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Abstract
Introduction: Joint linkage and association (JLA) analysis
combines two disease gene mapping strategies: linkage
information contained in families and association informa-
tion contained in populations. Such a JLA analysis can in-
crease mapping power, especially when the evidence for
both linkage and association is low tomoderate. Similarly, an
association analysis based on haplotypes instead of single
markers can increase mapping power when the association
pattern is complex. Methods: In this paper, we present an
extension to the GENEHUNTER-MODSCORE software pack-
age that enables a JLA analysis based on haplotypes and
uses information from arbitrary pedigree types and unre-
lated individuals. Our new JLA method is an extension of the
MOD score approach for linkage analysis, which allows the
estimation of trait-model and linkage disequilibrium (LD)
parameters, i.e., penetrance, disease-allele frequency, and

haplotype frequencies. LD is modeled between alleles at a
single diallelic disease locus and up to three diallelic test
markers. Linkage information is contributed by additional
multi-allelic flanking markers. We investigated the statistical
properties of our JLA implementation using extensive
simulations, and we compared our approach to another
commonly used single-marker JLA test. To demonstrate the
applicability of our new method in practice, we analyzed
pedigree data from the German National Case Collection for
Familial Pancreatic Cancer (FaPaCa). Results: Based on the
simulated data, we demonstrated the validity of our JLA-
MOD score analysis implementation and identified scenarios
in which haplotype-based tests outperformed the single-
marker test. The estimated trait-model and LD parameters
were in good accordance with the simulated values. Our
method outperformed another commonly used JLA single-
marker test when the LD pattern was complex. The ex-
ploratory analysis of the FaPaCa families led to the identi-
fication of a promising genetic region on chromosome
22q13.33, which can serve as a starting point for future
mutation analysis and molecular research in pancreatic
cancer. Conclusion: Our newly proposed JLA-MOD score
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method proves to be a valuable gene mapping and char-
acterization tool, especially when either linkage or associ-
ation information alone provide insufficient power to
identify the disease-causing genetic variants.

© 2024 The Author(s).

Published by S. Karger AG, Basel

Introduction

Traditionally, the identification of human disease
genes is accomplished using the positional cloning ap-
proach, in which linkage analysis serves as the first step to
narrow down the chromosomal position of the putative
trait locus, followed by a fine-mapping association
analysis [1]. Linkage analysis evaluates the co-segregation
of genetic marker alleles together with a trait in families.
Association analysis usually investigates the correlation of
marker and disease-allele frequencies (linkage disequi-
librium [LD]) between unrelated cases and controls on
the population level (e.g., [2, 3]).

A joint linkage and association analysis (JLA) can
substantially increase mapping accuracy and power
because it makes use of both family and population
information [4, 5]. In the following parts of the
introduction, we give a brief review of linkage, associa-
tion, and JLA methods. Subsequently, we introduce our
newly proposed JLAmethod and describe the objective of
the current paper.

Linkage Analysis
Linkage analysis has widely been used as the primary

tool for the genetic mapping of traits with familial ag-
gregation [6]. Methods of linkage analysis are commonly
distinguished as either being parametric (“model-based”)
or nonparametric (“model-free”). In parametric linkage
analysis, which is also known as model-based or LOD
score analysis, a certain set of trait-model parameters is
explicitly assumed for the segregation of the disease.
Nonparametric linkage analysis methods proceed with-
out explicit assumptions as to the trait-model parameters;
however, it can be shown that certain nonparametric and
parametric linkage tests are equivalent for a particular
type of pedigree [7, 8]. In the simplest case of a diallelic
autosomal trait locus causing a dichotomous disease,
which is assumed throughout this paper, the trait-model
parameters are the disease-allele frequency pm (“m” for
mutant, with wild-type allele frequency p+ = 1–pm) and
the three penetrances f0, f1, and f2, with fi denoting the
probability that an individual with i copies of the disease
allele is affected by the disease. In addition, the recom-

bination fraction θ between marker and trait locus, or the
genetic position x of the putative trait locus in the case of a
multipoint analysis, is modeled. The trait-model pa-
rameters can either be prespecified according to results
from previous segregation analyses or maximized along
with the recombination fraction in a joint segregation and
linkage analysis. A so-called MOD score analysis allows
researchers to jointly investigate segregation and linkage
[9, 10] and avoids a potential loss in power due to model
misspecifications that may occur in standard LOD score
analysis [10]. Due to the maximization over trait-model
parameters, MOD scores are inflated when compared to
LOD scores. Since the asymptotic distribution of MOD
scores is unknown in the general case, p values for the
linkage test must be obtained by simulating the distri-
bution of the MOD score under the null hypothesis of no
linkage. Going beyond pure disease gene mapping, MOD
score analysis can be used in gene characterization
studies, which involve estimation of disease gene prop-
erties such as penetrance and disease-allele frequencies
for ensuing risk calculations [11]. The core statistic of a
MOD score analysis is the likelihood ratio of the pedigree
likelihoods under the alternative hypothesis of linkage
(θ ≤ 0.5) versus under the null hypothesis of no linkage
(θ = 0.5). The likelihood ratio is maximized with respect
to θ as well as the trait-model parameters. It is of note that
the same set of values for the trait-model parameters is
used for the numerator as well as for the denominator of
the likelihood ratio. As a consequence, the MOD score is
proportional to the pedigree likelihood conditional on the
trait phenotypes and hence leads to unbiased estimates of
the trait-model parameters so that ascertainment through
the trait is irrelevant [12]. However, this only holds for a
linkage analysis in the absence of LD between marker and
trait locus alleles and given a few other conditions
summarized in Ginsburg et al. [13] and Malkin and
Elston [14], which were reviewed and investigated for
MOD score analysis in Brugger et al. [15]. The MOD
score approach is implemented in the software package
GENEHUNTER-MODSCORE (GHM) [16–19], which is
maintained and continuously developed further by our
working group. An implementation of the MOD score
approach for quantitative trait loci, GENEHUNTER-
QMOD, has been developed by Künzel and Strauch [20].

Association Analysis
Genetic association analysis tests for a correlation be-

tween disease status and genetic variation to identify
putative disease genes [21]. Association analysis in pedi-
grees has traditionally been done using triads (case-parent
trios) by comparing the probabilities of transmission for
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each marker allele from the parents to their offspring
under the assumption of complete linkage between
marker and trait locus. The ascertainment of parents
thereby enables a joint analysis of multiple marker loci
with a more accurate assignment of the phase of the
marker-locus alleles as compared to case-control data
[22]. Such a procedure leads to a test for LD conditional
on linkage, which has been formalized in the haplotype
relative risk [23] and the haplotype-based haplotype
relative risk method [24]. Moving from triads to larger
sibships, the transmission/disequilibrium test TDT [25]
and its extensions [26–35] are popular examples for
nonparametric methods that draw information from
both the linkage and association component. The
original TDT approach [25] formally tests the null
hypothesis of association but no linkage against the
alternative of linkage in the presence of association in
the analysis of multiple affected individuals from a single
pedigree. When the analysis is restricted to independent
triads, the null hypothesis of the TDT corresponds to no
linkage or no association. Such methods, however, were
originally designed for simple pedigree relationship
structures and do not make use of any information
regarding the mode of inheritance and trait-model
parameters [36]. Several TDT-like approaches and
extensions were implemented in software packages like
FBAT [37, 38], PedGenie [39], QTDT [40], TRANSMIT
[41], and UNPHASED [42]. Notably, Göring and
Terwilliger [4] have shown how all abovementioned
nonparametric association tests can be parametrized
into a unifying likelihood framework, allowing for
flexible likelihood ratio tests with different combinations
for the null and alternative hypothesis.

Joint Linkage and Association (JLA) Analysis
A JLA analysis combines linkage and association in-

formation gathered from pedigrees, whereby association
information on the population level can also be added
using unrelated individuals. Linkage analysis methods
generally make the assumption of linkage equilibrium
(LE) between alleles at marker and disease loci. However,
disease loci can be in LD with their flanking markers over
a large distance, depending on their map distance and
their population history [43]. Hence, the assumption of
LE can reduce power of the linkage test when compared
to a model that allows for LD [44]. On the other hand, if
LD is present between alleles of the marker loci, assuming
LE can increase the type I error of the linkage test in the
case of missing parental genotypes [45–48]. Association
analysis exploits LD information from the population;
however, its power decays rapidly with increasing

marker-trait locus distance, i.e., starting already from 1
centiMorgan [2]. Hence, it would be desirable to combine
the two orthogonal mapping information components of
linkage and association into a JLA analysis, which can
have higher power compared to pure linkage or pure
association analysis, especially when analyzing a dataset
comprised of unrelated individuals and families [4, 5].
The idea of a JLA analysis is not new. Already in 1984,
MacLean et al. [49] pointed out that such a JLA analysis
can increase mapping power. In 1988, Clerget-Darpoux
et al. [50] devised the MASC method, in which allelic
association and segregation information is comprised in a
χ2 sum statistic. Later on, Tienari et al. [51] found that the
incorporation of association into their LOD score linkage
analysis dramatically increased power. Approaches of
JLA analysis to map quantitative trait loci, which are not
further considered in this work, can be found in Fan et al.
[52] and Jung et al. [53].

In model-based analysis, incorporation of association
information is achieved by including a parameter for LD
between investigated genetic markers and the disease
locus in the pedigree likelihood. Such methods, which can
accommodate for association, have been implemented in
popular software packages such as PAP [54] or jPAP [55]
for segregation analysis and LINKAGE [56–58], MEN-
DEL [59, 60], LAMP [61, 62], and PSEUDOMARKER [4,
63, 64] for linkage analysis. Although these im-
plementations offer the ability to include association
information into the calculations, formal joint tests for
linkage and association are less common. A parametric,
likelihood-based approach to JLA analysis was presented
by Lou et al. [5, 65], who also pointed out that neglecting
association information can lead to a loss in statistical
power of the linkage test and to biased estimates of the
recombination fraction. Another JLA approach, im-
plemented in the PSEUDOMARKER software package,
exploits the equivalence of parametric and nonparametric
linkage methods and offers various likelihood ratio tests
with different null and alternative hypotheses including a
JLA test for single markers using twopoint calculations [4,
63, 64]. The JLA method of Xiong and Jin [36] is an
extension to parametric LOD score analysis and has been
implemented in MENDEL by Cantor et al. [66]. The
likelihood-based framework implemented in the software
package LAMP [61, 62] basically corresponds to a MOD
score analysis (under some constraints) that includes
association parameters and incorporates flanking marker
information in a multipoint analysis. However, LAMP
only performs likelihood ratio tests for pure linkage, for
association conditional on linkage, and for the existence
of further unobserved genetic variants apart from a trait
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locus associated with the currently tested marker. In
summary, an analysis that explicitly allows for a joint test
of linkage and association using MOD scores is still
lacking.

JLA Analysis Using MOD Scores
A MOD-score-based JLA analysis offers the joint es-

timation of the recombination fraction (or the genetic
position in a multipoint setting), the penetrance function,
and haplotype frequencies combining alleles of the dis-
ease locus and one or more marker loci. Although
computationally demanding, such estimates can provide
valuable insights into disease etiology and may contribute
to improve genetic risk calculation and counselling [11].
In addition, the MOD score approach, as implemented in
the GHM software package [67], accommodates for ge-
nomic imprinting – an epigenetic phenomenon that is
known to play a role in a growing number of human
diseases [68]. Imprinting is characterized by the depen-
dence of an individual’s liability to develop a disease
according to the parental origin of the mutated allele(s).
The ability of the MOD score approach to estimate trait-
model parameters including the degree of imprinting
depending on different pedigree types has been dem-
onstrated in the context of linkage analysis [15, 69]. In the
presence of LD, trait-model parameter estimates obtained
from a MOD score analysis may be biased because
sampling of pedigrees and individuals is no longer
marker-independent, which is one of the necessary
conditions of the ascertainment/sampling-assumption
free property of the MOD score [12–14, 70], which are
reviewed in [15]. However, the bias is argued to be only
trivial [14, 70].

Linkage Information in JLA Analysis
Gathering linkage information from flanking markers

in a multipoint calculation can increase mapping power
in a JLA analysis as compared to a twopoint analysis [61].
However, usage of linkage information gathered from
flanking markers has so far only been implemented in
LAMP for LD tests conditional on linkage [61, 62].

Single-Marker versus Haplotype-Based Association
Information in JLA Analysis
Another important aspect of JLA analysis is the

question as to whether association information should be
included from either a single marker or multi-marker
haplotypes. There is evidence that haplotype-based as-
sociation methods can outperform single-marker analysis
[71], especially when there are multiple disease-causing
alleles within the same gene and LD between the

investigated markers is rather weak [72, 73]. However,
haplotype-based methods are computationally expensive,
especially in the case of missing genotypes, and result in a
large number of additional degrees of freedom (df) for the
likelihood ratio test, which might diminish power.
Moreover, phase ambiguity of haplotypes needs to be
handled by haplotype frequency estimationmethods such
as the expectation-maximization (EM) algorithm [74, 75]
with the additional assumption of Hardy-Weinberg
equilibrium in the population. Yet, the relative effi-
ciency of single-marker versus haplotype-based ap-
proaches for modeling association is largely unexplored
[73]. Remarkably, a JLA method to model LD between
alleles at the trait locus and alleles at more than a single
marker is implemented in MENDEL [66].

Objectives
The current work presents an extension of the MOD

score approach which allows the joint analysis of linkage
and association, using data from arbitrary pedigree types
(extended pedigrees, nuclear families, triads, half-
sibships) and unrelated individuals (singletons). We set
out to implement this joint linkage and association ex-
tension (JLA-MOD score) in a new version of our GHM
software package. To this end, LD was modeled by using
one to three single nucleotide variants (SNVs) as test
markers and by incorporating information for the linkage
component from additional flanking markers with an
arbitrary number of alleles.

In this paper, we thoroughly explain the details of the
methodological advances and their implementation in the
new GHM version 4. Then, we evaluate the type I error
and power of the newly proposed JLA-MOD score using
various simulation scenarios. In addition, we compare
linkage and association parameter estimates obtained
from the JLA-MOD score analysis with the simulated
values. We also evaluate the relative mapping efficiency of
new (JLA) and existing (pure linkage) GHM analysis
options, depending on the underlying simulation sce-
nario. In order to evaluate the costs and benefits of jointly
estimating numerous linkage and LD parameters, we
compare the type I error and power of the JLA-MOD
score with the parsimonious JLA test implemented in the
PSEUDOMARKER software [4, 63, 64]. The PSEUDO-
MARKER method proved to be a powerful approach in
various types of linkage and/or association analyses,
thereby outperforming many other methods [63, 64].
Lastly, we present a JLA-MOD score analysis using
pedigree data from the German National Case Collection
for Familial Pancreatic Cancer (FaPaCa) to demonstrate
the applicability of our new method in practice.
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Methods

Extension of the MOD Score Likelihood Ratio to Accommodate
for LD
In pure linkage analysis assuming a dichotomous trait, which is

governed by a diallelic locus, the MOD score is defined as the ratio
of the likelihoods under the alternative hypothesis of linkage and
the likelihood under the null hypothesis of no linkage, maximized
over the trait-model parameters (penetrances f0, f1, f2 and disease-
allele frequency pm) and the recombination fraction θ (or, in the
case of a multipoint analysis, the genetic position x):

MOD � max
pm,f0,f1 ,f2,θ

log10
L pm, f0, f1, f2, θ( )

L pm, f0, f1, f2, θ � 0.5( ) (1)

As mentioned in the Introduction section, the same set of values
for the trait-model parameters is used for the numerator as well as
for the denominator of the likelihood ratio. If imprinting is
modeled, f1 is split up into two heterozygote penetrances, f1, pat and
f1, mat, according to the origin of the parental allele [67]. In order to
accommodate for association information, the likelihood is ex-
tended to include a parameter for LD:

MOD � max
pm,f0,f1 ,f2,θ,LD

log10
L pm, f0, f1, f2, θ, LD( )

L pm, f0, f1, f2, θ � 0.5, LD � 0( ) (2)

It is of note that the recombination fraction θ is confounded
with the allele sharing at the marker locus and hence also with
the trait-model parameters [76], which is commonly avoided by
assuming no recombination between marker and trait locus
[61]. Maximization over θ, or the genetic position x, is nev-
ertheless performed in practice by evaluating (1) or (2) for
different genetic positions. Linkage information is represented
by the distribution of inheritance vectors, which represent the
patterns of founder allele segregation in a pedigree, for a given
genetic position. The inheritance vector contains 1 bit for each
meiosis in the pedigree, with 0 and 1 denoting transmission of
the paternally or maternally inherited allele, respectively. The
distribution of inheritance vectors can be obtained using a
hidden Markov model in the context of the Lander-Green al-
gorithm [77], which is used in GHM. The Lander-Green al-
gorithm scales linearly with the number of analyzed markers
but is limited to the analysis of modestly sized pedigrees. Brief
reviews of the Lander-Green algorithm are given in [19, 78].
The distribution of all inheritance vectors is calculated as-
suming a particular position of the trait locus relative to a
marker or group of markers. In the case of no linkage, the
distribution is uniform, whereas under linkage, it is usually
peaked at few inheritance vectors that are compatible with the
observed marker alleles. This distribution under the assumption
of linkage contributes to the numerator of (1) and (2), whereas
the case of no linkage (θ = 0.5) with a uniform inheritance-
vector distribution contributes to the denominator of (1)
and (2).

Parametrization of LD
In the case of a single test SNV and a diallelic trait locus (TL),

there are 2 × 2 = 4 haplotypes for all combinations of marker-
trait locus alleles, namely: SNV|TL ∈ {0|0, 0|1, 1|0, 1|1} = :
{h0,. . .,h3}, whereby 0 and 1 represent allele codes for the SNV
and the trait locus alleles, with the wild-type allele “+” coded as

0 and with the mutant allele “m” coded as 1. LD can be pa-
rametrized by the respective haplotype frequencies ph0, . . . , ph3
in the numerator of equation (2). The denominator of (2)
models LE, i.e., independence of marker and trait locus alleles,
by separate contributions of the test SNV haplotype frequencies
(or allele frequencies in the case of a single test SNV) and of the
disease (or wild-type) allele frequency to the likelihood. In
pedigree and/or singleton likelihood analysis, it is advisable to
estimate marker-haplotype frequencies directly from the data
under study [23, 79, 80], which can be achieved using the EM
algorithm (see [78]). The obtained values serve as marker-
haplotype frequencies (or allele frequencies for a single test
SNV) in the denominator of equation (2). This way, allele or
haplotype frequencies for the marker data are estimated before
maximizing equation (2), leaving the disease out of the analysis
in the first place. This yields estimates that are identical to those
obtained in a joint analysis of trait and marker phenotypes when
there is in fact no linkage [80]. In the case of a single test SNV,
the EM-estimated allele frequencies are denoted by pEM

h0
and pEM

h1
for SNV alleles 0 and 1, respectively, whereby

pEM
h0

+ pEM
h1

� 1. Plugging all these frequencies in equation (2),
the MOD score then reads:

MOD� max
pm,f0,f1 ,f2,θ,ph1 ,ph2 ,ph3

log10
L pm,f0,f1,f2,θ,ph1,ph2,ph3( )

L pm,f0,f1,f2,θ� 0.5,pEM
h0

,pEM
h1( )
(3)

Here, p+ and ph0 can be omitted from the formula due to the
restrictions pm+p+ = 1 and ∑i�0,..,3phi � 1. Further, ∑i�0,2phi � p+,
and ∑i�1,3phi � pm. Note that the SNV frequencies pEM

h0
and pEM

h1
do not correspond to the marginal allele frequencies that can be
calculated from the numerator frequencies ph1, ph2, ph3 and ph0,
but instead are fixed values during the maximization of equation
(3) (see also above).

With two test SNVs, there are eight marker-trait haplotypes:
SNV1|SNV2|TL ∈ {0|0|0, 0|0|1, 0|1|0, 0|1|1, 1|0|0, 1|0|1, 1|1|0, 1|1|
1} = : {h0,. . .,h7}. The respective haplotype frequencies are denoted
by ph0, . . . , ph7. The corresponding EM-estimated marker-
haplotype frequencies are given by pEM

h0
, . . . , pEM

h3
. The MOD

score then reads:

MOD� max
pm,f0,f1 ,f2,θ,ph1 ,...,ph7

log10
L pm,f0,f1,f2,θ,ph1,...,ph7( )

L pm,f0,f1,f2,θ�0.5,pEM
h0

,...,pEM
h3

( )
(4)

Here, p+ and ph0 can again be omitted from the formula due to the
restrictions pm+p+ = 1 and ∑i�0,...,7phi � 1. Further,∑i�0,2,4,6phi � p+, and ∑i�1,3,5,7phi � pm. The EM-estimated
marker-haplotype frequencies in the denominator of equation
(4) are again fixed values and are constant during the maximi-
zation of the likelihood ratio.

In the case of three test SNVs, there are 16 marker-trait locus
haplotypes: SNV1|SNV2|SNV3|TL ∈ {0|0|0|0, 0|0|0|1, 0|0|1|0, 0|0|1|
1, 0|1|0|0, 0|1|0|1, 0|1|1|0, 0|1|1|1, 1|0|0|0, 1|0|0|1, 1|0|1|0, 1|0|1|1,
1|1|0|0, 1|1|0|1, 1|1|1|0, 1|1|1|1} = : {h0,. . .,h15}. The respective
haplotype frequencies are denoted by ph0, . . . , ph15. The
EM-estimated marker-haplotype frequencies are given by
pEM
h0

, . . . , pEM
h7

.
The MOD score for three test SNVs then reads:
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MOD� max
pm,f0,f1 ,f2,θ,ph1 ,...,ph15

log10
L pm,f0,f1,f2,θ,ph1,...,ph15( )

L pm,f0,f1,f2,θ�0.5,pEM
h0

,...,pEM
h7( )
(5)

Here, p+ and ph0 can again be omitted from the formula due to
the restrictions pm+p+ = 1 and ∑i�0,...,15phi � 1. Further,∑i�0,2,4,6,8,10,12,14phi � p+, and ∑i�1,3,5,7,9,11,13,15phi � pm. The EM-
estimated marker-haplotype frequencies in the denominator of
equation (5) are again fixed values and are constant during the
maximization of the likelihood ratio. More detailed constraints for
the linkage and LD parameters are provided below. It is of note
that singletons and triads only contribute association information
in terms of haplotype frequencies to the likelihood, whereas
pedigrees contribute both linkage and association information.
The MOD score for the complete dataset is obtained by summing
the log-likelihood ratios in equation (3), (4), or (5) over all
pedigrees and singletons in the dataset, with the maximization
being performed over the sum.

Detailed Formulation of the MOD Score Likelihood Ratio
The likelihood ratios for each pedigree in equations (3), (4), and

(5) can be rewritten in terms of scoring functions for the inher-
itance vectors v at a given genetic position, as well as the
inheritance-vector distributions under linkage and no linkage:

MOD� log10 ∑
v
Scoring1 v( )·Pcomplete v( )

∑
v
Scoring2 v( )·Pcomplete v( )( ) · ∑

v
Scoring3 v( )·Puniform v( )( )

(6)

Without loss of generality, the following details are explained
for the case of a single test SNV:
• Scoring1(v) contains the product over penetrances for all f+n

individuals in a pedigree (with f denoting the number of
founders and n denoting the number of nonfounders) and
marker-trait locus haplotype frequencies ph0, . . . , ph3 for all f
founders in a pedigree, given a set of ordered founder genotypes
(OFG) of the test SNV and the disease locus as well as ordered
nonfounder genotypes (ONG) as assigned by theOFGs together
with the inheritance vector v. The sum is then taken over those
of the 22f×22f possible OFGs that are compatible with the
observed test SNV genotypes of all individuals in the pedigree:

Scoring1 v( ) � ∑
OFG

compatible

∏
k∈F

phOFGk,1
phOFGk,2

fg OFGk( )∏
k∈N

fg ONGk OFG,v( )( )

F represents the set of founders and N the set of nonfounders
in the pedigree. phOFGk,1

and phOFGk,2
are the marker-trait locus

haplotype frequencies for founder individual k of the paternally
and maternally inherited haplotypes, respectively, with
OFGk,1,OFGk,2∈{0,1,2,3}. fg OFGk( ) denotes the penetrance of
founder individual k according to the disease genotype g ∈{0,“1,
pat”,“1, mat”,2}, which is a function of the ordered genotype OFGk

(comprising test SNV and disease locus) of founder individual k.
fg ONGk OFG,v( )( ) denotes the penetrance of nonfounder individual k
according to the disease genotype g, which is a function of the
ordered genotype ONGk (comprising test SNV and disease locus)

of nonfounder individual k, which again depends on the given set
of ordered founder genotypes (OFG) together with the inheritance
vector v. In the case of genomic imprinting, the ordered genotype
formulation allows us to define different penetrances for indi-
viduals heterozygous at the disease locus by taking the parental
origin of the mutant allele into account. The ordered founder
genotypes are directly assigned within the summation, and the
ordered nonfounder genotypes are determined by the ordered
founder genotypes together with the inheritance vector.

The algorithm to filter out ordered founder genotypes that are
compatible with the observed SNV genotypes of all individuals in a
pedigree and the inheritance vector is explained in the context of
the haplotype frequency estimation in the next section.
• Pcomplete(v) denotes the probability for an inheritance vector v

based on the inheritance distribution at a given genetic position
conditional on the additional flanking markers, i.e., the markers
beyond the one, two, or three SNVs tested for LD with the
putative disease locus, as obtained by the Lander-Green
algorithm.

• Scoring2(v) denotes the product over the allele frequencies of the
test SNV, or haplotype frequencies in the case of two or three
test SNVs, for all f founders in a pedigree:

Scoring2 v( ) � ∑
OFSG

compatible

∏
k∈F

phOFSGk,1
EM phOFSGk,2

EM

where OFSG denotes a particular set of ordered test SNV genotypes
for all founders, phOFSGk,1

EM and phOFSGk,2
EM are the test SNV allele fre-

quencies for founder individual k of the paternally and maternally
inherited alleles, respectively, with OFSGk,1,OFSGk,2∈{0,1}, and the
sum is taken over all sets of ordered test SNV genotypes that are
compatible with the observed genotypes.
• Scoring3(v) denotes the product over penetrances for all f+n

individuals in a pedigree and disease-allele frequencies for all f
founders given a set of ordered founder disease genotypes
(OFDG). The sum is then taken over all 22f possible OFDGs:

Scoring3 v( ) � ∑
OFDG

∏
k∈F

pOFDGk,1
pOFDGk,2

fg OFDGk( )∏
k∈N

fg ONDGk OFDG,v( )( )

with pOFDGk,1 and pOFDGk,2 and denoting the disease-locus allele
frequencies for founder individual k of the paternally andmaternally
inherited alleles, respectively, with OFDGk,1,OFDGk,2∈{+,m}.
fg OFDGk( ) denotes the penetrance of founder individual k according
to the disease genotype g ∈{0,“1, pat”,“1, mat”,2}, which is a function
of the ordered disease genotype OFDGk of founder individual k.
fg ONDGk OFDG,v( )( ) denotes the penetrance of nonfounder individual
k according to the disease genotype g∈{0,“1, pat”,“1, mat”, 2}, which
is a function of the ordered disease genotypeONDGk of nonfounder
individual k, which depends on the given set of ordered founder
disease genotypes (OFDG) together with the inheritance vector v.
• Puniform(v) denotes the probability for inheritance vector v based

on the inheritance distribution at a given genetic position of the
putative disease locus under no linkage with the markers. The
inheritance distribution under the null hypothesis of no linkage
is uniform, i.e., all inheritance vectors are equally likely.
Combining Scoring3(v) with Puniform(v) reflects the fact that the

trait locus is unlinked to the underlying genetic position and the
marker locus. Conversely, the test SNV remains at its original
genetic position, which is reflected by combining Scoring2(v) with
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Pcomplete(v). In summary, identical to equations (3), (4), and (5),
the numerator of equation (6) reflects the alternative hypothesis of
linkage and association of the disease locus with the markers. The
denominator reflects the null hypothesis of no linkage and no
association, for which the disease locus is assumed to be at a
position resulting in complete independence with regard to allelic
correlation and co-segregation.

Haplotype Frequency Estimation
In GHM 4, marker-allele and marker-haplotype frequencies

are directly estimated from the data under study using a gene-
counting based EM algorithm. To this end, haplotype fre-
quencies for clusters of up to three tightly linked SNVs in a given
test set as well as allele frequencies for flanking markers with two
or more alleles can be estimated. The recombination fraction
between test SNVs of a given cluster is assumed to be 0, SNVs
within a cluster can exhibit any degree of LD, and missing
genotypes are allowed for founders and nonfounders. Standard
algorithms for the estimation of haplotype frequencies for in-
dependent observations of a population can readily be extended
to include pedigree information, which improves haplotype
frequency estimates for the general population by exclusion of
nonexistent haplotype configurations from the analysis [81].
The haplotype frequency estimation in pedigrees is applied over
the independent parents, whereby their children’s genetic
phenotypes are used to exclude those haplotype pairs from the
analysis, which are possible for the founders, but contradictory
for the children [81]. An implementation of such a procedure in
the context of the Lander-Green algorithm to compute the
haplotype-based disease-locus likelihood in pure linkage anal-
ysis was presented by Abecasis and Wigginton [78] for the
linkage analysis software package Merlin [82]. As GHM is also
based on the Lander-Green algorithm, our implementation of
the haplotype frequency estimation is similar to the method
described in [78]. Noteworthy, the original GENEHUNTER
software also offers methods to identify the most likely hap-
lotypes for each pedigree using the Lander-Green and the Viterbi
algorithm [83]; since GHM is based on GENEHUNTER, these
haplotyping methods have been available in former versions of
GHM as well. A general overview of haplotyping methods for
pedigrees can be found in [84].

The first step of our newly implemented haplotype frequency
estimation algorithm corresponds to the enumeration of the
entire set of inheritance vectors. Since there are 2n meioses in a
pedigree, with n denoting the number of nonfounders, there are
22n inheritance vectors [77], which can be reduced to 22n-f

identifiable inheritance vectors for the analysis, with f denoting
the number of founders in a pedigree [83]. Second, the algo-
rithm iterates over all inheritance vectors and markers of the
SNV test set to calculate the probability of the observed ge-
notypes for each marker conditional on a particular inheritance
vector, which essentially reduces to a product of haplotype
frequencies with two frequencies for each founder in the
pedigree. This step is achieved by identifying all ordered
founder genotypes that are compatible with the observed
founder genotypes of a given marker. Next, the conditional
probability of the genotypes of all individuals in the pedigree
given an ordered, and hence phased, founder genotype con-
figuration, i.e., of founder haplotypes, and a given inheritance
vector is calculated for a given marker of the test set by genetic

descent-graph analysis [85]. Briefly, phased founder alleles are
assigned to all offspring in the pedigree using the inheritance
vector. The correspondingly assigned nonfounder genotypes are
compared to the observed genotypes. The conditional proba-
bility of the genotypes, given a phased founder genotype con-
figuration, then simply takes on the value 1 for a compatible or 0
for an incompatible genotype. These steps are repeated for all
markers of a given set of test SNVs. Finally, the Cartesian
product of all identified possible phased founder genotypes for a
given inheritance vector across all markers of the test set leads to
the set of compatible founder haplotype configurations for this
particular inheritance vector. This process of reducing the space
of possible founder haplotype configurations by descent-graph
analysis is also called diplotype reduction [86], for which an
illustrative example in the context of the Lander-Green algo-
rithm can be found in [78]. If the set of noncontradictory
haplotype configurations for a given pedigree is empty, there
either is an error in the genotypes or relationships in the
pedigree, or a recombination event happened. Although a re-
combination event can contain valuable information [81], the
haplotype frequency calculation cannot proceed in this case.
However, with closely linked SNVs and modestly sized pedi-
grees, recombination events should be rare, even at higher
recombination fractions [81]. The aforementioned steps are
repeated for all s pedigrees in the sample. During the generation
of the set of noncontradictory haplotype configurations, dif-
ferent inheritance vectors will likely yield the same configu-
rations, such that calculations can be saved by incrementing a
coefficient for the number of appearances of a particular
configuration for different inheritance vectors [78]. The results
of these calculations are generic, i.e., not specific for a particular
set of haplotype frequencies and are then used in the following
EM algorithm, which involves two basic steps. First, the ex-
pected number of haplotype copies is estimated, conditional on
current haplotype frequency estimates. Next, these expected
counts are used to obtain new haplotype frequencies. Repeatedly
updating haplotype frequencies and estimated counts in turn
finally converges to maximum-likelihood estimates for the
haplotype frequencies. Convergence to local optima can be
controlled by assuming different sets of starting values for the
first EM iteration. In GHM 4, two sets of initial values for the
haplotype frequencies are applied to monitor convergence. In
the case of a single test SNV, the EM algorithm is initialized in a
first run with equal allele frequencies and in a second run with
the frequencies provided in the marker data file. In the case of
two and three test SNVs, the EM algorithm is initialized in a first
run with equal haplotype frequencies and in a second run with
the product of single-marker-allele frequencies, which were
estimated beforehand using a separate round of the EM algo-
rithm. Given a set of initial values for the haplotype frequencies
phr, r = 0, . . .,2m-1 for m SNVs in the test set, F founders in all s
pedigrees, with f founders in each pedigree, the recursion
formula of the EM algorithm for frequency phr at iteration t+1 is:

pEM t+1( )
hr

� 1
2F

∑
s

∑
OFSG

compatible

zhrOFSGcOFSG ∏
k∈F

phOFSGk,1

EM t( )
phOFSGk,2

EM t( )

∑
OFSG

compatible

cOFSG ∏
k∈F

phOFSGk,1

EM t( ) phOFSGk,2

EM t( ) (7)
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where OFSG denotes a particular set of ordered test SNV genotypes
for all founders, and phOFSGk,1

EM t( ) and phOFSGk,2

EM t( ) are the haplotype fre-
quencies for founder individual k of the paternally and maternally
inherited haplotypes at the previous iteration t, respectively, with
OFSGk,1,OFSGk,2∈ 0,{ . . . , 2m−1}. zhrOFSG counts the number of ap-
pearances of haplotype hr in the given OFSG, cOFSG is the coefficient
counting the number of different inheritance vectors compatible
with OFSG, and F represents the set of founders in a single
pedigree. The iteration stops as soon as the haplotype frequencies, or
equivalently the log-likelihood function, do not further improve by a
predefined accuracy limit. The log-likelihood function of the marker
data is necessary to compare different EM solutions obtained using
different initial values. The corresponding marker log-likelihood for
equation (7) is given by:

log Lmarker( ) � ∑
s

log

∑
OFSG

compatible

cOFSG ∏
k∈F

phOFSGk,1

EM
phOFSGk,2

EM

22n−f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Parameter Constraints for the MOD Score Calculation
In accordance with former GHM versions, the user can specify

the disease-allele frequency to be bound within a certain range,
typically not larger than 0.5 (default value). With regard to the
penetrances, the user can set the restriction f0≤f1≤f2 (default
setting). The user can also allow for imprinting models, for which
f1,pat≠f1,mat (default: f1,pat = f1,mat, i.e., no imprinting). With regard
to the marker-trait locus haplotype frequencies, the constraints are
coupled to the constraint imposed on the disease-allele frequency.
Without any prespecified restriction, the general constraints are

pm ∈ 0, 1[ ]
phi ∈ 0, 1[ ]
∑

i�0,2,...
phi � p+

∑
i�1,3,...

phi � pm

∑
i�0,2,...

phi + ∑
i�1,3,...

phi � p+ + pm � 1

with ∑i�0,2,...phi corresponding to the sum of those marker-trait
locus haplotype frequencies phi that carry the wild-type allele of the
trait locus with marginal frequency p+, and with ∑i�1,3,...phi cor-
responding to the sum of those marker-trait locus haplotypes that
carry the mutant disease allele of the trait locus with marginal
frequency pm. The marker-locus haplotype frequencies in the
denominator of the MOD score are obtained from the previous
maximum-likelihood estimation and remain fixed in the de-
nominator during the maximization of the likelihood ratio (see
also above).

Maximization Routine for the JLA-MOD Score
GHM 4 maximizes the likelihood ratio using a two-step ap-

proach. First, a predefined grid of values for the disease-allele
frequency and the penetrances is applied. The parameter set,
containing a particular combination of the disease-allele frequency
and the penetrances, is complemented with values for the phi

randomly drawn, such that all abovementioned parameter con-
straints are satisfied.

The initial grid-based MOD score, which is obtained by taking
the highest score over all parameter sets, serves as the starting point
for the second step of the maximization routine of GHM 4. In this
second step, GHM 4 uses the local derivative-free, direct-search
optimization method COBYLA (“Constrained Optimization BY
Linear Approximations”) that models the objective as well as any
linear and non-linear equality and inequality constraint functions
by linear interpolations [87, 88]. GHM 4 uses the COBYLA im-
plementation in the programming language C, which is part of the
free/open-source library NLopt (“Non-Linear Optimization”)
(v2.6.2) [89]. The algorithm operates by evaluating the objective
function and the constraints at the vertices of a trust region. If the
optimization problem has a total of N parameters, then the trust
region has a total of N+1 vertices [90]. With this information,
linear approximations of the objective function and constraints are
employed during the optimization process. The strength of CO-
BYLA lies in its robustness, which makes it a suitable tool for noisy
functions [90]. In GHM 4, COBYLA is initialized by the set of
parameters that led to the highest score of the grid-based maxi-
mization, and the return value represents the final MOD score. To
improve convergence, the otherwise deterministic COBYLA al-
gorithm is initialized with different initial step sizes for the
parameters.

Moreover, the user can also specify fixed sets of trait-model
parameters (disease-allele frequency and penetrances), for which
individual MOD scores are calculated. In this case, the maximi-
zation routine works as described above, but optimizes only the
marker-trait locus haplotype frequencies.

Construction of Test Marker Sets
The general assumption of LE between flanking markers in the

calculations (i.e., between markers beyond the test SNVs) stays
untouched in GHM 4. Sorting out flanking markers that are in LD
with each other, which is most common when using dense SNVs,
should be done prior to the analysis using selection methods as
described in [91]. Diallelic SNVs can be used either as test SNVs or
as flanking markers, the latter contributing linkage information
only. Accordingly, two additional input files need to be specified
for a JLA analysis: one containing a list of markers used for the
multipoint linkage calculation (“flanking markers”) and one
containing a list of association regions, defined by the two out-
ermost SNVs, for which all combinations of SNVs (“test markers”)
within a user-specified genetic distance are considered for building
haplotypes of a given size (one, two, or three test SNVs per
haplotype). The assignment of a SNV to both flanking and test
marker sets is automatically recognized and ruled out. In the case
of a recombination event, the current test set will be discarded with
a suggestion to the user to reduce the maximum genetic distance
between test SNVs. Alternatively, the user may specify a fixed test
marker set of a particular size (one, two, or three test SNVs) for
JLA analysis, which can also be combined with specifying fixed sets
of trait-model parameters.

Simulation of p Values
Because the distribution of JLA-MOD scores under the null

hypothesis of no linkage and no association is unknown, p values
for statistical inference must be obtained by simulations. To this
end, GHM 4 offers an option to calculate a point-wise p value for
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the JLA test using a particular set of test SNVs, which may have
been identified during a previous JLA analysis with potentially
many sets of test SNVs. The simulation run can be started using the
same input files as for the initial JLA analysis, except that the user
needs to specify the number of replicates and the test marker set of
interest in a slightly adapted GHM commands file. GHM 4 offers
parallel analysis of replicates, so that the user can specify the
number of parallel processes as required for the simulation.
Replicates can be stored on demand or reproduced by specifying
the same random seed. The simulation algorithm works as follows.
First, flanking marker and test marker genotypes are drawn for the
founders based on the corresponding frequency distributions,
which were estimated using the EM algorithm. Flanking marker
and test marker genotypes are assigned to the offspring by gene-
dropping, i.e., independent of disease status, according to the
underlying genetic map. Ungenotyped individuals stay un-
genotyped. The p value for the real dataset is calculated according
to p � k+1

n+1, with n being the total number of replicates and k the
number of replicates showing a MOD score that is equal to or
higher than the one obtained from the real dataset.

Data Simulation and Analysis
Simulation Scenarios
In order to evaluate the new JLA analysis option in GHM 4, we

simulated datasets consisting of small to moderately sized pedigrees
and unrelated individuals. Specifically, 20 affected sib-pairs, 20
discordant sib-pairs (a sib-pair consisting of an affected and an
unaffected sibling), 40 affected half-sib pairs (20 with a common
mother, 20 with a common father), two three-generation pedigrees
(3-Gs), 20 triads, 20 affected unrelated individuals (cases), and
20 non-affected unrelated individuals (controls) were simulated.
Two trait models were considered. Trait model 1 (TM1) was
simulated using a disease-allele frequency pm = 0.01 and penetrances
f0 = 0.01; f1 = 0.09; f2 = 0.17. In addition, a second trait model (TM2)
with maternal imprinting was simulated, also using a disease-allele
frequency of 0.01, with penetrances according to the parental origin
of the disease allele: f0 = 0.01; f1,pat = 0.14; f1,mat = 0.04; f2 = 0.17.With
respect to the testmarkers, we simulated three perfectly linked SNVs
with minor allele frequencies (MAFs) set to 0.1 for all three SNVs.
Pairwise LD between alleles at the test markers was set to D′ = 0.5.
LD as measured by Cramér’s V (see, e.g., [92]) between the three-
SNVmarker haplotypes and alleles at the diallelic trait locus was set
to 0 for the simulations under the null hypothesis of no linkage and
no association (H0, a, with θ = 0.5 between SNVs and trait locus) and
also under the null hypothesis of linkage, but no association (H0, b,
with θ = 0 between SNVs and trait locus). Hence, the corresponding
values of Cramér’s V between either the single-marker alleles or the
2-marker SNV haplotypes, for which either one or two SNVs were
selected out of the three SNVs, and the alleles at the disease locus
were also 0. Under the alternative hypothesis of linkage and as-
sociation (H1, with θ = 0 between SNVs and trait locus), three
patterns of LD were considered to investigate the statistical effi-
ciency of modeling LDwith 2- or 3-marker haplotypes, as compared
to single-marker JLA or pure linkage analyses. Scenario S1 was
designed as an example in which a single-marker analysis is suf-
ficient to capture the LDpattern, resulting in no further advantage of
the 2- and 3-marker haplotype analyses. Cramér’sVwas set to 0.158
between alleles of a single SNV and alleles at the trait locus. The
corresponding Vs for the 2- and 3-marker haplotype formulations
were 0.158 and 0.16, respectively. Scenario S2 was designed as an

example in which the LD pattern is best captured by a 2-marker
analysis, rendering it superior over the single- and 3-marker hap-
lotype analyses. Cramér’s V was set to 0.175 between haplotypes of
two SNVs and alleles at the trait locus. The correspondingVs for the
single- and 3-marker haplotype formulations were 0.118 and 0.187,
respectively. Finally, scenario S3 was designed as an example in
which the 3-marker analysis is needed to fully capture the LD
pattern, resulting in an advantage over the single- and 2-marker
haplotype analyses. Cramér’s V was set to 0.474 between haplotypes
of three SNVs and alleles at the trait locus. The correspondingVs for
the single- and 2-marker haplotype formulations were 0.141 and
0.201, respectively.

As to the flanking markers, ten SNVs with a MAF of 0.1 were
simulated in LE with each other on either side of the trait locus
with θ = 0.002 between each other and with θ = 0.001 between the
innermost flanking marker on each side and the trait locus, for
both trait models and all LD scenarios. An overview of the
simulated scenarios is given in Table 1. The population haplotype
frequencies of the SNVs used for the simulation of marker data in
the three LD scenarios can be found in Tables 2 and 3.

Simulation of Genotype Data
Generation of genotype data with or without imprinting effects

and conditional on affection status was either carried out using
SLINK [93–95] or by its imprinting extension SLINK Imprinting
[96]. The simulation algorithm calculates the probability distri-
bution of genotypes g = g1, g2, . . ., gn conditional on the phenotype
values x = x1, x2, . . ., xn of n family members in a step-wise manner
until all members have been assigned a genotype, each conditional
on all phenotypes and the set of genotypes assigned before to other
family members: P (g|x) = P (g1|x)P (g2|g1, x)P (g3|g1, g2, x). . . The
calculation time of this algorithm increases linearly with additional
family members, but exponentially with the number of markers. In
order to speed-up multi-marker simulations, a two-step algorithm
originally developed by Lemire [97] was employed, which exploits
the ability of conditional simulations by SLINK and SLINK Im-
printing and uses a gene-dropping algorithm implemented in the
SLINK utility program SUP [95, 97] to quickly generate a large
number of markers. The first step of the algorithm generates
disease-locus genotypes and trait values using SLINK or SLINK
Imprinting. In the second step, SUP simulates flanking and test
marker genotypes, taking into account the scenario-specific LD
pattern between alleles at the test marker and trait loci.

Assessing Statistical Significance in JLA Analysis
For each scenario in Table 1, 1,000 datasets were simulated as

described in the preceding section. p values were obtained using
999 replicates for each of the 1,000 datasets by applying the new
simulation routine of GHM 4.

Investigated Test Approaches
In order to assess the statistical efficiency of our newly developed

haplotype analysis approach, all scenarios were analyzed using pure
linkage MOD score analysis with the previous GHM version 3
(GHM-MOD) and the newly proposed GHM-JLA analysis (GHM-
JLA) using either one, two, or three test SNVs for the construction of
test marker haplotypes. The same datasets simulated with three test
SNVs were used as the basis for all three LD scenarios. In the case of
the pure linkage and single-marker JLA analysis, the analysis was
performed using the central test SNV only. In the case of the 2-marker
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Table 1. Overview of the simulated scenarios to evaluate the statistical properties of the JLA-MOD score

Trait models and SNV scenarios

TM1
θ ∈{0.0;0.5}; pm = 0.01; f0 = 0.01; f1,pat = 0.09; f1,mat = 0.09; f2 = 0.17

Dominance index D = 0; Imprinting index I = 0

TM2
θ ∈{0.0;0.5}; pm = 0.01; f0 = 0.01; f1,pat = 0.14; f1,mat = 0.04; f2 = 0.17

Dominance index D = 0; Imprinting index I = 0.625

3 test SNVs with θ = 0.0 between SNVs

Test SNVs MAF1 MAF2 MAF3 SNV-SNV LD (D′)

0.1 0.1 0.1 0.5

LD (Cramér’sV)
H0,a H0,b H1

S1 S2 S3
1-SNV-trait-locus LD 0.0 0.0 0.158 0.118 0.141
2-SNVs-trait-locus LD 0.0 0.0 0.158 0.175 0.201
3-SNVs-trait-locus LD 0.0 0.0 0.160 0.187 0.474

10 flanking SNVs on either side of the test SNVs with θ = 0.002 between flanking SNVs
MAF1. . .20 Pairwise marker LD (D′) Marker-trait locus LD (Cramér’sV)

Flanking SNVs 0.1 0.0 0.0

Map order H0, a: 10 flanking SNVs left – θ = 0.001 – 3 test SNVs – θ = 0.001 – 10 flanking SNVs right – θ = 0.5 – trait
locus

H0,b, H1: 10 flanking SNVs left – θ = 0.001 – trait locus – θ = 0.0 – 3 test SNVs – θ = 0.001 – 10 flanking SNVs
right

Table 2. Population haplotype frequencies of the marker-trait locus haplotypes used for the simulations

TM1/2

Population haplotype frequencies used for the simulations given
as SNV1 SNV2| |SNV3 TL| ∈ ph0, ph1, ph2, ph3, ph4, ph5, ph6, ph7, ph8, ph9, ph10, ph11, ph12, ph13, ph14, ph15{ }

Frequencies H0, a/H0, b H1

S1 S2 S3

ph0 � 0 0| |0∣∣∣∣0 0.010791 0.0101 0.0094 0.0059
ph1 � 0 0| |0∣∣∣∣1 0.000109 0.0008 0.0015 0.005
ph2� 0

∣∣∣∣0 1| |0 0.043659 0.04169 0.0411 0.044
ph3 � 0 0| |1∣∣∣∣1 0.000441 0.00241 0.003 0.0001
ph4 � 0 1| |0∣∣∣∣0 0.043659 0.043659 0.04409 0.044
ph5 � 0 1| |0∣∣∣∣1 0.000441 0.000441 0.00001 0.0001
ph6 � 0 1| |1∣∣∣∣0 0.000891 0.000891 0.00089 0.00089
ph7 � 0 1| |1∣∣∣∣1 0.000009 0.000009 0.00001 0.00001
ph8 � 1 0| |0∣∣∣∣0 0.043659 0.04169 0.04409 0.044
ph9 � 1 0| |0∣∣∣∣1 0.000441 0.00241 0.00001 0.0001
ph10 � 1 0| |1∣∣∣∣0 0.000891 0.00081 0.00089 0.00089
ph11 � 1 0| |1∣∣∣∣1 0.000009 0.00009 0.00001 0.00001
ph12 � 1 1| |0∣∣∣∣0 0.000891 0.000891 0.00089 0.00089
ph13 � 1 1| |0∣∣∣∣1 0.000009 0.000009 0.00001 0.00001
ph14 � 1 1| |1∣∣∣∣0 0.845559 0.850269 0.84865 0.84943
ph15 � 1 1| |1∣∣∣∣1 0.008541 0.003831 0.00545 0.00467
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analysis, JLA analysis was performed using the left and the central test
SNV (see also Table 4). The disease-allele frequency and penetrance
restrictions were set to the default values (pm≤ 0.5; f0≤f1,pat, f1, mat≤ f2).
Imprinting analysis (f1, pat≠f1,mat) was enabled for both traitmodels. In
the case of GHM-MOD, the analysis was done using the following
additional options: GHM option “maximization dense” for the op-
timization of the trait-model parameters using a dense grid of values,
“calculate p value” to calculate p values (function “pmod”) for the
MOD score, “dimensions 5” to vary all five trait-model parameters
simultaneously during the maximization. We compared type I error
and power of the GHM-JLA tests with GHM-MOD and with the
parsimonious JLA test implemented in the PSEUDOMARKER
software [4, 63, 64] using the dominant and recessive PSEUDO-
MARKER models (PM-DOM, PM-REC) and with all other options
set to their default values. PSEUDOMARKER-JLA tests were eval-
uated using the central test SNV, with p values reported as given by
the program output. In addition, we compared linkage and associ-
ation parameter estimates obtained from the JLA-MOD score with
the values used for the simulations.

Analysis of FaPaCa Families
Pancreatic ductal adenocarcinoma (PDAC) is a challenging

tumor entity with an increasing incidence and a dismal prognosis
[98]. One of the greatest risk factors for developing PDAC is a
positive family history [99]. When two or more first-degree rel-

atives that do not fulfil the criteria for another inherited tumor
syndrome have PDAC, this is called FaPaCa [99]. The German
National Case Collection of FaPaCa, a tumor registry, was es-
tablished as a screening program for an early detection of FPC and
to further investigate its genetic and molecular basis [100, 101].

To demonstrate the applicability of the GHM-JLA analysis in
practice, we analyzed pedigree data of the FaPaCa registry, con-
sisting of genome-wide array-based genotypes that were obtained
from peripheral blood samples for 193 individuals in 31 families.
Family sizes ranged from triads to multigenerational complex
pedigrees, with 409 individuals in total (overall genotyping rate:
47%). Patient records concerning pancreatic health status, which
were gathered from family history or assessed during visits in the
context of the FaPaCa screening program (see [101] and references
therein for details), served as the basis for our phenotype defi-
nition. Affection status was set to “affected” if the individual had at
least one of the following traits: pancreatic cancer (PC), pancreatic
intraepithelial neoplasia-3 (PanIN-3), or intraductal papillary
mucinous neoplasm with high-grade dysplasia. Screening of pa-
tients started 10 years before the youngest age of onset in the
family or by the age of 40 (since 2016: 50) years, whichever oc-
curred earlier. Over the years, several predisposing mutations have
been identified mainly on the basis of co-occurring tumor types
like breast cancer (BC) or colorectal carcinoma [101]. However,
the genetic predisposition for many FPC families is still unknown
[101]. Hence, in order to focus the gene discovery on those FPC
families, for which the predisposing genetic background is un-
known, we excluded families having at least one known predis-
posing genetic mutation in the gene set including BRCA2, PALB2,
CDNK2a, SUFU, and CHEK2 (see also [101, 102] for more details
about the mutation screening panel). Individuals of an FPC family
that solely had BC were marked as “unknown” because it has been
shown that BC and PC have a common causal pathway, mediated,
e.g., by BRCA1/2 or PALB2 mutations [103]. This procedure
provides a compromise between setting these individuals to
“unaffected,” which is presumably wrong, or to “affected,” which
might have an unduly high impact on the analysis results. Indi-
viduals having patient records concerning pancreatic health status
with no indication of PC, PanIN-3, intraductal papillary mucinous
neoplasm with high-grade dysplasia, or BC, as assessed during the
screening visits, were set to “unaffected.” Despite differences in
median ages, the age range of the first diagnosis of PC for affected
in our final pedigree sample (37–86; median 65) was roughly
comparable to the age range of the unaffected at their last
screening visit (33–74; median 51). Because the definition of age-
dependent thresholds and hence liability classes for developing PC
in the familial context presents a complicated task and is beyond
the scope of this paper, setting all individuals with a negative
screening result to “unaffected,” while setting unscreened indi-
viduals to “unknown,” provides an acceptable working solution to
map genes potentially involved in the complex FPC disease eti-
ology. Genotyping was done using the Infinium Global Screening
Array-24 v1.0 (GSAMD-24v1) from Illumina, which includes
700,078 variants. Genotype calling was performed using the
Genome Studio 2.0 software (Illumina Inc. San Diego, California,
USA). After calling with Genome Studio 2.0, a post-processing
step of the data was done with zCall to refine the quality of rare
variants [104]. The “Whole Genome Association Analysis Toolset”
(PLINK 1.7 [105]) was used for the SNVs quality control. SNVs
with a genotyping rate larger than 90% and not deviating from

Table 3. Marginal haplotype frequencies of the marker-trait
locus haplotypes for two SNVs (top) and a single (bottom) SNV
and the trait locus, calculated from the haplotype frequencies for
themarker-trait locus haplotypes for three SNVs and the trait locus
used for the simulations (see Table 2)

TM1, TM2

Marginal haplotype frequencies for the 2- and single-marker
analyses (given as SNV1|SNV2|TL and SNV2|TL, respectively).

Values as derived from Table 2

Frequencies H0, a/H0, b H1

S1 S2 S3

2-marker
ph0 � 0 0| |0 0.05445 0.05179 0.0505 0.0499
ph1 � 0 0| |1 0.00055 0.00321 0.0045 0.0051
ph2 � 0 1| |0 0.04455 0.04455 0.04498 0.04489
ph3 � 0 1| |1 0.00045 0.00045 0.00002 0.00011
ph4 � 1 0| |0 0.04455 0.0425 0.04498 0.04489
ph5 � 1 0| |1 0.00045 0.0025 0.00002 0.00011
ph6 � 1 1| |0 0.84645 0.85116 0.84954 0.85032
ph7 � 1 1| |1 0.00855 0.00384 0.00546 0.00468

Single-marker
ph0 � 0

∣∣∣∣0 0.099 0.09429 0.09548 0.09479
ph1 � 0

∣∣∣∣1 0.001 0.00571 0.00452 0.00521
ph2 � 1

∣∣∣∣0 0.891 0.89571 0.89452 0.89521
ph3 � 1

∣∣∣∣1 0.009 0.00429 0.00548 0.00479
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Hardy-Weinberg equilibrium (significance threshold p< 5·10−6) were
considered in the analysis. For the initial linkage scan using GHM,
SNVs were chosen such that their MAFwas larger than 25% and with
pairwise LD between SNVs not exceeding 0.05 in terms of the squared
correlation coefficient r2 as calculated by PLINK. Errors in pedigree
structure were identified using identical-by-descent analysis im-
plemented in PLINK as well as the “scan pedigree” analysis option
implemented in GHM. Relationships within and between pedigrees
were investigated using the relationship estimation software packages
KING [106] and TRUFFLE [107]. Genetic positions of the SNVswere
obtained using the map file as provided by the manufacturer, which
was based on the Genome Reference Consortium Human Build 37
(GRCh37).

The analysis procedure was as follows. First, we performed an
initial standard linkage MOD score analysis using GHM with
options “modcalc global,” “imprinting on,” “allfreq restriction on,”
“penetrance restriction on,” “max bits 20,” “maximization dense,”
“dimensions 5,” and “increment step 2.” Then, chromosomes with a
MOD score larger than 3.0 were chosen for JLA analysis. To this
end, the SNV lying next to the maximum linkage signal was used as
the central test SNV in JLA analysis. Additional SNVs on either side
of the central test SNV were added to the dataset, such that JLA
analysis could be performed with a single, two, and three test
marker(s) forming the marker-trait locus haplotype. The addi-
tionally added SNVs also had to pass the abovementioned quality
control; however, theMAF had to be at least 5% and the pairwise LD
in terms of r2 between each test SNV and the two flanking linkage
markers was not allowed to exceed 0.1, which should still eliminate
the risk of inflated multipoint linkage scores when parental geno-
types are not available [45, 91]. Because most of the parental ge-
notypes of the FaPaCa families were not available, pedigrees were
pruned for JLA analysis to keep the computations still feasible.
Specifically, pedigrees were pruned such that no pedigree had more
than two untyped founders, except for half-sibs, which were allowed
to have three untyped founders. As it was for the initial linkage scan,
the disease-allele frequency and penetrance restrictions were set to
the default values (pm ≤ 0.5; f0 ≤ f1,pat, f1, mat ≤ f2), and imprinting
analysis (f1, pat≠f1, mat) was enabled. Empiric p values were obtained
using 999 simulated replicates. Due to the exploratory nature of the
analysis, p values ≤0.05 were considered statistically significant.

Results

The results section is structured as follows. In the first
part, we present the results of the simulated scenarios with
a focus on type I error rate and power of the GHM-JLA

analyses as well as the empiric distribution of the JLA-
MOD score. We also demonstrate the validity of the new
GHM-JLA simulation procedure to obtain an empiric p
value for the JLA test. Furthermore, we briefly discuss the
accuracy of the estimated trait-model parameters as well as
the estimated haplotype frequencies obtained from the
GHM-JLA analyses. In the second part, we compare the
results obtained from our GHM-JLA method with those
obtained from the PSEUDOMARKER-JLA analyses with
respect to type I error and power. In the final part, we
present the results of the real data application, i.e., the
GHM-JLA analysis of the FaPaCa families.

Type I Error, Power, and Parameter Estimation
Simulation Scenario H0, a: No Linkage, No Association
The results for the GHM-MOD and GHM-JLA

analyses for the datasets simulated under the null
hypothesis of no linkage and no association can be
found in Tables 5 and 6 as well as in online supple-
mentary Table 1 (upper part) (for all online suppl.
material, see https://doi.org/10.1159/000535840). As
can be deduced from Table 5, the type I error rates of
the linkage as well as all JLA tests corresponded well to
their nominal significance level of 5%. With regard to
the results in Table 6, p values for the linkage test were
comparable, irrespective of the method to generate
replicates to obtain empiric p values, i.e., either using
the GHM function “pmod” or the GHM-JLA replicates.
This can be interpreted as a confirmation of the validity
of our new JLA simulation procedure to generate
replicates under the null hypothesis of no linkage and
no association. In the same line, the obviously low trait-
model parameter estimation performance of the JLA
tests did not differ between the original datasets and the
JLA replicates (online suppl. Table 1).

The results regarding the haplotype frequencies for the
single-, 2-, and 3-SNV haplotypes estimated using the EM
algorithm can be found in online Supplementary Figure 1
(left column). As can be deduced from online supple-
mentary Figure 1, the estimated haplotype frequencies
were in good accordance with the simulated values across

Table 4. Overview of the test SNVs and JLA analysis options
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all JLA test marker scenarios. With respect to the hap-
lotype frequencies of the test SNV alleles and the alleles at
the disease locus (online suppl. Fig. 1, right column), the
frequencies deviated from the simulated values due to the
overestimation of the disease-allele frequency, given no
linkage and hence no power for the JLA tests (see also
online suppl. Table 1, top).

Simulation Scenario H0, b: Linkage, No Association
The results for the GHM-JLA analyses for the datasets

simulated under the hypothesis of linkage and no asso-
ciation can be found in Tables 5 and 6 as well as in online
supplementary Table 1 (middle and lower part). As to the
trait model TM1, the linkage test showed higher power
(0.487) than the JLA tests (0.365, 0.291, and 0.276 for the
analyses using one, two, or three test SNVs, respectively).
This is due to an increased effective number of df for the
JLA tests as compared to the linkage test. In the same line,
the power of the JLA tests decreased with an increasing
number of test SNVs and hence parameters for the MOD
score. The same held true for the trait model TM2, albeit
the power was generally higher for all tests as compared to
TM1. This is because the linkage and all JLA tests allowed
for imprinting models, which lead to an increased power
if imprinting is really present, as it is for TM2.

With regard to Table 6, p values for the linkage test
were comparable, irrespective of the method to generate
replicates to obtain empiric p values. This was in line with
the results obtained under H0, a (see above).

The estimation accuracy of individual trait-model
parameters was generally low for both trait models
(see online suppl. Table 1), which means that estimates
and standard deviations did not differ much from those
obtained from the corresponding H0, a replicates. This is
mainly due to the fact that the power of the JLA tests was
rather low (0.276–0.365 for TM1 and 0.452–0.584 for
TM2, see Table 5). Yet, the LD parameter V, the phe-

nocopy rate f0, and the heterozygote penetrance of the
imprinted sex together with the imprinting index I were
estimated with increased accuracy as compared to the
null hypothesis replicates.

The results for the EM-estimated haplotype frequen-
cies of all JLA test marker sets can be found in online
supplementary Figure 2 (left column) for TM1 and in
online supplementary Figure 3 (left column) for TM2,
which were in good accordance with the simulated values
for both trait models. The corresponding haplotype
frequencies of the test SNV alleles and the alleles at the
disease locus showed an improved accuracy compared to
those obtained underH0, a due to an improved estimation
accuracy of the disease-allele frequency. This was espe-
cially true for TM2 due to an increased power for the JLA
tests compared to TM1 (see also Table 5; online suppl.
Table 1, middle and bottom).

Simulation Scenario H1: Linkage, Association
TM1. The results for the GHM-JLA analyses for the

datasets simulated under the hypothesis of linkage and
association and using trait model TM1 can be found in
Tables 5 and 6 as well as in online supplementary Table 2.
As can be seen from Table 5, the power of the linkage test
did not substantially change compared to the H0, b sce-
narios, irrespective of the extent of LD (S1, S2, or S3).
With respect to scenario S1, the power of the JLA tests
was higher than the power of the linkage test (0.48) and
decreased with an increasing number of test SNVs (0.898,
0.842, and 0.772 for the JLA test using one, two, or three
test SNVs, respectively). As to scenario S2, the JLA test
with two test SNVs showed higher power than the linkage
test and the tests with one or three test SNVs (0.82 vs.
0.451, 0.751, and 0.766, respectively). With regard to
scenario S3, the JLA test with three test SNVs showed the
highest power of all tests (0.976 vs. 0.495, 0.854, and 0.886
for the linkage test and the JLA tests using one or two test

Table 5. Overview of type I error rate and power of the GHM-linkage and GHM-JLA tests for the simulated scenarios

Simulation scenario

GHM analysis
option

H0, a H0, b: TM1 H0, b: TM2 H1: TM1, S1 H1: TM1, S2 H1: TM1, S3 H1: TM2, S1 H1: TM2, S2 H1: TM2, S3

Linkage only* 0.054 0.487 0.687 0.480 0.451 0.495 0.667 0.683 0.686
1-SNV test marker 0.049 0.365 0.584 0.898 0.751 0.854 0.972 0.933 0.957
2-SNV test markers 0.055 0.291 0.478 0.842 0.820 0.886 0.952 0.940 0.959
3-SNV test markers 0.053 0.276 0.452 0.772 0.766 0.976 0.912 0.920 0.983

*Values averaged based on the three corresponding results in column “PMOD” in Table 6.
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SNVs, respectively). With regard to Table 6, p values for
the linkage test were comparable, irrespective of the
method to generate replicates to obtain empiric p values.
This was in line with the results obtained under H0, a and
H0, b (see above).

As can be deduced from online supplementary Table 2,
the parameter estimation accuracy generally improved
due to the increased power of the JLA tests under H1 as
compared to H0, b. Specifically, estimates for the disease-
allele frequency pm, the phenocopy rate f0, the imprinting
index I, and the LD parameter V showed improved ac-
curacy as compared to the H0, b scenario. Interestingly,
parameter estimation performance did not substantially
differ between the three JLA tests.

The results for the EM-estimated haplotype frequen-
cies of all JLA test marker sets for the LD scenarios S1, S2,
and S3 can be found in online supplementary Figures 4–6
(left columns), respectively. In contrast to the results
under H0, a and H0, b, the corresponding haplotype
frequencies slightly deviated from the simulated values,
which is likely due to marker-dependent ascertainment/
sampling of pedigrees under H1. This way, the haplotype
frequency distribution in the ascertained pedigree sample
does no longer correspond to the population haplotype
frequency distribution, although the difference can be
mitigated by including more healthy controls [108]. The
results of the corresponding haplotype frequencies of the
test SNV alleles and the alleles at the disease locus showed
an improved accuracy compared to those obtained under
H0, a and H0, b due to the higher power of the JLA tests
under H1 (online suppl. Fig. 4–6, right columns).

TM2. The results for the GHM-JLA analyses for the
datasets simulated under the hypothesis of linkage and
association and using trait model TM2 can be found in
Tables 5 and 6 as well as in online supplementary Table 3.
As can be seen from Table 5, the power of the linkage test
did not substantially change compared to the corre-
sponding H0, b scenarios, irrespective of the extent of LD
(S1, S2, or S3). With respect to scenario S1, the power of
all JLA tests was higher than the power of the linkage test
(0.667) and decreased with an increasing number of test
SNVs (0.972, 0.952, and 0.912 for the analyses using one,
two, or three test SNVs, respectively). As to scenario S2,
the JLA analysis with two test SNVs showed higher power
than the linkage test and the tests with one or three test
SNVs (0.94 vs. 0.683, 0.933, and 0.92, respectively). With
regard to scenario S3, the JLA test with three test SNVs
showed the highest power of all tests (0.983 vs. 0.686,
0.957, and 0.959 for the linkage test and the JLA tests
using one or two test SNVs, respectively). With regard to
Table 6, p values for the linkage test were comparable, Ta
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irrespective of the method to generate replicates to obtain
empiric p values. This was in line with the results obtained
under H0, a, H0, b, and H1 with TM1 (see above).

With regard to online supplementary Table 3, the
parameter estimation accuracy generally improved due to
the increased power of the JLA tests under H1 as com-
pared to H0, b. Specifically, estimates for the disease-allele
frequency, the phenocopy rate, the imprinting index, and
the LD parameter showed improved accuracy as com-
pared to the H0, b scenario. In line with the results for
TM1, parameter estimation performance did not sub-
stantially differ between the three JLA tests. The differ-
ence in power between the three JLA tests was smaller
across all LD scenarios as compared to the results ob-
tained for TM1. The generally higher power for the TM2
analyses compared to the TM1 analyses is due to the fact
that for TM1 imprinting is absent, but accounted for in
the analyses, while imprinting is in fact present for TM2.

The results for the EM-estimated haplotype frequen-
cies of all JLA test marker sets for the LD scenarios S1, S2,
and S3 can be found in online supplementary Figures 7–9
(left columns), respectively. As it was for TM1, the
corresponding haplotype frequencies slightly deviated
from the simulated values compared to the results under
H0, a and H0, b, which is likely due to marker-dependent
ascertainment/sampling of pedigrees under H1 (see ex-
planation above). The results of the corresponding
haplotype frequencies of the test SNV alleles and the
alleles at the disease locus showed an improved accuracy
compared to those obtained under H0, a, H0, b, and H1

with TM1 due to the higher power of the JLA tests under
H1 with TM2 (online suppl. Fig. 7–9, right columns).

JLA-MOD Score Distribution
The empiric distributions of the JLA-MOD score based

on one, two, and three test SNVs and for all investigated
simulation scenarios can be found in Figures 1–3,
showing the results for H0, a and H0, b, for H1 and TM1,
and for H1 and TM2, respectively. As to H0, a and H0, b

(Fig. 1), the empiric distribution of the JLA-MOD score
was shifted toward larger values with an increasing
number of test SNVs. This is because of the increasing
number of effective df with an increasing number of test
SNVs in the JLA test. The corresponding histograms
indicated that the COBYLA optimization algorithm used
in GHM 4 worked properly, meaning that artificial
patterns in the empiric distributions like, e.g., excess point
masses around 0.0 could not be observed. In accordance
with the power values in Table 5, the empiric distribu-
tions for the JLA-MOD scores of the original SLINK
datasets simulated under H1 (Fig. 2; 3) were all shifted

toward higher values as compared to the distributions
obtained under H0, a and H0, b (Fig. 1), with even higher
values for TM2 as compared to TM1. Despite a few larger
outlying values, the empiric JLA-MOD score distribu-
tions all showed an approximately continuous, unimodal
curve with no obvious aberrant pattern, which would
otherwise indicate problems during the optimization
process of the JLA-MOD score calculation.

Comparison with PSEUDOMARKER
The results of the PSEUDOMARKER analyses are

summarized in Table 7. With respect to H0, a, the quality
of the asymptotic distributions for both PSEUDO-
MARKERmodels PM-DOM and PM-REC was moderate
(true type I errors 0.0715 and 0.0744 for PM-DOM and
PM-REC, respectively, assuming a nominal type I error
rate of 0.05). Under H0, b, the power did not exceed 0.18
for both PM-DOM and PM-REC as well as for both trait
models TM1 and TM2 (Table 7), whereas the power
ranged from 0.276 to 0.584 using the GHM-JLA tests
(Table 5). UnderH1 and for TM1, the power ranged from
0.643 to 0.822 for PM-DOM and from 0.528 to 0.721 for
PM-REC (Table 7). The highest power was detected for
the S1 LD scenario, followed by S3. The power was
consistently higher for PM-DOM as compared to PM-
REC. The corresponding power values for the GHM-JLA
tests were consistently higher for the S2 and S3 scenarios.
In the case of the S1 scenario, PM-DOM showed higher
power than the GHM-JLA test using 3 SNVs, which
showed the lowest power among the GHM-JLA tests for
this scenario (0.822 vs. 0.772, respectively, see Tables 5,
7). UnderH1 and for TM2, the power ranged from 0.68 to
0.789 for PM-DOM and from 0.621 to 0.782 for PM-REC
(Table 7). Again, the highest power was detected for the S1
LD scenario, followed by S3. The power was again con-
sistently higher for PM-DOM as compared to PM-REC,
and it wasmostly higher as compared to the corresponding
results for TM1. The corresponding power values for the
GHM-JLA tests were consistently higher for all LD sce-
narios. With regard to the S2 scenario, the GHM linkage-
only test even outperformed the PSEUDOMARKER-JLA
test (GHM linkage-only: 0.683 vs. PM-DOM: 0.680 and
PM-REC: 0.621). A graphical overview of all the type I
error and power values for both the PSEUDOMARKER
and GHM-JLA analyses is given in Figure 4.

Analysis of FaPaCa Families
Identical-by-descent analyses of the FaPaCa families

led to the exclusion of a duplicated individual. The re-
lationship estimation algorithms did not find any sig-
nificant deviation from the relationships given in the
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pedigree tree and those estimated using the genetic data.
Further, no interrelatedness between pedigrees could be
observed. In total, the final sample consisted of 262 in-
dividuals in 22 pedigrees, with 78 affected, 47 unaffected,
and 137 unknowns. After the initial standard linkage
MOD score analysis on all autosomes, chromosome 22
(MOD score: 3.09 near marker rs5771131 within the
TTLL8 gene on 22q13.33) was further investigated using
JLA analysis. To refine the candidate region for JLA
analysis, we repeated the GHM-linkage scan for chro-
mosome 22, but now with the option “modcalc single” to
obtain best-fitting trait models for every investigated

genetic position, which allows a better evaluation of the
width of the linkage signal than the “modcalc global”
option (see online suppl. Fig. 10). Because the candidate
region showed distinctive sex-specific recombination
fractions, we repeated the linkage scan using the sex-
specific genetic distances as given in the Rutgers map v.3
[109] and assuming the Haldane map function, which did
not significantly change the results. We then chose four
additional SNVs in the vicinity of rs5771131 and en-
compassing the two nearby candidate genes IL17REL and
PIM3, according to our criteria given above in the
Methods section. The results of the ensuing JLA analysis

Fig. 1. Depiction of the empiric distributions of JLA-MOD scores for data simulated under the hypothesis of no
linkage, no association (row 1, depiction only for trait model TM1) and linkage, no association (row 2 for TM1,
row 3 for TM2). The bars of the JLA-MOD scores of the “original” simulated SLINK datasets are colored in dark-
gray; the bars of the simulated GHM replicates are colored in white, overlapping areas are colored in light-gray.
For more information about the simulation scenarios, see Table 1.
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can be found in Table 8. In summary, significant results
were obtained for one single test SNV, two sets of two test
SNVs, and four sets of three test SNVs, all with an im-
printing index pointing toward maternal imprinting
(Table 8). Remarkably, at least one of the neighboring
markers rs5771069 and rs137878 was present in every
significant test set.

Discussion

In this work, we present an extension to the GENE-
HUNTER-MODSCORE software package [16–19] that
allows a JLA analysis using pedigrees, triads, and unre-

lated individuals. The implementation to perform a JLA
analysis using MOD scores has been missing so far. Our
new GHM version 4 now closes this gap. In GHM 4,
association is modeled using haplotype frequencies for up
to three diallelic test markers and a diallelic trait locus. In
addition, we also provide an integrated simulation rou-
tine to calculate empiric p values for the JLA test.

We demonstrated by simulations that a JLA analysis
based on MOD scores can substantially increase power as
compared to the corresponding linkage-only test
(Table 5). This observation was in accordance with the
statement mentioned earlier, saying that a JLA analysis
can substantially increase mapping accuracy and power
because it makes use of both family and population

Fig. 2. Depiction of the empiric distributions of JLA-MOD scores for data simulated under the hypothesis of
linkage and association for trait model TM1 and various LD patterns (row 1: S1; row 2: S2; row 3: S3). For more
details, see Figure 1.
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Fig. 3. Depiction of the empiric distributions of JLA-MOD scores for data simulated under the hypothesis of
linkage and association for trait model TM2 and various LD patterns (row 1: S1; row 2: S2; row 3: S3). For more
details, see Figure 1.

Table 7. Overview of type I error rate and power of the PSEUDOMARKER-JLA tests for the simulated scenarios as reported by the
PSEUDOMARKER software

PSEUDOMARKER analysis option Simulation scenario

H0, a* H0, b: H0, b: H1: H1: H1: H1: H1: H1:

TM1 TM2 TM1, S1 TM1, S2 TM1, S3 TM2, S1 TM2, S2 TM2, S3

PM-DOM 0.0715 0.160 0.178 0.822 0.643 0.766 0.789 0.680 0.754
PM-REC 0.0744 0.136 0.157 0.721 0.528 0.675 0.782 0.621 0.733

PM-DOM and PM-REC correspond to using the dominant and recessive pseudomarker model in the JLA analysis, respectively.
The PSEUDOMARKER-JLA tests are supposed to asymptotically follow a 50-50 mixture of χ21 and χ22 distributions in the case of a
diallelic test marker. *Based on 10,000 SLINK replicates.
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information [4, 5]. Moreover, we showed that there are
LD scenarios, for which either the 2- or 3-marker JLA
tests can bemore powerful than the corresponding single-
marker test, which confirms another statement men-
tioned earlier, saying that haplotype-based association
methods can outperform single-marker analyses [71],
especially when the LD between the investigated test
markers and the trait locus is rather weak [73].

The problem as to whether either single-marker or
haplotype-based JLA tests are generally more powerful is
hard to tackle. Of course, an already high degree of LD
between alleles at a single marker and the alleles at the
trait locus renders the extra LD information gathered
from additional markers less important. However, apart
from LD information, additional test markers can con-
tribute valuable linkage information for the JLA test when
there is reduced linkage information at a single test
marker locus. Furthermore, it is conceivable that LD can

likely be modeled more efficiently using haplotype-based
approaches when there are several independent disease-
associated SNVs in the same LD region [71]. Generally,
whether single-marker or multi-marker haplotypes are
more suitable in a JLA analysis depends on the disease
etiology as a function of the mode of inheritance (number
of disease loci, disease-allele frequencies, penetrances)
and the population history defining the LD block.

The ability to estimate trait-model parameters using
MOD score analysis has been thoroughly discussed in the
literature [12–15, 70]. In the case of a JLA analysis, trait-
model parameter estimates obtained from a MOD score
analysis are argued to be trivially biased [14, 70]. In this
work, however, we did not quantify this bias in detail
because the JLA extension of the MOD score with several
additional LD parameters makes the corresponding pa-
rameter estimation less efficient, and the quantification of
the bias becomes unfeasible. Nevertheless, the parameter

Fig. 4. Depiction of type I error and power values for the six
investigated test statistics and analysis options: GHM-LO: GHM
linkage-only MOD score; GHM-JLA1: GHM-JLA-MOD score
using one test SNV for the analysis; GHM-JLA2: GHM-JLA-MOD
score using two test SNVs for the analysis; GHM-JLA3: GHM-

JLA-MOD score using three test SNVs for the analysis; PM-DOM:
PSEUDOMARKER analysis assuming a dominant model for the
analysis; PM-REC: PSEUDOMARKER analysis assuming a re-
cessive model for the analysis. For more information about the
simulation scenarios, see Table 1.

26 Hum Hered 2024;89:8–31
DOI: 10.1159/000535840

Brugger/Lutz/Müller-Nurasyid/Lichtner/
Slater/Matthäi/Bartsch/Strauch

D
ow

nloaded from
 http://karger.com

/hhe/article-pdf/89/1/8/4181815/000535840.pdf by guest on 16 April 2024

https://doi.org/10.1159/000535840


estimates obtained from the JLA-MOD score analyses in
our simulation study under the alternative hypothesis of
linkage and association often contained at least some
degree of information as opposed to those obtained for
the replicates under the null hypothesis of no linkage and
no association (online suppl. Tables 1–3). Furthermore,
the estimates for the imprinting index were in good
accordance with the simulated values, which means that a
JLA-MOD score analysis can also be used to quantify the
imprinting effect as it is possible with the linkage-only
MOD score [69].

We compared our MOD score JLA test to another
commonly used parsimonious JLA test as implemented in
the PSEUDOMARKER software package [4, 63, 64]. For
the two scenarios under linkage but no LD as well as for
five out of six scenarios with linkage and LD, the MOD
score JLA tests showed consistently higher power than the
PSEUDOMARKER tests. In the LD scenario S1, in which
the single-marker MOD score JLA test outperformed the
2- and 3-marker MOD score JLA tests and which was
simulated under no imprinting (TM1), the PSEUDO-

MARKER test assuming a dominant model showed
higher power than the three-marker MOD score JLA test
(Fig. 4).

Although limited to moderately sized pedigrees, GHM
can efficiently calculate MOD scores by the use of many
markers in a multipoint setting. The multipoint calcu-
lation enables the MOD score JLA test to incorporate
flanking marker information, which can substantially
increase power as compared to a twopoint approach as we
have shown in this work. This is because, in the twopoint
setting, all linkage and LD information is gathered only
from the single test marker. Admittedly, the twopoint
PSEUDOMARKER tests are capable of analyzing
markers with more than two alleles, which can entail
higher information content at the test marker locus;
however, the availability of highly polymorphic markers
is often limited in current research projects. Notwith-
standing, the successful applicability of PSEUDO-
MARKER-JLA tests to mixed pedigree data including
larger multigenerational pedigrees is undoubted (see,
e.g., [110]).

Table 8. Results of the JLA analyses of the FaPaCa pedigrees using GHM. Chromosome 22 showing a MOD score for the GHM-linkage
test larger than 3.0 was selected for JLA analysis

Chromosome 22: Nearest protein-coding
genes

SNV1 SNV2 SNV3 LD Imprinting
index

JLA-MOD
score

p
value*

TTLL8 IL17REL PIM-3 rs28634968 0.013 1.0 1.72 0.178
rs5771069 0.311 0.91 2.62 0.039
rs137878 0.155 0.0 1.01 0.507
rs5771131 0.008 1.0 2.08 0.100
rs7290681 0.033 1.0 1.50 0.243
rs28634968 rs5771069 0.329 1.0 2.88 0.078
rs28634968 rs137878 0.231 1.0 2.03 0.241
rs28634968 rs5771131 0.329 0.40 1.71 0.399
rs28634968 rs7290681 0.368 0.0 1.50 0.431
rs5771069 rs137878 0.521 0.97 3.65 0.025
rs5771069 rs5771131 0.314 0.92 2.96 0.099
rs5771069 rs7290681 0.474 1.0 3.13 0.053
rs137878 rs5771131 0.427 0.70 3.70 0.027
rs137878 rs7290681 0.704 −0.35 1.66 0.428
rs5771131 rs7290681 0.17 1.0 2.27 0.219
rs28634968 rs5771069 rs137878 0.573 1.0 4.48 0.023
rs28634968 rs5771069 rs5771131 0.298 0.93 3.34 0.227
rs28634968 rs5771069 rs7290681 0.514 0.0 3.33 0.170
rs28634968 rs137878 rs5771131 0.408 0.60 4.38 0.040
rs28634968 rs137878 rs7290681 0.377 0.0 2.51 0.393
rs28634968 rs5771131 rs7290681 0.268 1.0 2.44 0.460
rs5771069 rs137878 rs5771131 0.537 0.78 4.50 0.031
rs5771069 rs137878 rs7290681 0.585 0.91 4.12 0.062
rs5771069 rs5771131 rs7290681 0.411 0.88 3.79 0.176
rs137878 rs5771131 rs7290681 0.463 0.57 4.91 0.029

LD is given in terms of Cramér’s V. *Based on 999 GHM replicates. Bold values are statistically significant, p < 0.05.
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The analysis of the FaPaCa data led to the identifi-
cation of a novel candidate region for mutation analysis in
FPC families on chromosome 22q13.33. The long arm of
chromosome 22 has long been suspected to harbor ge-
netic loci involved in the etiology of PDAC [111] and
endocrine pancreatic tumors [112] using loss of het-
erozygosity mapping; however, the precise genetic loci
involved in the etiology of PC on 22q are still unknown.
Our newly discovered region encompasses the locus of
the proto-oncogene PIM3, a serine/threonine-protein
kinase showing enhanced expression in human PC cells
[113], and the cytokine receptor IL17REL, which was
found to be associated with inflammatory bowel disease
[114] being a potential risk factor for PDAC [115]. In-
terestingly, the candidate region showed a considerable
paternal expression pattern, corresponding to maternal
imprinting. Data on imprinted genes in the context of
PDAC are rare [116], but in light of the longer male
genetic map in this region, the observed maternal
imprinting – at least to some degree –might stem from a
true signal rather than from confounding [117].

With GHM 4, it is now possible to jointly analyze
mixtures of pedigrees and unrelated individuals in a joint
test for linkage and association using up to three diallelic
test markers. The computational burden involved in
MOD score JLA analysis is substantial; however, calcu-
lations are still feasible on most present-day computing
clusters. To save elapsed real time for the computations,
GHM 4 offers an option to compute empiric p values in
parallel. Moreover, GHM 4 offers the possibility to es-
timate haplotype frequencies by the use of the EM al-
gorithm. We have demonstrated by simulations that the
MOD score JLA test has good power under various
linkage and LD scenarios and has the potential to
characterize the disease gene to some extent, especially
when imprinting is present. The MOD score JLA tests all
keep the specified type I error level using a verified in-
tegrated simulation procedure, which can automatically
be run in parallel. GHM 4 thus provides a valuable and
powerful genetic analysis toolbox, unifying MOD score
linkage with haplotype-based association analysis.
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