obtained in Corollary 7.9 together with the equivalences Lq(𝐵𝐺; 𝑅) ≃ Lq(𝑅𝐺) (which holds for all
groups 𝐺) and the equivalence Lvs(𝐵𝐺; 𝑅) ≃ Ls(𝑅𝐺) of Lemma 7.10 (which holds for 2-torsion-
free groups 𝐺). We have argued above that the left vertical map is an equivalence, and therefore
so is the right. □

8 RELATIONS TO SIGNATURE GENERA

Wenow comment on a relation to previous approaches to comparing the Baum–Connes (BC) and
Farrell–Jones (FJ) assembly maps and thereby analytic and surgery theoretic approaches to the
Novikov conjecture. We recall here that the Novikov conjecture is implied by either of the two
assembly maps being rationally injective, and that [40, Theorem D] implies that the FJ assem-
bly map is rationally injective if the BC assembly map is rationally injective. In several papers
[22–24, 51, 64], maps from L-theory to K(−)[ 1

2
]-theory have been constructed in order to get such

a comparison. The idea common to those approaches is to promote the signature operator of
an oriented manifold to an appropriate K-theory class. We will review this operator below and
connect it to our approach. Note, however, that by Theorem 9.3 no integral map of spectra from
L-theory toK-theory exists and ourmaps 𝜏ℝ ∶ ko → Lℝ and 𝜏ℂ ∶ ku → Lℂ are indeedmaps in the
other direction.

The signature operator

Let us first review the signature operator, see, for example, [36, II.section 6, Example 6.2] and [57,
section 1]. To this end we let𝑀 be a closed, oriented, Riemannian manifold of dimension 𝑛. We
consider the de Rham complex

Ω∗(𝑀;ℂ) =

𝑛⨁
𝑖=0

Ω𝑖(𝑀;ℂ)

of complex valued differential forms on𝑀 with the operator 𝑑∶ Ω∗(𝑀;ℂ) → Ω∗(𝑀;ℂ). The ori-
entation and metric induce inner products on Ω∗(𝑀;ℂ) and we denote the formal adjoint of 𝑑
by 𝑑∗ as usual. We then consider the elliptic, first order differential operator 𝐷𝑀 ∶= 𝑑 + 𝑑∗. With
respect to the chiral grading defined below 𝐷𝑀 is called the signature operator. We have that

𝐷2𝑀 = 𝐷
∗
𝑀𝐷𝑀 = 𝑑𝑑

∗ + 𝑑∗𝑑 =∶ Δ𝑀
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1492 LAND et al.

is thewell-known Laplace operator on𝑀. Thus, the solutions to𝐷𝑀 = 0 are given by the solutions
to Δ𝑀 = 0 that are the harmonic forms. By Hodge theory, the harmonic forms are isomorphic to⨁
𝐻∗(𝑀;ℂ). Nowwe introduce the chiralℤ∕2-grading onΩ∗(𝑀). This is not the grading by even

and odd forms (with respect to which the operator 𝑑 + 𝑑∗ is the Euler operator whose index is the
Euler characteristic). Instead, the grading operator 𝜏 is defined on a 𝑝-forms 𝜔 by

𝜏(𝜔) = 𝑖⌈𝑛∕2⌉+𝑝(𝑝+1)+2𝑝(𝑛−𝑝) ∗ 𝜔,
where𝑛 = dim𝑀 and∗ is theHodge-∗-operator. It is not hard to check that this is indeed a grading
operator, that is, that 𝜏2 = 1. Also, we note if 𝑛 is even, then 𝜏 as defined above on 𝑝-forms 𝜔
satisfies

𝜏(𝜔) = 𝑖𝑛∕2+𝑝(𝑝−1) ∗ 𝜔.

This is the familiar grading operator as, for instance, considered in [57, section 1] or [36, II.
section 6, Example 6.2].

Remark 8.1. One can also describe the above using Clifford algebras as follows. One has a canon-
ical (additive) isomorphism 𝜑∶ Ω∗(𝑀;ℂ)

≅
�→ Γ(Clif fℂ(𝑇𝑀)) [36, I. section 1, Formula (1.13)]†.

Under this isomorphism the operator 𝑑 + 𝑑∗ corresponds to the Dirac operator on the Clifford
bundleClif fℂ(𝑇𝑀), see [36, II. section 5, Theorem5.12]. The chiral grading defined above then cor-
responds under this isomorphism to the grading induced by left multiplication with the complex
volume element that is the section of Clif fℂ(𝑇𝑀) given locally by 𝑖⌈𝑛∕2⌉𝑒1⋯ 𝑒𝑛 for an oriented,
orthonormal frame 𝑒1, … , 𝑒𝑛, see [57, section 1]. Indeed, we have to check that (locally)

𝜑(𝜏(𝜔)) = 𝑖⌈𝑛∕2⌉𝑒1⋯ 𝑒𝑛 ⋅ 𝜑(𝜔)
for 𝜔 ∈ Ω𝑝(𝑀;ℂ)𝑚 with 𝑚 ∈ 𝑀. By rescaling 𝜔 and changing the local frame, we may assume
that 𝜔 = 𝑒∨

1
∧ … ∧ 𝑒∨𝑝 so that 𝜑(𝜔) = 𝑒1⋯ 𝑒𝑝. Then we calculate

𝑖⌈𝑛∕2⌉𝑒1⋯ 𝑒𝑛 ⋅ 𝜑(𝜔) = 𝑖⌈𝑛∕2⌉𝑒1⋯ 𝑒𝑛 ⋅ 𝑒1⋯ 𝑒𝑝
= 𝑖⌈𝑛∕2⌉(−1)(𝑛−1)+⋯+(𝑛−𝑝)𝑒𝑝+1⋯ 𝑒𝑛 ⋅ 𝑒21⋯ 𝑒2𝑝
= 𝑖⌈𝑛∕2⌉(−1)𝑛+⋯+𝑛−𝑝+1−𝑝(𝑛−𝑝)+𝑝(𝑛−𝑝)𝑒𝑝+1⋯ 𝑒𝑛
= 𝑖⌈𝑛∕2⌉(−1)1+⋯+𝑝+𝑝(𝑛−𝑝)𝑒𝑝+1⋯ 𝑒𝑛
= 𝑖⌈𝑛∕2⌉(−1)𝑝(𝑝+1)2

+𝑝(𝑛−𝑝)
𝑒𝑝+1⋯ 𝑒𝑛

= 𝑖⌈𝑛∕2⌉+𝑝(𝑝+1)+2𝑝(𝑛−𝑝)𝑒𝑝+1⋯ 𝑒𝑛
= 𝑖⌈𝑛∕2⌉+𝑝(𝑝+1)+2𝑝(𝑛−𝑝) ⋅ 𝜑(𝑒∨

𝑝+1
∧⋯ ∧ 𝑒∨𝑛 )

= 𝜑(𝜏(𝜔))

as claimed.

†Here, the Clifford algebra bundle is formed using a Riemannianmetric on𝑀 with the relation 𝑣2 = −⟨𝑣, 𝑣⟩ for a tangent
vector 𝑣, that is, we include the minus sign following [36].
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L-THEORY OF 𝐶∗-ALGEBRAS 1493

If 𝑛 is even then 𝜏 anticommutes with 𝐷𝑀 , so that in terms of the decomposition Ω∗(𝑀;ℂ) =
Ω∗(𝑀;ℂ)+ ⊕ Ω∗(𝑀;ℂ)− the operator 𝐷𝑀 restricts to 𝐷+

𝑀
∶ Ω∗(𝑀;ℂ)+ → Ω∗(𝑀;ℂ)−. Then we

find that the index

ind(𝐷𝑀) = dimker

(
Ω∗(𝑀;ℂ)+

𝐷+
𝑀
⟶ Ω∗(𝑀;ℂ)−

)
− dim coker

(
Ω∗(𝑀;ℂ)−

𝐷+
𝑀
⟶ Ω∗(𝑀;ℂ)+

)

= dimker

(
Ω∗(𝑀;ℂ)+

𝐷+
𝑀
⟶ Ω∗(𝑀;ℂ)−

)
− dimker

(
Ω∗(𝑀;ℂ)−

𝐷−
𝑀
⟶ Ω∗(𝑀;ℂ)+

)
is given by the signature of the manifold 𝑀, hence the name signature operator. By means of
Kasparov’s model of the (complex) 𝐾-homology of𝑀 given by KU0(𝑀) ≅ KK(𝐶0(𝑀), ℂ), we see
that the operator 𝐷𝑀 with respect to the chiral grading defines a class in KU0(𝑀). In this picture
taking the index corresponds to the pushforward KU0(𝑀) → KU0(pt) = ℤ.
If 𝑛 is odd, then 𝜏 commutes with 𝐷𝑀 , and both 𝜏 and 𝐷𝑀 anti-commute with the usual

even/odd grading operator 𝜎. We can then consider the operator 𝐷𝑀 as graded via the even/odd
grading, and use 𝜏 to obtain in addition an action by Clℂ(ℝ) where the odd generator acts via 𝜏.
In this way, one obtains the signature operator of𝑀 as an element of

KU1(𝑀) = KK(𝐶
0(𝑀), Clℂ(ℝ))

see [57, p. 49]. Finally, we would like to bring the operators just constructed into the top degrees
by multiplying with the Bott class. To this end, we note that we have that

KU0(𝑀
2𝑛)

𝛽𝑛

��→ KU2𝑛(𝑀
2𝑛) = ku2𝑛(𝑀

2𝑛)

KU1(𝑀
2𝑛+1)

𝛽𝑛

��→ KU2𝑛+1(𝑀
2𝑛+1) = ku2𝑛+1(𝑀

2𝑛+1),

where the latter equalities holds because𝑀 is 2𝑛 and (2𝑛 + 1)-dimensional, respectively.

Definition 8.2. For any 𝑛-dimensional closed oriented manifold 𝑀 we define the class of the
signature operator [𝐷𝑀] as the class in ku𝑛(𝑀) just described.

One of the main goals of this section is to prove the following result. We denote by 𝜎ℂ the
composite

MSO
𝜎ℝ
⟶ L(ℝ)⟶ L(ℂ)

of the Sullivan–Ranicki orientation with the canonical map induced by ℝ → ℂ and by 𝜏ℂ ∶ ku →
L(ℂ) the canonical map from Theorem A or [40]. Both maps induce maps on homology of𝑀:

MSO𝑛(𝑀)
𝜎ℂ
⟶ 𝓁(ℂ)𝑛(𝑀)

𝜏ℂ
⟵ ku𝑛(𝑀)

again denoted by 𝜎ℂ and 𝜏ℂ, respectively. We denote by [𝑀] ∈ MSO𝑛(𝑀) the bordism class of the
identity of𝑀.
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1494 LAND et al.

Proposition 8.3. Let𝑀 be an 𝑛-dimensional closed oriented manifold. In the group 𝓁(ℂ)𝑛(𝑀), we
have the equality

𝜏ℂ([𝐷𝑀]) = 2
⌊𝑛∕2⌋ ⋅ 𝜎ℂ([𝑀])

up to 2-power torsion, that is, the difference between the two classes is a 2-power torsion element.

Before we explain how to prove this statement we would like to ask the following interesting
and obvious question:

Problem 8.4. Does the equality of Proposition 8.3 hold integrally?

The proof of Proposition 8.3 will proceed in several steps. First note that it is enough to check
that the elements agree in 𝓁(ℂ)[ 1

2
]𝑛(𝑀) which is what we will in fact do. We first translate the

statement into homotopy theory. To this end we would like to understand the signature operator
in terms of genera. First recall that for each map of graded rings Φ∶ MSO∗ → 𝑅∗ one can assign
a Hirzebruch characteristic series

𝐾Φ(𝑡) =
𝑡

expΦ(𝑡)
∈ (𝑅∗ ⊗ ℚ)⟦𝑡⟧,

where expΦ(𝑡) is the inverse to the logarithm logΦ(𝑡) =
∑
𝑛 Φ(ℂ𝑃

𝑛) 𝑡
𝑛+1

(𝑛+1)
. If we give 𝑡 degree −2

then the Hirzebruch series† 𝐾Φ(𝑡) is of degree −2. Note that as ℂ𝑃𝑛 is nullbordant for odd 𝑛, the
power series we consider here is really power series in 𝑡2. We will be interested in the cases 𝑅∗ =
KO∗ and 𝑅∗ = KU∗. We can introduce the degree 0 element 𝑧 ∶= 𝛽𝑡 ∈ KU∗⟦𝑡⟧ and can rewrite
the power series 𝐾Φ(𝑡) as a power series in 𝑧:

𝐾Φ(𝑧) ∈ ℚ⟦𝑧⟧
Even for the case KO this works because 𝑧2 = 𝛽2𝑡2 exists in the rationalization (recall that 𝛽2 =
𝑥∕2, for 𝑥 ∈ KO4 as considered earlier) and the power series is really a series in 𝑧2. We will thus
also use this convention for KO and hope this does not lead to confusion. Proposition 8.3 is a
consequence of the following more general result, as we will explain below.

Theorem 8.5.

(1) There is a unique map of 𝔼∞-rings𝐴𝑆 ∶ MSO → ko[12 ]which on homotopy groups induces the
map

[𝑀4𝑛] ↦ 2−2𝑛𝛽2𝑛sign(𝑀4𝑛).‡

(2) For every space 𝑋, the induced mapMSO∗(𝑋) → ko[
1

2
]∗(𝑋)

𝑐
�→ ku[1

2
]∗(𝑋) takes a class [𝑀

𝑓
�→

𝑋] to 2−⌊𝑛∕2⌋𝑓∗([𝐷𝑀]) where [𝐷𝑀] is the signature class of Definition 8.2.

† Topologically, the Hirzebruch series is the difference class in 𝐻0(ℂ𝑃∞, 𝑅 ⊗ 𝐻ℚ)× betwen the orientation Φ and the
standard rational orientation of 𝑅 ⊗𝐻ℚ.
‡ Informally, 𝛽2𝑛sign(𝑀4𝑛) is the signature of𝑀 if 𝑛 is even and is two times the signature if 𝑛 is odd.
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L-THEORY OF 𝐶∗-ALGEBRAS 1495

(3) The Hirzebruch characteristic series of 𝐴𝑆 is given by
𝐾𝐴𝑆 (𝑧) =

𝑧∕2

tanh(𝑧∕2)
.

(4) We have a commutative diagram

of 𝔼∞-ring maps.

Remark 8.6. Before we prove this theorem, we note that the genus associated with𝐴𝑆 is not quite
the ordinary signature genus because there are powers of 2 appearing. In fact, the characteristic
series of the ordinary signature genus is 𝑧∕ tanh(𝑧) byHirzebruch’s signature theorem. The genus
we consider here first came up (to the best of our knowledge) in Atiyah–Singer’s deduction of
Hirzebruch’s signature theorem using their index theorem, see [3], specifically in [3, eq. 6.5, p.
577] and the discussion around it for the powers of 2 that appear. Therefore, it is not surprising
that this genus shows up here. Similar genera have also been considered by Sullivan to construct a
version of the orientation 𝜎ℝ, see, for example, [46, section 5.A]. Therefore, Theorem 8.5might not
come as a surprise to the experts. However, a highly structured statement as Theorem8.5(4) is only
possible because we have also constructed the map ko[1

2
] → 𝓁(ℝ)[ 1

2
] as a map of 𝔼∞-ring spectra.

Proof of Proposition 8.3. First, we note that the statement of Proposition 8.3 is equivalent to show-
ing the claimed equality after inverting 2. By (4) of Theorem 8.5, we also have a commutative
diagram of 𝔼∞-ring spectra

Thus, for an 𝑛-dimensional closed oriented manifold𝑀, we have the commutative diagram

By (2) of Theorem 8.5, the top right composite sends [𝑀] to 2−⌊𝑛∕2⌋𝜏ℂ([𝐷𝑀]), so the commutativity
of the above diagram indeed gives the equality

2⌊𝑛∕2⌋ ⋅ 𝜎ℂ([𝑀]) = 𝜏ℂ([𝐷𝑀])
in 𝓁(ℂ)𝑛(𝑀)[

1

2
] as claimed. □
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1496 LAND et al.

Proof of Theorem 8.5. We first prove the uniqueness statement involved in part (1). In fact, we also
prove the uniqueness result involving homotopy ring maps. To this end, we consider the maps

𝜋0

(
Map𝔼∞

(
MSO, ko

[
1

2

]))
⟶𝜋0

(
Map

HoRing
Sp

(
MSO, ko

[
1

2

]))
𝜋∗
��→ HomRing

(
MSO∗, ko

[
1

2

]
∗

)
𝐾
�→ ℚ⟦𝑧⟧,

where MapHoRing denotes the connected components of the space of maps of spectra that are
homotopy ring maps and the first map simply forgets the 𝔼∞-structure.
Our claim is that all these maps are injective. For the last map 𝐾 the assertion is true because

ko∗[
1

2
] injects into KO∗ ⊗ ℚ and rationally, we can reconstruct a genus from its characteristic

series. To show injectivity of the first two maps it suffices to show that the composites

𝜋0

(
Map𝔼∞

(
MSO, ko

[
1

2

]))
→ ℚ⟦𝑧⟧ 𝜋0

(
Map

HoRing
Sp

(
MSO, ko

[
1

2

]))
→ ℚ⟦𝑧⟧

are injective. This will follow from the theory of orientations developed in [44] and further in [1]
as we explain now. First, we note that we can localize away from 2 and that the canonical map
MSpin[1

2
] → MSO[1

2
] is an equivalence. We may therefore replace MSO above with MSpin. For

any pair of 𝔼∞-maps 𝑓, g ∶ MSpin → ko[
1

2
], we have a difference map 𝑓∕g ∶ bspin → gl1(ko[

1

2
])

that is a map of spectra. More precisely the space of 𝔼∞-ring mapsMSpin → ko[
1

2
] is a torsor over

the space of spectrummaps bspin → gl1(ko[
1

2
]). Similarly in the case of homotopy ring maps the

difference map is an 𝐻-space map Bspin → Gl1(ko[
1

2
]), where BSpin and Gl1(ko[

1

2
]) denote the

infinite loop spaces of the spectra bspin and gl1(ko[
1

2
]), respectively.

Moreover from the difference class 𝑓∕g , we can recover the quotient 𝐾𝑓∕𝐾g because 𝐾𝑓 was
itself constructed rationally as a difference class of 𝑓 with the standard rational orientation
MSO → 𝐻ℚ → koℚ. Thus, the whole statement is implied by showing that the canonical maps

𝜋0MapSp

(
bspin, gl1

(
ko

[
1

2

]))
→ 𝜋0Map

𝐻
Spc

(
BSpin, Gl1

(
ko

[
1

2

]))
→ 𝜋0Map

𝐻
Spc(BSpin, Gl1(koℚ))

(8.1)
are injective. As bspin is 3-connected, we note that all mapping spaces do not changewhen replac-
ing gl1(ko[

1

2
]) with 𝜏⩾1gl1(ko[

1

2
]) ≃ 𝜏⩾1gl1(ko)[

1

2
], and using connectedness of bspin again, we

may replace gl1(ko[
1

2
])with gl1(ko)[

1

2
] and similarly gl1(koℚ)with gl1(ko)ℚ.Moreover, as𝐻-space

maps form a collection of connected components inside the space of all maps, wemay also neglect
the superscript𝐻. The first of the two maps in (8.1) is then induced by the canonical map of spec-
tra Σ∞+ BSpin → bspin, the counit of the (Σ

∞
+ ,Ω

∞)-adjunction. We then consider the following
fracture square pullback.
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L-THEORY OF 𝐶∗-ALGEBRAS 1497

Mapping bspin andΣ∞+ BSpin into this pullback,we obtain pullback descriptions for bothmapping
spaces in question. We then observe that

𝜋1

⎛⎜⎜⎝MapSp
⎛⎜⎜⎝bspin,

[∏
𝑝≠2
gl1(ko)

∧

𝑝

]
ℚ

⎞⎟⎟⎠
⎞⎟⎟⎠ = 0 = 𝜋1

⎛⎜⎜⎝MapSp
⎛⎜⎜⎝Σ∞+ BSpin,

[∏
𝑝≠2
gl1(ko)

∧

𝑝

]
ℚ

⎞⎟⎟⎠
⎞⎟⎟⎠

This follows simply from the observation that the homotopy groups of the rational spectrum
[
∏
𝑝≠2
gl1(ko)

∧
𝑝]ℚ are concentrated in degrees 4𝑘, the rational homotopy of bspin is in degrees 4𝑘

andBSpinhas rational cohomology also concentrated in degrees 4𝑘.We deduce that for𝑋 = bspin
and 𝑋 = Σ∞+ BSpin, the canonical map

𝜋0MapSp

(
𝑋, gl1(ko)

[
1

2

])
⟶𝜋0MapSp(𝑋, gl1(ko)ℚ) ×

∏
𝑝≠2
𝜋0MapSp(𝑋, gl1(ko)

∧

𝑝)

is injective. It therefore suffices to argue that the map Σ∞+ BSpin → bspin induces a 𝜋0 injec-
tion upon mapping to gl1(ko)ℚ and gl1(ko)∧𝑝 for all 𝑝 ≠ 2 individually. Note that gl1(ko)ℚ =∏
𝑘⩾1

𝐻ℚ[4𝑘], so that it suffices to know that themapΣ∞+ Ω
∞𝑋 → 𝑋 induces an injection on rational

cohomology in all degrees, for all connective spectra𝑋. To treat the 𝑝-adic case, we recall from [1,
Theorem 4.11], applied to KO∧𝑝, that gl1(KO)

∧
𝑝 → 𝐿𝐾(1)gl1(KO) ≃ KO

∧
𝑝 is 1-truncated. Using again

that bspin is 3-connected, it suffices now to show that the map Σ∞+ BSpin → bspin induces a 𝜋0-
injection on mapping spaces to KO∧𝑝. As this spectrum is 𝐾(1)-local, it finally suffices to note
that the map Σ∞+ BSpin → bspin has a 𝐾(1)-local section. This is a consequence of the fact that
𝐿𝐾(1) = ΦΩ

∞, whereΦ is the Bousfield–Kuhn functor, see [39, proof of Proposition 2.9] for details.
This shows that the first map of (8.1) is injective as claimed.
We turn to the second map of (8.1). Using again the fracture square for gl1(ko)[

1

2
] as before, the

statement follows if we can show that for 𝐹 the fiber of the map

∏
𝑝≠2
gl1(ko)

∧

𝑝 ⟶

[∏
𝑝≠2
gl1(ko)

∧

𝑝

]
ℚ

we have

𝜋0(MapSp(Σ
∞
+ BSpin, 𝐹)) = 0.

With a similar argument as before, using again that BSpin is 3-connected, we may equivalently
replace 𝐹 by the fiber of the map

∏
𝑝≠2
KO∧𝑝 ⟶

[∏
𝑝≠2
KO∧𝑝

]
ℚ

which is, again by a fracture square argument the same fiber as that of the map KO[1
2
] → KOℚ.

As this map is a retract of KU[1
2
] → KUℚ, it finally suffices to show that

𝜋0(MapSp(Σ
∞
+ BSpin, f ib(KU

[
1

2

]
→ KUℚ))) = 0.
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1498 LAND et al.

As BSpin has even rational cohomology, this is equivalent to showing that the map

𝜋0

(
MapSp

(
Σ∞+ BSpin, KU

[
1

2

]))
⟶𝜋0

(
MapSp

(
Σ∞+ BSpin, KUℚ

))
is injective. For this, we recall that BSpin ≃ colim𝑛 BSpin(𝑛) and that Spin(𝑛) is a compact con-
nected Lie group. In [2], Anderson shows that for any compact connected Lie group 𝐺, we have
that KU⊗ 𝐵𝐺 is a filtered colimit of direct sums of KU, with split injective transition maps.
Consequently, we find that for any KU-module𝑀, we have

MapSp(Σ
∞
+ BSpin(𝑛),𝑀) = MapKU(colim𝑖∈𝐼

⨁
𝐴𝑖

KU,𝑀) = lim
𝑖∈𝐼

∏
𝐴𝑖

𝑀

naturally in𝑀. In particular, the map

MapSp

(
Σ∞+ BSpin(𝑛), KU

[
1

2

])
⟶MapSp(Σ

∞
+ BSpin(𝑛), KUℚ)

identifies with the map

lim
𝑖∈𝐼

∏
𝑖∈𝐴𝑖

KU
[
1

2

]
⟶lim

𝑖∈𝐼

∏
𝑖∈𝐴𝑖

KUℚ

which is injective on 𝜋0. Finally, the map we wish to show is injective identifies with the map on
𝜋0 induced by the map

lim
𝑛
MapSp

(
Σ∞+ BSpin(𝑛), KU

[
1

2

])
⟶lim

𝑛
MapSp(Σ

∞
+ BSpin(𝑛), KUℚ).

Now, as for each 𝑛 both mapping spaces that appear have no odd homotopy groups, the lim-lim1-
sequence shows that the map we wish to show is injective identifies with the map

lim
𝑛
𝜋0MapSp

(
Σ∞+ BSpin(𝑛), KU

[
1

2

])
⟶lim

𝑛
𝜋0MapSp(Σ

∞
+ BSpin(𝑛), KUℚ).

This is an inverse limit of injective maps, and hence itself injective as claimed. In particular, we
have shown that there is at most one 𝔼∞-map as in (1).
For the existence of this map, Ando–Hopkins–Rezk [1, Theorem 6.1] give a concrete criterion

in terms of certain 𝑝-adic congruences, see also [49, Theorem 3.1.1]. One could simply verify these
directly, which is, for instance, done by Wilson in [65, Theorem 5.5]. Instead of using this calcu-
lation, we will proceed differently and simply use the square of part (4) as a proof of the existence
of an 𝔼∞-map with the correct effect on homotopy groups, as the right vertical map in it is an
equivalence. This then also shows the commutativity of (4) immediately.
To prove statement (2), we use that the assignment

MSO𝑛(𝑋)⟶ ku
[
1

2

]
𝑛
(𝑋) (𝑀

𝑓
�→ 𝑋) ↦ 2−⌊𝑛∕2⌋𝑓∗([𝐷𝑀])

is a map of multiplicative cohomology theories as shown in [57], specifically see Remark 4 and
Lemma 6 in this reference. Thus, by the previous results it is enough to check that it agrees with
the map of part (1) on coefficients, which is true by construction.
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L-THEORY OF 𝐶∗-ALGEBRAS 1499

For (3), we want to compute the Hirzebruch series of the map 𝐴𝑆 . We find that

𝐴𝑆(ℂ𝑃𝑛) =
{
2−𝑛𝛽𝑛 𝑛 even
0 𝑛 odd,

where 𝛽 = 𝛽ℂ is the complex Bott element. Thus, we get that

log𝐴𝑆 (𝑡) = 𝑡 +
𝛽2

22
⋅ 𝑡
3

3
+
𝛽4

24
⋅ 𝑡
5

5
+
𝛽6

26
⋅ 𝑡
7

7
+⋯

= 2

𝛽
⋅
(
(𝛽𝑡∕2) +

(𝛽𝑡∕2)3

3
+
(𝛽𝑡∕2)5

5
+
(𝛽𝑡∕2)7

7
+⋯

)
= 2

𝛽
tanh−1(𝛽𝑡∕2).

The inverse of this power series (with respect to composition) is given by

exp𝐴𝑆 (𝑡) =
2

𝛽
tanh(𝛽𝑡∕2)

as one directly verifies. Therefore, we get

𝐾𝐴𝑆 (𝑡) =
𝛽𝑡∕2

tanh(𝛽𝑡∕2)
=

𝑧∕2

tanh(𝑧∕2)
,

where we recall that 𝑧 = 𝛽𝑡. □

Remark 8.7. In [65, Theorem 5.7],Wilsonwrites that in addition to themap𝐴𝑆 ∶ MSpin → ko[12 ]
described above, there also exists an integral 𝔼∞-map 𝐻 ∶ MSpin → ko sending a spin manifold
𝑀4𝑛 to 𝛽2𝑛sign(𝑀). This, however, is not correct, and the map 𝐻 , as an 𝔼∞-map or equivalently
by proof of Theorem 8.5 as a map of homotopy ring spectra, indeed only exists after inverting 2.
The fact that it does exist after inverting 2 can be shown using the criterion of Ando–Hopkins–
Rezk [1, Theorem 6.1], or by postcomposing 𝐴𝑆 with the Adams operation 𝜓2 ∶ ko[12 ] → ko[12 ].
We thank Johannes Sprang for explaining to us the following argument that the map does not
exist at the prime 2. To explain this, we recall again the general result of Ando–Hopkins–Rezk: It
says that the connected components of the space of 𝔼∞-mapsMSpin → ko are in bijection to the
set of sequences† (𝑏𝑘)𝑘⩾2 ∈ ℚ satisfying the following conditions:

(1) 𝑏2𝑘+1 = 0 for 𝑘 ⩾ 1,
(2) 𝑏2𝑘 ≡ −𝐵2𝑘2𝑘 modℤ, and
(3) for every prime 𝑝 and every element 𝑐 ∈ ℤ×𝑝∕{±1}, there exists a 𝑝-adicmeasure 𝜇 onℤ

×
𝑝∕{±1}

such that for all 𝑘 ⩾ 1 one has‡

(1 − 𝑝2𝑘−1)(1 − 𝑐2𝑘)𝑏2𝑘 = ∫ℤ×𝑝∕{±1}
𝑥2𝑘𝑑𝜇(𝑥),

see [49, Definition 2.1.4] for the notion of 𝑝-adic measures on profinite groups such as
ℤ×𝑝∕{±1}.

† For an 𝔼∞-mapMSpin → ko, this sequence is given by the coefficients in the characteristic series as described above.
‡We remark that (1 − 𝑐2𝑘)𝑏2𝑘 is a 𝑝-adic integer.
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1500 LAND et al.

The sequence relevant for realizing4ew the map sending 𝑀4𝑛 to 𝛽2𝑛sign(𝑀) as an 𝔼∞-map
MSpin → ko is the sequence

𝑏𝑘 ∶=
2𝑘+1(2𝑘−1−1)

2𝑘
𝐵𝑘.

Conditions (1) and (2) above are indeed satisfied, see [65, Proposition A.3] for (2) and (1) follows
from the same property for the Bernoulli numbers 𝐵𝑘. Now, at prime 2, one observes that the
sequence

(1 − 22𝑘−1)(1 − 𝑐2𝑘)𝑏2𝑘

converges to zero in ℤ2. However, a sequence of moments, that is, a sequence of the form

∫ℤ×𝑝∕{±1}
𝑥2𝑘𝑑𝜇(𝑥)

converges to zero only if it is constantly zero. Indeed, 𝑥 ↦ 𝑥2𝑘+2𝑟 − 𝑥2𝑘 for 𝑥 ∈ ℤ×
2
takes values in

2𝑟ℤ2. Consequently,

|∫ℤ×𝑝∕{±1} 𝑥2𝑘𝑑𝜇(𝑥)|2 = lim𝑟→∞ |∫ℤ×𝑝∕{±1} 𝑥2𝑘+𝜙(2𝑟)|2,
where | − |2 denotes the 2-adic valuation, and the latter term is zero ifwe assume that the sequence
of moments converges to zero. Now, the sequence we need to investigate converges to zero, but is
not constantly zero, and is therefore not a sequence of moments.

We finish this section by noting that there is a commutative diagram

where we denote by 𝜓−2 also the induced (inverse) Adams operation on 𝓁(ℝ)[ 1
2
]. The resulting

map 𝛼 is then given by the right-down composite in the diagram

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12564 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [30/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



L-THEORY OF 𝐶∗-ALGEBRAS 1501

Question 8.8. Does there exist an 𝔼∞-map 𝜓2 ∶ 𝓁(ℝ) → 𝓁(ℝ) rendering the above diagram
commutative? Likewise, does there exist an 𝔼∞-map 𝜓2 ∶ 𝓁(ℂ) → 𝓁(ℂ) rendering the analogous
diagram

commutative, where we use 𝜏ℂ ∶ ku[
1

2
]
≃
→ 𝓁(ℂ)[ 1

2
] to define 𝜓2.

One can show that the map 𝜓2 (in both the real and the complex case) exists as a map of 𝔼1-
algebras. To construct this, one can use that 𝓁(ℝ) and 𝓁(ℂ) are 2-locally the free 𝔼1-𝐻ℤ-algebra
on a generator in degree 4 and 2, respectively, see also [21, Corollary 4.2]. Then, the map 𝜓2 is
constructed as to be an𝐻ℤ-algebramap at prime 2.At the time ofwriting,we donot knowwhether
𝓁(ℝ) or 𝓁(ℂ) are 2-locally 𝔼∞-𝐻ℤ-algebras, and in addition, should this be the case, we do not
know whether to expect a possible 𝔼∞-map 𝜓2 ∶ 𝓁(ℝ) → 𝓁(ℝ) to be 2-locally a map of 𝔼∞-𝐻ℤ-
algebras.

Remark 8.9. A curious consequence of the existence of the𝔼1-map𝜓2 ∶ 𝓁(ℂ) → 𝓁(ℂ) is the follow-
ing observation about formal groups. We recall that the formal group of ku is the multiplicative
one, in particular ku has a coordinate given by 𝑥 + 𝑦 + 𝛽ℂ𝑥𝑦. The map 𝜏ℂ ∶ ku → 𝓁(ℂ) provides
a coordinate of the formal group of 𝓁(ℂ)which is then given by 𝑥 + 𝑦 + 2𝑏ℂ𝑥𝑦, where 𝑏ℂ ∈ L2(ℂ)
is the periodicity generator, as 𝜏ℂ(𝛽ℂ) = 2𝑏ℂ. Postcomposition with powers of 𝜓2 on 𝓁(ℂ) gives
another coordinate of the formal group of 𝓁(ℂ) given by 𝑥 + 𝑦 + 2𝑘𝑏ℂ𝑥𝑦, with 𝑘 ⩾ 1. As any two
coordinates of a formal group are connected by a (strict) isomorphism, we deduce that for 𝑘 ⩾ 1,
the formal group laws 𝑥 + 𝑦 + 2𝑥𝑦 and 𝑥 + 𝑦 + 2𝑘𝑥𝑦 are isomorphic over ℤ.

9 FURTHER REMARKS

Onmaps between K-theory and L-theory

In this subsection, we aim to analyze, similarly to [40] the possible integral maps between K- and
L-theory. Let us first consider themap ko → L(ℝ) and describe its effect on homotopy groups. For
this, and in general, it will be convenient to record the following result:

Lemma 9.1. The transformation 𝜏 of Theorem A is compatible with the unique lax symmetric
monoidal transformation 𝜏 of [40, Theorem A] in the sense that there is a commutative diagram
of lax symmetric monoidal functors
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1502 LAND et al.

Proof. One observes that the complexification functor sending 𝐴 to 𝐴ℂ = 𝐴⊗ℝ ℂ from
𝐶∗-algebras to complex 𝐶∗-algebras descends to a symmetric monoidal functor

(−) ⊗ ℂ∶ KKℝ⟶ KK.

Then both composites of the diagram in question are lax symmetric monoidal transformations
from k(−) → L(−). Using again that k(−) is initial, there is (up to canonical equivalence) only
one such transformation. Spelling this out explicitly, we obtain for each𝐴 ∈ R∗Alg a commutative
diagram

which is natural in 𝐴. □

Example 9.2. Applying this in the case 𝐴 = ℝ, we in particular obtain a commutative diagram
of 𝔼∞-ring spectra given by

and the map induced on homotopy rings of the lower horizontal map is given by

ℤ[𝛽]⟶ ℤ[𝑏ℂ]

sending 𝛽 to 2𝑏ℂ, see [40, Lemma 4.9]. Using this, we can again describe the map ko → Lℝ on
homotopy rings as follows: First, recall that

𝜋∗(ko) = ℤ[𝜂, 𝑥, 𝛽ℝ]∕(𝜂
3, 2𝜂, 𝜂𝑥, 𝑥2 = 4𝛽ℝ)

with |𝜂| = 1, |𝑥| = 4 and |𝛽ℝ| = 8. The map ko → ku vanishes on 𝜂, sends 𝛽ℝ to 𝛽4ℂ and 𝑥 to 2𝛽2ℂ.
On homotopy, the map Lℝ → Lℂ identifies with the canonical inclusion

ℤ[𝑏2
ℂ
] ⊆ ℤ[𝑏ℂ]

as the subring generated by 𝑏2
ℂ
. We denote the element in L4(ℝ) corresponding to 𝑏2ℂ by 𝑏. It then

follows that the map ko → Lℝ sends 𝑥 to 8𝑏 and 𝛽ℝ to 16𝑏2. Notice that this is indeed compatible
with the ring structure of 𝜋∗(ko)∕torsion and our general analysis as in Proposition 5.1.

Just like in the complex case, the only possibility for an interesting integral map between K-
theory and L-theory is the one just constructed. More precisely, the analog of [40, Theorem E] in
the real case holds as well:
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L-THEORY OF 𝐶∗-ALGEBRAS 1503

Theorem 9.3. We have that

[KO, Lℝ] = 0 = [Lℝ,KO] = [𝓁ℝ,KO],

where the square brackets denote homotopy classes of maps of spectra.

Proof. The main ingredients in proving this result in the complex case are:

– both KU and Lℂ are Anderson self-dual,
– the map KU⊗ Lℂ → (KU⊗ Lℂ)[1

2
] is an equivalence, and

– the spectrum KU⊗ Lℂ is even, that is, has no odd homotopy groups.

The analog of these results hold true for KO in place of KU and Lℝ in place of Lℂ because

– 𝐼ℤ(KO) ≃ Σ4KO, see [25, Theorem 8.1] and 𝐼ℤ(Lℝ) ≃ Lℝ simply because the homotopy groups
of 𝐼ℤ(Lℝ) are again free of rank 1 over the homotopy groups of Lℝ, just like for Lℂ;

– to show that 2 is invertible in KO⊗ Lℝ it suffices to observe that KU ≃ cof ib(𝜂∶ ΣKO → KO),
and hence for any spectrum 𝐸 in which 𝜂 is trivial (such as Lℝ), we have

KU⊗ 𝐸 ≃ KO⊗ 𝐸 ⊕ Σ2KO⊗ 𝐸.

It follows that KO⊗ Lℝ is a direct summand in KU⊗ Lℝ that is itself a direct summand of
KU⊗ Lℂ, as Lℝ⊕ Σ2Lℝ ≃ Lℂ;

– we have just established that KO⊗ Lℝ is a direct summand of KU⊗ Lℂ, so is even as well.

□

Remark 9.4. We also remark that, as expected, 𝓁(ℝ) is not a compact ko-module†, and likewise
that 𝓁(ℂ) is not a compact ku-module. Indeed, it suffices to show the latter, as

ku ⊗ko 𝓁(ℝ) ≃ 𝓁(ℂ)

so if 𝓁(ℂ) is not compact over ku, then 𝓁(ℝ) is also not compact over ko. To show this, we observe
that 𝓁(ℂ) ⊗ku KU = KU[

1

2
] is obtained from 𝓁(ℂ) by inverting 2𝑏 and L(ℂ)[ 1

2
] ≃ KU[1

2
]. Now,

KU[1
2
] is not compact over KU. Indeed, if it were compact we would have

KU
[
1

2

]
≃ mapKU

(
KU

[
1

2

]
, KU

[
1

2

])
= colimmapKU

(
KU

[
1

2

]
, KU

)
but this colimit is constant, as 2 is already invertible on themapping spectrum. The latter is there-
fore equivalent to limKUwith transition maps given by the multiplication by 2 map. But we have
𝜋0(limKU) = 0 by the Milnor sequence.
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