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Optogenetically stimulating intact rat corticospinal
tract post-stroke restores motor control through
regionalized functional circuit formation
A.S. Wahl1,2,3, U. Büchler4, A. Brändli1,2, B. Brattoli4, S. Musall1, H. Kasper1, B.V. Ineichen1,2, F. Helmchen1,

B. Ommer4 & M.E. Schwab1,2

Current neuromodulatory strategies to enhance motor recovery after stroke often target large

brain areas non-specifically and without sufficient understanding of their interaction with

internal repair mechanisms. Here we developed a novel therapeutic approach by specifically

activating corticospinal circuitry using optogenetics after large strokes in rats. Similar to a

neuronal growth-promoting immunotherapy, optogenetic stimulation together with intense,

scheduled rehabilitation leads to the restoration of lost movement patterns rather than

induced compensatory actions, as revealed by a computer vision-based automatic behavior

analysis. Optogenetically activated corticospinal neurons promote axonal sprouting from the

intact to the denervated cervical hemi-cord. Conversely, optogenetically silencing subsets of

corticospinal neurons in recovered animals, results in mistargeting of the restored grasping

function, thus identifying the reestablishment of specific and anatomically localized cortical

microcircuits. These results provide a conceptual framework to improve established clinical

techniques such as transcranial magnetic or transcranial direct current stimulation in stroke

patients.
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Destruction of large cortical areas, as typically caused
in cortical strokes, induces plastic remodeling and
reorganization of neuronal connections and functions

throughout the central nervous system (CNS)1–3. Where and how
new connections grow, which areas and circuitries are either
activated or repressed and what they contribute in terms of
functional recovery is poorly known. While patients or animals
with small strokes often show high levels of spontaneous recovery
associated with rewiring of perilesional areas, large stroke lesions
with > 60% of unilateral cortex destruction have a poor prognosis
with very limited capacity for regaining lost functions4, 5.
Remodeling processes are often associated with sprouting of
spared axons, which innervate denervated target areas and form
new circuits for the recovery of lost functions5–7. For large
strokes, specific experimental manipulations were shown to
promote internal repair mechanisms such as pharmacological
treatments, rehabilitative training strategies, stem cell transplan-
tation, or brain stimulation8–11. However, the success and feasi-
bility of these approaches were often variable due to unspecific
activation or inhibition processes of undefined cell types produ-
cing undesired side effects12, 13.

In order to design optimized therapeutic strategies, it is crucial
to understand the interaction between external, therapeutic
manipulation with the internal repair and reorganization pro-
cesses on the level of distinct CNS circuits. Furthermore, unbiased
detailed, quantitative behavioral readouts for comparing the
healthy with the stroke-impaired and the rehabilitation-induced
condition are necessary to assess the level of recovery (restoration
of function vs. forms of compensation) and to identify the most
successful treatment. This analysis should be automatic and non-
invasive to avoid interference with the recovery process.

In clinical trials and experimental studies of large ischemic
strokes, the contralesional pre- and sensorimotor cortex as well as
the intact contralesional corticospinal tract (CST) have been
identified as the brain structures involved most closely in reor-
ganizational processes underlying potential recovery of impaired
motor functions14, 15. While the interpretation of enhanced
activity levels in the contralesional motor cortex (M1) remains
controversial1, 16–19, sprouting of the intact contralesional CST
terminating in the stroke denervated hemi-spinal cord (either
ipsilaterally projecting fibers or midline crossing fibers), has been
described after various therapeutic and rehabilitative
interventions5, 9, 20–23. Positive correlations between the amounts
of newly sprouting CST fibers and the level of motor recovery as
well as the direct demonstration that pharmacogenetic silencing
of these sprouted fibers abolished the recovered skilled reaching
performance22, 24 suggests a beneficial role of corticospinal
rewiring.

Here we tested a new optogenetic activation protocol as a novel
potential therapeutic approach after stroke. As we used a large
sensorimotor stroke, our study focused on the manipulation and
circuit investigation of the intact, contralesional hemisphere, as
the main region where plastic remodeling and reorganizational
processes are likely to be found which mediate recovery of
movements in the paretic side. We selectively stimulated intact
CST neurons using optogenetics in the contralesional motor
cortex after a large sensorimotor stroke. A novel, unsupervised
computer vision-based analysis helped to evaluate fine-scale
modulation of rat forepaw grasping behavior before the stroke
and during the rehabilitation and recovery process under the
different rehabilitative interventions. We find that optogenetic
CST activation, combined with subsequent motor training, leads
to full recovery of forelimb function through CST axon remo-
deling in the spinal cord, similar to a previously established anti-
Nogo-A immunotherapy with subsequent training22. We fur-
thermore investigated whether axonal rewiring re-establishes

specific reorganization patterns to fully compensate for lost
functions. In animals with full motor recovery after the combined
immunotherapeutic/training protocol, we selectively inactivated
distinct subsets of newly sprouted fibers of intact CST neurons
using inhibitory optogenetics during the forelimb grasping task.
Indeed, using automatic visual analysis of paw posture and
kinematics, we found specific functional deficits induced by
optogenetic silencing of premotor and M1 subregions of the
contralesional cortex. Our findings highlight the great potential of
specific neural activation protocols in combination with motor
training for the recovery of skilled motor functions after stroke.

Results
Optogenetically stimulating the intact corticospinal tract. We
aimed at testing the therapeutic effect of optogenetically activat-
ing the intact corticospinal tract of the contralesional hemisphere
after a large stroke in adult rats. After training the intact, prele-
sioned animals in the single pellet grasping task for skilled fore-
limb function25 and selectively expressing Channelrhodopsin-2
(ChR2) in motor cortex neurons projecting to the spinal cord via
a dual viral approach (Fig. 1b, Methods), rats received a photo-
thrombotic stroke destroying the premotor and the sensorimotor
cortex, corresponding to the preferred paw (Methods, Supple-
mentary Fig. 1). Rats were then randomized into four different
rehabilitation groups (Fig. 1a): In two of the groups, the intact
corticospinal tract on the contralesional side was optogenetically
stimulated 3 times/day for 2 weeks starting at day 3 after the
stroke. Light delivery occurred through three optic fibers
implanted to cover the pre- and primary contralesional motor
cortex (Supplementary Fig. 2). The stimulation paradigm con-
sisted of 3 × 1 min stimulation at 10 Hz of 473 nm wavelength
LED light with 3-min intervals in between8. We observed visible
movements, partially with rhythmic jerking, of the corresponding
limbs and freezing behavior, especially during the first 7 days after
stroke (Supplementary Movie 1)—an effect that vanished during
the second week after stroke. Whereas in the “OptoStim group”
stimulation of the corticospinal path was the only treatment,
animals in the “OptoStim/Training group” were additionally
trained on the impaired paw in the single pellet grasping task with
100 reaches per day starting after the 2 weeks of light stimulation
up to 4 weeks after stroke (Fig. 1a). We here used the sequential
approach of first optogentic stimulation of the intact corticospinal
tract followed by intensive training based on our previous
experience that early combination of two plasticity stimulating
approaches could be detrimental22. In the “Delayed Training”
group, animals just received the single pellet grasping training
between 2 and 4 weeks after stroke. The fourth “Spontaneous
recovery” group of rats did not receive any special treatment but
was tested at the same time points as the other groups for skilled
grasping function.

Optogenetically stimulating the intact corticospinal tract
resulted in greatly improved forelimb function in both optical
stimulation groups (Fig. 1c, “OptoStim group” 52.9± 7.3%,
“OptoStim/Training group” 53.0± 8.9%, p< 0.05, two-way
repeated measures ANOVA with post hoc Bonferroni, Supple-
mentary Fig. 5) already 7 days after insult compared to the
“Delayed Training” or the untrained, unstimulated “Spontaneous
recovery” group. Importantly, animals with sequential optical
stimulation and training (OptoStim/Training) reached success
rates 5 weeks after stroke comparable to healthy baseline
conditions, while animals with intensive, delayed training showed
significantly lower levels of regained forelimb function up to the
end of the rehabilitative paradigm (Fig. 1c “OptoStim/Training”
group 93.3± 15.8%, “Delayed Training” group 34.0± 13.7%,
p< 0.001, two-way repeated measures ANOVA with post hoc
Bonferroni).
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We exposed all animals at the end of the rehabilitative schedule
(5–6 weeks post stroke) to novel tasks of skilled forelimb usage to
assess non-task-specific recovery of motor function. Animals in
both stimulation groups—with or without additional training—
performed significantly better than the other two groups in
narrow beam crossing (Fig. 1d, “OptoStim” group 54.7± 4.0%,
“OptoStim/Training” group 58.8± 4.7% vs. 37.3± 2.6% in the
“Spontaneous recovery” and 35.2± 2.7% in the “Delayed
Training” group, p< 0.05, two-way repeated measures ANOVA
with post hoc Bonferroni) and in horizontal ladder crossing
(Fig. 1e, “OptoStim” group 54.7± 2.8%, “OptoStim/Training”
group 57.0± 2.4% vs. 38.6± 2.8% in the “Spontaneous recovery”
and 35.4± 3.4% in the “Delayed Training” group, p< 0.05, two-
way repeated measures ANOVA with post hoc Bonferroni).

These results indicate that optogenetic activation promoted non-
task-specific recovery of forelimb function. Histological analysis
of mCherry-positive cells (Fig. 1f) showed about 39% of layer 5
neurons in M1 to be labeled, indicating that a large proportion of
the CST neurons expressed ChR2 and were presumably activated
by the light stimulation.

Full recovery vs. compensation of lost functions. Recently, we
showed that combining 2 weeks of the growth-promoting anti-
Nogo-A immunotherapy followed by 2 weeks of intensive train-
ing after a large sensorimotor cortex stroke resulted in full
recovery of lost forelimb function22. We repeated this protocol
and directly compared the efficiency of this combinational
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Fig. 1 Specific optogenetic stimulation of the intact corticospinal tract originating from the contralesional hemisphere results in robust recovery of lost
forelimb function after stroke. a Timeline for the four different treatment groups. b Schematic diagram of viral vector injections into the contralesional
motor cortex (AAV2.1-Ef1a-DIO-hChR2(t159C)-mCherry) and the corresponding cervical hemi-spinal cord (AAV2.9-CamKII0.4.Cre.SV40) to specifically
express Channelrhodopsin-2 (ChR2) in the intact corticospinal neurons. c Success rates in the single pellet grasping task relative to baseline (100%; intact,
trained) 2 days to 5 weeks after a large, unilateral photothrombotic stroke to the sensorimotor cortex of the preferred paw. The “OptoStim/Training” and
“OptoStim” groups showed significant improvement of skilled forelimb function compared to the other groups. Both stimulation groups (“OptoStim” and
“OptoStim/Training” group) also performed significantly better in novel tasks to assess recovery of forelimb function such as the narrow beam task (d) and
the horizontal ladder crossing task (e) tested at 5 weeks after stroke. Shown are average success rates of three consecutive trials. f Representative images
of mCherry-positive cells (a) in the sensorimotor cortex in comparison to Nissl-positive cells (b) (a, b: scale bars= 50 μm) as well as quantification of
mCherry-positive cells in percentage of Nissl-positive cells in layer 5 of pre- (M2), primary motor cortex (M1), and primary sensory cortex (S1) for
both “stimulation” groups. Data are presented as means± s.e.m.; statistical evaluation was carried out with two-way (for c) and one-way (for d, e) ANOVA
repeated measure followed by Bonferroni post hoc, and with paired t-test, two-tailed for F; asterisks indicate significances: *p< 0.05, **p< 0.01, and
***p< 0.001
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therapy to that of optogenetic stimulation of the intact CST with
subsequent training (OptoStim/Training group). A cohort of rats
receiving the immunotherapy during weeks 1 and 2 after the
stroke followed by grasping training (weeks 3 and 4 after stroke,

Fig. 2a, “Anti-Nogo/Training” group) was tested during the
course of recovery in comparison to animals of the “OptoStim/
Training” group and “Spontaneous recovery group” (from Fig. 1).
“Anti-Nogo/Training” and “OptoStim/Training” animals revealed
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Fig. 2 Brief daily optogenetic stimulation of the intact corticospinal tract leads to full recovery of forelimb function similar to a growth-promoting therapy
combined with training. a Stroke animals that received anti-Nogo-A immunotherapy (Anti-Nogo/Training) or optogenetic CST stimulation (OptoStim/
Training group) followed by rehabilitative training performed significantly better in the single pellet grasping task than stroke animals without treatment
(Spontaneous recovery group, same group as in Fig. 1) even 1 week after stroke. b Computer vision-based automatic analysis of overall grasping activity of
animals from all five treatment groups (from Figs. 1 and 2a) during their time in the grasping box showed that all animals were less likely to perform single
pellet grasping within the first week after stroke, but the frequency of grasping activity was back close to baseline levels in all groups 4–6 weeks after
stroke. c Automatic video-based grasping analysis. Paws were tracked and represented by comparing them against a codebook of prototypical postures.
Thereafter, the similarity of grasping sequences to baseline and 2d grasps was computed using a sequence matching approach and averaged for each
recording session of each cohort. The resulting two distances (capturing the relative degradation compared to baseline and the improvement compared to
2d) yield a relative location that is then visualized by triangulation. During the recovery phase, the grasping behavior of the “Stimulation/Training” and
“Anti-Nogo/Training” groups becomes progressively more similar to the baseline configuration. In contrast, the delayed training and spontaneous cohorts
show no substantial improvement. d Statistical significance analysis of c. Grasps at 7d, 14d, 21d and 28–35 are compared to the baseline. A K–S test then
reveals that the “Spontaneous recovery” and “Delayed Training” cohorts show indeed no significant recovery (p> 0.05) at the rehabilitative end point
(28–35d post stroke), as opposed to the three other treatment cohorts, whose behavior shows no significant difference compared to baseline anymore.
e No significant difference was found for the stroke lesion size among all five treatment groups examined. f Representative coronal section showing the
lesioned motor cortex in Nissl staining (8 weeks after stroke, scale bar= 1 mm). Data are presented as means± s.e.m.; statistical evaluation was carried
out with two-way ANOVA (a, b) and one-way ANOVA (e) repeated measure followed by Bonferroni post hoc; asterisks indicate significances: *p< 0.05,
**p< 0.01, and ***p< 0.001
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a significant regain of forelimb function already at 1 week after
stroke (Fig. 2a). However, full recovery of prelesion levels was
reached in the fourth week after stroke for the “OptoStim/
Training” group, while animals in the “Anti-NogoTraining”
cohort achieved success scores similar to baseline levels already
3 weeks after stroke. Very much in contrast, animals without
treatment (Spontaneous recovery group) plateaued at a success
rate below 30% throughout the post-stroke phase (Fig. 2a
success rate at 4 weeks: 97.4± 6.0% “Anti-Nogo/Training” group,

93.3± 15.8% “OptoStim/Training” group, 25.5± 6.2% “Sponta-
neous recovery” group; p< 0.001, two-way repeated measures
ANOVA with post hoc Bonferroni). Stroke volume analysis of
all rehabilitative groups revealed no difference in lesion
size between the treatment groups (Fig. 2e, one-way ANOVA
repeated measure followed by Bonferroni post hoc).

We next investigated which of the five treatment paradigms
promoted true restoration or only a mere compensation of
forelimb function. In case of restoration, complete recovery of the
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pre-stroke grasping kinematics and the sequence of postural
motifs was achieved, whereas compensation lead to the substitu-
tion of the original movement sequence by other movements. We
utilized high-resolution video recordings of single pellet grasping
before stroke and during 4–5 weeks of rehabilitation. Grasp
actions were automatically evaluated with a novel computer
vision algorithm for unsupervised behavior analysis (see
“Methods” section for details). Not only does this algorithm
extract the spatial trajectories of a grasp but also analyses its
kinematics, i.e., it compares the sequences of individual postures
that comprise each grasp. After an initial paw detection and
tracking, the paw posture at each time point was represented by
comparing it with a dictionary of prototypical poses extracted
from successful grasping moves. Afterwards, grasping sequences
were compared using a sequence matching approach, yielding a
distance between grasps based on the similarity of their respective
sequences of postures. To determine the sensitivity of our
approach, we first aimed at detecting differences of grasping
quality during the course of learning the single pellet grasping
task (over 24 days before “baseline” recordings prior to stroke).
Our algorithm was able to classify even small differences in the
healthy condition during the course of skilled motor learning (see
Supplementary Fig. 3). Using this method, we then assessed how
frequently animals showed grasping activity as opposed to being
idle (Fig. 2b): Grasping frequency of all animals was reduced
within the first week after stroke. Reduced grasping frequency can
be due to decreased motivation or reduced grasping velocity
because of proximal shoulder and elbow impairments. While
grasping frequency quickly recovered to baseline levels within
2 weeks for all cohorts, the skilled behavior did not as investigated
in Fig. 2c. In this figure, we precisely compared grasps at different
stages after stroke against two references, the skilled baseline
behavior as well as impaired activity 2 days after stroke (one
example from either set is presented below the figure). For each
cohort and time point, we thus obtained an average distance of all
grasps of that session to the baseline and 2 days grasping. Using
these two distances, grasping in each recording session was
localized by triangulation in a two-dimensional plot: Sessions
appearing toward the left are more similar to baseline, those at the
right are closer to the state right after stroke. Those at the top are
further away from both baseline and stroke, meaning that there
was compensation, which altered the behavior from what it was
right after stroke, but also increased the difference to baseline. We
see that the “OptoStim/Training,” “Anti-Nogo/Training,” and
“OptoStim” groups exhibit reorganization of the behavior. Until
3 weeks after stroke, their grasping is significantly altered with
respect to 2 days and baseline. Thereafter, at 28–35 days grasping
of these three treatment groups again becomes significantly more

similar to what it was at baseline. In Fig. 2d, a K–S test was
conducted to confirm if the discrepancy of posture sequences
between grasping at a particular time after stroke and those at
baseline was significant (p< 0.05). Four weeks after stroke, the
“OptoStim/Training,” “Anti-Nogo/Training,” and “OptoStim”
groups showed no significant dissimilarity to baseline anymore,
implying a full restoration of forelimb function for these groups.
In contrast, the other two cohorts (Spontaneous recovery and
Delayed Training) exhibited forms of compensation, since their
behavior changed significantly after stroke without becoming
similar to baseline.

Figure 3 puts into relation individual grasping sequences at
baseline and 35 days after stroke within each cohort to discover
which phases of a grasp differed most. As in the previous
experiment, paws were tracked during each grasp and their
individual postures were represented by comparing them against
a dictionary of reference postures. These distance vectors were
then projected in a two-dimensional graph using a low-
dimensional distance preserving embedding26. Each grasp was
displayed as a polygonal chain beginning at cyan (baseline) and
blue (35 days). Additionally, averaging all postures of the same
phase of a grasp yielded a mean grasping contour (broad curves).
For each cohort, the plots showed which postures were unique to
baseline or 35 days. For spontaneous recovery and delayed
training, these differences occurred predominantly at mid-grasp
around paw closure (cutout 2, 3). The detailed posture analysis
over time revealed too short grasps for the “Spontaneous
recovery” group (Fig. 3a) 28–35d after stroke while animals in
the “Delayed Training” group failed to supinate the paw for the
targeting of the pellet even at the same end point (Fig. 3b). For the
other three cohorts, no such differences were visible. Moreover,
the bar charts in Fig. 3 showed for different phases of a grasp
(beginning at 0 and ending at 1) the average distance of posture
between baseline and 35 days relative to the standard deviation of
the baseline. Overall, the “OptoStim” (C), “OptoStim/Training”
(D), and “Anti-Nogo/Training” (E) groups revealed an average
deviation of grasping posture between 35d and baseline that was
2–3 times less compared to the “Spontaneous recovery” and
“Delayed Training” groups. We also included a sham-operated
control group in our analysis (Supplementary Fig. 4) and did not
find any posture differences between baseline and 35 days after
sham surgery.

Optogenetic stimulation promotes corticospinal fiber growth.
The intact corticospinal tract normally innervates the spinal cord
half opposite to the one which has lost its cortical input due to
the stroke. Only a few fibers cross the spinal cord midline.

Fig. 3 Analysis of grasping trajectories indicating the efficiency of each rehabilitative schedule to promote recovery of impaired grasping function after
stroke. For all five rehabilitative paradigms a–e grasping kinematics (left panel) at baseline (cyan-yellow trajectories) and 35d after stroke (blue-magenta
trajectories) were compared. The grasping kinematics are represented by comparing the individual postures of a grasping sequence against a dictionary of
prototypical postures and visualizing the resulting distance vectors using a two-dimensional distance preserving embedding. The two axes correspond to
major variations in posture represented in units of baseline standard deviation (SD). Postures of an individual grasp are linked using a polygonal chain (100
grasping events for baseline and 100 grasping events for 35d after stroke per group) and color indicates the progress of a grasp over time from beginning to
end. The superimposed lines represent the average reprogression of the individual grasps for baseline and 35d post insult. Midpoint is when the paw is
closest to the pellet. Moreover, we sampled postures from different areas of this embedding to show differences/similarities between 35d after stroke and
baseline for the different cohorts. The right bar panel summarizes how much behavior at baseline and at 35d after stroke differs at different stages of
grasping. Grasps are split into five disjoint time intervals and we compute the distance between baseline and 35d relative to the SD of the baseline. On top
right of each group a–e selected frames of the grasping trajectory are depicted at the same time points (1.–4./5.) for baseline (BL) and 35 days post stroke
highlighting the divergence/convergence at the end point of the rehabilitative treatment compared to baseline. Animals in the “Delayed Training” group b
failed to regain the supination motion for the final targeting of the pellet 35d after stroke compared to baseline (>1 SD for the first two disjoint time
intervals, right panel bars), while animals in the “Spontaneous recovery” group a still showed too short grasps (>1 SD for the first time interval, right panel
bars) even 35d after stroke (as indicated in the red boxes for 2. and 3. for the two cohorts)
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We investigated if our paradigm of brief, repeated daily optoge-
netic stimulation of the contralesional, intact corticospinal tract
was sufficient to induce corticospinal fiber sprouting across the
midline to innervate the denervated spinal cord, a phenomenon
which has been described in rats treated with growth-promoting
anti-Nogo antibodies9, 22. Corticofugal fibers from the contrale-
sional motor cortex were labeled by anterograde transport of
BDA 5–6 weeks after stroke (Fig. 4a). We found the greatest
number of midline crossing fibers in the “OptoStim/Training”
and “OptoStim,” as well as the “Anti-Nogo/Training” group
(Fig. 4b and Supplementary Fig. 5). The number of fibers grown
into the stroke denervated spinal hemi-cord in these three groups
was significantly higher than in other groups when counted at the
midline of the cervical spinal cord (Fig. 4b, “M”), but also within
the gray matter of the motor laminae 6 and 7 (Fig. 4b, D1–4). A
segment-specific analysis along the cervical spinal cord of midline
crossing fibers at (M) revealed enhanced corticospinal rewiring
throughout the denervated spinal cord for the “OptoStim/
Training” and “Anti-Nogo/Training” groups at C3–C8 vs. the
other groups (Fig. 4c; p< 0.01, two-way repeated measures

ANOVA with post hoc Bonferroni). Midline crossing was slightly
less pronounced in the “Stimulation” alone group (Fig. 4c). Apart
from midline crossing corticospinal fibers, CST fibers can also
reach the denervated spinal cord uncrossed, as sprouting, pre-
existing ipsilaterally projecting axons. We counted the number of
intersections of collaterals of these ipsilaterally projecting fibers at
the gray/white matter boundary of the ventral funiculus as a
measure of gray matter innervation by the ventral CST. We
again found that both stimulation groups and the “Anti-Nogo/
Training” group revealed the highest amount of fiber growth in
the ventral CST (Fig. 4d). There was also a positive correlation
between the amount of midline crossing CST fibers and the level
of skilled motor recovery of the impaired paw 4–5 weeks after
stroke (Fig. 4e).

These data show that three short daily periods of brief
optogenetic stimulation of the intact corticospinal tract applied
over 2 weeks (plus training) are sufficient to induce robust axonal
growth into the denervated hemi-cord. Density of sprouting
BDA-labeled CST fibers in the denervated spinal cord was up to
16–18 times higher, in particular in lamina 6/7 of the ventral
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Fig. 4 Corticospinal fiber sprouting from intact to denervated spinal hemi-cord is enhanced by early cortical stimulation. a Corticospinal tract fibers from
the intact, contralesional motor cortex cross the spinal cord midline (M) and grow into the corticospinally denervated gray matter for various distances
(D1–4, scale bar= 200 µm). b Values were significantly higher in the stimulation groups and the anti-Nogo-A group. c Segment-specific analysis of midline
crossing fibers showed that the two stimulation groups and the “Anti-Nogo/Training” group had significantly more midline crossing fibers in the more
rostral cervical spinal cord where motoneuron pools controlling proximal forelimb muscles are located, whereas fiber sprouting in the more caudal cervical
spinal cord where motoneuron pools for the distal muscles are located was less pronounced compared to the “Spontaneous recovery” and “Delayed
training” groups as well as in naive animals. d Sprouting of pre-existing ipsilateral CST fibers in the gray matter of the cervical enlargement after stroke was
also most pronounced in the “Anti-Nogo/Training” group as well as in the “OptoStim/Training” group. e There was a positive correlation between the
amount of newly sprouting CST fibers and the level of recovered grasping function of the impaired forelimb 4–5 weeks after stroke (r= 0.79, Spearman
correlation, p< 0.0001). f Average false color-coded heat maps of CST fiber sprouting densities in the denervated spinal cord at C4 level. In both
stimulation groups and the “Anti-Nogo/Training” group, CST fibers in particular sprouted in lamina 6/7 of the ventral horn. Asterisks represent statistical
significance. Data are presented as means± s.e.m.; statistical evaluation was carried out with two-way ANOVA repeated measure followed by Bonferroni
post hoc, asterisks indicate significances: *p< 0.05, **p< 0.01, and ***p< 0.001
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horn, in the “OptoStim/Training” and “Anti-Nogo/Training”
group compared to BDA-positive fibers in intact (Naive) animals
(Fig. 4f). In addition, animals in the “OptoStim” group revealed a
9–13× higher BDA-positive CST fibers density, e.g., in lamina 4/5
compared to intact animals.

Loss of regained grasping features by cortical silencing. The
importance of the intact CST and in particular of its midline
crossing fibers at spinal cord level for the recovery of lost motor
functions after a large cortical stroke has been demonstrated in
several recent studies21–23, 27. Growth pattern and targeting of
these midline crossing fibers mainly to lamina 6/7 of the dener-
vated spinal hemi-cord seems crucial for motor recovery22.
However, the precise origin of these fibers in the premotor, rostral
motor field (M2), the main motor forelimb area (M1) or the

sensory forelimb area (S1) remained unclear. In order to address
this question, we selectively inactivated subsets of midline
crossing corticospinal fibers originating from these three cortical
regions during the single pellet grasping task to test their function
for specific kinematic aspects of the regained grasping action. We
used animals with excellent functional recovery that had received
2 weeks of anti-Nogo immunotherapy followed by 2 weeks of
intensive training (Anti-Nogo/Training group) and compared
them to animals with a low level of recovery without treatment
(Spontaneous recovery group) (Fig. 5a). Animals of the
“OptoStim/Training” group were not used here due to technical
reasons (vector injection protocols) and possible interference of
co-activating and silencing optogenetic vectors. Four weeks after
stroke, we injected a Cre-expressing adeno-associated virus
(AAV2.9) into segments C5 and C6 of the stroke denervated
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Fig. 5 Optogenetic silencing of subsets of contralesional corticospinal neurons results in decline of recovered grasping function in animals with excellent
recovery. a Experimental time schedule. b Scheme of vector injections into the contralesional motor cortex (AAV2.1-Flex-ArchT-GFP) and the stroke
denervated cervical spinal cord (AAV2.9-CamKII0.4.Cre.SV40). c Illustration of the location of the three optical fiber implants: implant #1 is localized in
between pre- (M2) and primary motor cortex (M1), implant #2 covers the center of the main forelimb motor cortex (M1), implant #3 lies close to the
primary sensory cortex (S1). (FrA frontal area). d Experimental setup for optogenetic inactivation during single pellet grasping: Optical fibers are connected
to the three optical implants covering parts of the pre- and sensorimotor cortex. When the rats start to grasp for the first sugar pellet, a light barrier is
activated which, after a lag time of 100 sec, starts the laser for another 100 s. e Optogenetic silencing of rerouted, ipsilaterally projecting corticospinal
neurons from the center of the contralesional M1 forelimb motor cortex (Pos. 2/implant #2) results in a significant decline of the recovered grasping
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recovery” group. Data are presented as means± s.e.m.; statistical evaluation was carried out with two-way ANOVA repeated measure followed by
Bonferroni post hoc for d and e, asterisks indicate significances: *p< 0.05, **p< 0.01, and ***p< 0.001
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cervical hemi-spinal cord28, followed by injections of the Cre-
dependent AAV2.1 vector carrying the inhibitory light-driven
outward proton pump Arch T into the contralesional pre- and
sensorimotor cortex (Fig. 5b). We then chronically implanted
three optical fibers over the cortical surface in such a way that
optical fiber #1 targeted parts of the pre- and rostral motor cortex
M2, implant #2 was stereotactically positioned above the princi-
pal forelimb motor cortex (M1), and implant #3 covered also
parts of the primary sensory cortex (Fig. 5c). We also implanted
optical fibers into “Sham-operated” naive animals without virus
injections to confirm that light stimulation alone did not influ-
ence the grasping behavior. For the optogenetic silencing of dis-
tinct subsets of corticospinal fibers during the grasping task
animals were put in the grasping box and connected via long
optical fibers to three lasers (532 nm weavelength), enabling
optical silencing at each implant location independently (Fig. 5d).
The first grasp for a sugar pellet activated a light barrier, which
initiated the three lasers after a time lock of 100 s and kept them
on with continuous laser light for 100 s. After a lag time of 100 s
with laser lights off, the next grasp initiated another phase of laser
light activation. We either stimulated only one position (position
1 vs. position 2 vs. position 3, Fig. 5c) or all three positions at the
same time during a grasping session. We found that optical
silencing midline crossing CST fibers originating from the
contralesional forelimb motor cortex resulted in a drop of
performance for all cortical areas silenced in animals of the
“Anti-Nogo/Training” group. However, this decrease reached

significance only for M1 (Fig. 5e, “Anti-Nogo/Training” group
success rate at position #2 62.5± 6.2% during “light-off” vs.
37.2± 6.9% success rate during “light-on,” p< 0.05, two-way
repeated measures ANOVA with post hoc Bonferroni). The low
level of grasping performance in the “Spontaneous recovery”
group did not change significantly by the regional cortical inac-
tivation (Fig. 5e). The grasping success of the “Sham-operated”
animals remained unaltered upon light stimulation and animals
did not show signs of distress during light stimulation or by the
presence of the optic fibers (Fig. 5e). Normalizing grasping suc-
cess rates of the “light-on” relative to the “light-off” condition
individually per animal and per cortical position of stimulation
revealed for the animals with excellent recovery (“Anti-Nogo/
Training” group) a significant decline of grasping function upon
stimulation at each individual position as well as for all positions
together (Fig. 5f, relative loss of function in premotor area
(position #1) 40.7%; in M1 (position #2) 42.3%; in lateral M1-S1
(position #3) 35.6%; all positions together: 45.0%, p< 0.001, two-
way repeated measures ANOVA with post hoc Bonferroni). In
contrast, only inhibition at all three implant positions at the same
time caused a decrease of grasping success rates in animals with
already poor recovery of forelimb function (“Spontaneous
recovery” group, relative loss of function upon stimulation at all
positions at the same time 38.0%, p< 0.001, two-way repeated
measures ANOVA with post hoc Bonferroni).

We then asked whether the three targeted cortical regions were
responsible for particular aspects of the reaching movement or to
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Fig. 6 Animals with excellent motor recovery show specific regional organization of distinct microcircuitry in the contralesional cortex for the targeting
kinematics of skilled grasping. a Side view (cutout) of a rat performing single pellet grasping. The paw trajectory of a successful grasp is superimposed.
The furthest extension of the paw, location x, was automatically detected to capture the grasping trajectory in relation to the position of the sugar pellet.
b–d Spatial distribution of the furthest extension calculated using every grasping trial under “light-off” (I) and “light-on” (II) conditions; (III) relative
distance between “light-off” and “light-on” (*= position of the sugar pellet). Therefore, the spatial distribution (I) and (II) are marginalized onto the
x-location, before subtracting the resulting one-dimensional distributions to obtain (III). b Targeting of the paw to its final position over the sugar pellet in
“sham-operated” animals was unaffected by light stimulation at positions 1–3 of the sensorimotor cortex independently or by concurrent light exposure of
all cortical positions (“all positions”: positions 1–3 together). c Animals of the “Anti-Nogo/Training” group with excellent recovery of grasping reached too
far when the recrossed corticospinal neurons were inhibited in the contralesional premotor cortex position 1 or too short when the neurons in M1 (pos. 2)
were silenced, whereas silencing close to S1 (Fig. 5d, pos. 3) did not affect the grasping behavior under “light-on” conditions. d Paw targeting of the
“Spontaneous recovery” animals was poor overall and only significantly altered when all three cortical positions were optogenetically silenced at the same
time (all position)
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specific movement components. We used machine learning
algorithms to dissect different aspects of the grasping kinematics
and to analyze how they were affected by the “light-on” and
“light-off” situation. Upon silencing of the rewired CST fibers in
the three cortical areas, we detected distinct differences of the
forepaw targeting, especially with regard to the final paw position
relative to the pellet (Fig. 6a): While optical silencing in neither of
the three cortical areas in sham-operated animals altered the
grasping performance (Fig. 6b), inhibiting corticospinal-
projecting neurons by green light stimulation in contralesional
forelimb motor cortex (position #2) in animals with excellent
motor recovery (“Anti-Nogo/Training” group) resulted in too
short grasping actions thus missing the pellet (Fig. 6c, p= 0.0053,
light-off vs. light-on condition, K–S test, Supplementary Table 1).
Silencing the premotor cortex (position #1) (Fig. 6c, p= 0.0008,
K–S test) induced too far grasping behavior (Supplementary
Table 1). The same effect also occurred slightly weaker when
inhibiting all positions (Fig. 6c, p= 0.003, K–S test, Supplemen-
tary Table 1). In the “Spontaneous recovery” group, significant
differences were found upon light stimulation at position #1 and
all three positions (Fig. 6d), but targeting was already strongly
impaired during the “light-off” situation, so that additional light
inhibition caused only mild, further perturbations.

We then counted and localized all ArchT-GFP-expressing
corticospinal-projecting neurons in the contralesional hemisphere
(Fig. 7a–d). Corresponding to the higher number of midline
crossing corticospinal fibers in the denervated cervical spinal cord

in the “Anti-Nogo/Training” animals (Fig. 4a, b), we identified a
significantly higher number of GFP-positive neurons in the
contralesional motor cortex for the “Anti-Nogo/Training” group
compared to the “Spontaneous recovery” animals group
(Fig. 7a–c, for C p< 0.05, paired t-test, with post hoc Bonferroni).

Finally, we used intracortical microstimulation (ICMS) to
confirm the localization of corticospinal neurons projecting from
the contralesional hemisphere to the ipsilateral stroke denervated
forelimb hemi-cord. We used a 5 × 12 point stimulation
grid (positioned at +4 to −1.5 mm anterio-posterior and
1.25–3.75 mm medio-lateral coordinates relative to bregma) and
electromyogram (EMG) recordings of wrist, elbow, and shoulder
muscles of the impaired paw as readouts (Fig. 7e). We found a
diffuse response pattern upon cortical electrical stimulation all
over the contralesional pre- and primary motor cortex in animals
without rehabilitative treatment (Fig. 7e, “Spontaneous recovery”
group). In contrast, clear cortical “hot spots” in M1 and the
rostral forelimb field that elicited motor responses in the formerly
impaired forelimb, in particular for wrist and elbow, were
detectable in the animals of the “Anti-Nogo/Training” group
(Fig. 7e and Supplementary Fig. 6), indicating a highly localized
representation of the reorganized corticospinal neurons project-
ing to the ipsilateral forelimb. The M1 ipsilateral forelimb
“hotspot” identified by ICMS corresponded well to the position 2
(M1) of the optical implants for the silencing experiments
described above. The EMG responses evoked around position 2
were significantly higher in “Anti-Nogo/Training” animals than
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Fig. 7 In animals with excellent recovery more contralesional corticospinal neurons project to the stroke denervated cervical hemi-cord and are clustered in
M1 and premotor cortex. a, b Representative neurolucida reconstructions of localization and amount of corticospinal neurons in layer 5 expressing GFP,
induced by the retrograde transport of AAV2.9-CamKII-Cre from the stroke denervated hemi-cord (s. Fig. 5b) in an animal of the “Spontaneous recovery”
group (a) and one of the “Anti-Nogo/Training” group (b), scale bars= 2mm. c GFP-positive neurons as percent of Nissl-positive cells in layer 5 of the
premotor and motor cortex (4.2 mm± 500 µm anterior and 0.67mm± 300 µm posterior to bregma): Significant more GFP-positive cells were found in
anti-Nogo animals (red) compared to animals with spontaneous recovery (gray column, p> 0.05, paired t-test, with post hoc Bonferroni). d Examples of
GFP-positive corticospinal-projecting pyramidal cells in layer 5 in the sensorimotor cortex (scale bar= 40 μm). e Intracortical microstimulation reveals “hot
spots” in M1 and premotor cortex (M2) for circuits that evoke ipsilateral EMG responses from the contralesional M1 and M2 in “Anti-Nogo/Training”
animals (n= 4). In contrast, in the “Spontaneous recovery” group (n= 3), only a diffuse cortical pattern for the evocation of EMG responses in the stroke-
impaired forelimb was found. Heat maps of the cortical stimulation grid (60 stimulation points, 80 μA, + 4 to −1.5 mm AP and 1.25 to 3.25mm ML relative
to bregma) are shown whereby each stimulation point is color coded with the mean value of EMG response in mV (mean of EMG amplitudes in wrist,
elbow, and shoulder) for the stroke-impaired forelimb. The red circles indicate the previous positions of the three optical implants. EMG responses are
significantly pronounced in “Anti-Nogo/Training” animals at Pos. 2 compared to the “Spontaneous recovery” group (Pos. 1 p= 0.149; Pos. 2 p= 0.0013;
Pos. 3 p= > 0.99, Mann–Whitney test). f Scheme: Our results suggest not only localized functional reorganization in the contralesional sensorimotor
cortex, but also sprouting of midline crossing and ipsilaterally projecting CST fibers in lamina 6/7 of the stroke denervated cervical hemi-cord. Asterisks
indicate significances: *p< 0.05
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in animals with spontaneous recovery (p< 0.05, Mann–Whitney
test). Our results suggest not only a distinct sprouting pattern of
CST fibers from the contralesional hemisphere into the ventral
horn of the denervated cervical hemi-cord, but also provide hints
for a regionalized functional reorganization in the contralesional
M1 and M2 (Fig. 7f).

Discussion
We showed that short periods of direct and selective optogenetic
stimulation of the intact corticospinal tract result in robust
recovery of skilled forelimb functions after a large stroke, which
completely destroyed the ipsilesional motor cortex, in particular if
combined with subsequent intensive rehabilitative training. The
stimulation induced corticospinal sprouting and axonal growth
into the denervated cervical hemi-cord. Surprisingly, the stimu-
lated stroke animals regained close to 100% of their original
skilled forelimb movement abilities, and the kinematic analysis
suggested a true recovery of the grasping behavior rather than
compensatory movements. Selective optogenetic silencing of the
rewired ipsilaterally projecting corticospinal fibers showed the
crucial functional role of these fibers as well as differential effects
of their cells of origin (related to reaching distance) in premotor
and M1 cortices on the restored grasping function.

The role of activity as an important factor for fiber growth and
neuronal rewiring after lesions is well recognized. But it has
remained unclear whether growth, growth arrest and target
interaction, synaptogenesis, or stabilization/pruning are the main
ways by which activity drives the recovery processes29–33. In
stroke, existing and newly formed connections of the contralateral
cortex to the denervated targets could be strengthened by long-
term potentiation such as the application of tetanic stimulation
trains at 100 Hz34, 35. Here we selectively stimulated the motor
cortex output neurons to the spinal cord on the intact, con-
tralesional side of the brain at an early stage after the injury (d
3–14) with three daily short periods of 3 × 1 min stimuli. Earlier
experimental studies stimulated the cortex electrically up to sev-
eral hours daily at threshold levels18, 21. In a recent study in mice
with 3 min daily stimulation of the ipsilesional motor cortex,
upregulation of several neuronal growth and plasticity-promoting
factors were seen in the contralesional M18. These and the pre-
sent data suggest that early brief periods of specific cortical and in
particular corticospinal stimulation after stroke increase the
capacity for reparative fiber growth and plasticity of the adult
cortex. We found that optogenetic stimulation in combination
with training robustly induces CST sprouting of pre-existing
ipsilaterally projecting axons as well as midline crossing CST
fibers in the denervated cervical hemi-cord. Furthermore,
increased activity caused by repetitive optogenetic stimulation
may have also enhanced corticospinal neurons to sprout into
other brain regions such as the red nucleus and other brain stem
areas (reticular formation, raphe nucleus) as previously
described36–38. The here presented concept has direct clinical
relevance; transcranial magnetic stimulation (TMS) and tran-
scranial direct current stimulation (tDCS) are performed in stroke
patients and were reported to enhance functional recovery. In
some studies, mostly short-term effects were analyzed39, but
others suggested longer or even permanent beneficial effects of
the stimulations40–43. More detailed animal and human studies
are needed, in particular also with regard to the specific time
windows and stimulation parameters, but the fact that repetitive,
brief stimulations of corticospinal neurons can greatly enhance
their sprouting, rewiring and functional recovery is encouraging
for future stroke therapies.

We compared the effect of 2 weeks of optogenetic stimulation
of the intact corticospinal tract followed by 2 weeks of intensive

grasping training to an already established rehabilitative schedule
with the same time intervals: Two weeks of Anti-Nogo immu-
notherapy, promoting axonal fiber growth, followed by 2 weeks of
intensive grasping training22. The results of both these procedures
were very similar: enhanced sprouting of corticospinal fibers from
the intact contralesional cortex, reinnervation of the denervated
cervical hemi-cord, and full restoration of impaired grasping
function analogous to baseline levels. This equivalence supports
the hypothesis of a growth-promoting effect induced by the sti-
mulation paradigm used.

A key question in rehabilitation is whether a therapeutic
intervention yields accurate restoration of lost movement patterns
or only a compensatory movement strategy44. We developed an
automated, unsupervised computer vision algorithm for detailed
analysis of paw posture and kinematics during single pellet
grasping. The algorithm uses routine high-resolution video
sequences; no tattoos or manual tracing of joint positions are
required. Conventional methods include manual analysis such as
the 10-point evaluation suggested by Whishaw45, which is time
consuming and often subjective, or kinematic analysis of grasping
trajectories46. However, pure grasping trajectories are not sensi-
tive enough to detect delicate disparity of distinct aspects of the
grasping act such as supination, targeting, or paw closure22. In
contrast, our method combines a single frame analysis with a
sequence matching approach, meaning that each recorded image
of a grasping sequence is ranked for its temporal evolution of paw
shape. Our algorithm thus enables to classify each grasp as closer
or further away from previously identified typical healthy
grasping sequences. Using this objective evaluation technique, we
found that precision in targeting and the typical sequence of
postures for successful grasping movements have recovered at the
end of the experimental therapies (4–5 weeks after stroke) for
those animals, which had either received direct optogenetic sti-
mulation of the intact CST or Anti-Nogo immunotherapy fol-
lowed by intensive grasping. This result shows a full and true
restoration of forelimb function in rats after a > 95% destruction
of one sensory-motor cortex and treated with growth-promoting
therapies followed by intense rehabilitative training.

We implanted optical fibers for optogenetic stimulation locally
over the premotor cortex, the main M1 cortex and the lateral
motor and S1 cortex, and combined it with retrogradely trans-
ported virus that allowed selective expression of the optogenetic
silencing construct ArchT in the rewired, ipsilaterally projecting
corticospinal neurons. We were thus able to analyze the specific
functional role of these three cortical subregions during the
grasping. In the “Spontaneous recovery” group, pellet reaching
remained severely impaired; optogenetic silencing concurrently at
all positions caused a mild further impairment. Very much in
contrast, the “Anti-Nogo/Training” group, which showed a full
recovery of skilled reaching, reacted to silencing of the premotor
cortex by overshooting reach movements, and by too short
reaches after silencing of M1. When silencing at all three posi-
tions at the same time, animals still showed too long grasps but
less significant compared to the silencing of the central M1, which
may even suggest a more dominant role of the premotor cortex
for the targeting aspect of the grasping than for M1. Another
aspect may be the uneven distribution of rewired corticospinal-
projecting fibers with a higher cell density expressing ArchT in
the premotor and motor cortex vs. S1 (Fig. 7b), which may also
have influenced the magnitude of the optogenetic silencing effect
in the different positions (Fig. 5c) in the “Anti-Nogo/Training”
group. In these functionally well recovered rats, we found “hot
spots” for forelimb movements using ICMS cortical mapping in
similar positions where silencing had decreased the grasping
function. In contrast, the positions from which ipsilateral fore-
limb movements could be elicited were more diffusely distributed
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over M1 and M2 in animals with a lower level of recovery. Also, a
significant reduced cell density expressing ArchT had been
detected in the “Spontaneous recovery” group, which may fur-
thermore contribute to the reduced effect of optogenetic silencing
in those animals. Cortical motor maps as the basis of voluntary
movements have been described extensively: In particular, elec-
trophysiological studies in monkeys, cats, and rodents have
detected reproducible, complex movements of the forelimbs and
hindlimbs triggered from distinct positions of the motor
cortex47–49: Harrison et al., e.g., demonstrated that the forelimb
motor cortex is subdivided in functional subregions for abduction
and adduction movements, while others report that motor cortex
silencing in the intact rodent interferes with the initiation or
performance of trained fine motor tasks50, 51. In mice with
forelimb motor cortex strokes, secondary-induced strokes in the
premotor cortex destroyed regained skilled grasping function
suggesting an important role of M2 for the regain of lost forelimb
function52. However, the ability of the contralesional pre- and
motor cortex to induce local circuitry of distinct aspects for fine
motor function after stroke has been not revealed before. We
show here for the first time that after an injury such as stroke and
a successful rehabilitative intervention, plastic, rewired neurons,
—and presumably entire microcircuits,—are found in the corre-
sponding anatomical positions and are involved in specific
aspects of the grasping sequence. Furthermore, this suggests that
neurons retain much of their anatomical and functional identity
while switching their axonal projection from one side of the
spinal cord to the other. Such mechanisms could explain the
common clinical and experimental observation that task-specific
training often achieves much higher levels of success and func-
tional restitution than generalized, multitask training
paradigms53–56.

What could be the neurobiological basis of the successful
combination of direct, early cortical stimulation or a growth-
promoting pharmacological treatment followed by intensive
rehabilitative training? Both rehabilitation groups, the “Anti-
Nogo/Training” and the “OptoStim/Training” combined an early,
plasticity-promoting treatment approach followed by intensive
rehabilitative training of the impaired paw. This sequential
combination resulted in almost full recovery of impaired motor
function. In addition, for both treatment groups a similar
sprouting pattern of CST fibers targeting motor neuronal pools in
lamina 6/7 of the ventral horn was found, suggesting at least an
additive effect of the two therapies: First the stimulation of circuit
formation and reorganization followed by use-dependent selec-
tion, stabilization, and strengthening of meaningful circuitry by
rehabilitative training. In stroke patients, new circuit formation
can be enhanced beyond the intrinsic plastic potential of the brain
by growth stimulatory therapies applied early after stroke, fol-
lowed by a step of circuit selection and stabilization by intensive
rehabilitative training to enable specific functional shaping of new
circuits to restore the lost motor functions. That brief bouts of
targeted cortical motoneuronal stimulation early after stroke can
enhance neuronal growth and repair is a new finding which can
be translated into clinical trials using established clinical techni-
ques such as TMS or tDCS.

Methods
Animals. Subjects of this study were a total of n= 46 adult female Long-Evans rats
(200–250 g, 3–4 months of age, Janvier, France), housed in groups of two to four
under a constant 12 h dark/light cycle with food and water ad libitum. All
experimental procedures were approved by the veterinary office of the canton of
Zurich, Switzerland. They are in accordance with the Stroke Therapy Academic
Industry Roundtable (STAIR) criteria57 for preclinical stroke investigations.

Experimental outline. The objective of this study was to induce sprouting of
corticospinal fibers from the intact hemisphere to the denervated cervical spinal

cord and thus promote recovery of skilled motor function by distinct optogenetic
stimulation of the intact corticospinal tract after a large photothrombotic stroke.
Rats were first handled and training in the single pellet grasping task to determine
their paw preference. Depending on their left or right handedness, a retrograde
AAV9-CamKII0.4.Cre.SV40 vector (Penn Vector Core, Philadelphia) was injected
in the contralateral cervical hemi-spinal cord of the preferred paw (contralateral to
the “future” denervated cervical hemi-spinal cord) followed by the injection of a
Cre-recombinase-dependent ChR2 vector (AAV2.1_Ef1a-DIO-hChR2(t159C)-
mCherry, UNC, Chapel Hill, USA) in the ipsilateral pre- and sensorimotor cortex
(in the “future” contralesional hemisphere) thus achieving the specific expression
of ChR in corticospinal-projecting neurons. Two weeks after virus injection, three
optic fiber implants were positioned over the pre- and sensorimotor cortex, where
the viruses had been injected. After recovery from the surgeries, the training in the
single pellet grasping task was continued till a baseline level of at least 60% success
rate in the fine motor task was achieved. All rats then received a photothrombotic
stroke targeting the sensorimotor cortex corresponding to their paw preference in
the grasping task (contralateral to the hemisphere of the fiber implantation). Two
days after stroke, animals were retested in the single pellet grasping task and
according to their lesion deficit randomized in four different rehabilitation groups
(Fig. 1a): In the “Spontaneous recovery” group, animals received no rehabilitative
treatment and were only assessed for regain of grasping function weekly up to
4–5 weeks after stroke. The intact pre- and sensorimotor cortex of animals in the
“OptoStim” group was stimulated with blue light 3×/day within the first 2 weeks
after stroke to activate the ChR-expressing corticospinal-projecting neurons.
Additionally to the optical stimulation, animals in the “OptoStim/Training” group
underwent intensive grasping training of the impaired paw during the 3rd and 4th
week after stroke. Animals in the “Delayed Training” group were also intensively
trained in the single pellet grasping task during the 3rd and 4th week after stroke
but without optical stimulation in advance. After the completion of the rehabili-
tative schedules, animals performed novel tasks to assess their overall recovery of
motor function, followed by the removal of the optical fibers and anterograde
tracing of the intact pre- and sensorimotor cortex with BDA. This experimental
setup was repeated in N= 2 independent studies with n = 8–12 rats per cohort for
behavioral and morphological analysis. As there was no statistically significant
difference in the outcome of lesions, behavior and anatomy, the data shown here
were pooled from both studies. The final behavioral and anatomical analysis was
performed by an independent investigator who was not involved in the rehabili-
tative training and testing. During the experiments for Fig. 1, rehabilitative training
was twice perturbed on days 15 and 16: Once by construction works and then by a
change of the operational procedure of the animal facility so that the data gained
from days 15 and 16 after stroke were inconsistent (Fig. 2a) and thus not included
in the final analysis. This study confirms with the AARIVE guidelines (https://
www.nc3rs.org.uk/arrive-guidelines).

In order to compare the efficacy of a rehabilitative scheme with direct
optogenetic stimulation of the intact corticospinal tract, we applied a rehabilitative
schedule including a growth-promoting immunotherapy and rehabilitative training
to a second cohort of animals, which has been shown to induce robust sprouting of
corticospinal-projecting fibers from the intact motor cortex after stroke22: All
animals were trained in single pellet grasping and were then divided in two groups:
While a part of animals was sham-operated, the other animals received a
photothrombotic stroke destroying the sensorimotor cortex of the preferred paw.
Two days after stroke, animals were randomly distributed in two groups: Either
animals received no rehabilitative intervention (“Spontaneous recovery” group) or
anti-Nogo-A antibodies were applied for 2 weeks immediately after stroke followed
by grasping training for another 2 weeks (Fig. 2a).

Photothrombotic stroke. A photothrombotic stroke was introduced as previously
described9, 22: Animals were anesthetized with 3% isoflurane followed by an
intramuscular injection of Medetomidin (30 µg/kg body weight), Midazolam
(0.4 mg/kg body weight), and Fentanyl (1 µg/kg body weight). The rats were
shaved, fixed in a stereotactic frame, eye cream (Vitamin A, Braun) was applied
and the scalp was opened after disinfection (Betadine, Braun). Two minutes after
an i.v. injection of Rose Bengal into the femoral vein (Sigma, 10 mg/ml solved in
0.9% NaCl solution) according to the body weight (13 mg/kg) a 10 × 5mm area
(localized 5 mm to −5 mm anterior and 0.5 mm to 5.5 mm lateral to Bregma) was
exposed to a strong light source (Olympus KL 1500LCS, 150W, 3000 K) for 12 min
illumination through the intact scalp. To antagonize the anesthesia Antisedan
(0.15 mg/kg body weight) and Flumazenil (40 µg/kg body weight) were s.c. injected.
For postoperative care, all animals received analgesics (Dafalgan Sirup, Braun, per
os in the drinking water) and antibiotics (Baytril, 5 mg/kg body weight, Bayer, s.c.)
for at least 3 days after surgery.

Optogenetics. We used a Cre-dependent approach to specifically express ChR2 in
the corticospinal tract requiring two surgeries: For the first surgery, animals were
anesthetized as mentioned previously for the stroke lesion and a minimal invasive
laminectomy at spinal level C5–C6 was performed. A total of 11 × 120 nl of the
retrograde AAV9-CamKII0.4.Cre.SV40 vector (Penn Vector Core, Philadelphia)
was injected in the cervical hemi-spinal cord (Fig. 1b), contralaterally to the future
denervated hemi-spinal cord due to the stroke. The 11 injections took place 0.7 mm
lateral to the midline using a 35-gage, 10 µl syringe (Hamilton, BGB Analytik)
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driven by an electric pump (World Precision Instruments) with a flow rate of
6 nl/s. Each injection was made in 2 steps of 60 nl and 2 different depths (0.9 and
1.2 mm below the spinal cord surface to target the corticospinal tract and lamina 7
motor neuron pools) keeping the syringe in place for 3 min between steps.
One–two days after laminectomy, a craniotomy was performed exposing the future
contralesional pre- and sensorimotor cortex: 12 injections (200 nl each) of a Cre-
recombinase-dependent ChR2 vector (AAV2.1-Ef1a-DIO-hChR2(t159C)-
mCherry, UNC, Chapel Hill, USA) were made through the intact dura using a 33-
gage, 10 µl syringe (World Precision instruments) with a flow rate of 6 nl/s con-
trolled by an electrical pump (World Precision instruments). The following
injection coordinates were used: 2 mm anterior to bregma (AP), 3 mm lateral to
bregma (ML); 2.5 AP, 3.5 ML; 1.5 AP, 3.5 ML; 1.5 AP, 2.5 ML; 2.5 AP, 2.5 ML; 3.5
AP, 2.0 ML; 3.5 AP, 2.5 ML; 4.5 AP, 2.5 ML; 4.5 AP, 1.5 ML; 2.0 AP, 1.5 ML; 2.0
AP, 1.5 ML; 4.0 AP, 0.15 ML. At each position, the needle was lowered to 1.5 mm
depth and retracted to 1.2 mm again to leave a pocket for the volume injected. The
needle was left in place for 1 min before 300 nl were administered. On injection
completion, the cannula was left to rest for another 2 min before full retraction to
ensure proper diffusion of the dispatched virus. The craniotomy was covered with
Kwik-Cast (World precision instruments) and the scalp was sutured till reopening
for the implantation of the optical fibers.

Custom-made optic glass fibers (multimode fibers, 0.48 NA, High OH, Ø
1000 µm Core, Thorlabs) glued into stainless steel sleeves with two-component
epoxy resin glue and sanded (Silicon Carbid Lapping Sheet, 1, 3, and 5 um grit,
Thorlabs) were used as the medium for light conductance. Only implants with a
conductance above 70% were included (mean conductance of the used implants
was 73± 4%) as measured by a power meter (473 nm, Thorlabs). For implantation
of these optical fibers, animals were anesthetized as previously described for the
photothrombotic stroke and a single subcutaneous injection of mannitol (20%,
17 mg/ml, B. Braun) was applied to reduce swelling of the cortex. Soft tissue was
removed from the skull, iBond (Heraeus) was deposited and four screws were
inserted around the craniotomy for the fixation of the optical implants. The three
optical implants were positioned on the surface of the pre- and sensorimotor cortex
according to the following coordinates: Optical implant #1 + 4.0 mm anterior to
bregma (AP), +2.0 mm lateral to bregma (ML); optical implant #2 + 2.5 AP,
+1.5 ML; optical implant #3 + 1.5 AP, +2.5 ML, external angle 0.9° (Fig. 5d and
Supplementary Fig. 2). A thin layer of transparent silicon (Kwik-Sil, World
Precision Instruments) covered the surface around the implants. All implants were
fixed to the skull via the screws using light hardened dental cement (Tetric
EvoFlow, Ivoclar vivadent). The scalp was then sutured and glued to the cemented
basis with 3M VetbondTM (3M Animal Care Products, USA). Baytril (5 mg/kg
body weight, Bayer) was subcutaneously applied for the first 3 days after stroke
followed by per os administration up to 1–2 weeks after surgery (190 µl/250 ml
drinking water).

For optical stimulation of the intact corticospinal tract, three blue LEDs
(473 nm, Thorlabs) were adjusted to provide the same output on full input strength
(output difference of less than 2% (64± 1 mW/mm2) as measured by a power
meter (473 nm, Thorlabs)). For the illumination during the stimulation therapy,
the output at the tip of each individual optical implant was adjusted to 16.6 mW/
mm2. Animals in the “OptoStim” group and “OptoStim/Training” group received
optical stimulation of the intact corticospinal tract 3×/day from day 3 to day 14
after stroke. Each stimulation session consisted of 3 × 1-min stimulation with
10 Hz, 20 ms pulses. Between the 1-min stimulation phases were 3-min resting
phases as previously described8. The pulses were synchronized over all LEDs and
thus could irradiate the cortex through all three implants simultaneously. For the
stimulation, animals were put in a Plexiglas box where the optic fibers (Ø 1mm),
connected with ceramic sleeves (Thorlabs) to the optical implants were supported
by a freely moving arm above the box designed to reduce the weight of the fibers
while allowing the animals to move relatively unhindered.

Rehabilitative training and testing. All animals included were trained in the
single pellet grasping task5, 22 to assess fine motor control of the forelimb. Animals
were placed in a Plexiglas box (34 × 14 cm) with two openings on opposite ends
and were trained to grasp pellets (45-mg dustless precision pellets, TSE Systems
Intl. Group). Grasping performance was scored as follows22: a grasp was classified
of being successful (scored as “1”) if the animal correctly targeted a newly presented
pellet with its preferred paw, retrieved it and brought it directly to its mouth. A
score of 1 was also given if the animal required several attempts to grasp the pellet,
without retracting the paw through the window and into the box, which was
defined as the end of an attempt. A score of 0.5 was given if—after a successful
grasp—the pellet was dropped inside the box. If the animal knocked the pellet off
the shelf, the trial was scored as 0. The success rate was calculated as the percentage
of retrieved pellets of the number of all trials. Animals were trained 3–4 weeks for
baseline recordings before stroke. Only animals with a 60% or higher success rate at
baseline were included in the study presented here. During testing sessions, animals
were given 20 pellets within a maximum time of 10 min. During rehabilitative
training sessions, animals grasped at least 100 pellets/day. All animals were assessed
at baseline as well as 2 days, 7 days, and until 4–5 weeks after stroke for skilled
forelimb function in the single pellet grasping task. All sessions were filmed
(Panasonic HDC-SD800 High Definition Camcorder, 50 frames/s) for further
analysis of grasping kinematics. The researchers responsible of the development of

the computer code for the behavior analysis were blinded to all behavior experi-
ments presented in this study.

Computer vision algorithms for posture analysis and analysis of grasping
kinematics. We aimed at developing a non-invasive approach for analyzing motor
function that does not interfere with the recovery process of the animal in order to
monitor the progress of therapeutic treatment and to identify the optimal treat-
ment protocol. Therefore, we here present an automatic, purely visual analysis
based on video recordings of the grasping animals. A detailed investigation of not
only the spatial trajectory of a grasp, but also of paw posture and its change during
grasping then revealed even subtle differences between impaired and healthy motor
function. Therefore, we needed to first detect and track fast moving paws under
adverse lighting conditions (considering the speed of the paw, light is very dim so
as not to irritate the rats) and reflections of the surrounding cage. Second, paw
posture had to be represented in a robust manner. Third, a sequence matching
approach was employed to model the characteristic changes of posture during
grasping.

To focus our analysis on paw motor function, we first extracted a large set of
candidate foreground regions. Following Wright et al., we decomposed video
frames into a low-rank background model and a sparse vector corresponding to
foreground pixels. Candidate regions xi 2 X are then randomly sampled from the
estimated foreground of a set of sample videos to initialize the subsequent learning
of classifiers and compute their HOG features (size 10 × 10)58. We also investigated
features learned using a convolutional neural network approach59. However, due to
the limited amount of training samples, standard HOG features yielded better
performance and interpretable results. K-nearest neighbors density estimation then
reveals rare outliers, which are removed from X .

Max-projection of randomized exemplar classifiers: For paw detection and
posture comparison, a set of exemplar classifiers were required, which detected paw
configurations, that were similar to a set of prototypical ones60. To measure the
similarity to a sampled region xi, we trained a discriminative exemplar classifier wi,
with xi as positive example. Since X is likely to contain other samples similar to xi,
this set could not be used as negatives since too much overlap with the single
positive exemplar would have corrupted learning. Instead of training a single
classifier, we thus trained an ensemble of K randomized exemplar classifiers wk
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Cross-validation yielded a soft margin C= 0.01. To compensate for the
unreliability of individual classifiers, they were aggregated using a max-projection
which chose for each feature dimension the most confident classifier
wi :¼ maxk wk

i . The scores of these max-projected wi were then calibrated by a
logistic regression60.

Codebook of prototypical paw classifiers: Based on the large initial candidate set
X (size 1000), we then created a dictionary D � X as a canonically representation
of paw postures of previously unseen rats. The randomized exemplar classifiers
provided a robust measure of pair-wise similarity
s xi; xj
� �

:¼ 1
2 wi; xj
� �þ wj; xi

� �� �

. Duplicate candidates were merged using
normalized cuts (Shi and Malik 1997) to obtain a dictionary D (size 100), which
was sufficiently diverse and rich for a non-parametric representation of all paw
postures. In a new video, all classifiers wi from dictionary D were applied densely.
We averaged the scores of the top scoring k classifiers and took the location with
the highest score to obtain the final paw detection and its trajectories over time.

Non-parametric description of paw posture: On new paw detections x,
the activation pattern of all wif gi2D gave rise to an embedding
e :¼ ½hw1; xi; ¼ ; hwjDj; xi�. Moreover, novel paw configurations could now be
compared using their embedding vectors, since similar samples yielded similar
classifier activations. In Fig. 3, left column, we visualized paw postures by mapping
the high-dimensional embedding to a low-dimensional projection using the t-SNE
method26.

Spatiotemporal parsing: While paw posture was informative, its deformation
during a grasp was even more characteristic. Modeling not only the grasping
behavior of healthy specimen, but also the diverse abnormal patterns after
impairment rendered prior models on posture and kinematics infeasible, as they
would impose a bias toward healthy configurations. We represented a M frame
long grasp j as a sequence in the embedding space Sj :¼ ½ej1; ¼ ; ejM �. Measuring the
similarity of grasps based on their embeddings depended on a sequence matching
since they were not temporally aligned. We thus searched for a mapping π :
f1; ¼ ;Mg7!f0; 1; ¼ ;M′g; which aligned Sj of length M with Sj′ of length M′ (0
were outliers). We then defined their distance in the embedding space as dðSj; Sj0 Þ :¼ PM

i¼1 jeji � ej
0

π ið Þj: A matching π(•) should avoid outliers and changes of the
temporal order,

min
π

XM

i¼1

eji � ej′π ið Þ
�
�
�

�
�
�þ λ

XM�1

i¼1

1 π ið Þ>π iþ 1ð Þð Þ; s:t: π ið Þ � ij j � B; 8i;

where 1ð�Þ was the identity function. The constraint in this equation prevented
matched frames to from being more than B frames apart from another. The second
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sum allowed for more flexible matching than in standard string matching or
dynamic time warping. The sequence matching problem was then solved using
integer linear programming and IBM ILOG CPLEX. As it would be
computationally prohibitive to match all sequences against another, we eliminated
redundancies by constructing a dictionary Dseq :¼ S1; ¼ ; SQf g of canonical
grasping sequences, which then explained novel grasps yielding a spatiotemporal
parsing. Measuring the distances of a new sequence S′ to all prototypical ones in
Dseq produced the sequence-level embedding F′ :¼ d S′; S1ð Þ; ¼ ; d S′; SQð Þ½ �; after
aligning grasps with our sequence matching. Grasps are then compared using the
Euclidean distance in this sequence embedding space. In Fig. 2c, we illustrate the
similarity of grasping trials to baseline and 2d sequences per cohort using the
previously described approach. We furthermore utilize the sequence-level
embedding for evaluating the initial learning of the skilled reaching task.
Supplementary Fig. 3 illustrates the learning behavior of rodents and demonstrates
the high sensitivity of our algorithm, which even detects small improvements/
changes in grasping during the first days of training.

Novel tasks. After the completion of the rehabilitative schedules (4 weeks after
stroke), animals were exposed to novel tasks of forelimb sensorimotor function and
overall locomotion such as the horizontal ladder test61 and the narrow beam task62

in order to determine their non-task-specific recovery levels of forelimb function.
The irregular horizontal ladder crossing was performed as described recently22:

On three consecutive days, three runs per animal were recorded (Panasonic HDC-
SD800 High Definition Camcorder) and analyzed frame by frame (VideoReDo TV
Suite, H 264, Drd Systems Inc.). The success rate was calculated by dividing the
amount of correct steps by the number of total steps taken with the respective paw
×100 in the three test runs.

For the narrow beam task, rats were placed at one end of a wooden 145 cm long,
elevated beam with a basis of 5 cm width narrowing down at the end tip to a width
of 1 cm with 28 equal segments of 5 cm. While the animals were crossing the beam,
two investigators on both sides of the beam detected at which segment a slip of one
of the extremities down from the plane surface of the beam would first occur. The
success rate was calculated by dividing the segments noted for the first slip by the
total amount of segments (×/28) × 100. For each day of assessment four different
trials were scored and averaged per day. For both, the horizontal ladder and the
narrow beam task animals were tested on 3 consecutive days and the success rates
are given as mean of the three testing days.

Anterograde tracing of the intact corticospinal tract (CST). Six weeks after
stroke, after the completion of the behavioral training and testing, the intact
contralesional motor cortex of animals in all five rehabilitation groups (“OptoStim/
Training” n= 4, “OptoStim” n = 3, “Spontaneous recovery” n= 4, “Delayed
Training” n= 4, “Anti-Nogo/Training” n= 6) was traced anterogradely with Bio-
tinylated Dextran Amine (BDA, 10,000 molecular weight, 10% solution in 0.01 M
PBS, Invitrogen) as previously described22. Before the tracing, the optical fiber
implants had to be removed to expose the contralesional motor cortex again. At
this step, we excluded animals from further analysis if we found signs of inflam-
mation or the removal of the cemented optical implants caused bleeding. Twelve
injections (200 nl each) of BDA were made as described above for the expression of
the ChR2 vector (AAV2.1_Ef1a-DIO-hChR2(t159C)-mCherry) using the same
coordinates. Three weeks after BDA injections animals were anesthetized (pento-
barbital, 450 mg/kg body weight i.p., Abbott Laboratories) and perfused transcar-
dially with 100 ml Ringer solution (containing 100,000 IU/l heparin (Roche) and
0.25% NaNO2) followed by 300 ml of a 4% phosphate-buffered paraformaldehyde
solution, pH 7.4. Brains and spinal cords were dissolved and cryoprotected in a
phosphate-buffered 30% sucrose solution for cryostat sectioning in 40 µm thick
sections before being stained by on-slide processing using the nickel-enhanced
DAB (3,3′-diaminobenzidine) protocol (Vectastain ABC Elite Kit, Vector
Laboratories; 1:100 in Tris-buffered saline plus TritonTM X-100).

CST fiber growth in response to stroke was evaluated at spinal cord levels
C3–Th1 as previously described22: Fibers crossing the spinal cord midline were
counted at ×20 magnification and branching of these fibers was evaluated at four
defined distances from the midline in the gray matter using a virtual grid (D1–D4),
with each line 125 μm apart22. Ventral CST fibers were counted at the transition of
the white matter forming the anterior median fissure and the gray matter of the
ventral horn. A virtual line was aligned with the center of the central canal. Around
this point, the line was rotated and aligned with the boundary between gray and
white matter. Fibers crossing this line were counted as ventral CST fibers
innervating the gray matter9.

To correct for variations in BDA labeling, data were normalized to the number
of BDA-labeled axons in the intact CST for each animal (CST axons: counted in
five rectangular areas (4000 μm2) and extrapolated to the total area of the CST
(0.1144 mm2± 0.01)/slice in two sections at spinal cord level C3 and C6). Results
are expressed as newly outsprouting fibers divided by the number of labeled fibers
in the intact CST/slice for each animal.

Histological analysis of stroke volume. For analysis of stroke volume, animals
were transcardially perfused and rat brains were fixed and cryoprotected as
described in the section above. Brains were cut coronally on a cryostat in 40 μm
sections and collected on slides (SuperFrost®) as described previously22. Frozen

sections were dried at room temperature, rehydrated and immersed in 0.5% cresyl
violet (2 min) for Nissl staining. After washing in water, we dehydrated the sections
in graded alcohols, cleared in xylene, and cover-slipped with Eukit® mounting
medium. The lesion volume of all four rehabilitation groups was evaluated by 3D
reconstruction of every 20th brain section, using Neurolucida 8.0 (MicroBright-
Field). The lesion volume of each section was determined by contouring the
destroyed tissue and taking also into account the symmetry of stroke-dependent
tissue loss in relation to the volume of the intact contralesional hemisphere. The
stroke lesion location was determined using the coordinates of the Rat Brain Atlas
by Paxinos and Watson (Ref. 63 and Supplementary Fig. 1).

Histological verification of ChR2-expressing neurons. Coronal cortex sections
(40 µm slice thickness) were examined for the distribution of mCherry-positive
neurons with anti-mCherry amplification immunohistochemistry: Immediately
after cryo-sectioning, slices were blocked in Tris-NaCl-blocking buffer and 0.1%
Triton (TNB, TBST) for 30 min at room temperature and incubated over night at
4 °C in TNB, TBST, and the primary antibody mCherry (1:1000; Abcam, Lucer-
nachem). After washing with 0.1 M phosphate buffer, the biotinylated goat anti-rat
immunoglobulin-G (Ig G) (1:300; Jackson IR) secondary antibody in PBS was
applied for 1 h at room temperature. The sections were washed in PBS and
incubated in Streptavidin C3 (1:1000; Jackson IR) and fluorescent Nissl 500/525
(Neurotrace Green Fluorescent Nissl Stain, Invitrogen) in TNB for 1 h. Slices were
washed and rinsed with 0.05 M Tris-buffer for the final step. Images were acquired
with a confocal microscope (TCS SP2 AOBS, Leica) with respective red (Cy3) and
green (488) excitation or emission filters at ×20 magnification. Images were taken
in a sequential mode either for acquisition of mCherry- or Nissl-positive cells. The
percentage of mCherry-positive cells of Nissl-positive cells in layer 5 of the primary
motor cortex (4.2 mm± 300 µm anterior and 0.67 mm ± 300 µm posterior to
bregma, Fig. 1), premotor cortex (4.68 mm µm anterior to bregma) and primary
sensory cortex (0.12 mm± 300 µm anterior to bregma) was counted in five sections
per animal and averaged per animal and group.

Anti-Nogo immunotherapy. To compare the effect of specific optical stimulation
of the intact corticospinal tract to induce fiber sprouting in the cervical spinal cord,
a group of animals (n= 9) received the growth-promoting anti-Nogo
immunotherapy9, 22. For constant delivery of the function blocking Ig G1 mouse
monoclonal anti-Nogo-A antibody 11C7 (3 or 4.2 mg/ml, Novartis) against an 18
amino acid Nogo-A peptide corresponding to the rat sequence amino acids
623–64064 a fine intrathecal catheter (32 gage) was placed after stroke surgery in
the subarachnoid space at lumbar level L2 after laminectomy and connected to an
osmotic minipump (Alzet 2ML2; 5 µl/h, 3.1 µg/µl). For postoperative care, all
animals received analgesics (Rimadyl, 2.5 mg/kg body weight, Pfeizer) and anti-
biotics (Baytril, 5 mg/kg body weight, Bayer) for 3 days as well as a single sub-
cutaneous injection of mannitol (20%, 17 mg/ml, B. Braun) to reduce swelling of
the cortex. Two weeks after stroke, pumps and catheters were removed.

Optogenetic inhibition of newly outsprouting fibers of the intact corticospinal
tract. For optogenetic inhibition of newly outsprouting corticospinal-projecting
fibers from the intact hemisphere, we applied a Cre-dependent approach: After
completion of either 2 weeks of anti-Nogo immunotherapy followed by training
(“Anti-Nogo/Training” group) or spontaneous recovery (“Spontaneous recovery”
group) we injected 11 × 120 nl of the retrograde AAV9-CamKII0.4.Cre.SV40 vector
(Penn Vector Core, Philadelphia) in the denervated cervical hemi-spinal cord
(Fig. 5b) at spinal cord level C5–C6 as described above (“Expression of ChR2 in the
intact corticospinal tract”). One–two days later, the Cre-dependent AAV2.1-Flex-
ArchT-GFP (UNC GTC Vector Core, the University of North Carolina at Chapel
Hill) was injected in the contralesional pre- and sensorimotor cortex according to
the coordinates (“Expression of ChR2 in the intact corticospinal tract”, Fig. 1b). Up
to 7 days after virus injection, animals were implanted with three custom-made
optic glass fibers at the same positions as described above (“Expression of ChR2 in
the intact corticospinal tract”) enabling inhibition at three distinct positions
(position 1: pre- and rostral motor cortex; position 2: motor cortex; position 3:
motor cortex with small parts of the primary sensory cortex). Sham-operated
animals (n = 3) just received optical fiber implantation without virus injections to
confirm that light stimulation and the fibers connecting the optical implants to the
lasers did not influence grasping behavior.

Optogenetic inhibition during a single pellet grasping task. Animals were given
2 weeks of recovery from virus injection and fiber implantation surgeries and were
then retrained and retested in the single pellet grasping task (Fig. 5a). For optical
inhibition of distinct subsets of newly sprouting corticospinal fibers during the
grasping task, animals were put in a Plexiglas box (section “Rehabilitative training
and testing”) with their optical implants connected via ceramtic mating sleeves to
1 m long optical fibers (Ø400 µm Core, 0.39 NA, Thorlabs) and three lasers
(532 nm) above the grasping box, enabling optical inhibition at each optical
implant location independently. The three laser output strengths were adjusted to
provide an output difference less than 2% (42.6± 1.7 mW/mm2). For the optical
inhibition, the output strength was adapted to 20 mW/mm2 for each individual
laser using optical density filters. The initiation of the three lasers was regulated by
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a light barrier positioned at the center of the provided food pellet so that by the first
grasp through the light barrier a program (LabVIEW, National Instruments) was
started which kept the lasers off for 100 s and turned them on afterwards for 100 s
while the animal continuously grasped for pellets. After another lag time of 100 s
with laser lights off the next grasp would initiate the second phase of laser light
activation. We used continuous laser light stimulation for the ArchT activation,
which has been shown to cause no apoptosis when lasers (532 nm) were turned on
for even 3–5 min65. We only stimulated at either one position (position 1 vs.
position 2 vs. position 3, Fig. 5c) or at all three positions at the same time during
one grasping session. The light barrier controlled the light-off and -on phases at
this position for several times as long as the animal continued with grasping for
pellets. For the next session, we then randomly changed to stimulating at another
position in order to avoid inhibiting the same area over several days of grasping
behavior and thus inducing structural and plastic changes. The effect of optically
inhibiting at a distinct position (1–3) or at all three positions on grasping success
was measured for each animal and each position during at least three independent
grasping sessions. Results are presented as mean success rates of all grasping ses-
sions without light (“light-off phase”) and for the optogenetic inhibition of a dis-
tinct position (“light-on phase”) in absolute levels as well as relative success rates of
the “light-on phases” in dependence of the success rates in the “light-off phases”.

For the detailed kinematic and posture analysis of the grasping behavior under
“light-off” and “light-on” conditions, we utilized the previously described detection
and tracking of paws for a grasping trajectory analysis as well as the spatiotemporal
parsing of grasping sequences for a detailed posture analysis that discovers even
fine-grained differences between healthy and impaired motor function (please refer
to “Computer vision algorithms for posture analysis and analysis of grasping
kinematics”).

Histological verification of ArchT-expressing neurons. Coronal cortical sections
(40 µm slice thickness) were examined for the distribution of EGFP-positive
neurons with anti-GFP immunohistochemistry similar to the one described above
(section “Histological verification of ChR2-expressing neurons”) except that for the
primary antibody the primary antibody green fluorescent protein (GFP) (rat
monoclonal antibody, 1:1000; Nacalai) was used as well as the fluorescent Nissl
640/660 (1:500; Neurotrace Invitrogen) in TNB for the Nissl staining. Analysis of
GFP-positive cells in relation to Nissl-positive cells was undertaken as above (see
section “Histological verification of ChR2 expressing neurons”). To localize the
location of clusters of neurons expressing GFP 3D reconstructions of every 20th
brain section was performed for a representative brain of each group (“Anti-Nogo/
Training” and “Spontaneous recovery”) using Neurolucida 8.0 (MicroBrightField).

Intracortical microstimulation. For intracortical microstimulation, “Anti-Nogo/
Training” (n = 4) and “Spontaneous recovery” animals (n= 3) were anesthetized
with a subcutaneous mixture of ketamine (50 mg/ml, 7 mg/kg body weight, Streuli
Pharma) and xylazine (20 mg/ml, 5 mg/kg body weight, Streuli Pharma) plus a
single injection of mannitol (20%, 17 ml/kg, B. Braun). The forelimbs were shaved
for better visibility of muscles and the rat was mounted in a stereotactic frame66.
The optical implants were removed exposing the entire pre- and sensorimotor
cortex (5 mm to −2 mm AP, 4 mm lateral relative to bregma). Using bregma as a
landmark, electrode penetrations were made perpendicular to the pial surface
(depth 1.3 mm) tracing an rectangular exploration grid of 5 × 12 stimulation points
localized from 4mm to −1.5 mm AP and 1.25 to 3.25 mm ML relative to bregma
with a distance of 500 µm for each stimulation point. Forty-five-millisecond trains
of 0.2 ms biphasic pulses at 333 Hz9, 22 with a current of 80 µA (insuring a stable
response, ref. 20) were delivered through a glass isolated platinum/tungsten sti-
mulation electrode with an impedance of 0.5–1MΩ (Thomas Recording). We used
EMG recordings from the (ipsilateral) impaired forelimb (M. extensor digitorum
for wrist, M. biceps and triceps for elbow, M. trapezius for shoulder) as readouts.
The EMG signal was amplified, filtered, digitized, and visualized via PowerLab
(AD instruments). The EMG data were subsequently transferred to Matlab and the
maximum of the EMG-amplitude was detected at each stimulation point and for all
joints. For each animal, we calculated the sum of the maximal amplitudes of all
three joints for each stimulation point (SumAmpl=maxAmplwirst + maxAmplelbow
+ maxAmplshoulder). Heat maps were generated by calculating the median of
SumAmpl for the animals of a group (“Anti-Nogo/Training” and “Spontaneous
recovery” group) for each stimulation point representing median EMG responses
of a group at a distinct location of cortical stimulation relative to bregma.

Statistical analysis. For statistical analysis, GraphPad Prism (GraphPad
Software Inc.: Version 6.1) was used. All data are expressed as mean ± s.e.m. For
comparing the behavioral and anatomical reorganization of the rehabilitation
groups, a two-way ANOVA followed by Bonferroni’s post hoc test was used. In all
these experiments, differences between the rehabilitation groups or conditions
(“light-off” vs. “light-on”) were significant for the chosen size of the cohort, thus
justifying samples size. Whenever two treatments were compared at one time
point, Students t-test (paired, two-tailed) was used after checking both distributions
of being Gaussian. To test for statistical significance in our kinematic analysis, a
K–S test was used. The level of significance was set at *p < 0.05, **p< 0.01, and
***p < 0.001.

Code availability. The computer code describing the computational method of our
behavior analysis is available at https://github.com/CompVis/
AutomaticBehaviorAnalysis_NatureComm.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files.
The computer code and data together with a documentation describing the
computational method of our behavior analysis as Supplementary Material are
uploaded to github and are available at https://github.com/CompVis/
AutomaticBehaviorAnalysis_NatureComm.
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