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Abstract
It follows from Michael’s selection theory that a closed convex nonempty-valued mapping
from the Sorgenfrey line to a euclidean space is inner semicontinuous if and only if the
mapping can be represented as the image closure of right-continuous selections of the map-
ping. This article gives necessary and sufficient conditions for the representation to hold for
càdlàg selections, i.e., for selections that are right-continuous and have left limits. The char-
acterization is motivated by continuous time stochastic optimization problems over càdlàg
processes. Here, an application to integral functionals of càdlàg functions is given.
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1 Introduction

The celebrated Michaels’ selection theorem [4, Theorem 3.2”] characterizes in a 1 topo-
logical space the property of paracompactness through the existence of a continuous
selection for each mapping which is convex closed valued in a fixed
Banach space and satisfies the minimal continuity condition of inner-semicontinuity (this
was called lower semicontinuity in [4]). Once the existence of a continuous selection is
established it is natural to ask if

cl y y

where is the set of selections of which are continuous with respect to . For this
representation problem, [4, Lemma 5.2] provides a positive answer for perfectly normal
topological spaces and separable Banach spaces.
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For the applications of stochastic processes and the construction of paths with specific
properties, the case 0 for 0 and is relevant. Take a a convex closed-
valued mapping 0 . Consider the euclidean topology in relativized to
0 and assume that is inner-semicontinuous. Then [4, Theorem 3.2”] guarantees
the existence of a continuous selection of and [4, Lemma 5.2] a representation with
continuous selections. Applied to the Sorgenfrey arrow topology relativized to 0 and
assuming that is inner-semicontinuous, gives the representation

cl y y

where denotes the family of selections of which are continuous with respect to
. Continuous functions in are right-continuous in the usual sense.
In many applications of stochastic processes it is usual to work with paths lying between

continuous and right-continuous paths, namely, with right continuous paths having left lim-
its (abrv. càdlàg). In this case, the mapping having a representation with càdlàg selections
will satisfy other properties beyond inner-semicontinuity with respect to a given topology.
The aim of this article is to formulate and characterize an equivalent property for a mapping
having a representation with càdlàg selections.

Our motivation comes from continuous time stochastic optimization, especially stochas-
tic singular control. In a series of articles, Rockafellar studied continuous selections and
integral functionals of continuous functions and gave applications to convex duality in opti-
mal control and in problems of Bolza; see the review article [12]. The article [6] builds
on Rockafellars results and studies the stochastic setting of “regular” stochastic processes.
Here, we extend the theoretical background to a deterministic setting with càdlàg functions.
This forms a starting point of the companion paper [9] that deals with integral functionals
of general càdlàg stochastic processes and allows us to go beyond the scope of [6]. The
follow-up paper [10] gives applications to finance and stochastic singular control.

The rest of the article is organized as follows. In Section 2, we introduce notations,
assumptions and basic concepts. Specially, here we formulate the main assumption that
allows us to obtain existence of càdlàg selections and a representation of through them;
see Assumption 1. In this same section we formulate our main result, the Theorem 2. In
Section 3, we prove that the conditions in Theorem 2 are necessary for a representation of
a mapping in terms of its càdlàg selections. The most relevant part being that a represen-
tation with càdlàg selections implies Assumption 1. In Section 4, we show that coincides
outside a countable set with its mapping of left limits. This result will allow us to obtain a
càdlàg selection which is continuous outside a countable set depending only on the map-
ping. In Section 5, we prove two results that yield the sufficiency in Theorem 2, these results
are Theorem 9 and Proposition 10. In Section 6, we illustrate with examples our main result,
Theorem 2. In Section 7, we give an application to integral functionals of càdlàg functions.

2 Notations andMain Theorem

Let be the open unit ball of , 0, and D the class of càdlàg functions y 0
. We denote by the topology on generated by the intervals of the form with

, and by the topology on generated by the intervals . Throughout the article,
we fix a convex-valued mapping 0 and use the notation for the value of
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at 0 . This notation is non-standard in set-valued analysis but common in the theory
of stochastic processes. The set

dom 0

is the domain of . Throughout the article, we will assume that has a full domain in the
sense that its domain is the whole 0 .

The set D is the class of functions y D such that y for all 0 .
In other words, D is the class of càdlàg selections of . In this article, our main result
establishes an equivalent condition for the validity of the representation

cl y y D . (1)

We call (1) the càdlàg representation of . If the representation holds, Proposition 10 below
shows that there exists a countable family y of càdlàg selections with

cl y .

If this representation holds for selections that are merely measurable, we arrive at a Castaing
representation of ; see, e.g., [13]. Hence, we obtain a Castaing representation with càdlàg
functions.

In the next definition we recall inner-semicontinuity that is necessary for the representa-
tion (1). Example 1 below shows it is not sufficient.

Definition 1 A mapping is inner-semicontinuous with respect to the relative topology
in 0 , if for each open , the set

1 0

is the intersection of 0 with a -open set, or briefly, it is relatively -open. This
property will be denoted by -isc.

Example 1 The mapping 0 defined for 0 by sin 1
and 2 shows that the property in Definition 1 is not sufficient for the representation
(1). Indeed, is -isc but (1) fails.

As suggested by the previous example, left sided limits of a mapping are an essential
element to the characterization of the representation (1). They are defined as follows. For a
mapping 0 let 0 0 and

lim inf
N

lim inf

where the limits are in the sense of [13, Section 5.B] and the intersection is over all strictly
increasing sequences converging to . Consistent with 0 0 we define for a
càdlàg function y the left limit y 0 0.

We state a basic property of which follows directly from its definition. It is however
quite useful and we formulate it as a lemma for reference. Note the roles of 1 and 1.

Lemma 1 Assume the mapping has a full domain. Let be open with 1

. For 1 0 there exists 0 such that 1 .

Proof Assume for a contradiction that an strictly increasing sequence 0
1 exists converging to . Take and 0 such that 2 .
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Then and there is no sequence with converging to , a
contradiction with the definition of .

We show in Lemma 7 below that dom 0 , where dom denotes the domain of
, is sufficient for the existence of selections of the “ -fattening” . We call selections

of the -fattening as -selections. Note that the mapping in Example 1 fails this property
since is empty at . For actual selections we verify in Proposition 3 below that the stronger
property of the next assumption is necessary. In Theorem 9 and Proposition 10 we will
prove it is also sufficient.

Assumption 1 For every 0 and bounded open set ,

1 for some 0 at .

The assumption rules out “oscillations from the left”. For instance, the wildly oscillating
mapping in Example 1 does not satisfy the above assumption.

Remark 1 Note that Assumption 1 implies 1 cl , but 1 does not need
not hold. Indeed, defining

0 1 for 0 1

2 for 1

and choosing 0 1 , we have 1 0 1 while 1 1 and 1 1 cl .
Note that has the representation (1).

The next theorem is the main result of the article. For clarity, we repeat the standing
assumption that has a full domain. Without this assumption, it is absurd to ask for a
Castaing representation since selections need not exist at all. The necessity is established in
Proposition 3 while the sufficiency is obtained from Theorem 9 and Proposition 10.

Theorem 2 Assume that is closed convex-valued with full domain. Then

cl y y D

if and only if is -isc, has full domain and Assumption 1 holds. In this case,

cl y y D continuous on 0 1

where 1 is the countable set defined by

1 0 .

3 Necessity of the càdlàg Representation

It is clear that the càdlàg representation (1) implies that is a closed-valued mapping with
full domain and that is -isc. Furthermore, must have full domain. It is less obvious
that the representation (1) yields Assumption 1.

Proposition 3 If the representation (1) holds, then satisfies Assumption 1.
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Proof Take 0 and an open set . Assume that 1 for some
0. For denote by D the càdlàg selections y D with the

further property that y for . Define the set

D .

Claim: is non-empty and for sup we have . After the claim there exists a
càdlàg function y D with y for . Then, y where

proving the proposition.
Now we verify the claim. Take and 0 such that . Let y

be such that y . There exists 0 such that y
for since y is right continuous. Then, y showing
that . Thus, is nonempty. Now assume that , let y D .
By the same argument as before we can find a function g D with g for

and some 0. Thus, with function y1 0 g1 ,
contradicting the definition of . Hence and the proof is complete.

4 Inner-semicontinuity from the Left and Right

In this section we assume that is -isc and closed-valued. We show that is equal to
except for a countable set. In particular , being a -isc mapping is also isc from both sides,
or more precisely -isc, except for a countable set. This property will allow us to obtain a
càdlàg selection which is continuous outside a countable set depending only on .

We start with the next lemma showing that is a subset of for outside a countable
set depending only on .

Lemma 4 The set

1 0 .

is countable.

Proof Let be a countable family of open sets generating the euclidean topology of .
For all 1 there exists with and a strictly increasing sequence

such that cl . We check this claim. By way of contradiction assume that
for each with it happens that for each strictly increasing sequence
there exists 0 such that for we have cl . Let us check that in this
case we have . To this end, take . For 0 let be such that
and cl . For a sequence there exists 0 such that for we have
cl . Thus, it is possible to construct a sequence converging to with

. Hence lim inf . It follows that since the sequence was arbitrary.
Now assume for a contradiction that 1 is uncountable. Then, there exists an infinite

subset 0 1 and such that for all 0. Moreover, there exists a
point 0 0 and a strictly decreasing sequence 0 converging from the right
to 0, since 1 is uncountable. To verify the latter elementary fact, if there are no right limit
points of 1 then for each 1 there exists 0 such that 0
and 1 . This produces a summable uncountable series of strictly positive
numbers which is impossible.
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As a consequence, for each there exists a strictly increasing sequence con-
verging to with cl , and 1 . Hence 1 0

while cl 1 and 0 , in contradiction to being -isc.

The next lemma has similar proof to Lemma 4 and can be skipped.

Lemma 5 The set 0 is countable.

Proof Let be a countable family of open sets generating the euclidean topology of .
For all in the set 0 there exists with while
cl . Assume for a contradiction that the set 0 is uncountable.
Then there exists an infinite subset 0 and such that for all 0 we have
and moreover there exists 0 0 that is approximated from the left by an increasing
sequence 0. Then, for large enough we have since 0 .
This is a clear contradiction with the properties of which is equal to for 0.

The following is an immediate consequence of the above two lemmas.

Corollary 6 The set 0 is countable.

5 Sufficiency of the càdlàg Representation

The domain of includes 0 1 which is the complement of a countable set by Lemma
4. In the next lemma we assume that has full domain and show that it is already strong
enough for -selections. Note that we do not require to be closed-valued.

Lemma 7 Assume is convex valued and -isc, and that has full domain. Then, for
each 0 there exists a càdlàg selection of that is continuous on 0 1.

Proof For 0 1, take . There exists 0 such that
0 and 1 due to the fact that is -isc and also by Lemma
1 since 1. Hence, the function y 1 is a local continuous selection of

.
For 1 0 there exists since has full domain and there exists 1 0

such that 1 0 and for 1 since is -isc.
Considering that has full domain take . There exists 2 0 such that 2

1 0 due to Lemma 1. The function y 1 2 1 1 is a
local càdlàg selection of .

For 0 we can construct by similar arguments a local continuous selection. For
a local selection exists that will be continuous or càdlàg according to 1 or 1.

The constructed intervals define an open covering (in the relative euclidean topology
) of the interval 0 . There exists a -continuous partition of unity subordinated to

a locally finite subcovering from which a global càdlàg selection is generated with the
required property of continuity outside 1.

Lemma 7 provides -selections. For selections we require the stronger condition,
Assumption 1. We need a preliminary result.
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Lemma 8 Assume is -isc. Let g be a càdlàg selection of which is continuous in
0 1. Let g . Take 0 1. Then for each and 0
there exists 0 such that 0 and

g for .

Proof Take 1 with 0, and . Let 0 be such that g .
For let 1 0 be such that 1 0 and for 1 we have
g g . There exists 2 0 1 such that 2

1 due to
Lemma 1, since .

For 2 let 1 g and 2 g g . Then 2
g 1 showing that

g

which completes the proof.

The next result is a Michael selection theorem for càdlàg functions. Its proof proceeds
by induction just like the proof [4, Theorem 3.2”], which is the original Michael selection
theorem.

Theorem 9 Assume that is a -isc convex-valued mapping with full domain, and that
has a full domain. Then, under Assumption 1, there exists a càdlàg selection of cl which
is continuous on 0 1.

Proof Let 0 1 and 1
2 1. By Lemma 7, there exists a càdlàg selection y1 of

1 continuous outside 1. Assume y1 y have been constructed with the following
properties:

y is a selection of y 1 2 1 2 3

y is a selection of

y is continuous outside 1.

Now we construct a function satisfying (a)-(c) for 1. This will produce a sequence
y converging under the uniform norm. Hence, it converges to a càdlàg function y D
which is continuous outside 1. The function y is then a selection of cl .

Let 1 y . The mapping 1 is -isc since it is the intersection of
-isc mappings; see Lemma 16. It is clearly convex valued. Moreover, dom 1 0

since y is a selection of .
Take 0 1 and 1. Let 1

2 1. There exists 1 0 such that
1 0 and y for 1 , due to Lemma 8. There

exists 2 0 such that 2 and 1 for 2 , since 1

is -isc. Hence, for 1 2 we have 0 and for there exist
, 1 3 , 2 such that

1 y 2 3.

Thus, 1 y 2 . As a consequence, the function y 1 1
is a local continuous selection of 1 and y 2 .

Now take 1 0 . Let 1
3 1 and 1 y . There exists

1 0 such that 1 0 and 1
1

1 since y is a selection of .
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Hence, there exists 1 since satisfies Assumption 1. There exists 2 1 such
that for 2 we have

1

due to Lemma 1 and we can select 2 so that y y for 2 . Thus,
1 y 2 for 2 . Take 1. There exists 3 0

such that 3 and 3
1 1 due to the fact that 1 is -isc.

Let 2 3 and define a function y 1 on by y 1 1 2 1 3 .
It is clear that y 1 is a local càdlàg selection of

1
1 and y 2 . For 0

we can construct local selections by similar arguments.
The constructed intervals 0 define an open covering (in the relative euclidean

topology ) of the interval 0 . There exists a -continuous partition of unity subordi-
nated to a locally finite subcovering from which a global selection y 1 can be produced by
pasting together the local selections.

Now we establish the sufficiency in Theorem 2.

Proposition 10 Assume that is a -isc closed convex-valued mapping with full domain,
and that has full domain. Under Assumption 1, there exists a countable family y
D of càdlàg selections which are continuous in 0 1 and for 0

cl y .

Proof If 1 we take a selection y D continuous outside 1 from which we can
easily construct a sequence y D by modifying y at such that y is
dense in . This settles down the representation for in case 1.

Let be a countable dense subset of . Take 1
2

for and

for . Assume that 1 is non empty. The set is open
in (relativized to 0 ) and can be expressed as a countable union of intervals of the
form . Indeed, is hereditary Lindelöf and can be written as the countable union
of intervals 0 and each of these intervals can themselves be written as the
countable union of intervals . If we distinguish two cases. If 1 then
can be taken as an element of an interval due to Lemma 1. In this case, we will
consider the representation (i) with , thus, no interval collapses
to a point. In the second case and 1 and we consider the representation (ii)

with and 1. Hence, on both cases we do not
consider trivial intervals and 1.

Now take an interval with and 1. We fix the
notation 0 . Let be the mapping defined by

for

for .

It is simple to verify that the mapping is convex valued, has full domain, and that it is
-isc.
We verify Assumption 1 and that has full domain. Let 0 and 0 be such

that 1 for an open subset of . For there exists 0
such that so in this interval and we have , hence
Assumption 1 is clearly satisfied in . Take now . There exists 0
such that and for we have that
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Michael Selections and Castaing Representations...

so by Assumption 1 we have is non
empty at . Thus, satisfies Assumption 1 and dom 0 .

The set is included in 1. Indeed, for there exists 0 such that
so and . Hence, whenever 1. Take now

1 and . Let 0 be such that . Note that
since 1 and then . There exists 0 such that for we

have due to Lemma 1, since . Hence, at
by Assumption 1. Given that was arbitrary, we deduce that . Hence . This
proves the claim.

Hence, there exists a càdlàg selection of cl continuous outside 1, due to Theorem 9.
From this one derives the existence of a selection y D with y 2
for , and the continuity in 0 1.

If 1 it is easy to verify that the required representation holds with the countable
family y 2 D . Analogously, if 1, consider the family y
y 2 D .

6 Examples

In this section we give examples of mappings having the representation (1). For the first
two examples we prove directly the representation and then conclude that the mapping in
the examples satisfy Assumption 1. For the last two examples, we verify Assumption 1 and
conclude the representation (1).

The mapping is said to be right-outer semicontinuous (right-osc) if its graph is closed
in the product topology of and the usual topology on . The mapping is right-
continuous (càd) if it is both right-isc and right-osc. Left-outer semicontinuous (left-osc)
and left-continuous (càg) mappings are defined analogously. We say that has limits from
the left (làg) if, for all ,

lim inf lim sup

where the limits are in the sense of [13, Section 5.B] and are taken along strictly increasing
sequences.Having limits from the right (làd) is defined analogously. A mapping is càdlàg
(resp. càglàd ) if it is both càd and làg (both càg and làd).

In the following theorem, the distance of to is defined, as usual, by

inf

where the distance of two points is given by the euclidean metric.

Proposition 11 Let 0 be a càdlàg nonempty closed-convex valued mapping.
For every , the function y defined by

y arg min

satisfies y D and

y arg min .

In particular,

cl y y D
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and is càglàd nonempty convex-valued with

cl y y D .

Proof Since is closed-convex valued, by the strict convexity of the distance mapping, the
argmin in the definition of y exists and is unique; see [13, Thm. 2.6]. By [13, Proposition
4.9], y is càd. Take 0 . On the other hand, for every strictly increasing ,

, so y is làg, by [13, Proposition 4.9] again.
Next we show

y argmin .

Since is làg, we get that the left continuous version of y denoted y is a selection of
, so the inequality y is trivial. For the other direction, assume for

a contradiction that y for some 0 . There is such that
y for all . By the definition of , this means that

y argmin

for some , which is a contradiction. The claims cl y y D and
cl y y D are now immediate while is càglàd due to [13, Exercise

4.2].

For the next example recall that is solid if for each 0 the set is equal to
the closure of its interior. For a closed-convex valued mapping, this property is equivalent
to int for all 0 ; see [13, Example 14.7]. Recall also our convention that for
a function y we set y 0 0.

Proposition 12 Let 0 be a closed convex-valued solid mapping with
full domain and -isc. Assume that has full domain. If is also solid then has a
representation (1). In this case

cl y y D 0 .

Proof We first show that D . For 0 and int , there exists 0 such
that for since is -isc and solid. Indeed, let be a finite set of
points in int such that belongs to the interior of the convex hull co . Let 0 be
small enough so that co whenever, for every , . Since is -isc,
there is, for every , such that for every . Denoting

min , we have, by convexity of , that

for every . (2)

Now assume 0 and take int . We now show the existence of such that

for every . (3)

Assume for a contradiction the existence of such that . Let int be
1 points and 0 such that for any points , and co . By

the definition of as a left-limit, there exists 0 such that for all 0 there exists
with for 1 1. Then, co and this last set is

included in by convexity. Then, , a contradiction.
After the preliminary preparations showing the existence of (2) and (3), we construct

local selections of that can be pasted together through a partition of unity as we have done
in the proof of Lemma 7 and of Theorem 9.
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To prove cl y y D , the inclusion is clear. Now take int and
as in (3) and y D . Defining

y

we get the remaining inclusion.

In the next examples we verify that Assumption 1 is satisfied. Then the representation
(1) holds by Theorem 2.

Proposition 13 Let 0 be continuous with respect to . Assume 0. Let
be the mapping defined by 0 . Then satisfies Assumption 1.

Proof Let be an open set with for . Let inf . It is
clear that for we have , otherwise . From the inequality

is easy to verify that at . Indeed, take an increasing sequence . For each
, there exists . Hence showing that

lim inf .

Proposition 14 Let 0 be two càdlàg functions with . Let be the
mapping defined by . Then satisfies Assumption 1.

Proof We only show that satisfies Assumption 1, since the other assumptions are easier
to verify. Let be an open set with for . Let inf cl

and inf . We claim that lim from which the
proposition follows.

The set cl is easily seen to be non empty, so is well defined. Now
we verify that lim inf . Take . Then, lim inf
lim inf . Moreover, lim sup lim sup lim sup . It is clear that cl so
lim inf cl . Hence, lim inf cl and then lim inf .
Now we show that lim sup . There are two cases, in the first . Then,

and lim sup . In the second, . Let 0 0 be such
that for 0 0 we have and and

1

2

1

2
.

Now fix 0 0 . We easily verify that for where is such
that 3 and 3. Hence implying that

.

7 An Application to Integral Functionals

In this section we develop an interchange rule for integral functionals of càdlàg functions
which builds on the the representation (1). Interchange rules go back to the seminal paper
of [11] in decomposable spaces of -valued measurable functions and are fundamental in
obtaining convex duality in calculus of variations and optimal control; see, e.g., [12] or [5]
for a more recent application . The interchange rule proved here is a starting point for the
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companion paper [9] where integral functionals of càdlàg stochastic processes are analyzed
in detail. Further applications are given in the follow-up paper [10].

A function 0 is a normal integrand on 0 if its epigraphical
mapping epi 0 defined by

epi

is closed-valued and measurable. When this mapping is also convex-valued, is a con-
vex normal integrand. A general treatment of normal integrands on can be found from
[13, Chapter 14] while integrands on a Suslin space are systematically presented in [2]. In
particular, a normal integrand is jointly measurable so that the integral functional with
respect to a nonnegative Radon measure on 0 given by

y
0

y

is well-defined for any measurable y 0 . As usual in convex analysis, an
integral is defined as unless the positive part is integrable. For a normal integrand

0 the domain mapping is defined by dom ,
its image closure is

cl dom

and

D y D y 0

is the set of càdlàg selections of .
In the next assumption we collect the necessary conditions in order to obtain the inter-

change rule of Theorem 15. In particular, we require a representation of the mapping in
terms of its càdlàg selections. As we have know, Theorem 2 gives necessary and sufficient
conditions for the mapping to have such a representation.

Assumption 2 Assume is a nonnegative Radon measure and is a convex normal
integrand 0 such that

cl y y D (4)

D cl dom D

where the latter closure is with respect to pointwise convergence. This means that for each
y D there exists a sequence y 1 dom D converging pointwise to y.

The following theorem is variant of the main theorem in [8] that established a similar
interchange rule for integral functionals of continuous functions. In that context, the first
condition in Assumption 2 is simply the original Michaels representation while the second
condition is analyzed in detail in [7].

Theorem 15 Under Assumption 2,

inf
y D 0

y
0

inf

as soon as the left side is less than .
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Proof We have D cl dom D and D is PCU-stable in the sense of [1], so,
by [1, Theorem 1],

inf
y D 0

y
0

inf

where is the essential supremum of D , i.e., the smallest (up to a -null set) closed-
valued mapping for which every y D is a selection of -almost everywhere. It
remains to show that -almost everywhere, since then the infimum over can be
taken instead over all of .

It suffices to show that, for every closed ball cl with radius 1 2 , we have
cl cl -almost everywhere. Thus we may assume that and are

compact-valued. Assume for a contradiction that satisfies 0. Let
and . Since and

are compact convex-valued,

.

Since 0, and rationals vectors are countable, there exists such that
0. Since is Radon, passing to a subset if necessary, we may assume that

is closed and still of positive measure. For every there exists y D such that
y . By right-continuity, there exists such that

y .

Now is an open cover of in the -relative right half-
open topology of 0 . The topology clearly is separable and it is shown in [14] to be
paracompact. Hence it is Lindelöf by [3, Theorem VIII.7.4]. Since is closed and the
topology is Lindelöf, there exists a countable subcover .
Since 0, -additivity of implies that 0 for some . But,
for every , y , which contradicts that every y D is a
selection of -almost everywhere.

Appendix

The following result is a special case of [4, Proposition 2.5].

Lemma 16 Let 1 2 0 be -isc mappings. Let 0. Then, the mapping
1 2 is also -isc.

Proof Let be an open set of , then

1 0 1 2

0 2 1

where . Hence 1 is -open.
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