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Abstract
Infectious disease models can serve as critical tools to predict the development
of cases and associated healthcare demand and to determine the set of nonphar-
maceutical interventions (NPIs) that is most effective in slowing the spread of
an infectious agent. Current approaches to estimate NPI effects typically focus
on relatively short time periods and either on the number of reported cases,
deaths, intensive care occupancy, or hospital occupancy as a single indicator of
disease transmission. In this work, we propose a Bayesian hierarchical model
that integrates multiple outcomes and complementary sources of information in
the estimation of the true and unknown number of infections while accounting
for time-varying underreporting and weekday-specific delays in reported cases
and deaths, allowing us to estimate the number of infections on a daily basis
rather than having to smooth the data. To address dynamic changes occurring
over long periods of time, we account for the spread of new variants, seasonal-
ity, and time-varying differences in host susceptibility. We implement a Markov
chain Monte Carlo algorithm to conduct Bayesian inference and illustrate the
proposed approach with data on COVID-19 from 20 European countries. The
approach shows good performance on simulated data and produces posterior
predictions that show a good fit to reported cases, deaths, hospital, and intensive
care occupancy.
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1 INTRODUCTION

The experience with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019
(COVID-19) has underlined both the importance of and the challenges in the modeling of infectious diseases. Infectious
disease models can serve as critical tools to predict epidemic development and healthcare demand and to determine
when and which nonpharmaceutical interventions (NPIs) should be implemented to slow the spread of an infectious
agent. However, the modeling of infectious diseases is complicated by the fact that the main quantity of interest, that
is, the number of daily infections, is a latent variable that cannot be observed and therefore has to be estimated by
using information on other observable quantities. The number of reported cases, hospital occupancy, and deaths all
provide complementary, yet incomplete and sometimes even contradictory, information on the number of infections
in a given geographical region. The number of reported cases is prone to underreporting, as it depends on the relia-
bility of tests, the testing capacity, and the employed testing strategy (May, 2020; Pullano et al., 2021). When changes
in the testing strategy concur with the introduction or the relaxation of NPIs, they can create severe distortions in the
estimation of NPI effects. While modeling disease mortality, which is less prone to underreporting, can avoid biases
due to changes in the testing strategy, it is difficult to predict future healthcare demand based on disease mortality.
Moreover, the time lag between infection and death may be highly variable, leading to a reduction of statistical power
(Sharma et al., 2021) and where (more or less effective) treatment is available, differences in the availability, accessi-
bility, and quality of healthcare may affect case fatality rates. A possible solution for this situation, in which there are
several imperfect proxy variables for the number of infections, is to combine information on disease incidence, mortal-
ity, and hospital occupancy in a common framework while explicitly accounting for time-varying underreporting and
reporting delays.
Bayesian hierarchical approaches can address this challenge by providing a coherent and flexible framework to inte-

grate all available sources of information while accounting for different sources of uncertainty. By combining different
submodels through conditional independence assumptions, it is possible to integrate mechanistic assumptions on dis-
ease dynamics and submodels describing the relationship between the true (and unknown) number of infections and
reported cases, hospital occupancy, and deaths. Additionally, we can borrow information from other geographical regions
to stabilize parameter estimates and to improve forecasts on future healthcare demand. Current approaches to assess
the effect of NPIs typically either focus on the number of deaths (Flaxman et al., 2020) or the number of cases (Ban-
holzer et al., 2021; Dehning et al., 2020; Islam et al., 2020; Li et al., 2021b). Unwin et al. (2020), Brauner et al. (2021), and
Sharma et al. (2021) extend the semimechanistic Bayesian hierarchical model proposed by Flaxman et al. (2020) by includ-
ing information on reported cases and deaths when inferring the number of new infections. However, these approaches
typically only estimate NPI effects for short time periods because they do not explicitly account for differences in host
susceptibility over time (due to vaccination or previous infection), seasonality, the prevalence of different virus variants,
or time-varying underreporting.
Here, we show how a Bayesian hierarchical approach can be used to integrate the available information on the

number of reported cases, the number of deaths, and hospital and intensive care unit (ICU) occupancy in the esti-
mation of the true and unknown number of infections while accounting for underreporting and reporting delays in
the number of reported cases. We account for the influence of seasons, previous infections, vaccination coverage, and
the prevalence of different virus variants as these factors can have a critical influence on the number of new infec-
tions and on disease severity. By doing so, it is possible to use data over long time periods in several countries rather
than focusing on short time periods in a single country during which the prevailing variant, vaccination coverage, and
the testing strategy remained roughly constant. By allowing for weekday-specific delays in reported cases and deaths
(which mainly arise due to reduced reporting during the weekend), we are not required to smooth the analyzed time
series and we can estimate the number of infections on a daily basis. We illustrate the proposed approach using data
for COVID-19 from 20 European countries and investigate its performance both on simulated data and by assessing
how well the model describes reported cases, hospital and ICU occupancy, and deaths through posterior predictive
checks.
The rest of the paper is organized as follows. In Section 2, we describe the proposed Bayesian hierarchical model. In

Section 3, we present a simulation study to assess the performance of our proposed approach. A case study on the mod-
eling of COVID-19 in 20 European countries is presented in Section 4. In Section 5, we summarize this article with a
brief discussion.
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F IGURE 1 Simplified directed acyclic graph (DAG) describing how the true and unknown number of infections is estimated through
the four observed time series. Parameters are shown in orange and variables are shown in blue. Unknown quantities that have to be estimated
are given in circles and quantities that are either observed or assumed to be known are given in squares.

2 THEMODEL

In this section, we describe themain elements of the Bayesian hierarchical model. At its core, themodel treats the number
of true and unknown infections 𝐼𝑡,𝑚 ∈ ℕ0 at time 𝑡 in geographical region 𝑚 as a discrete latent variable where 𝑡 and 𝑚
are considered as discrete index sets (e.g., days and countries). We describe the model in two parts. First, we describe how
we infer the number of true and unknown infections (i.e., the values of the latent variable) from the available information
on reported cases, hospital and ICU occupancy, and deaths while accounting for time-varying underreporting, weekday-
specific reporting delays, and changes in the severity of the disease due to vaccination coverage and different virus variants.
Second, we describe how we estimate the effects of NPIs given the true and unknown number of infections represented
through the discrete latent variable while accounting for seasonality, time-varying differences in host susceptibility and
changes in the transmissibility of the virus due to different virus variants.

2.1 Inferring the number of infections

As illustrated in Figure 1, we use information on the reported number of cases, deaths, and hospital and ICU occupancy
to estimate the true and unknown number of infections 𝐼𝑡,𝑚 at time 𝑡 in geographical region 𝑚. Each of these observed
time series is linked through a submodel to this discrete latent variable: the reporting model, the death model, and two
hospitalization models (normal beds and ICU). Before linking the number of infections to the observable time series, we
define a second latent variable, the number of cases 𝐶𝑡,𝑚 ∈ ℕ0 in geographical region 𝑚 with symptom onset on day 𝑡,
which is simply a deterministic function of the number of infections 𝐼𝑡,𝑚 occurring until time 𝑡, as described through the
following disease model:

𝐶𝑡,𝑚 =
∑
𝑢≤𝑡

𝐼𝑡,𝑚
(
𝐹𝜉𝐶 (𝑡 − 𝑢 + 1) − 𝐹𝜉𝐶 (𝑡 − 𝑢)

)
,

where 𝐹𝜉𝐶 is the cumulative distribution function of the incubation period. Note that we do not distinguish infections by
strength of symptoms. Some infected individuals may even experience so weak symptoms that they are not noticed, and
in this case, the incubation period is of merely technical nature. Through the disease model, the number of (symptomatic
and asymptomatic) cases becomes a deterministic function of the number of infections, which is simply shifted by the
incubation time distribution.
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The number of cases 𝐶𝑡,𝑚 is linked to the number of reported cases 𝐶𝑅𝑡,𝑚 through the following reporting model:

𝐶𝑅𝑡,𝑚 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚
(
𝜇𝑅𝑡,𝑚, 𝜙

𝑅
)
,

where

𝜇𝑅𝑡,𝑚 = 𝜌𝑡,𝑚
∑
𝑢<𝑡

𝐶𝑢,𝑚

(
𝐹
𝜉
𝑅,𝑤
𝑚
(𝑡 − 𝑢 + 1) − 𝐹

𝜉
𝑅,𝑤
𝑚
(𝑡 − 𝑢)

)
,

where 𝐹
𝜉
𝑅,𝑤
𝑚

is the reporting delay distribution for a specific weekday𝑤 in geographical region𝑚. In this model, the num-
ber of reported cases follows a negative binomial distribution where the expected number of reported cases on day 𝑡 is
described as the sum of all true cases occurring on some day 𝑢 before day 𝑡 weighted by their probability of being reported
after 𝑡 − 𝑢 days and multiplied by a time-specific underreporting rate 𝜌𝑡,𝑚. We choose a negative binomial distribution
rather than a Poisson distribution to allow for overdispersion (controlled by the size parameter 𝜙𝑅). The variance of 𝐶𝑅𝑡,𝑚
is then given by 𝜇𝑅𝑡,𝑚 + 𝜇

𝑅
𝑡,𝑚

2
∕𝜙𝑅. Therefore, for high values of 𝜙𝑅 relative to 𝜇𝑅𝑡,𝑚, the distribution resembles a Poisson dis-

tribution and low values indicate high overdispersion. The time-specific underreporting rates 𝜌𝑡,𝑚 are modeled through
a piece-wise constant function. By accounting for time-varying underreporting and weekday-specific reporting delays,
the reporting model allows for discrepancies between the true dynamics of the disease and the number of cases that are
reported by health authorities (Höhle & an der Heiden, 2014). In the reporting model, we assume that the delay between
symptom onset and day of reporting can be specific to a geographical region 𝑚. Since it is very difficult to obtain this
information for each region, we use information from a specific geographical region for which we can estimate these
weekday-specific reporting delay distributions (in our application to COVID-19, this region is Bavaria in Germany) and
adapt them for each location. The whole procedure is as follows. For each weekday of symptom onset, we use a different
reporting delay distribution. This means, for instance, that an infected individual with symptom onset on Monday may
have another reporting pattern and therefore another reporting delay distribution than an individual with symptom onset
on Sunday (since several local authorities do not work on Sundays). Figure S6 in the Supporting Information shows the
estimated reference distributions fromBavaria. Furthermore, we individualize these weekday-specific reporting delay dis-
tributions for each location with its regional reporting pattern (e.g., some countries do not report any cases on Sundays at
all while others do). We achieve this by introducing location and weekday-specific parameters 𝛽𝑤𝑚 to adapt these distribu-
tions for weekdays𝑤 for each geographical region𝑚. These parameters 𝛽𝑤𝑚 are multiplied with the discretized versions of
the Bavarian reporting delay distributions to inflate or deflate the probability mass at the respective time spans that match
the weekdays. For example, for a country𝐴 that does not report any cases at all on Sundays, the respective 𝛽𝑆𝑢𝑛𝑑𝑎𝑦

𝐴
would

be estimated as zero. Thus, the reporting delay distribution for symptom onset on Mondays would result in a probability
mass of zero on the 6th, 13th, and so on, day, whereby the reporting delay distribution for symptom onset on Tuesday
would result in a probability mass of zero on the 5th, 12th, and so on, day. After the multiplication, we renormalize the
result to obtain a proper probability distribution. As a consequence, we can account for weekly reporting patterns that are
specific to each geographical region𝑚.
Following Flaxman et al. (2020), we describe the number of deaths 𝐷𝑡,𝑚 occurring on day 𝑡 in geographical region𝑚 as

a function of the number of true cases with disease onset prior to 𝑡 through the following death model:

𝐷𝑡,𝑚 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚
(
𝜇𝐷𝑡,𝑚, 𝜙

𝐷
)
,

where

𝜇𝐷𝑡,𝑚 = 𝜋
𝐷
𝑡,𝑚

∑
𝑢≤𝑡

𝐶𝑢,𝑚

(
𝐹
𝜉
𝐷,𝑤
𝑚
(𝑡 − 𝑢 + 1) − 𝐹

𝜉
𝐷,𝑤
𝑚
(𝑡 − 𝑢)

)
.

In this model,𝐷𝑡,𝑚 is described by a negative binomial distribution with expected value equal to the sum of the number
of true cases with disease onset at time 𝑡 − 𝑢, weighted by the probability of dying on the 𝑢th day after the onset of symp-
toms. This latter probability can be obtained by discretizing the probability distribution describing the time until death
for patients who died, that is, 𝐹

𝜉
𝐷,𝑤
𝑚
, and multiplying by the infection fatality rate (IFR) 𝜋𝐷𝑡,𝑚, that is, the probability of

dying for an infected individual where this rate can depend on day 𝑡 and geographical region𝑚. Similarly to 𝐹
𝜉
𝑅,𝑤
𝑚

in the
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reportingmodel,𝐹
𝜉
𝐷,𝑤
𝑚

accounts for weekday effects that can be specific to geographical region𝑚 to account for differences
in reporting through variables 𝛽𝐷,𝑤𝑚 .
The IFR is a crucial part of themodel aswe assume that this quantity is fixed and known, butwe consider several (poten-

tially time-varying) factors that have an influence on this quantity, namely, the age composition in a country, vaccination
rollout, and the prevalence of new variants.
The proposed model operates on an aggregated level with respect to locations 𝑚 (e.g., countries). However, different

locations have different age compositions. As disease severity is strongly correlated with age, we obtain an aggregated IFR
by weighting an age-specific IFR with the age structure in each location. We use information on the age strata of each
country from O’Driscoll et al. (2021) and the aggregated IFR for four different age groups 𝑠 = 1,… , 4 from Staerk et al.
(2021), that is, we use an IFR of 0.008% for the age group of 0–34 years, 0.122% for 35–59 years, 0.992% for 60–79 years and
7.274% for an age of 80 or older. The location-specific IFR is then calculated by

𝑖𝑓𝑟𝑚 =

4∑
𝑠=1

𝑤𝑠,𝑚 ⋅ 𝑖𝑓𝑟𝑠,

where𝑤𝑠,𝑚 is the proportion of the age category (stratum) of the population of country𝑚 and 𝑖𝑓𝑟𝑠 defines the age-specific
IFR in each stratum 𝑠.
As vaccinations substantially reduce the probability of dying, we make the assumption that the IFR at each location

𝑚 changes as a function of the time-varying vaccination coverage. With growing coverage in the population, the IFR is
lowered. It is important to mention that older age groups in the population were vaccinated with a higher priority at
the beginning of the vaccination rollout in most countries. We include the effect of vaccinations by reducing the IFR
in the different age strata relative to their share of the population. Most countries do not provide enough information
about their vaccination progress in the different age groups. We therefore use publicly available data from France (Santé
Publique France, 2021) and extrapolate this information to all other countries, because themajority of European countries
used a similar vaccination strategy, making it plausible to assume that the evolution of vaccination coverage over time in
the different age groups was roughly comparable across different countries. We assume that after the first vaccination, the
probability of dying is reduced by 80%, that is, 𝛽𝑣𝑎𝑐𝑐

𝜋𝐷
= 0.8 after a lag of 2 weeks. For example, Haas et al. (2021) found a

higher effectiveness against COVID-19-related deaths of the BNT162b2 vaccine. However, since not all countries use the
same type of vaccine and one can assume a reduction of the vaccine effectiveness as time goes on, we decide to use this
approximation with a lower effectiveness.
Finally, new mutations of the virus can change disease severity. For COVID-19, we include the effect of alpha (B.1.1.7)

and delta (B.1.617.2) in the considered time window. Fisman and Tuite (2021) provide information on the severity of these
variants of concern. To account for the fact that these variants changed the overall IFR, we combine the time-varying
prevalence of these variants of concernwith their disease severity. For B.1.1.7, we inflate the IFR by a factor of 𝛽𝑎𝑙𝑝ℎ𝑎

𝜋𝐷
= 1.51

and for B.1.617 with 𝛽𝑑𝑒𝑙𝑡𝑎
𝜋𝐷

= 2.08.
To test the robustness to the assumptions concerning the overall value of the IFR and the influence of variants of con-

cern and of vaccinations on the IFR, we conduct a number of sensitivity analyses (see Section G and Figures S8 and S9
in the Supporting Information for more details and results). Finally, many countries provide information on hospital and
ICU occupancy, and it is important to be able to integrate these two additional sources of information in the estima-
tion of the true and unknown number of infections wherever this is possible. We integrate this information through two
hospitalization models that have a very similar structure as the death model:

𝐻𝑡,𝑚 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚
(
𝜇𝐻𝑡,𝑚, 𝜙

𝐻
)
,

where

𝜇𝐻𝑡,𝑚 = 𝜋
𝐻
𝑡,𝑚

∑
𝑢≤𝑡

𝐶𝑢,𝑚
(
𝐹𝜉𝐻 (𝑡 − 𝑢 + 1) − 𝐹𝜉𝐻 (𝑡 − 𝑢)

)
,

where 𝜋𝐻𝑡,𝑚 varies over time in the same way as 𝜋𝐷𝑡,𝑚 to account for vaccination coverage and different virus variants. In
contrast to𝜋𝐷𝑡,𝑚, however, we can estimate𝜋

𝐻
𝑡,𝑚 for each geographical region and do not have to consider it to be known. By

doing so, we can account for differences in medical care and definitions of hospital admissions and ICU admissions that
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may vary between geographical regions. To account for vaccination coverage and the influence of virus variants, we define
parameters 𝜋𝐻𝑚 that are specific to each geographical region, but that do not change over time, and calculate 𝜋𝐻𝑡,𝑚 as the
product 𝜋𝐻𝑚 × 𝑔𝑡,𝑚 where 𝑔𝑡,𝑚 is a fixed quantity representing the effect of vaccinations and virus variants, assuming that
these factorsmodify the severity of the disease in the same time-varyingmanner as for𝜋𝐷𝑡,𝑚. 𝑔𝑡,𝑚 can therefore constructed
from 𝜋𝐷𝑡,𝑚 as 𝑔𝑡,𝑚 = 𝜋𝐷𝑡,𝑚∕𝜋

𝐷
1,𝑚.

We use exactly the same model for hospital (normal beds) and ICU occupancy. For the sake of brevity, we therefore do
not present the model for ICU occupancy in detail, but it can be obtained by merely changing the superscripts from𝐻 to
𝐼𝐶𝑈. The two distributions,𝐹𝜉𝐻 and𝐹𝜉𝐼𝐶𝑈 , provide the probability that a personwith symptomonset on day 𝑡𝑜𝑛𝑠𝑒𝑡 occupies
a hospital or an ICU unit on day 𝑡𝑜𝑛𝑠𝑒𝑡 + 𝑡𝑑𝑒𝑙𝑎𝑦 with 𝑡𝑑𝑒𝑙𝑎𝑦 = 1, 2, 3, …. For the application to COVID-19, we obtain these
two distributions by combining information on the time between symptom onset and hospitalization with information
on the time a person occupies a bed or ICU after being hospitalized through Monte Carlo methods. See Sections D.2 of
the Supporting Information for a more detailed description of the definition of 𝐹𝜉𝐻 and 𝐹𝜉𝐼𝐶𝑈 .

2.2 Modeling the effects of NPIs and seasons

As mentioned above, we model the number of true and unknown infections as a discrete latent variable. To describe the
dynamics of the infectious disease, we assume that this latent variable follows the following renewal model:

𝐼𝑡,𝑚 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚
(
𝜇𝑡,𝑚, 𝜙

𝐼
)
,

where

𝜇𝑡,𝑚 = 𝑅𝑡,𝑚
∑
𝑢<𝑡

𝐼𝑢,𝑚
(
𝐹𝛾(𝑡 − 𝑢 + 1) − 𝐹𝛾(𝑡 − 𝑢)

)
.

This renewal model describes the number of infected individuals 𝐼𝑡,𝑚 at each time point 𝑡 in geographical region 𝑚 as
a function of past infections, the instantaneous reproduction number 𝑅𝑡,𝑚, and the generation time distribution. To be
more specific, the expected number of infections 𝜇𝑡,𝑚 is the sum of the previous infections on the 𝑡 − 1 days before 𝑡
weighted by the corresponding probability mass of the discretized generation time distribution 𝐹𝛾(𝑡 − 𝑢 + 1) − 𝐹𝛾(𝑡 − 𝑢)
multiplied by the instantaneous reproduction number 𝑅𝑡,𝑚 at time 𝑡 in geographical region𝑚, where the generation time
distribution 𝐹𝛾(𝑡 − 𝑢 + 1) − 𝐹𝛾(𝑡 − 𝑢) represents the probability to transmit the infection from one infected individual to
another between time 𝑡 − 𝑢 and 𝑡 − 𝑢 + 1. Applying the renewal equation to past infections yields the current number of
infections 𝐼𝑡,𝑚 (see, e.g., Fraser et al., 2009), and it can be seen as a more flexible version of the disease dynamics described
in classical compartmental models for infectious diseases (Wallinga & Lipsitch, 2007). We assume that the latent variable
follows a negative binomial distribution. We set a prior on the size parameter with �̃�𝐼 ∼ 𝑁+(0, 0.015) where �̃�𝐼 = 1∕𝜙𝐼

2
.

Through this prior assumption, the dispersion is pushed toward smaller values (see Section 2.3 for an explanation). The
same prior is also used for the size parameter for the observed time series (i.e., 𝐶𝑅𝑡,𝑚, 𝐷𝑡,𝑚,𝐻𝑡,𝑚, 𝐼𝐶𝑈𝑡,𝑚).
We seed the model for the first day 𝐼1,𝑚 in each geographical region 𝑚 through a negative binomial distribution with

mean parameter 𝜏𝑚:

𝐼1,𝑚 ∼ 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚
(
𝜏𝑚, 𝜙

𝐼
)
, (1)

where we assume a hierarchical model for 𝜏𝑚, that is, each 𝜏𝑚 follows a truncated Normal distribution around a common
parameter 𝜏 that follows a Gamma distribution with shape 𝑎𝜏 and scale 𝑏𝜏.

𝜏𝑚 ∼ 𝑁
+(𝜏, 𝜎𝜏),

𝜏 ∼ 𝐺𝑎(𝑎𝜏, 𝑏𝜏),

𝜎𝜏 ∼ 𝑁
+(𝜇𝜎𝜏 , 𝜎𝜎𝜏 ).

For a graphical display of the prior on 𝐼1,𝑚 that this hierarchical structure implies, see Figure S2 in the Supporting Infor-
mation.
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REHMS et al. 7 of 19

Following Flaxman et al. (2020), Brauner et al. (2021), and Sharma et al. (2021), we describe the effect of 𝐾 NPIs 𝛼𝑘,𝑚
through the following model:

𝑅𝑡,𝑚 = 𝑅
0
𝑡,𝑚 exp

(
−

𝐾+3∑
𝑘=1

𝛼𝑘,𝑚 ⋅ 𝟙𝑘,𝑚(𝑡)

)
⋅ (1 − 𝑐1𝑡,𝑚 − 𝑐

2
𝑡,𝑚 ⋅ (1 − 𝑐

1
𝑡,𝑚))

with

𝑐1𝑡,𝑚 =

∑
𝑢<𝑡

𝐼𝑢,𝑚

𝑁𝑚
⋅ (1 − 𝛽𝑟𝑒𝑖𝑛𝑓),

𝑐2𝑡,𝑚 =

∑
𝑢<𝑡
(𝑉𝑎𝑐𝑐1𝑢,𝑚 ⋅ 𝛽

𝑣𝑎𝑐𝑐1 + 𝑉𝑎𝑐𝑐2𝑢,𝑚 ⋅ 𝛽
𝑣𝑎𝑐𝑐2)

𝑁𝑚
,

where 𝟙𝑘,𝑚(𝑡) are indicator variables taking the value of 1 if the 𝑘th NPI is active at time 𝑡 in geographical region𝑚 and 0
otherwise. The correction factors 𝑐1𝑡,𝑚 and 𝑐2𝑡,𝑚 reduce the transmissibility of the virus in the population: 𝑐1𝑡,𝑚 corrects for
previously infected individuals. Since an infectionmay not guarantee protection against the infectious agent, we include a
parameter 𝛽𝑟𝑒𝑖𝑛𝑓 giving the probability of reinfection. The term 𝑐2𝑡,𝑚 corrects for vaccination coverage where

∑
𝑢<𝑡

𝑉𝑎𝑐𝑐1𝑢,𝑚
and

∑
𝑢<𝑡

𝑉𝑎𝑐𝑐2𝑢,𝑚 are the number of vaccinated individuals in the population at time 𝑡 and geographical region 𝑚 and
𝛽𝑣𝑎𝑐𝑐1 and 𝛽𝑣𝑎𝑐𝑐2 represent the probability of infection after a first and second vaccine dose.
Besides NPIs, we also include the effect of seasons (choosing summer as reference category, resulting in 𝐾 + 3 indica-

tor variables in total) where each indicator variable is 1, if the current 𝑡 corresponds to the according season. Since it is
reasonable to assume variations in the effect of NPIs and seasons between different geographical regions, we allow for
country-specific effects that are linked through a hierarchical structure. This hierarchical structure makes it possible to
share information between regions to infer an overall effect of the NPIs while allowing to estimate individual effects that
are specific to each geographical region:

𝛼𝑘,𝑚 ∼ 𝑁
(
𝛼𝑘, 𝜎

2
𝛼𝑘

)
.

The basic reproduction number 𝑅0𝑚 may vary over time due to the occurrence of different variants that modify the trans-
missibility of the virus. We propose a convex combination to construct a time-dependent basic reproduction number 𝑅0𝑚.
For the application to COVID-19, we account for two variants of concern yielding the following formula:

𝑅0𝑡,𝑚 =𝑅
0
𝑚 ⋅ (1 − 𝑝

𝑎𝑙𝑝ℎ𝑎
𝑡,𝑚 − 𝑝𝑑𝑒𝑙𝑡𝑎𝑡,𝑚 )+

(1 + 𝛽𝑎𝑙𝑝ℎ𝑎) ⋅ 𝑅0𝑚 ⋅ 𝑝
𝑎𝑙𝑝ℎ𝑎
𝑡,𝑚 +

(1 + 𝛽𝑑𝑒𝑙𝑡𝑎) ⋅ 𝑅0𝑚 ⋅ 𝑝
𝑑𝑒𝑙𝑡𝑎
𝑡,𝑚 ,

where 𝑝𝑎𝑙𝑝ℎ𝑎𝑡,𝑚 and 𝑝𝑑𝑒𝑙𝑡𝑎𝑡,𝑚 are the prevalence of the alpha (B.1.1.7) and delta (B.1.617.2) variants, respectively, at each time 𝑡
in geographical region𝑚. The two unknown parameters 𝛽𝑎𝑙𝑝ℎ𝑎 and 𝛽𝑑𝑒𝑙𝑡𝑎 represent the increased transmissibility of these
variants compared to the wild type. We obtain a time variant reproduction number by taking the reproduction number of
the original wild type as basis and multiplying it with (1 + 𝛽𝑎𝑙𝑝ℎ𝑎) and (1 + 𝛽𝑑𝑒𝑙𝑡𝑎) which accounts for the effect of these
subsequent variants.
Finally, we allow for variation in the basic reproduction number among geographical regions. We therefore assume

reproduction numbers 𝑅0𝑚 that are specific to geographical region 𝑚 that are again modeled in a hierarchical manner
with common mean 𝑅0:

𝑅0𝑚 ∼ 𝑁
(
𝑅0, 𝜎2𝑅

)
.

The proposed model requires a large set of parameters that are either estimable (and possibly with a prior) or have to
be specified as a fixed quantity. Table 1 provides an overview of all parameters of the model with their specifications.
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8 of 19 REHMS et al.

TABLE 1 Summary of all parameters used in the model.

Parameters to model disease dynamics
Parameter Description Additional information Prior
𝐼1,𝑚 Initial number of infected individuals Location-specific (hierarchical) 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜏𝑚, 𝜙

𝐼)

𝐹𝛾 Generation time distribution 𝐺𝑎(5, 0.45) Fixed
𝜏𝑚 Expected mean of 𝐼1,𝑚 Location-specific (hierarchical) 𝑁+(𝜏, 𝜎𝜏)

𝜏 Mean over all 𝜏𝑚 Shared mean 𝐺𝑎(10, 1)

𝜎𝜏 Variation of 𝜏𝑚 across all𝑚 𝑁+(0, 10)

𝜙𝐼 Size parameter of infections Prior on �̃�𝐼 = 1∕𝜙𝐼2 𝑁+(0, 0.015)

𝐼𝑡,𝑚 Number of infected individuals at 𝑡,𝑚 Location- & time-specific 𝑁𝑒𝑔𝐵𝑖𝑛𝑜𝑚(𝜏𝑚, 𝜙)

𝑅0𝑚 Basic reproduction number for each𝑚 Location-specific (hierarchical) 𝑁(𝑅0, 𝜎𝑅)

𝑅0 Mean 𝑅0 over all𝑚 Shared mean 𝑁(3.25, 0.05)

𝜎𝑅 Variation of 𝑅0 over all𝑚 𝑁+(0, 0.01)

𝛽𝑎𝑙𝑝ℎ𝑎 Increased transmissibility of variant For B1.1.7 𝑁(0.6, 0.01)

𝛽𝑑𝑒𝑙𝑡𝑎 Increased transmissibility of variant For B.1.617.2 𝑁(1.5, 0.01)

𝑝
𝑎𝑙𝑝ℎ𝑎
𝑡,𝑚 Prevalence at time 𝑡 in location𝑚 For B1.1.7 See supp. info (fixed)
𝑝𝑑𝑒𝑙𝑡𝑎𝑡,𝑚 Prevalence at time 𝑡 in location𝑚 For B.1.617.2 See supp. info (fixed)
𝛽𝑣𝑎𝑐𝑐1𝑡,𝑚 Effectiveness of vaccination With one dose 0.5 (fixed)
𝛽𝑣𝑎𝑐𝑐2𝑡,𝑚 Effectiveness of vaccination With two doses 0.35 (fixed)
𝛼𝑘,𝑚 Effect of the 𝑘th NPI at location𝑚 Location-specific (hierarchical) 𝑁(𝛼𝑘, 𝜎𝛼𝑘 )

𝛼𝑘 Mean of the 𝑘th NPI over all𝑚 Shared mean 𝑁(0, 0.3)

𝜎𝛼𝑘 Variation of 𝛼𝑘 over all𝑚 𝑁+(0, 0.015)

Parameters to infer the infections
Parameter Description Additional information Prior
𝐹𝜉𝐶 Incubation time distribution 𝐺𝑎(5.68, 0.08) Fixed
𝐹𝜉𝑅,𝑤𝑚 Reporting delay distribution See Supp. Info Fixed
𝛽𝑤𝑚 Seasonal reporting at 𝑤 in𝑚 Weekday-specific 𝑈(0, 10)

𝜙𝑅 Size for reported cases Prior on �̃�𝑅 = 1∕𝜙𝑅2 𝑁+(0, 0.015)

𝜌𝑡,𝑚 Reporting ratio at 𝑡 &𝑚 Piece-wise constant 𝑈(0, 3)

𝜋𝐷𝑡,𝑚 Infection fatality rate for location𝑚 See Section 2.1 Fixed
𝑖𝑓𝑟𝑔 IFR for age stratum 𝑔 See Section 2.1 Fixed
𝑤𝑠𝑚 Share of age stratum in location𝑚 See Section 2.1 Fixed
𝛽𝑣𝑎𝑐𝑐
𝜋𝐷

Effect of vaccination on IFR 0.8 (fixed)
𝛽
𝑎𝑙𝑝ℎ𝑎

𝜋𝐷
Severity of B.1.1.7 1.51 (fixed)

𝛽𝑑𝑒𝑙𝑡𝑎
𝜋𝐷

Severity of B.1.617.2 2.08 (fixed)
𝐹𝜉𝐷,𝑤𝑚

Symptoms-to-death distribution 𝐺𝑎(15.93, 0.1) Fixed
𝛽𝐷,𝑤𝑚 Seasonal reporting at 𝑤 in𝑚 One for each weekday 𝑤 𝑈(0, 10)

𝜙𝐷 Size for reported deaths Prior on �̃�𝐷 = 1∕𝜙𝐷2 𝑁+(0, 0.015)

𝜋𝐻 Depends on 𝜋𝐷 via 𝑔𝑡,𝑚 𝑈(0, 10)

𝐹𝜉𝐻 Symptoms-to-hospital occupancy See Supp. Info D.2 Fixed
𝜙𝐻 Size of hospital occupancy Prior on �̃�𝐻 = 1∕𝜙𝐻2 𝑁+(0, 0.015)

𝜋𝐼𝐶𝑈 Depends on 𝜋𝐷 via 𝑔𝑡,𝑚 𝑈(0, 10)

𝐹𝜉𝐼𝐶𝑈 Symptoms-to-ICU occupancy See Supp. Info D.2 Fixed
𝜙𝐼𝐶𝑈 Size of ICU occupancy Prior on �̃�𝐼𝐶𝑈 = 1∕𝜙𝐼𝐶𝑈

2
𝑁+(0, 0.015)

𝑔𝑡,𝑚 Correction to 𝜋𝐻 and 𝜋𝐼𝐶𝑈 Derived from 𝜋𝐷𝑡,𝑚 (Section 2.1) Fixed
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REHMS et al. 9 of 19

Furthermore, we provide a full directed acyclic graph (Figure 1), a summary of the model, and the full expression of the
joint posterior in Section A of the Supporting Information.

2.3 Inference, identifiability, and implementation

The flexibility of the proposedmodel can come at the cost of nonidentifiability issues. The first obvious problem of identifi-
ability occurs if we try to estimate the IFR 𝜋𝐷𝑡,𝑚, the probability of being hospitalized 𝜋

𝐻
𝑚 or being treated in ICU 𝜋𝐼𝐶𝑈𝑚 , and

the case detection ratios 𝜌𝑡,𝑚 simultaneously. This problem is easily circumvented by considering one of the four param-
eters as known. As the IFR can be reliably estimated in seroprevalence studies and modified by accounting for factors
like the age structure of the population, vaccination coverage, and the prevalence of different variants, we consider this
factor known to be able to estimate the three remaining factors. The second identifiability issue arises in the estimation of
the number of true and unknown infections. Since we assume that this variable follows a negative binomial distribution
where the expected value is a function of the effects of NPIs (that are to be estimated), themodel can in theory describe the
data through any set of values for these parameters if the dispersion is high (i.e., the size parameter is small). Moreover,
the dimension of the latent variable can be rather high depending on the length of the observation window and number
of geographical regions (the dimension in the latent variable grows with 𝑡 and𝑚). We address this issue by assuming an
informative prior for the different size parameters in the renewal model, the hospitalization models, and the death model
and by splitting 𝐼𝑡,𝑚 in blocks of 10 for each geographical region𝑚 to be able to update each block one at a time. Finally,
assuming a hierarchicalmodel structure on𝛼𝑘,𝑚,𝑅0𝑚, and 𝜏𝑚 has the advantage of stabilizing parameter estimates by using
information across countries. This effect is particularly important for the estimation of NPI. Since such interventions are
often implemented or relaxed as multicomponent interventions on the same or subsequent days in a country, it is difficult
to disentangle their effects if we assume country-specific effects that do not follow a hierarchical structure because the
estimated effects would be highly correlated. Using a hierarchical model allows us to account for variation in the effect
of these interventions while using the information across countries to reduce the correlation between effect estimates.
However, it is difficult to determine the exact amount of shrinkage that should be applied (expressed through the prior
distributions on the variance parameters). The choice needs to be transparently reported and tested in sensitivity analyses.
Due to the complexity of the hierarchical model, there is no analytical solution and we use a Metropolis–Hastings

algorithm (Hastings, 1970) to sample from the joint posterior distribution. For the simulation study and the application,
we fine-tune acceptance rates by using an adaptive phase (Brooks et al., 2011; Roberts & Rosenthal, 2009) and discard a
defined number of iterations as burn-in. We apply thinning to reduce the autocorrelation in the generatedMarkov chains.
For more details on the implementation, we refer to Section E of the Supporting Information.

3 SIMULATION STUDY

3.1 Data generation and study design

We carry out a simulation study with the aims (1) to assess the correctness of the implemented algorithm, (2) to inves-
tigate potential problems concerning the identifiability of model parameters, and (3) to assess the impact of model
misspecification concerning age stratification. We simulate date according to the model with prespecified parameters.
Afterwards, we apply the proposed model to the generated data sets and compare the results with the known parameters
and the latent variable. We generate 100 data sets with 10 geographical regions and an observation period of 600 days for
each of them. Thus, each data set contains 6000 rows of data. We specify five artificial interventions with mean effects
𝛼1 = 0.22, 𝛼2 = 0.25, 𝛼3 = 0.3, 𝛼4 = 0.4, 𝛼5 = 0.45. This allows the reproduction number to be reduced by roughly 80%
when all NPIs are active. To obtain region-specific effects of NPIs, we sample from a Gaussian distribution with the corre-
spondingmean 𝛼𝑘 and a standard deviation 𝜎𝛼𝑘 = 0.01. The basic reproduction number is sampled in the same way using
a mean 𝑅0 = 3.25 and a standard deviation of 𝜎2𝑅 = 0.1. We seed the first day of the pandemic in each region by sampling
from a negative binomial distribution with a mean 𝜏𝑚 that is generated from a Gaussian distribution with mean 𝜏 = 10
and 𝜎𝜏 = 2. All size parameters of the negative binomial distributions are set to 1000 to obtain stable disease dynamics.
To obtain realistic time points at which the NPIs are set to active, we generate data in which the decision on whether an
NPI is set to active depends on ICU occupancy: To do so, we generate Bernoulli variables for currently inactive NPIs at
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10 of 19 REHMS et al.

TABLE 2 Average estimated effects of nonpharmaceutical interventions (NPIs) on simulated data. All values (except the coverage) are
taken as the mean over all simulated data sets and generated Markov chains for all 𝛼𝑘,𝑚 ’s.

Intervention True value Estimate Relative bias (%) Coverage (%)
NPI1 0.22 0.223 1.312 97.4
NPI2 0.25 0.253 1.140 97.0
NPI3 0.30 0.304 1.189 97.2
NPI4 0.40 0.406 1.462 95.0
NPI5 0.45 0.456 1.534 91.7

F IGURE 2 Results for the first three NPIs and 20 data sets. The horizontal line is the true mean value.

each 𝑡 with probability 𝑝𝑘,𝑡,𝑚 depending on ICU occupancy on 𝑡 − 1. In the case an NPI is activated, it remains active for
a random time period between 60 and 120 days.
We carry out a second simulation scenario to test the impact of misspecifying the mixing between different age groups

(third aim). The proposedmodel assumes homogeneousmixing by aggregating all time series over the different age groups
and only reflects different age compositions via the IFR. We test the impact of this potential misspecification by simulat-
ing age-stratified data with diffusion between the age groups and fit the model on the aggregated data. In Section F of
the Supporting Information, we provide further details on how the diffusion between age groups is performed. Table S1
and Figure S7 in the Supporting Information shows that aggregating over age strata has only a negligible impact on the
estimation of NPI effects.
The data generation is carried out in R version 4.0.4 (R Core Team, 2021). For further details, see the provided R scripts

that we used for the data generation.

3.2 Results on simulated data

We fit the model to each of the 100 data sets where we run two chains with 100,000 iterations and a burn-in of 50,000.
We apply thinning by keeping only every 60th iteration. We check convergence by analyzing traceplots and potential
scale reduction factors that are always < 1.01 (Gelman & Rubin, 1992). As can be seen in Table 2, the algorithm produces
estimates that are very close to the true NPI effects (with a mean relative bias of at most 1.534%) and very high coverage
rates. For illustration purposes, we present in Figure 2 the samples from the posterior as violin plot for the first three NPIs
and 20 data sets. Figure 3 shows the posterior predictions of the number of (unknown) daily infections (A) and reported
cases (B) for one of the 10 regions for one data set. For the simulated data, the model fits very well with a low uncertainty.
The results for the missspecified model can be found in Table S1 and Figure S7 of the Supporting Information.

4 CASE STUDY: MODELING COVID-19 IN 20 EUROPEAN COUNTRIES

4.1 Data sources

In our case study on COVID-19, we analyze data from 20 European countries (Austria, Belgium, Czechia, Denmark, Fin-
land, France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, Norway, Poland, Portugal, Slovenia, Spain, Sweden,
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REHMS et al. 11 of 19

(a) (b)

F IGURE 3 Posterior predictions for two time series on simulated data. The (unobserved) infections are shown in A and reported cases
in B. Black encodes the true underlying simulated time series. The blue color represents the mean predictions with 95% credible interval.

Switzerland, United Kingdom). Following Flaxman et al. (2020), we define the start of the observation period in each
country as 30 days before 10 cumulated deaths were reported. We include data on the entire course of the pandemic until
the 31st of October 2021 resulting in a median length of 620 days. We use data on reported cases and deaths from the Johns
Hopkins CSSE COVID-19 Dataset (Dong et al., 2020). Data on the prevalence of variants of concern and hospital and ICU
occupancy are obtained from the European Centre for Disease Prevention and Control (European Centre for Disease Pre-
vention and Control, 2022), except for hospital and ICU occupancy for the United Kingdom, which is obtained from the
COVID-19 in the UK dashboard provided by the UK Health Security Agency (UK Health Security Agency, 2022). As the
data on the prevalence of different variants are only available on a weekly basis, we fit a sigmoid function with a squared
loss to obtain smooth daily data. More details on this procedure and the resulting time series are presented in Section C.2
with Figures S4 and S5 of the Supporting Information. Data on vaccinations are obtained from Our World in Data (Math-
ieu et al., 2021). Since we use a weighted IFR by age strata, we need information on the number of vaccinations in different
age groups. However, very few countries provide information on the age structure of currently vaccinated individuals. We
therefore use publicly available data from France and map the relative age-specific vaccination progress to other coun-
tries, making the assumption that the prioritization of vaccinations for different age groups evolved roughly in the same
manner across different European countries (see Section 2.1). We define the following interventions using information
from the COVID-19 Government Response Tracker (OxCGRT; Hale et al., 2021) resulting in five NPIs: school closure, gath-
erings, lockdown, subsequent lockdown, and general behavioral changes. The NPI “school closure” is active when at least
some levels of schools and universities (e.g., just high schools) are required to close, and “gatherings” captures the restric-
tion of gatherings to 10 or fewer people. We use two different NPIs depending on whether it was forbidden to leave the
house (with possible exceptions such as grocery shopping, and “essential” trips) for the first time (“lockdown”) or further
times (“subsequent lockdown”) because subsequent lockdowns often followed a much more detailed protocol. The last
NPI “general behavioral changes” is active from the first time an NPI was implemented in a country and remains active
until the end of the observation period. It subsumes many behavioral adaptations that were taken since the beginning of
the pandemic and that were respected by a large part of the population in many countries until the end of 2021. These
include, for instance, restricting physical contact, working from home wherever possible, higher alertness in case of any
respiratory disease symptoms, and the wearing of face masks in some countries. We give a more detailed overview of how
we derived these NPIs with the OxCGRT variable coding and the resulting time series (Figure S3) in Section C.1 of the
Supporting Information.

4.2 Challenges in the analysis of the observed time-series

Figure 4 illustrates the challenges in the estimation of the number of daily new infections in a given country by showing
the number of reported cases, hospital and ICU occupancy and deaths in the United Kingdom and various factors that
have an influence on disease transmission and severity. While the four observed time series show a similar trend during
the time between October 2020 and March 2021, they provide rather contradictory information in early-2020 and in late-
2021. In particular, the growth rates for the four time series are very different for specific time points (see, e.g., the steep
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12 of 19 REHMS et al.

F IGURE 4 Reported cases, hospital occupancy, intensive care unit occupancy, and reported deaths (multiplied by a factor of 20) in the
United Kingdom between early-2020 and late-2021. The four observed time series are influenced by the set of nonpharmaceutical
interventions that were active at each time point (shown at the top), the season (shown just below), and the number of persons having
received a first and second vaccine dose and the prevalence of different virus variants.

increase in reported deaths and hospital occupancy in the early-2020 vs. themore gradual increase in reported cases or the
very steep increase in reported cases in July 2021 and the comparably gradual increase in reported deaths). In early-2020,
it is obvious that, as in many other countries, only a small proportion of cases were reported because of limited testing
capacities. In late-2021, on the other hand, previous infections and vaccinations are likely to have led to fewer severe cases
of infections in the population. As a consequence, the numbers of reported deaths and hospital and ICUoccupancy are low
compared to the number of reported cases. Moreover, the reported time series are not only influenced by the set of NPIs
that is active at each time point, but also by the current season with higher infections observed in autumn andwinter than
in spring and summer and by the prevalence of different virus variants that influence both the transmissibility of the virus
and the severity of the disease. Overly simplistic analyses of these time series that only focus on a single indicator of disease
transmission and that ignore one or several of the various influencing factors and the weekly patterns in reported cases
and deathsmay obtain very different answers concerning the same research question, leading to contradictory results that
are difficult to communicate to the general public and decision-makers.

4.3 Results

We run eight chains with a burn-in of 20,000 followed by 50,000 iterations per chain. We apply a thin of 100 resulting in
4000 (i.e., 500 × 8) samples from the posterior distribution for each parameter. We run a longer adaptive phase with 200
adaptive steps (each with 100 iterations) to get good initial proposal standard deviations. For the final sampling proce-
dure, we again fine-tune these proposals by running 10 adaptive phases (with 50 iterations each). Information about the
convergence diagnostic for the parameters of major interest (NPIs and seasonal effects) and further results are presented
in Section E of the Supporting Information.
Estimated effects of NPIs Figure 5 provides information on the estimated relative reduction in the reproduction

number for NPIs and seasons, respectively. For NPIs, the smallest effect is “school closure” with a credibility interval that
includes zero. The most effective NPI is “general behavioral changes,” which we defined with the aim to capture several
protective measures that were respected by a large portion of the population between the beginning of 2020 and the end

 15214036, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200341 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [21/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



REHMS et al. 13 of 19

F IGURE 5 Reduction in the reproduction number for NPIs estimated across 20 European countries. Posterior distributions for the mean
effects 𝛼𝑘 are given in orange. Posterior predictive distribution for 𝛼𝑘,𝑚 reflecting effect heterogeneity across countries is shown in blue. They
are obtained by sampling from a normal distribution with mean 𝛼𝑘 and standard deviation 𝜎𝛼𝑘 for each iteration. The 50% and 95% credible
intervals are given as bold and normal lines, respectively.

of 2021 including, for instance, working from home wherever possible, higher alertness in case of any respiratory disease
symptoms, complyingwith hygiene recommendations, social distancing, and thewearing of facemasks in some countries.
When comparing the effects for the first lockdown with one or several subsequent lockdowns, we can see that the first

lockdown is estimated to have a larger effect than subsequent lockdowns, reflecting the fact that the first lockdown was
characterized by stronger restrictions and probably better adherence to these than subsequent lockdowns. Figure 6 shows

F IGURE 6 Increase in the reproduction number for seasons estimated across 20 European countries. Posterior distributions for the
mean effects are given in orange. Posterior predictive distributions are shown in blue. The 50% and 95% credible intervals are given as bold
and normal lines, respectively.
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(b)(a)

F IGURE 7 Posterior predictions of the reported cases for two countries, Hungary (A) and France (B). The observed time series are given
in black and the estimated mean with 50% and 95% credible intervals are shown in blue.

the results for the seasons. As expected, one can observe a strong seasonal influence with an estimated increase in the
reproduction number of about 14%, 30%, and 37% for spring, autumn, and winter, respectively.
Model fit and case detection ratios Figure 7 shows posterior predictive checks comparing the observed time series

and the posterior predictions for reported cases, hospital occupancy, and deaths for two selected countries, Hungary and
France. We chose these two countries, because they represent very different geographical regions in Europe, they differ in
their size, they present very different disease dynamics, and data on hospital occupancy were available for both countries.
The approach captures the weekly variation in reported cases and deaths that are specific to the two countries. Moreover,
it is capable of reproducing the three complementary time series, even though they provide quite contrasting information,
in particular, for the first wave. The model shows a tendency to overestimate hospital occupancy during the peaks of the
first and second waves of the pandemic for many countries, including Hungary and France. This overestimation might
be linked to increases in hospital mortality during the peaks of the first and second waves that are well documented for
several countries and have been linked to increasing strain on services that may have led to changes in the case-mix and
illness severity of admitted patients (Docherty et al., 2021; Gray et al., 2022; Jassat et al., 2021)
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(b)(a)

F IGURE 8 Estimated case detection ratios between early-2020 and late-2021 for Hungary (A) and France (B). The shades of blue
represent the standard deviation of the posterior with light blue indicating more uncertainty in the estimation. The inverse test positivity rate,
which can be interpreted as the number of tests that are performed to detect a case, is given in orange.

Integrating information on reported cases, hospital and ICU occupancy and deaths while accounting for time-varying
underreporting in the number of reported cases allow us to estimate variations in case detection ratios that occurred over
time. Figure 8 compares these estimated case detection ratios for Hungary and France between early-2020 and late-2021
with the inverse test positivity rate, that is, the number of tests that are performed to obtain a positive test. In general,
we observe high underreporting (i.e., very small detection ratios) for the first wave of the pandemic indicating that the
true number of infections by far exceeded the reported number of cases. Subsequently, the case detection ratios increased
during the summermonths and even reached values of over 100%, that is, there weremore cases being reported than there
were estimated true infections. Thismight be explained by the fact that the prevalence of the viruswas very low during this
period and the number of performed tests was very high. In this situation, theremay be a nonnegligible proportion of false
positive results and we can therefore expect the number of reported cases to exceed the number of true infections due to
the imperfect specificity of the tests (Bisoffi et al., 2020; Brownstein & Chen, 2021; Cohen & Kessel, 2020). However, these
resultsmust be interpretedwith caution as the estimated case detection ratios critically depend on the assumed value of the
IFR and on assumptions about how this case fatality rate changes as a function of virus variants and vaccination coverage.
In Section H of the Supporting Information, we present in Figure S10 the individual NPI estimations for each country, in
Figure S11 the estimated overcontagiousness of the variants of concern, in Figures S12–S14 the posterior predictions for
the observed time series, in Figure S15 the estimated infections (latent variable), in Figure S16 the estimated case detection
ratios, and in Figure S17 the trace plots for the mean NPIs.

5 DISCUSSION

Wepresented a Bayesian hierarchical approach for themodeling of infectious diseases that allows to integrate information
on the number of reported cases, hospital and ICU occupancy, and deaths in the estimation of the number of daily new
infections. As mentioned in Section 1, previous studies have used various modeling approaches to assess the effect of NPIs
on COVID-19 transmission, hospitalizations, and deaths (Banholzer et al., 2021; Brauner et al., 2021; Dehning et al., 2020;
Flaxman et al., 2020; Islam et al., 2020; Li et al., 2021a; Sharma et al., 2021; Unwin et al., 2020). Some of these report
different findings related to, for example, the magnitude of effect for a specific NPI, as well as the ordering of the relative
effectiveness of multiple NPIs. There are numerous other such studies, and systematically identifying and reviewing each
of them to compare their findings with those of our study is beyond the scope of this study. Indeed, the principal aim of
our study was to show how many of the shortcomings of previous modeling approaches can be overcome by adopting a
Bayesian hierarchical approach. Owing to its modular nature, it is possible to model the dynamics of infectious diseases
while allowing proper statistical inference and an evaluation of the fit to the observed time series. Moreover, we can
integrate the available information while accounting for various sources of uncertainty in this information. By explicitly
accounting for time-varying underreporting, seasonality, the spread of different virus variants, vaccination coverage, and
previous infections, it is possible to use information over long time periods rather than focusing on short time periods
duringwhich these factors remain roughly constant. Using this approach allows for the transparent reporting ofmodel and
parameter assumptions and is very flexible: It is thus straightforward to adapt the model to account for additional factors
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that might have an influence on disease dynamics. In contrast tomost othermodeling approaches, our approach explicitly
accounts for weekly patterns in the reporting delay distribution for reported cases and deaths, and it is therefore not
necessary to smooth these time series. The explicit estimation of new infections on a daily basis is amajor advantage if one
is interested in the effect of influencing factors that may show variations on a daily scale, for instance, weather conditions
(Tosepu et al., 2020), air pollution (Cole et al., 2020), or pollen (Damialis et al., 2021). Due to the flexible combination of
different submodels, it would also be straightforward to integrate further information, for example, on the number of tests,
onmeasurements fromwastewater, from seroprevalence surveys, or from randomized surveillance testing.Nicholson et al.
(2022) combine the latter information with targeted test counts using a stochastic SIR model on weekly aggregated data
to obtain fine-scale spatiotemporal prevalence estimates for the United Kingdom.
While the flexible modeling of the observed time series allows to account for different sources of uncertainty, it also

comes at the cost of making a number of model and parameter assumptions. Since our modeling approach implicitly
gives more weight to reported deaths and ICU and hospital occupancy than to reported cases (by compensating devia-
tions between the true and unknown number of infections and reported cases by differences in case detection ratios for
time periods at which the testing strategy changed), our assumptions on how disease severity (and therefore the IFR) is
influenced by vaccinations and virus variants play a crucial role in the model. To test the robustness to these assumptions,
we conducted extensive sensitivity analyses in which we assessed the degree to which NPI estimates are influenced by
variations in the assumptions concerning the overall IFR value and the effect of vaccinations and variants of concern on
the IFR. As can be seen in SectionG of the Supporting Information, variations in the assumptions concerning these factors
has a negligible effect on the estimates of NPI effects.
In our application to COVID-19, we only accounted for the wild type, the alpha, and the delta variant. In principle, it

would also be possible to account for the omicron (B.1.1.529) variant using the proposed approach, but there is evidence
that this new variant did not only increase the transmissibility of the virus and decrease the severity of the disease, but
also entailed changes in the generation time distribution and vaccine efficacy. As a consequence, accounting for omicron
would have required a great number of additional assumptions, and it was not in the scope of this work to find reliable
information to be able to make all these additional assumptions.
Despite evidence on the importance of asymptomatic infections in the transmission of COVID-19, we did not explicitly

distinguish symptomatic and asymptomatic cases in our case study concerning COVID-19. Indeed, it is not clear whether
this distinction would necessarily improve the model. This distinction is typically neither made by health authorities in
the reporting of cases nor in seroprevalence studieswhen estimating IFRs. Distinguishing symptomatic and asymptomatic
infections would therefore require additional assumptions, in particular, on IFRs that apply only to symptomatic cases,
without a clear benefit concerning the insights that we gain from the observable quantities.
Similarly, we assume homogeneous mixing between the different age groups and do not account for age stratification

in our model, but it is not clear whether accounting for age stratification would improve our estimates. Indeed, account-
ing for age stratification would require a great number of additional assumptions, including on the interaction patterns
between the age strata in the different countries and age-specific information on the number of reported cases, hospital
occupancy, ICU occupancy, and deaths, and this information is only available for a small proportion of the countries that
we considered in our application to COVID-19. Even if we had reliable information on mixing patterns between different
age groups and age-specific time series, it is not clear whether ignoring these age groups will strongly affect the estimation
of NPI effects. In accordance, the results on simulated data presented in Section F of the Supporting Information show
that violations of the homogeneous mixing assumption only have a minor influence on NPI estimates. While ignoring
age stratification might in general not have a large impact on our NPI estimates, it may lead to an underestimation of
the effect of school closures: Since our model relies more on reported deaths and ICU and hospital occupancy than on
reported cases, it might not be able to detect an increase or decrease in the number of new infections among children
because disease severity in this group is very low. While this reasoning is consistent with some empirical evidence (Fuku-
moto et al., 2021), others have found differing findings. Studies using various modeling approaches, for example, have
reported meaningful decreases in transmission, hospitalization, and deaths due to school closures (Haug et al., 2020; Li
et al., 2021a; Liu et al., 2021). Similarly, an overview of systematic reviews, which included and described mainly observa-
tional studies, also found that most systematic reviews reported benefits of school closures (Talic et al., 2021). However,
each of these studies, as well as many of the underlying studies included in the systematic review, emphasize concerns
related to their internal and external validity. Indeed, our model is designed to improve upon multiple assumptions made
and approaches taken by such evidence. Nevertheless, our finding that school closures only have a negligible impact on
disease dynamics has to be interpreted with caution.
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In many countries, the question of whether NPIs should be implemented as a function of reported cases or hospi-
tal occupancy was widely debated as both quantities are to some extent unreliable. The proposed Bayesian hierarchical
approach provides a framework in which information on both quantities (and on reported deaths and ICU occupancy)
can be integrated to predict epidemic development and health care demand in the near future to be able to weigh costs,
benefits, and uncertainties in a more robust manner in evidence-informed decision making. While we have developed
the approach with reference to COVID-19, the model could easily be adapted to any other known or presently unknown
infectious agent.
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