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Abstract
Partial hedging of American options is an interesting minimax problem and in this
paper we establish its dual problem that concerns only maximization. The case of
a continuous price process is considered under a general incomplete market. Our
construction of a duality requires a careful preparation in order to define the dual
domain with a compactness property. A key step is an extension of linear functionals
preserving norm and positivity.
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1 Introduction

American options are financial contracts in which the owner has the right to exercise
his option at any time in a specific period. From the point of view of the seller derives
the problem of partial hedging. If the market model is complete, that is, the model
admits a unique martingale measure, the option can be perfectly replicated and the
solution is provided by the Snell envelope of the American option with respect to
the unique martingale measure; see Bensoussan [3] and Karatzas [13]. However, in
incomplete markets, there is in general no perfect replication. In this case, the seller
may decide to take some risk and it ismeaningful to design portfolios generating partial
hedgings which given a budget constraint, minimize the shortfall risk: The positive
gap between the option’s payoff and the capital generated by the selected portfolio.
To quantify shortfall risk, a loss function is applied and then, the expected value
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with respect to the market model is calculated. This point of view was systematically
developed for European options by Föllmer and Leukert [10]. An analogous approach
for American options was studied by Mulinacci [15].

The existence of optimal partial hedging strategies for American options is known
from the above cited references. However, so far, optimality conditions characterizing
optimal strategies are still lacking. Indeed, partial hedging of American options is a
difficult problem. It involves the minimization over a class of stochastic processes
which must satisfy some constraints and the functional to be minimized requires to
take the supremum over a class of stopping times. This means that partial hedging of
American options lead to a minimax problem over constrained classes and optimality
conditions are elusive. From known experience, convex duality is always a promising
approach for a solution and our goal in this paper is to advance convex duality for the
problem of partial hedging of American options. Under mild conditions we establish
a dual problem which concerns only maximization; see equation (26) below. Hence,
for the dual problem optimality conditions are accessible and will be studied in future
work. Our construction of a duality requires a careful preparation in order to define the
dual domain with a compactness property allowing the application of Sion’s minimax
theorem. A key step is a careful extension of linear functionals preserving norm and
positivity. Another key step is to reduce the form of the dual problem and to this end,
we apply an interchange rule for processes developed in [16, Theorem 11].

After this introduction the paper is organized as follows. In Sect. 2wefix notation. In
Sect. 3, we present the problem of partial hedging of American options in incomplete
markets and continuous time. In Sect. 4, we prepare all necessary preliminaries to
establish the dual problem of partial hedging, the main result is stated in Theorem 12.
The proof is distributed in Sects. 5 and 6.

2 Notations and setting

In this section we introduce basic notation and a few concepts from convex and func-
tional analysis that will be necessary. For T > 0 a positive real number, we fix a
stochastic base (�,F ,F = {Ft }0≤t≤T,P). We assume that the filtration F satisfies
the usual conditions of right continuity and completeness. We assume that the proba-
bilitymeasureP is 0−1 onF0. Expectationwith respect toP is simply denoted by E[·].
Equality of random variables always means P-a.s. equality. Let R̄ := R ∪ {+∞} and
R̄+ := R+ ∪ {+∞} where R+ denotes the non-negative real numbers. The family of
F-stopping times with values in the interval [0,T] is denoted by T . We use the french
abreviations càdlàg for right continuous with left limits, càglàd for left-continuous
with right limits, and càg for left-continuous. The optional σ -algebra defined on the
product space � × [0,T] is generated by the family of F-adapted, càdlàg stochastic
processes seen as functions on the product space. We denote this σ -algebra by O;
see e.g., Jacod and Shiryaev [12, Section 1 c] for basic properties of this σ -algebra
defined in the product space � × [0,∞). The predictable σ -algebra defined on the
set � × [0,T] is generated by the family of F-adapted, càg stochastic processes. This
σ -algebra is usually denoted by P; see e.g., Jacod and Shiryaev [12, Section 2 a]. Let
L∞ be the Banach space of random variables which are essentially bounded. Recall
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that a stochastic process x is said to be of class(D) if the family of random variables
{xτ |τ ∈ T } is uniformly integrable.

In order to develop convex duality for our problem of partial hedging, a crucial
step will be to apply Sion’s minimax theorem [21]. This result applies in a setting of
topological vector spaces. To prepare this analytical environment we introduce three
Banach spaces of stochastic processes. The topological vector spaces for the minimax
theorem will be defined in terms of those Banach spaces and their topological duals.

LetR be the space of F-adapted processes x of class(D) with càdlàg paths and with

‖x‖R := sup
τ∈T

E[|xτ |] < ∞.

The norm ‖·‖R makes R a Banach space; see [7, Definition in paragraph 20 and
Theorem 22, Chapter VI, pp. 89–90]. Let R∞ be the family of processes in R with
the further property

‖x‖R∞ := ∥
∥x∗∥∥

L∞ < ∞, (1)

where

x∗ := sup
s∈[0,T]

|xs | . (2)

We denote byR+∞ the non negative elements ofR∞. We denote byR1 the stochastic
processes inR such that

‖x‖R1 := E[x∗] < ∞. (3)

The norm ‖·‖R1 makes R1 a Banach space which is studied by Bismut [4].
The Banach structure of the spacesR andR1 are important for our duality results.

At the same level of importance are their order structure, indeed both are Riesz spaces
as defined in [1]. For the specific result where the Riesz structure is crucial see the
proof of Lemma 7 below.

2.1 Quasi-randomized stopping times

We denote by R∗
1 the topological dual space of R1. The Proposition 1.3 of Bismut

[4] identifies R∗
1 as follows. For an element � ∈ R∗

1 there exists a pair (φ, φ̃) of
right-continuous, F-adapted processes φ and φ̃ with

〈�, x〉 = E

[∫

[0,T]
xt dφt +

∫

[0,T]
xt−dφ̃t

]

(4a)

integrable variation, φ not necessarily zero at t = 0, (4b)

φ̃ a predictable process with φ̃0 = 0, and (4c)

concentrated in a countable family of predictable stopping times. (4d)
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We next specify a class K of elements ofR∗
1 which in agreement with Definition 1.3

of Bismut [4] we call the class of quasi-randomized stopping times. A linear functional
� ∈ R∗

1 is an element of K if in the representation (4a), φ and φ̃ are non decreasing,
non negative and φT+ φ̃T = 1. We denote by K the elements of K such that the process
φ̃ in the representation (4a) is equal to zero while φT = 1.

Remark 1 Typical elements of K will be denoted by � and � and the non-decreasing
processes in the representation (4a) are denoted by (φ, φ̃) and (ψ, ψ̃), respectively.

Remark 2 A stopping time τ ∈ T can be identified with an element of K having
associated the non-decreasing process 1{τ≤t} in the representation (4a). Moreover, for
nonnegative x ∈ R1 we have

sup
τ∈T

E[xτ ] = sup
�∈K

〈�, x〉 , (5)

see Bismut [4, Proposition 1.4].

Elements in K acting by the representation (4a) define continuous linear functionals
on R and R∞ and (5) holds true. These properties are necessary for the functional
analysis framework that we use in order to establish duality for our main problem.
These are the statements of Proposition 2 below, the essence is Lemma 1 following
next. Note however that Lemma 1 does not require the property of being class(D) and
we estate and prove in this generality.

Lemma 1 Let x be a càdlàg process with supτ∈T E[|xτ |] < ∞. For � ∈ K we have

〈�, |x|〉 ≤ ‖x‖R .

Proof Take first � ∈ K. We model the proof as in [12, Lemma 3.12, Section I.3]. Let
cs := inf{t | φt ≥ s}. We have

∫ 1

0
E

[|xcs |1{cs<∞}
]

ds ≤ sup
τ∈T

E[|xτ |] < ∞.

Hence, by Tonelli’s theorem [5, Thm. 3.4.5] we see that |xcs | is integrable with respect
to E[∫ · ds] and we apply Fubini’s theorem [5, Thm. 3.4.4] to get

∫ 1

0
E

[|xcs |1{cs<∞}
]

ds = E

[∫ 1

0
|xcs |1{cs<∞}ds

]

= E

[
∫

T

0
|xs |dφs

]

,

where in the second equality we applied the change of variable formula [11, p 29,
equation (1)] (see also [18, Proposition (4.9) p. 8]).

Now take a general � = (φ, φ̃) ∈ K. Let Ũ be the Snell envelope of |x| in the
generality of [14, Theorem 4] in that |x| is not necessarily of class(D). Now consider
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theMertens decomposition Ũ = U− I whereU is a right-continuous supermartingale
and I is a left-continuous non-decreasing process with I0 = 0; see [14, p. 51]. Take
the Doob-Meyer decomposition U = U0 + M − C where M is a local martingale
with M0 = 0 and C is a non decreasing predictable process with E[CT] < ∞; see
[17, Thm. III.3.13, p.115]. We have

〈�, |x|〉 ≤ E

[∫

[0,T]
U0 + Mtdφt +

∫

[0,T]
U0 + Mt−dφ̃t

]

= E

[∫

[0,T]
(U0 + Mt )d(φt + φ̃t )

]

where in the equality M replaces M− since φ̃ is predictable; see [12, Lemma 2.27,
p.22]. On considering φ + φ̃ as an element of K we obtain from the first part that

〈�, |x|〉 ≤ ‖U0 + M‖R = U0.

This proves the lemma since U0 = supτ∈T E[|xτ |]. ��
We obtain the following result as direct consequence of Lemma 1.

Proposition 2 A quasi-randomized stopping time defines through (4a) a continuous
linear functional on all ofR. Furthermore, the equality (5) holds true for non negative
processes inR. Similar claims hold true for R∞.

Auseful consequence of Proposition 2 is an identification ofK as a family of functionals
in the topological dual of R.

Proposition 3 Let � ∈ R∗ be a positive linear functional of unitary operator norm
and with 〈�, 1〉 = 1. The restriction of � to R1 has a unique extension to R. In
particular, there exists a pair (φ, φ̃) of right-continuous processes with φT + φ̃T = 1
such that the representation (4a) holds true in R.

Proof Let �̃ be the restriction of� toR1. It defines an element ofR∗
1 since for x ∈ R1

∣
∣
∣

〈

�̃, x
〉∣
∣
∣ ≤ ‖x‖R ≤ ‖x‖R1 .

Hence, there exists a pair (φ, φ̃) such that the representation (4a) holds true in R1
for �̃. According to Proposition 2, the representation (4a) extends also to elements
of R while preserving the norm. The proof will be complete after showing that this
extension coincides with �. This is a density argument. For x ∈ R and λ > 0, let
T = inf{t ∈ [0,T] | |xt | > λ}. We have that

P({T < ∞}) ≤ P({x∗ > λ}) ≤ 1

λ
‖x‖R

where the second inequality follows from [7, equation (21.2), p.90]. The process
x̃ := (−λ) ∨ xT ∧ λ is an element of R1. It converges to x in R (here we use the
property of class(D)). Indeed:
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sup
τ∈T

E[|xτ − x̃τ |] ≤ sup
τ∈T

E[|xτ | + |xT |; T < ∞, τ ≥ T ].

Hence, by uniform integrability

lim
λ→∞ sup

τ∈T
E[|xτ − x̃τ |] = 0.

��

3 Partial hedging

Wemodel the discounted price of an asset in a financial market by an F-adapted semi-
martingale S := {St }0≤t≤T whose trajectories are continuous. We assume the market
model is arbitrage-free in the sense that the set of equivalent martingale measures

M = {P∗ ∼ P | S is a local-martingale under P∗}, (6)

is nonempty. For equivalence of the property M �= ∅ and the property of No Free
Lunch with Vanishing Risk we refer to Delbaen and Schachermayer [6]. We denote
by EP∗ [·] the corresponding P∗-expectation. For a non negative adapted process v we
make use of the notation

π(v) := sup
P∈M

sup
τ∈T

EP [vτ ] . (7)

We call toπ(v) the superhedging cost of v. For amotivation of this concept see Föllmer
and Kramkov [9] and references.

We fix a càdlàg non-negative F-adapted process H that will satisfy integrability
conditions introduced below; see (9) and (10). The processH represents the discounted
payoff of an American option. Fix p > 1 and let l : R → R+ be the function defined
by l(x) = 1

p (x+)p where x+ denotes the positive part of x . Note that l is a convex
increasing function with l ′(0) = 0 and

lim
x→∞ l ′(x) = ∞. (8)

The seller of the American option H has a non-negative initial capital c and
might reduce risk by holding another position v. The maximal expected shortfall
risk weighted by the function l is defined by

sup
τ∈T

E[l(Hτ − vτ )].

We assume that the superhedging cost π(H) of the American option H is finite:

π(H) < ∞. (9)

123



Convex duality for partial hedging... Page 7 of 21 40

Moreover, we also assume that for some p′ > p

sup
τ∈T

E[(Hτ )
p′ ] < ∞. (10)

Note that (10) implies that l(H) ∈ R. Let Vc denote the family defined by

Vc := {non negative v ∈ R∞ | π(v) ≤ c}. (11)

It will be convenient to denote by V#
c the elements of Vc where the inequality (11) is

indeed an equality. Thus

V#
c := {v ∈ Vc | π(v) = c} . (12)

Let

P(c) := inf
v∈Vc

sup
τ∈T

E [l (Hτ − vτ )] . (13)

We clearly have that

0 ≤ P(c) < ∞, for c ∈ [0,∞). (14)

The next result says that we can equivalently define the value P(c) in the class V#
c .

The proof is obvious and we omit it.

Lemma 4 The value P(c) defined in equation (13) can equivalently be defined as

P(c) = inf
v∈V#

c

sup
τ∈T

E [l (Hτ − vτ )] . (15)

The following result is a consequence to (5)which holds true inR due to Proposition
2. We use the notation of (4a).

Lemma 5 For c > 0 the value P(c) is invariant if we take K instead of T :

P(c) = inf
v∈V#

c

sup
�∈K

〈�, l (H − v)〉 . (16)

We defined P(c) in terms of the class of processes Vc which are bounded processes.
In general we do not expect the infimum to be attained in Vc. However, this class is
convenient for technical reasons in the convex duality approach and the value P(c)
does not change if we consider more in general non-negative processes with π(v) = c.
This last claim is a corollary to the next proposition. Note that we do not require v to
be an element ofR.

Proposition 6 Let v be a non-negative process. For n ∈ N let vn := v ∧ n. Then

∥
∥l(Hτ − vnτ ) − l(Hτ − vτ )

∥
∥
R ≤ α

√
∥
∥
∥Hp′∥∥

∥
R

β

√

1

n
‖H‖R
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where α := p′
p and β = p′

p′−p > 1 so that 1
α

+ 1
β

= 1.

Proof For τ ∈ T we have

l(Hτ − vnτ ) − l(Hτ − vτ ) =

⎧

⎪⎨

⎪⎩

l(Hτ − n) if n < Hτ ≤ vτ

l ′(Hτ − η)(vτ − vnτ ) if n < vτ ≤ Hτ

0 otherwise

where η is a random variable with vnτ ≤ η ≤ vτ . Hence

l(Hτ − vnτ ) − l(Hτ − vτ ) ≤
{

Hp
τ if n < Hτ

0 otherwise.
(17)

Let α := p′
p and β = p′

p′−p . Then

E[Hp
τ 1{Hτ >n}] ≤ α

√

E[Hp′
τ ] β

√

P[Hτ > n] ≤ α

√

E[Hp′
τ ] β

√

1

n
‖H‖R

where the second inequality holds true due to the estimation in [7, (21.2)]. Thus

E
[

l(Hτ − vnτ ) − l(Hτ − vτ )
] ≤ α

√
∥
∥
∥Hp′∥∥

∥
R

β

√

1

n
‖H‖R.

This inequality proves the proposition. ��
Note that H ∈ R due to (10). Hence P(c) = 0 for c ∈ [π(H),+∞), due to Propo-
sition 6. Moreover, in this case there exists v ∈ R with π(v) = π(H) which can
be written as a stochastic integral with respect to the price process of the underlying
assets. In this generality, the existence of such stochastic integral is a consequence to
the celebrated optional decomposition theorem; see Föllmer and Kramkov [9].

4 Convex duality

ConsiderR andR1 as topological vector spaces with respect to the topology generated
by their respective norms. Let X be the locally convex space defined as the direct sum
R ⊕ R1; see [20, p. 55]. In the topological dual X∗ (weak dual in the terminology of
[20]) we consider the weak-star topology σ(X∗,X). Note that X∗ is a locally convex
topological vector space with respect to σ(X∗,X); see [20, p. 52].

In order to establish the dual problem to P(·) the first task to do is to define a specific
class of elements in X∗. This is done below in subsection 4.1 where dual variables are
defined. In subsection 4.3 we present our main result on convex duality that establishes
the dual problem of P(·); this is Theorem 12. However, before we can formulate this
result a list of definitions are necessary and will take almost all of this section. The
proof of Theorem 12 requires a minimax result for a Lagrangian functional. This is
precisely the purpose of Sect. 5 below.
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4.1 Dual variables

The price process S is a semimartingale and the stochastic integral makes sense. For
a predictable process ξ , integrable with respect to S, we denote by

∫

ξdS the integral.
In this section the next family of processes will be crucial.

Definition 1 Let

X :=
{

c +
∫

ξdS | c ∈ R, ξ predictable and integrable with respect to S

}

∩ R∞.

let M̃ be the class of linear functionals on X constructed in the following way. For
τ ∈ T and a martingale measure Q ∈ M we define a functional � for X ∈ X by

〈�, X〉 := EQ [Xτ ] . (18)

This definition is the initial step in our construction of the dual domain. Indeed, we
are interested in elements of the dualR∗

1 extending such functionals �’s. Actually, we
will consider only positive extensions with operator norm bounded by one.

Definition 2 We denote by M the positive continuous linear functionals defined on
R1 with operator norm bounded by one and such that their restriction to X can be
obtained as in equation (18).

Linear extensions preserving positivity of linear forms is an important topic; see e.g.,
[1] for a systematic presentation. For our purposes we need the following result. The
lemma is essentially an extension result. We cannot use Proposition 2 since here a
change of probability measure appears in the definition of the linear form. Instead, the
proof boils down to an application of a suitable version of the Hahn-Banach theorem.

Lemma 7 The class M is non empty and every element of M is represented. More
precisely, every functional in (18) can be extented to a continuous linear functional in
R1 preserving the norm and positivity.

Proof The proof is based on [1, Theorem 1.27] with the following details. In [1,
Theorem 1.27] take E := R1, F := R, G := X , and define p(x) := supτ∈T E[xτ ]
together with q(x) := p(x+). Furthermore, for x ∈ G, define T (x) by (18), hence
T (x) := EQ[xτ ]. Clearly E and F are Riesz spaces with F Dedekind complete.
Moreover, T is a positive operator dominated from above by p on G.

Although the linear subspaceG is not a Riesz subspace, the inequality T (x) ≤ q(x),
for x ∈ G holds true. Hence, T extends to a positive operator R on all of E by the
implication (3) �⇒ (1) in [1, Theorem 1.27]. The positive operator R satisfies
R(x) ≤ q(x) for x ∈ E , hence, it has a norm less or equal than one. ��
Proposition 8 LetM co be the σ(R∗

1,R1)-closed convex hull ofM . Then, the family
M co is σ(R∗

1,R1)-compact. Moreover, any element ofM co admits a representation
(4a), although not necessarily normalized.
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Proof The closed unit ball B = {x∗ ∈ R∗
1 | ‖x∗‖R∗

1
≤ 1} is σ(R∗

1,R1)-compact due
to Banach-Alaoglu theorem in the form [20, Corollary 4.3 p.84].

The family M co is obviously convex and σ(R∗
1,R1)-closed. Moreover, it is a

subset of B sinceM co ⊂ B. Thus, M co is σ(R∗
1,R1)-compact.

The second claim of the lemma follows from [4, Proposition 1.3]. ��
Now that we obtained the compact set M co through the convex and closed hull of
M , we must verify that we did not enlarged too much. This is the purpose of the next
proposition. This is the only part where we explicitly use the fact that the price process
S is continuous in order to guarantee that all the stochastic integrals of S are locally
bounded.

Proposition 9 For non negative v ∈ R∞ we have

π(v) = sup
�∈M co

〈�, v〉 .

Proof The inequality ≤ is clear. Now we prove equality.
For �0 ∈ M co it holds true that for non-negative v ∈ R∞

〈�0, v〉 ≤ sup
�∈M co

〈�, v〉 = sup
�∈M

〈�, v〉 ,

since �0 is in the σ(R∗
1,R1)-closure of M co. Hence, it is sufficient to show that

sup
�∈M

〈�, v〉 ≤ π(v).

The key issue is that we only have control for a functional � ∈ M in the subspace
X while v is not necessarily in this space. To couple with this, we apply the optional
decomposition theorem [8] in order to obtain a predictable S-integrable process ξ

such that for Y := π(v) + ∫

ξdS it holds true that Y ≥ v. Here again the problem
is that we do not know that Y ∈ X . However, Y is locally bounded and it can be
approximated with elements of X , while � has the necessary continuity properties on
R1. We provide the details.

Let Q be an equivalent local martingale measure of S and τ be a stopping time
such that for X ∈ X the functional � ∈ M is given by 〈�, X〉 = EQ[Xτ ]. Let
{ρn}n∈N be a localizing sequence of stopping times such that P(ρn ≥ T) ↗ 1, and
Y ρn := {Yt∧ρn }t∈[0,T] is bounded. Note that the first property is stronger than the usual
condition limn→∞ ρn = T. In this case, Y ρn ∈ X and we have

〈

�,Y ρn
〉 = EQ[Y ρn

τ ] ≤ π(v).

The functional � is positive and therefore 〈�, vρn 〉 ≤ 〈�,Y ρn 〉. The continuity of �

yields

〈�, v〉 = lim
n→∞

〈

�, vρn
〉 ≤ π(v),
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since the sequence vρn converges to v onR1. Indeed, |v − vρn | = 0 on {ρn ≥ T} and
|v − vρn |∗ ≤ 2 |v|L∞ . ��

Now we are ready to define the dual domain for the dual problem of P(·).

Definition 3 With a slight abuse of notation, let K be the class of quasi-randomized
stopping times introduced in Sect. 2.1, now considered as functionals in R by the
identification in Proposition 3. Let M ⊂ X

∗ be defined by the canonical embedding
of K × M co into X

∗. This means that M consists of linear functionals T : X → R

constructed in the following way. For (�, �) ∈ K×M co let T be the linear functional
defined by T (x, y) := 〈�, x〉+〈�, y〉 for (x, y) ∈ R×R1. It holds true that T ∈ X

∗;
see [20, Theorem 4.3 p.137].

Proposition 10 The weak dual X∗ is algebraically isomorphic with R∗ × R∗
1 and

σ(X∗,X) = σ(R∗,R) × σ(R∗
1,R1). Moreover, the setM is σ(X∗,X)-compact.

Proof The first and second claims about X∗ hold true due to [20, Corollary 1 p.
138]. The family M is compact since it is the product of sets that are compact in
their respective spaces. Specifically, K is compact with respect to σ(R∗,R) by the
identification in Proposition 3, by following the steps in the proof of [4, Theorem 1.1].
The familyM co is compact with respect to σ(R∗

1,R1) due to Proposition 8. ��

4.2 Normal integrands

We recall in this part the concept of a convex normal integrand since it is necessary in
the definition of the dual problem of P(·). Let (�, σ (�)) be a measurable space and T
a topological space. Recall that a set valued mapping (or correspondence) S : � �→ T
is measurable if the inverse image S−1(O) := {ξ ∈ � | S(ξ) ∩ O �= ∅} of every open
set O is σ(�)-measurable. The following concept will be central to the development
in the paper. A function h : � × T → R̄ is a normal integrand if its epigraphical
mapping defined by

epi h(ξ) := {(u, α) ∈ T × R | h(ξ, u) ≤ α},

is closed-valued and σ(�)-measurable. Additionally, if T carries a linear structure
and h is convex in its second argument, h is a normal convex integrand.

We will consider the special case � = � × [0,T] with σ -algebras O or P . In this
case, we say that h is optional (resp. predictable) if epi h is O (resp. P) measurable.

4.3 The dual problem

In Definition 3we presented the classMwhose elements are going to be dual variables
for the dual problem of P(·) and now we introduce functionals acting on them. These
preliminary definitions account for the dual framework in the duality formulated at
the end of this paragraph; see Theorem 12.
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We define a function L : R4 → R̄ by

L(h, v, a, λ) :=
{

al(h − v) + λv if (h, v, a, λ) ∈ R
4+,

∞ otherwise.
(19)

Remark 3 Wewill constantly use the average of� ∈ K and� ∈ M co whichwe denote

by � = (θ, θ̃ ). Thus, if � = (φ, φ̃) and � = (γ, γ̃ ) then θ = φ+γ
2 and θ̃ = φ̃+γ̃

2 .
The density process of φ (resp. φ̃) with respect to θ (resp. θ̃ ) is denoted by Dφ (resp.
Dφ̃). Analogously Dγ (resp. Dγ̃ ) is the density process of γ (resp. γ̃ ) with respect
to θ (resp. θ̃).

For μ = (�, �) ∈ M and λ > 0 we define, with the notation in Remark 3, the

convex normal integrands hμ,λ and h̃
μ,λ

, respectively, by

hμ,λ(ω, t, v) := L (Ht (ω), v, Dφt (ω), λDγt (ω)) , (20)

h̃
μ,λ

(ω, t, v) := L
(

Ht−(ω), v, Dφ̃t (ω), λDγ̃t (ω)
)

. (21)

Let u : R3 → R+ be defined by

u(h, a, λ) := min
v∈R L(h, v; a, λ). (22)

We define the normal integrands:

uμ,λ(ω, t) := u(Ht (ω), Dφt (ω), λDγt (ω)), (23)

ũμ,λ(ω, t) := u(Ht−(ω), Dφ̃t (ω), λDγ̃t (ω)). (24)

We define J∗ : M × R+ → R̄ by

J∗(μ, λ) :=
∫

P(dω)

[∫

[0,T]
uμ,λ(ω, t)θ(ω, dt) +

∫

[0,T]
ũμ,λ(ω, t)θ̃(ω, dt)

]

.

(25)

We also define a ‘dual value function’ by

D(λ) := sup
μ∈M

J∗(μ, λ). (26)

We define the ‘Lagrangian’ � : R∞ × M × R+ → R̄ by

�(v;μ, λ) := δR+∞(v) + 〈�, l(H − v)〉 + λ 〈�, v〉
= δR+∞(v) +

∫

�

P(dω)

[∫

[0,T]
hμ,λ(ω, t, v(ω, t))θ(ω, dt)

+
∫

[0,T]
h̃

μ,λ
(ω, t, v(ω, t))θ̃(ω, dt)

]

, (27)
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here δR+∞(v) is equal to zero if v is an element of R+∞, otherwise it is equal to ∞.

Remark 4 The definition of� introduces a “hard constraint” in the process v. Another
possibility is to consider the functional in (27) without δR+∞(). This second definition
also introduces constraints through the definition of L but only up to the functional
μ. Note however that the definition (27) is more natural and will be important in the
proof of Proposition 11 below.

The proof of the next proposition is based on the interchange rule [16, Theorem
11] for convex integrals of càdlàg processes. This proposition provides a crucial step
for the proof of Theorem 12 below.

Proposition 11 For μ ∈ M, and λ > 0 fixed, we have

J∗(μ, λ) = inf
v∈R∞

�(v;μ, λ) = inf
v∈R+∞

�(v;μ, λ). (28)

Proof We do an application of the interchange rule [16, Theorem 11] , and for this,
we verify its conditions. For unexplained notation see [16].

We start with [16, Assumption 3] . The process θ seen as a random measure is
clearly optional. The function hμ,λ must be an optional convex normal integrand.
Convexity follows directly from the convexity of l. The set-valued mapping epi h is
closed-valued due to the continuity of the function L . Now we check measurability
with respect to O let O be an open set of R2 and let Õ := O ∩ Q

2. We have

(epi hμ,λ)−1(O) = (epi hμ,λ)−1(Õ),

due to the continuity of L . The right-hand side of the equality is a countable union of
sets of the form

{(ω, t) | L (Ht (ω), v, Dφt (ω), λDγt (ω)) ≤ α}, for (v, α) ∈ Õ,

which clearly is optional.
[16, Assumption 3] requires that the mapping (t, v) → hμ,λ(ω, t, v) satisfy [16,

Assumption 1] for ω /∈ N and N a null event. To verify this condition we must
introduce a few notation. For ω ∈ � let St (ω) = {v ∈ R | v ∈ cl dom hμ,λ(ω, t, ·)}
where dom hμ,λ(ω, t, ·) = {v | hμ,λ(ω, t, v) < ∞}. It is clear that St (ω) = R+. Let
moreover, D(S)(ω) denote the class of right continuous,with finite left limits functions
y in the interval [0,T]which are selections of S(ω), so y(t) ∈ St (ω) for all t ∈ [0,T].
Note that D(S)(ω) consists of all non negative right continuous, with finite left limits
functions. For the first part of [16, Assumption 1] take q ∈ Q+ and define the constant
function yq(t) := q. Then yq ∈ D(S)(ω) and St (ω) = cl{yq(t)} for all t ∈ [0, T ].
The second part of [16, Assumption 1] holds easily as well, but requires to introduce
the following notation. Let B(ω) = {y ∈ D(S)(ω) | ∫[0,T] h

μ,λ(ω, t, y(t))θ(ω, dt) <

∞}. It is easy to see that B(ω) = D(S)(ω), which implies the second part of [16,
Assumption 1]. The final part of [16, Assumption 3], holds true trivially since hμ,λ is
non negative. The verification of [16, Assumption 3] is now complete. The verification

123



40 Page 14 of 21 A. Perkkiö, E. Treviño-Aguilar

of [16, Assumption 4] is similar. We only verify the first part of [16, Assumption 5],
since the verification of the second part is similar. Take v ∈ R∞ with

∫

P(dω)

[∫

[0,T]
hμ,λ(ω, t, v(ω, t))θ(ω, dt)

]

< ∞.

It suffices to show that

∫

P(dω)

[∫

[0,T]
h̃

μ,λ
(ω, t, v−(ω, t))θ̃(ω, dt)

]

< ∞.

This follows from

∫

P(dω)

[∫

[0,T]
h̃

μ,λ
(ω, t, v−(ω, t))θ̃(ω, dt)

]

≤ ‖l(H)‖R + λ ‖v‖R∞ .

The conditions of [16, Theorem 11] have been established. As a consequence we
see that

inf
v∈R∞ �(v;μ, λ) = E

[∫

[0,T]
inf
v∈Rh

μ,λ(v)dθ

]

+ E

[∫

[0,T]
inf
v∈R h̃

μ,λ
(v)d θ̃

]

.

To conclude the proof, note that

E

[∫

[0,T]
inf
v∈Rh

μ,λ(v)dθ

]

+ E

[∫

[0,T]
inf
v∈R h̃

μ,λ
(v)d θ̃

]

= J∗(μ, λ),

and this yields the last equality in (28). ��
Theproof of the next theorem is distributed inSects. 5 and6.The results inAppendix

7 are also necessary and of independent interest.

Theorem 12 The function P(·) is convex and continuous. The functions D and P are
conjugate to each other:

D(λ) = inf
c>0

{P(c) + λc} (29)

P(c) = sup
λ>0

{D(λ) − λc}. (30)

Moreover, for λ > 0 fixed, there exists μ∗ ∈ M such that D(λ) = J∗(μ∗, λ).

Remark 5 We justify here the expression “The functions D and P are conjugate to
each other”. For the concepts of proper and closed convex functions see [19]. Recall
that the Legendre-Fenchel transform of a function f is given by

f ∗(y) = sup
x

{xy − f (x)}
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where x and y are elements of an Euclidean space. Let

P̃(x) :=
{

P(x) for x ≥ 0
+∞ otherwise.

It is clear that P̃ is a proper function. It is convex and closed by Theorem 12. It is easy
to see that

P̃∗(λ) =
{

supx≥0{λx − P̃(x)} for λ ≤ 0
+∞ otherwise.

Then D(λ) = −P̃∗(−λ) for λ > 0.

5 Aminimax identity

In this section we work with �, defined in (27). More precisely, we work with the
restriction of � to the set R+∞, and we continue with the same notation �. Our main
goal here is to prove a minimax identity which is going to be crucial for the proof of
Theorem 12. To this end, we start with the necessary preliminaries in order to apply
Sion’s minimax theorem [21].

Lemma 13 For λ > 0 fixed, (v;μ) → �(v;μ, λ) is convex in v and concave in
μ ∈ M.

Proof It is clear that � is convex in v by the convexity of l. It is linear in μ so it is
concave. ��
Lemma 14 For μ ∈ M, λ > 0 fixed, �(·, μ, λ) is lower-semicontinuous with respect
to the norm inR∞.

Proof For α ∈ R the lower level set

A := {v ∈ R+∞ | �(v;μ, λ) ≤ α}

is closed with respect to the norm of R∞. Indeed, let {vn}n∈N be a sequence in A
converging to v with respect to the norm in R∞. Note that v must be an element of
R+∞. Let μ be given by the pair (�, �). We claim that l(H− vn) converges to l(H− v)
inR. Then

lim
n→∞

〈

�, l(H − vn)
〉 = 〈�, l(H − v)〉 ,

since � is a continuous linear functional in R. Analogously

lim
n→∞

〈

�, λvn
〉 = 〈�, λv〉 ,
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since vn converges to v also with respect to the norm in R1 and � ∈ R∗
1. As a

consequence v ∈ A.
Now we verify the claim. Take ε > 0. We have for τ ∈ T

E[|l(Hτ − vτ ) − l(Hτ − vnτ )|] ≤ l(ε) + E[l ′(Hτ )|vnτ − vτ |1{Hτ ≥ε}].

Let α := p′
p and β = p′

p′−p . Similarly to the arguments in the proof of Proposition 6,
we have

E[l ′(Hτ )|vnτ − vτ |1{Hτ ≥ε}] = E

[

Hp
τ

|vnτ − vτ |
Hτ

1{Hτ ≥ε}
]

≤ 1

ε
E

[

Hp
τ |vnτ − vτ |1{Hτ ≥ε}

]

≤ 1

ε

α

√

E[Hp′
τ ] β

√

E
[|vnτ − vτ |β

]

≤ 1

ε

α

√
∥
∥
∥Hp′∥∥

∥
R

∥
∥vn − v

∥
∥
R∞ .

Hence

∥
∥l(H − v) − l(H − vn)

∥
∥
R ≤ l(ε) + 1

ε

α

√

‖H‖p′
R

∥
∥vn − v

∥
∥
R∞ .

This last inequality proves the claim. The proof of the lemma is complete. ��
Lemma 15 For v ∈ R+∞, λ > 0 fixed, �(v; ·, λ) is σ(X∗,X)-continuous.

Proof For v ∈ R+∞ and λ > 0 fixed the functional �(v, ·, λ) is an evaluation at
(l(H − v), λv) ∈ X. Thus, from the definition of the weak star topology it follows
continuity. ��

After the preliminary results, the next proposition follows from Sion’s minimax
theorem [21].

Proposition 16 For λ > 0 fixed, the following equality holds true

inf
v∈R+∞

max
μ∈M�(v;μ, λ) = max

μ∈M inf
v∈R+∞

�(v;μ, λ).

The next result shows how the minimax equality in Proposition 16 is connected to
the value function P(·) and how it traces the way to duality.

Proposition 17 For λ fixed, we have

inf
v∈R+∞

max
μ∈M�(v;μ, λ) = inf

c>0
{P(c) + λc}.

Proof It is clear that

inf
v∈R+∞

sup
μ∈M

�(v;μ, λ) = inf
c>0

inf
v∈V#

c

sup
μ∈M

�(v;μ, λ).
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For v ∈ V#
c fixed, we have

sup
�∈M co

〈�, v〉 = c,

due to Proposition 9. Then

sup
μ∈M

�(v;μ, λ) = sup
�∈K

〈�, l(H − v)〉 + λ sup
�∈M co

〈�, v〉

= sup
�∈K

〈�, l(H − v)〉 + λc.

Therefore,

inf
v∈R+∞

sup
μ∈M

�(v;μ, λ) = inf
c>0

{P(c) + λc},

due to Lemma 4. ��

6 Conclusion of the proof of Theorem 12

We are ready to conclude the proof of Theorem 12.

Proof For λ fixed we have

D(λ) = sup
μ∈M

inf
v∈R+∞

�(v;μ, λ) (31)

= inf
v∈R+∞

�(v;μ∗, λ), for some μ∗ ∈ M, (32)

= J∗(λ, μ∗), (33)

where (31) follows from the interchange rule in Proposition 11, (32) from the min-
imax equality in Proposition 16 and (33) follows again from the interchange rule in
Proposition 11.

We also have by the minimax equality of Proposition 16 that

D(λ) = inf
v∈R+∞

sup
μ∈M

�(v;μ, λ).

This equality together with Proposition 17 yields

D(λ) = inf
c>0

{P(c) + λc}.

Thus, D is conjugate to P . The function P is a convex continuous function; see
Lemma 18 and Proposition 20. Then, the function P is conjugate to D as well; see
Rockafellar [19, Theorems 7.1 and 12.2]. ��
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7 A Convexity and continuity of the value function P(·)
Lemma 18 The value function P(·) is convex.
Proof Take α ∈ (0, 1) and c1, c2 ∈ R+. For ε > 0 there exists vi ∈ Vci such that

sup
τ∈T

E
[

l
(

Hτ − viτ
)]

≤ P(ci ) + ε, for i = 1, 2,

due to (14). Let c3 := αc1 + (1 − α)c2 and v3 := αv1 + (1 − α)v2. It is clear that
v3 ∈ Vc3 . We have

P(c3) ≤ sup
τ∈T

E
[

l
(

Hτ − v3τ
)]

≤ α sup
τ∈T

E
[

l
(

Hτ − v1τ
)]

+ (1 − α) sup
τ∈T

E
[

l
(

Hτ − v2τ
)]

≤ αP(c1) + (1 − α)P(c2) + ε,

where in the second inequality we have used the convexity of the function l. Taking
the limit as ε decreases to zero, we obtain the convexity of the function P(·). ��

The convexity property of P(·) yields local Lipschitz continuity on (0, π(H)), see
Rockafellar [19, Theorem 10.4]. In Proposition 20 below we prove continuity up to
the boundary. We need the preliminary Lemma 19 below which is a result due to [22,
Lemma 8], but here we need a different formulation.We need a preliminary definition.

Definition 4 Let Yn be a sequence of positive processes. Then, the sequence Fatou
converges to a positive process Y if there is a countable dense subsetT of [0,T] such
that

Yt = lim inf
s↘t,s∈T

lim inf
n→∞ Yn

s

= lim sup
s↘t,s∈T

lim sup
n→∞

Yn
s

Lemma 19 requires a strong uniform integrability condition but it changes lim inf in
[22, Lemma 8] to lim which indeed is useful.

Lemma 19 (Lemma 8 in [22]) Let Y n be a sequence of non negative martingales
Fatou converging to a process Y . Assume that the sequence is uniformly bounded by
a constant k in that ‖Yn‖R∞ ≤ k. Then, there exists a countable set K ⊂ [0,T) such
that for t ∈ [0,T]\K we have Yt = limn→∞ Yn

t a.s.

Proof [22, Lemma 8] yields the existence of a set K 1 ⊂ [0,T) such that for t ∈
[0,T]\K 1 we have Yt = lim infn→∞ Yn

t a.s. Now define Zn
t := k−Yn

t . It is clear that
Zn is a non negativemartingale. It is also clear that Zn Fatou converges to k−Y . Hence,
there exists K 2 ⊂ [0,T) such that for t ∈ [0,T]\K 2 we have Zt = lim infn→∞ Zn

t a.s.
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which implies Yt = lim supn→∞ Yn
t a.s. To conclude the proof define K = K 1 ∪ K 2.

��
Proposition 20 The function P(·) is continuous in the interval [0, π(H)].
Proof We only need to prove continuity for c ∈ {0, π(H)}.

We start with c = 0. Let {cn}n∈N be a sequence decreasing to zero.
Let ṽ(n) be a non negative process with π(ṽ(n)) = cn and such that P(cn) + 1

n >

supτ∈T E[l(Hτ − ṽτ (n))]. Without loss of generality, we assume that ṽ(n) = cn +
∫

ξndS and then it is a P
∗-local martingale for each n and P

∗ ∈ M; see eg., [2,
Corollary 3.5].

For m ∈ N we define w̃(n,m) := ṽ(n) ∧ m. The processes w̃(n,m) continue to
be non negative P

∗-local martingales and being uniformly bounded by m they are
martingales. According to Proposition 6 for m sufficiently large we also have

P(cn) + 1

n
> sup

τ∈T
E[l(Hτ − w̃τ (n,m))].

There are convex combinations w(n,m) ∈ conv 〈w̃(n,m), w̃(n + 1,m), . . .〉 Fatou-
converging to a non-negative càdlàg process w(m); see [9, Lemma 5.2]. In this case,
there exists a dense countable set D ⊂ [0,T] such that for t ∈ D we have wt (m) =
limn→∞ wt (n,m) due to Lemma 19. In particular, for a stopping time τ taking a finite
number of values in D and P

∗ ∈ M

EP∗ [wτ (m)] ≤ lim inf
n→∞ EP∗ [wτ (n,m)] ≤ lim inf

n→∞ cn = 0.

As a consequence

π(w(m)) = 0.

Thus,

P(0) ≤ sup
τ∈T

E[l(Hτ − wτ (m))]. (34)

Let τ̂ be a stopping time taking a finite number of values in D and ε-optimal in the
following sense

sup
τ∈T

E[l(Hτ − wτ (m))] ≤ ε + E[l(Hτ̂ − wτ̂ (m))].

For τ̂ we have

E[l(Hτ̂ − wτ̂ (m))] = E[ lim
n→∞ l(Hτ̂ − wτ̂ (n,m))]

≤ lim inf
n→∞ E[l(Hτ̂ − wτ̂ (n,m))]

≤ lim inf
n→∞ P(cn),
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where in the first equality we have used that wt (m) = limn→∞ wt (n,m) for t ∈ D.
Hence

sup
τ∈T

E[l(Hτ − wτ (m))] ≤ ε + lim inf
n→∞ P(cn). (35)

As a consequence we see that

P(0) ≤ lim inf
n→∞ P(cn),

due to equations (34) and (35). This yields the continuity of P at zero.
For c0 = π(H) note that P(c0) = 0, since we can take v = H. Let {cn}n∈N be a

sequence increasing to c0. Let vn := cn
c0
H. Then vn ∈ Vcn and

0 = P(c0) ≤ P(cn) ≤ sup
τ∈T

E
[

l
(

Hτ − vnτ
)]

.

For any stopping time τ

0 ≤ E[l(Hτ − vnτ )] ≤
(

1 − cn
c0

)

E[l(Hτ )],

due to the convexity of l. As a consequence

sup
τ∈T

E
[

l
(

Hτ − vnτ
)] ≤

(

1 − cn
c0

)

sup
τ∈T

E[l(Hτ )].

We have proved the continuity of P at π(H). ��
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