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Abstract The shadow price of information has played a central role in stochastic
optimization ever since its introduction by Rockafellar and Wets in the mid-seventies.
This article studies the concept in an extended formulation of the problem and gives
relaxed sufficient conditions for its existence. We allow for general adapted decision
strategies, which enables one to establish the existence of solutions and the absence of
a duality gap e.g. in various problems of financial mathematics where the usual bound-
edness assumptions fail. As applications, we calculate conjugates and subdifferentials
of integral functionals and conditional expectations of normal integrands.We also give
a dual form of the general dynamic programming recursion that characterizes shadow
prices of information.
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1 Introduction

Let (�,F , P) be a probability space with a filtration (Ft )
T
t=0 and consider the multi-

stage stochastic optimization problem

minimize Eh(x) over x ∈ N , (SP)

where N = {(xt )Tt=0 | xt ∈ L0(�,Ft , P;Rnt )} denotes the space of decision strate-
gies adapted to the filtration, h is a convex normal integrand on R

n × � and

Eh(x) :=
∫

�

h(x(ω), ω)dP(ω)

is the associated integral functional on L0 := L0(�,F , P;Rn). Here and in what fol-
lows, n = n0+· · ·+nT and L0(�,F , P;Rn) denotes the linear space of equivalence
classes ofRn-valuedF-measurable functions. As usual, two functions are equivalent if
they are equal P-almost surely. Throughout, we define the expectation of ameasurable
function as +∞ unless its positive part is integrable.

Problems of the form (SP) have been extensively studied since their introduction
in the mid 70’s; see [18,19,21]. Despite its simple appearance, problem (SP) is a very
general format of stochastic optimization. Indeed, various pointwise (almost sure)
constraints can be incorporated in the objective by assigning f the value +∞ when
the constraints are violated. Several examples can be found in the above references.
Applications to financial mathematics are given in [9–11].

Our formulation of problem (SP) extends the formulation of [21], where Eh was
minimized over the space

N∞ := N ∩ L∞

of essentially bounded adapted strategies. Here and in what follows, L∞ :=
L∞(�,F , P;Rn). Allowing for general decision strategies x ∈ N , we can relax
many of the assumptions of [21] while still obtaining the existence of optimal strate-
gies and their scenario-wise characterization as in [21].

Our approach is to analyze the value function φ : L∞ → R,

φ(z) := inf
x∈N

Eh(x + z)

in the conjugate duality framework of Rockafellar [18]. Being the infimal projection
of a convex function, φ is a convex function on L∞. Clearly φ(0) is the optimum
value of (SP) while in general, φ(z) gives the optimum value that can be achieved in
combination with an essentially bounded possibly nonadapted strategy z. We assume
throughout that φ(0) is finite and that Eh is proper on L∞.

The space L∞ is in separating duality with L1 := L1(�,F , P;Rn) under the
bilinear form

〈z, v〉 := E(z · v).
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Shadow price of information in discrete… 349

A v ∈ L1 is said to be a shadow price of information for problem (SP) if it is a
subgradient of φ at the origin, i.e., if

φ(z) ≥ φ(0) + 〈z, v〉 ∀z ∈ L∞,

or, equivalently, if it solves the dual problem

minimize φ∗(v) over v ∈ L1,

where

φ∗(v) = sup
z∈L∞

{〈z, v〉 − φ(z)}

is the conjugate of φ. Clearly, φ(0) + infv∈L1 φ∗(v) ≥ 0. If the inequality is strict, a
duality gap is said to exist.

The following result, the proof of which is given in the “Appendix”, shows that
the shadow price of information has the same fundamental properties here as in [21]
where strategies were restricted to N∞. In particular, it shows that the dual problem
can be written as

minimize Eh∗(v) over v ∈ N⊥, (DSP)

where h∗ is the normal integrand conjugate to h and

N⊥ := {v ∈ L1 | 〈z, v〉 = 0 ∀z ∈ N∞}.

Recall that the recession function of a closed proper convex function g is given by

g∞(x) = sup
α>0

g(x̄ + αx) − g(x̄)

α
,

where x̄ ∈ dom g; see [14, Corollary 3C]. We define the function h∞ scenario-wise
by h∞(·, ω) = h(·, ω)∞. By [25, Exercise 14.54], h∞ is a normal integrand.

Theorem 1 We have φ∗ = Eh∗ + δN⊥ . In particular, the following are equivalent
for a v ∈ L1:

(a) v is a shadow price of information,
(b) v solves the dual problem and there is no duality gap,
(c) v ∈ N⊥ and the optimum value of (SP) equals inf x∈L∞ E[h(x) − x · v],
(d) v ∈ N⊥ and the optimum value of (SP) equals inf x∈L0 E[h(x) − x · v].
In this case, an x ∈ N is optimal if and only if Eh(x) < ∞ and it minimizes the
function x �→ h(x, ω) − v(ω) · x almost surely. There is no duality gap, in particular,
if

{x ∈ N | h∞(x) ≤ 0 P-a.s.}
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350 T. Pennanen, A.-P. Perkkiö

is a linear space and there exists v ∈ N⊥ such that Eh∗(λv) < ∞ for two different
values of λ ∈ R. Moreover, in this case, the primal optimum is attained and

φ∞(z) = inf
x∈N

Eh∞(x + z).

The linearity condition in terms of h∞ holds in particular if dom h(·, ω) is bounded
for P-almost every ω. Indeed, we then have h∞(x, ω) = ∞ unless x = 0, so {x ∈
N | h∞(x) ≤ 0 P-a.s.} = {0}. The condition involving λ, holds in particular if the
normal integrand h is bounded from below by some integrable function m since then,
h∗(0, ω) ≤ −m(ω), so the condition is satisfied with v = 0. These conditions are
clearly implied by Assumption C of [21] where the sets dom h(·, ω) are uniformly
bounded and there exists an integrable function μ such that |h(x, ω)| ≤ μ(ω) for
every x ∈ dom h(·, ω).

The notion of a shadow price of information first appeared in a general single period
model in Rockafellar [18, Example 6 in Section 10] and Rockafellar and Wets [20,
Section 4]. Extension to finite discrete time was given in [21]. Continuous-time exten-
sions have been studied in Wets [29], Back and Pliska [2], Davis [5] and Davis and
Burstein [6] under various structural assumptions.

The shadow price of information has been found useful e.g. in duality theory and in
deriving optimality conditions in general parametric stochastic optimization problems;
see e.g. [2,3,22]. It is the basis for the “progressive hedging algorithm” introduced in
[26]. The shadow price of information is useful also in subdifferential calculus involv-
ing conditional expectations; see [23] and Sect. 4.2 below. As a further application,
we give a dual formulation of the general dynamic programming recursion from [21]
and [7]; see Sect. 5.

The main result of this paper, Theorem 2 below, gives new generalized sufficient
conditions for the existence of a shadow price of information for problem (SP). Its
proof is obtained by extending the original argument of [21] and by relaxing some of
the technical assumptions made there. We will use the notation xt := (x0, . . . , xt ) and
we denote the conditional expectation with respect to Ft by Et .

Assumption 1 For every z ∈ dom Eh ∩ L∞ and every t = 0, . . . , T , there exists
ẑ ∈ dom Eh ∩ L∞ with Et zt = ẑt .

Assumption 1 relaxes the assumptions of [21]. Indeed, Assumptions C and D of
[21] require the existence of a μ ∈ L1 such that |h(x, ω)| ≤ μ(ω) for all x ∈
dom h(·, ω) and that the sets dom h(·, ω) are closed, uniformly bounded and that
the projection mappings ω �→ {xt | x ∈ dom h(·, ω)} are Ft -measurable for all t .
The following example gives more general conditions in the spirit of the “bounded
recourse condition” given in [24].

Example 1 (Bounded recourse condition) Let Br be the Euclidean unit ball of radius
r . Assumption 1 holds if for every r > 0 large enough, there exists β ∈ L1 such that
the projection mappings Dt

r (ω) := {xt | x ∈ dom h(·, ω) ∩Br } are closed-valued and
Ft -measurable, and that

h(x, ω) ≤ β(ω) ∀x ∈ dom h(·, ω) ∩ Br . (1)
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Shadow price of information in discrete… 351

Indeed, if z ∈ dom Eh ∩ L∞, then there exists r > 0 and β ∈ L1 satisfying the
above conditions together with z ∈ dom h ∩ Br almost surely. By Jensen’s inequality
(see e.g. [9, Corollary 2.1] or Remark 2 in Sect. 4.2 below), the Ft -measurability
and closed-valuedness of Dt

r (ω) imply that Et zt ∈ Dt
r almost surely as well. By the

measurable selection theorem (see [25, Corollary 14.6]), there exists a ẑ ∈ L0 such
that ẑt = Et zt and ẑ ∈ dom h ∩ Br almost surely. The upper bound β now gives
Eh(ẑ) < ∞.

We will also use the following assumption where ‖ · ‖ denotes the essential
supremum norm of L∞ and L is the linear subspace of L∞ generated by the set
dom Eh ∩ L∞ − x̄ , where x̄ ∈ dom Eh ∩ L∞. Note that L = aff dom Eh ∩ L∞ − x̄ ,
where “aff” stands for the affine hull of a set. Throughout, the strong topology refers
to the norm topology of L∞.

Assumption 2 The function Eh is strongly continuous at a point of N∞ relative to
aff dom Eh ∩ L∞. There exists ρ ∈ R such that, for every z ∈ N∞ + L, there exist
x ∈ N∞ and w ∈ L with z = x + w and ‖w‖ ≤ ρ‖z‖.

Assumption 2 is implied by (1) and the strict feasibility condition assumed in [21,
Theorem 2]. Indeed, these conditions imply that Eh is strongly continuous at a point
ofN∞ and, in particular, that dom Eh contains an open ball of L∞ so that L = L∞.
One can then simply take x = 0, so Assumption 2 holds with ρ = 1.

Recall that a convex function is continuous at a point if and only if it is bounded
from above on a neighbourhood of the point; see e.g. [1, Theorem 5.43]. A sufficient
condition for the relative continuity of Eh is given in Theorem 4 below. The second
condition of Assumption 2 holds ifL andN∞ +L are both strongly closed, since then
N∞+L is a Banach space, so the condition holds by [27, Theorem 5.20]. In particular,
the second condition holds automatically for finite � since affine sets in a Euclidean
space are closed. A sufficient condition for the closedness of L in the general case is
given in Theorem 4. In the single-period case where T = 0, the second property of
Assumption 2 is implied by Assumption 1. Indeed, if z = x + w for x ∈ N∞ and
w ∈ L, then z = (x + E0w) + (w − E0w), where ‖w − E0w‖ = ‖z − E0z‖ ≤ 2‖z‖
and, by Assumption 1, E0w ∈ L.

Combining Lemmas 1 and 2 and Theorem 3 below gives the following extension
of [21, Theorem 2].

Theorem 2 Under Assumptions 1 and 2, shadow price of information exists.

The rest of this paper is organized as follows. Section 2 proves Theorem 3. In
order to clarify the structure and its logic, we have split the proof in three statements
of independent interest. Section 3 gives a sufficient conditions for relative continuity
of integral functionals and for Assumption 2. Section 4 applies the main results to
calculate conjugates and subdifferentials of integral functionals. Section 5 develops
a dynamic programming recursion for the dual problem, by applying the results of
Sect. 4.
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352 T. Pennanen, A.-P. Perkkiö

2 Proof of Theorem 2

Given a function g on L∞, we denote its closure by clg := g∗∗ and its subdifferential
(i.e. the set of subgradients) at x ∈ L∞ by ∂g(x), both defined with respect to the
pairing of L∞ with L1. Accordingly, all topological properties on L∞ refer to the
weak topology generated by L1, unless otherwise specified.

The proof of Theorem 2 is largely based on analyzing the auxiliary value function
φ̃ : L∞ → R defined by

φ̃(z) = inf
x∈N∞ Eh(x + z).

Here decision strategies are restricted to be essentially bounded like in [21]. Clearly,
φ̃ is convex and φ̃ ≥ φ.

Lemma 1 We have cl φ̃ = cl φ. If ∂φ̃(0) is nonempty, then ∂φ̃(0) = ∂φ(0).

Proof As shown in the proof of Theorem 1, φ̃∗ = φ∗ which is equivalent to
cl φ̃ = cl φ. If ∂φ̃(0) �= ∅, then φ̃(0) = cl φ̃(0) so φ̃(0) = φ(0), since we always have
φ̃ ≥ φ ≥ cl φ. Thus, v ∈ ∂φ̃(0) if and only if v ∈ ∂φ(0). �

To prove Theorem 2, it suffices, by Lemma 1, to show that φ̃ is subdifferentiable at
the origin.Wewill do this as in [21], by first establishing the existence of a subgradient
v̄ of φ̃ with respect to the pairing of L∞ with its Banach dual (L∞)∗, and then using v̄

to construct another subgradient of φ̃ which belongs to L1. The first step is established
by the following (purely functional analytic) lemma, the proof of which is given in
the “Appendix”.

Lemma 2 Under Assumption 2, φ̃ is strongly subdifferentiable at the origin.

By [30], any v ∈ (L∞)∗ can be expressed as v = va + vs where va ∈ L1 and
vs ∈ (L∞)∗ is such that there is a decreasing sequence of sets Aν ∈ F such that
P(Aν)↘0 and

〈z, vs〉 = 0

for any z ∈ L∞ that vanishes on Aν .

Theorem 3 Under Assumption 1, φ̃ is subdifferentiable (resp. closed) at the origin if
and only if it is strongly subdifferentiable (resp. strongly closed) at the origin.

Proof Clearly, subdifferentiability (resp. closedness) implies strong subdifferentiabil-
ity (resp. closedness). Strong closedness of φ̃ at the origin means that φ̃(0) = φ̃∗∗(0),
i.e. that for every ε > 0 there is a v ∈ (L∞)∗ such that φ̃(0) ≤ −φ̃∗(v) + ε, or
equivalently,

φ̃(w) ≥ φ̃(0) + 〈w, v〉 − ε ∀w ∈ L∞

⇐⇒ Eh(x + w) ≥ φ̃(0) + 〈w, v〉 − ε ∀w ∈ L∞, x ∈ N∞

⇐⇒ Eh(z) ≥ φ̃(0) + 〈z − x, v〉 − ε ∀z ∈ L∞, x ∈ N∞,
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which means that v ⊥ N∞ and

Eh(z) ≥ φ̃(0) + 〈z, v〉 − ε ∀z ∈ L∞. (2)

Similarly, φ̃ is strongly subdifferentiable at the origin if and only if v ⊥ N∞ and (2)
holds with ε = 0.

We will prove the existence of a v ⊥ N∞ which has vs = 0 and satisfies (2) with
ε multiplied with 2T+1. Similarly to the above, this means that φ is closed (if (2)
holds with all ε > 0) or subdifferentiable (if ε = 0) at the origin with respect to the
weak topology. The existence will be proved recursively by showing that if v ⊥ N∞
satisfies (2) and vst ′ = 0 for t ′ > t (this does hold for t = T as noted above), then there
exists a ṽ ⊥ N∞ which satisfies (2) with ε multiplied by 2 and ṽst ′ = 0 for t ′ ≥ t .

Thus, assume that vst ′ = 0 for t ′ > t and let ε̄ > 0 and x̄ ∈ N∞ be such that
φ̃(0) ≥ Eh(x̄)− ε̄. Combining this inequality with (2) and noting that 〈x̄, v〉 = 0, we
get

Eh(z) ≥ Eh(x̄) + 〈z − x̄, v〉 − ε − ε̄ ∀z ∈ L∞.

Let z ∈ dom Eh ∩ L∞ and let ẑ be as in Assumption 1. By Theorem 10 in the
“Appendix”,

Eh(z) ≥ Eh(x̄) + 〈z − x̄, va〉 − ε − ε̄, (3)

and (since ẑ ∈ dom Eh ∩ L∞)

0 ≥ 〈ẑ − x̄, vs〉 − ε − ε̄. (4)

Since ẑt = Et zt and vst ′ = 0 for t ′ > t , by assumption, (4) means that

0 ≥
t∑

t ′=0

〈Et zt ′ − x̄t ′ , v
s
t ′ 〉 − ε − ε̄.

Each term in the sum can be written as 〈zt ′ − x̄t ′ , A∗
t ′v

s
t ′ 〉, where A∗

t ′ denotes the adjoint
of the linear mapping At ′ : L∞(�,F , P;Rnt ′ ) → L∞(�,F , P;Rnt ′ ) defined by
At ′xt ′ := Et xt ′ . Moreover, since v ⊥ N∞, we have A∗

t vt = 0 so, in the last term,
A∗
t v

s
t = −A∗

t v
a
t . By the tower property of the conditional expectation, A

∗
t v

a
t = Etv

a
t .

Thus, combining (4) and (3) gives

Eh(z) ≥ Eh(x̄) + 〈z − x̄, ṽ〉 − 2ε − 2ε̄,

where

ṽt ′ =

⎧⎪⎨
⎪⎩

vat ′ + A∗
t ′v

s
t ′ for t ′ < t,

vat − Etv
a
t for t ′ = t,

vt ′ for t ′ > t.
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We still have ṽ ∈ N⊥ but now ṽst ′ = 0 for every t ′ ≥ t as desired. Since ε̄ > 0
was arbitrary and 〈x̄, ṽ〉 = 0, we see that ṽ satisfies (2) with ε multiplied by 2. This
completes the proof since z ∈ dom Eh ∩ L∞ was arbitrary. �

In summary, Assumption 2 implies, by Lemma 2, the existence of a strong subgra-
dient of φ̃ at the origin. By Theorem 3, Assumption 1 then implies ∂φ̃(0) �= ∅ so by
Lemma 1, ∂φ(0) �= ∅, which completes the proof of Theorem 2.

It is clear that, in the above proof of Theorem 2, Assumption 2 could be replaced
by the more abstract requirement that φ̃ be strongly subdifferentiable at the origin.
Assumption 2 is merely a sufficient condition for this.

3 Relative continuity of integral functionals

If Eh is closed proper and convex with aff(dom Eh ∩ L∞) closed, then Eh is con-
tinuous on rints(dom Eh ∩ L∞), the relative strong interior of dom Eh ∩ L∞ (recall
that the relative interior of a set is defined as its interior with respect to its affine hull).
Indeed, the closedness of aff dom Eh ∩ L∞ implies that it is a translation of a Banach
space, and then Eh is strongly continuous relative to rints(dom Eh ∩ L∞); see e.g.
[18, Corollary 8B].

The following result gives sufficient conditions for aff dom Eh to be closed (not just
strongly but weakly) and rints(dom Eh∩L∞) to be nonempty. Its proof is obtained by
modifying the proof of [17, Theorem 2] which required, in particular, that aff dom h =
R
n almost surely. Recall that the set-valued mappings ω �→ dom h(·, ω) and ω �→

aff dom h(·, ω) aremeasurable; see [25, Proposition 14.8 and Exercise 14.12]. Given a
measurable mapping D : � ⇒ R

n , we will use the notation L p(D) := {x ∈ L p | x ∈
D P-a.s.}.
Theorem 4 Assume that the set

D = {x ∈ L∞(dom h) | ∃r > 0 : Br (x) ∩ aff dom h ⊆ dom h P-a.e.}

is nonempty and contained in dom Eh. Then Eh : L∞ → R is closed proper and
convex, aff(dom Eh ∩ L∞) is closed and rints(dom Eh ∩ L∞) = D. In particular,
Eh is strongly continuous throughout D relative to aff(dom Eh ∩ L∞).

Proof Translating, if necessary, we may assume 0 ∈ D so that L∞(aff dom h) ⊆
∪λ>0λD ⊆ affD. By assumption,

D ⊆ dom Eh ∩ L∞ ⊆ L∞(dom h) ⊆ L∞(aff dom h),

so aff D = aff(dom Eh∩L∞) = aff L∞(dom h) = L∞(aff dom h)which is a closed
set. Thus, the above also implies

rints D ⊆ rints(dom Eh ∩ L∞) ⊆ rints L
∞(dom h).

Clearly rints L∞(dom h) ⊆ D while rints D = D. It remains to prove that Eh is
closed and proper.

123



Shadow price of information in discrete… 355

Let r̄ > 0 be such that Br̄ (0) ∩ aff dom h ⊆ rint dom h almost surely (here, the
relative interior is taken scenario-wise with respect to the usual Euclidean topology)
and let π(ω) be the orthogonal projection of Rn to aff dom h(·, ω). Let xi ∈ Br̄ (0),
i = 0, . . . , n and r > 0 be such that Br (0) is contained in the convex hull of {xi | i =
0, . . . , n}. By [25, Exercise 14.17], πx is measurable for every measurable x , so each
πxi belongs to D and thus,

α := max
i=0,...,n

h(πxi )

is integrable. Since 0 ∈ rint dom h almost surely, the closed convex-valued map-
ping ω �→ ∂h(0, ω) is nonempty-valued ([16, Theorem 23.4]) and measurable ([25,
Theorem 14.56]). Thus, by [25, Corollary 14.6], it admits a measurable selection
w ∈ L0(∂h(0)). We also have y := πw ∈ L0(∂h(0)), so h∗(y) ≤ −h(0) and thus,
Eh∗(y) < ∞. Moreover, by Fenchel’s inequality and convexity of h,

r |y(ω)| = sup
x∈Br (0)

{y(ω) · x}

= sup
x∈Br (0)

{w(ω) · π(ω)x}

≤ sup
x∈Br (0)

h (π(ω)x, ω) − h(0, ω)

≤ sup
i=0,...,n

h
(
π(ω)xi , ω

)
− h(0, ω)

≤ α(ω) − h(0, ω).

Thus, y ∈ L1 so Eh is closed and proper, by [15, Theorem 2]. �

Remark 1 Under the assumptions of Theorem 4, Eh is subdifferentiable throughout
Dwith respect to the pairing of L∞ with L1. Indeed, the proof of Theorem 4 constructs
a y ∈ L1 with y ∈ ∂h(x) almost surely, which implies y ∈ ∂Eh(x).

Example 2 The extension of the strict feasibility condition of [17, Theorem 2] in
Theorem 4 is needed, for example, in problems of the form

minimize Eh0(x) over x ∈ N∞

subject to Ax = b P-a.s.,

where h0 is a convex normal integrand such that h0(x, ·) ∈ L1 for every x ∈ R
n , A

is a measurable matrix and b is a measurable vector of appropriate dimensions such
that the problem is feasible. This fits the general format of (SP) with

h(x, ω) =
{
h0(x, ω) if A(ω)x = b(ω),

+∞ otherwise.
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The integrability of h0 implies that aff dom h = dom h almost surely and D = {x ∈
L∞ | Ax = b P-a.s.} = dom Eh. The conditions of Theorem 4 are then satisfied but
the strict feasibility assumption of [17, Theorem 2] fails unless D = L∞.

Corollary 1 LetD be as in Theorem 4 and assume thatN∞ ∩D �= ∅. Then Assump-
tion 2 holds if and only if N∞ + L is strongly closed.

Proof By Theorem 4, the assumptions imply the first property in Assumption 2 and
that L is strongly closed. By [27, Theorem 5.20], the closedness of N∞ + L implies
the existence of a ρ > 0 in Assumption 2. The converse has been proved in [31].
We reproduce here the simple argument. Let (zν) be a Cauchy sequence inN∞ +L.
Passing to a subsequence, we may assume that ‖zν − zν−1‖ ≤ C/2ν for some C > 0.
By Assumption 2, there exist ρ > 0, xν ∈ N∞ andwν ∈ Lwith zν − zν−1 = xν +wν

and ‖wν‖ ≤ ρ‖zν − zν−1‖. It follows that w̄μ := ∑μ
ν=1 wμ and x̄μ := ∑μ

ν=1 x
μ

converge strongly to some w̄ and x̄ , respectively, whose sum equals the limit of (zν).
The closedness of L and N∞ then implies the closedness of N∞ + L. �

4 Calculating conjugates and subgradients

This section applies the results of the previous sections to calculate subdifferentials
and conjugates of certain integral functionals and conditional expectations of normal
integrands.

4.1 Integral functionals on N∞

Let f be a convex normal integrand such that E f is proper on N∞. The space N∞
is in separating duality with N 1 := N ∩ L1 under the bilinear form

〈x, v〉 := E(x · v).

We will use the results of the previous section to calculate the conjugate and the
subdifferential of E f with respect to this pairing.

If x ∈ N∞ and v ∈ L1(∂ f (x)), then E f (x ′) ≥ E f (x) + 〈x ′ − x, v〉 for all
x ′ ∈ N∞, so

aL1(∂ f (x)) ⊆ ∂E f (x), (5)

where aL1(∂ f (x)) := {av | v ∈ L1(∂ f (x)) P-a.s.}. Here and in what follows av

denotes the adapted projection of a v ∈ L1, that is, (av)t = Etvt .
The following theorem gives sufficient conditions for (5) to hold as an equality.

Theorem 5 Assume that x∗ ∈ N 1 is such that the function φ̃x∗ : L∞ → R,

φ̃x∗(z) := inf
x∈N∞ E

[
f (x + z) − (x + z) · x∗]
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is closed at the origin. Then

(E f )∗(x∗) = inf
v∈N⊥

E f ∗ (
x∗ + v

)
.

If φ̃x∗ is subdifferentiable at the origin, then the infimum over N⊥ is attained. If this
holds for every x∗ ∈ ∂E f (x) with x ∈ N∞, then

∂E f (x) = aL1(∂ f (x)).

Proof When φ̃x∗ is closed at the origin, (E f )∗(x∗) = −φ̃x∗(0) = −clφ̃x∗(0) =
inf y∈L1 φ̃∗

x∗(y). For any v ∈ N⊥,

(E f )∗(x∗) = sup
x∈N∞

{〈x, x∗〉 − E f (x)}
= sup

x∈N∞
E{x · (x∗ + v) − f (x)}

≤ E sup
x∈Rn

{x · (x∗ + v) − f (x)}
= E f ∗(x∗ + v)

so the conjugate formula holds trivially unless φ̃x∗ is proper. When φ̃x∗ is proper
then E f is proper on L∞ as well and φ̃∗

x∗(y) = E f ∗(x∗ + y) + δN⊥(y) exactly like
in the proof of Theorem 1. The second claim follows from the identity ∂φ̃x∗(0) =
argminy∈L1 φ̃∗

x∗(y); see e.g. [18, Corollary 12B].

Assume now that φ̃x∗ is subdifferentiable at the origin for x∗ ∈ ∂E f (x). Then the
infimum in the expression for (E f )∗(x∗) is attained and E f (x)+(E f )∗(x∗) = 〈x, x∗〉,
so there is a v ∈ N⊥ such that E[ f (x) + f ∗(x∗ + v)] = E[x · (x∗ + v)], and thus
x∗ + v ∈ ∂ f (x) almost surely. Clearly, x∗ = a(x∗ + v). Thus, ∂E f (x) ⊇ aL1(∂ f (x))
while the reverse inclusion is given in (5). �

The results of Sect. 2 provide global conditions that imply the local conditions in
Theorem 5.

Corollary 2 If f satisfies Assumptions 1 and 2, then

(E f )∗(x∗) = inf
v∈N⊥

E f ∗ (
x∗ + v

) ∀x∗ ∈ N 1

where the infimum is attained, and

∂E f (x) = aL1(∂ f (x))

for every x ∈ N∞.

Proof Let x∗ ∈ N 1. Since dom E f ∩ N∞ �= ∅, we have φ̃x∗(0) < ∞. If φ̃x∗(0) =
−∞, then φ̃x∗ is trivially closed at the origin. Assume now that φ̃x∗(0) > −∞. The
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assumed properties of f imply that Assumptions 1 and 2 are satisfied by h(x, ω) :=
f (x, ω)− x · x∗(ω) and that Eh is continuous at a point ofN∞ relative to aff dom h∩
L∞. By Lemma 2 and Theorem 3, φ̃x∗ is subdifferentiable at the origin. If x∗ ∈
∂(E f )(x), Fenchel’s inequality φ̃x∗(0) ≥ E[ f (x) − x · x∗] ≥ −(E f )∗(x∗) implies
φ̃x∗(0) > −∞. The assumptions of Theorem 5 are thus satisfied. �

Without the assumptions of Corollary 2, inclusion (5) may be strict. The following
simple example is from page 176 of [23]: Let T = 0, n = 1, F0 = {�,∅} (so
that N∞ may be identified with R) and f (·, ω) = δ[(−∞,ξ(ω)], where ξ is a random
variable uniformly distributed on [0, 1]. One then has E f = δR− so ∂E f (0) = R+
but ∂ f (0) = {0} almost surely so aL1(∂ f (x)) = {0}. Here dom E f = {x ∈ L∞ | x ≤
0 P-a.s.}, so Assumption 2 is satisfied but Assumption 1 fails because ξ ∈ dom E f
but E0ξ /∈ dom E f .

4.2 Conditional expectation of a normal integrand

Results of the previous section allow for a simple proof of the interchange rule for
subdifferentiation and conditional expectation of a normal integrand. Commutation of
the twooperations has been extensively studied ever since the introduction of the notion
of a conditional expectation of a normal integrand in Bismut [4]; see Rockafellar and
Wets [23], Truffert [28] and the references therein. The results of the previous section
allow us to relax some of the continuity assumption made in earlier works.

Given a sub-sigma-algebra G ⊆ F , the G-conditional expectation of a normal
integrand f is a G-measurable normal integrand EG f such that

(EG f )(x(ω), ω) = EG[ f (x(·), ·)](ω) P-a.s.

for every x ∈ L0(�,G, P;Rn) such that either the positive part f (x)+ or the negative
part f (x)− of f (x) is integrable. If dom E f ∗ ∩ L1 �= ∅, then the conditional expec-
tation exists and is unique in the sense that if f̃ is another function with the above
property, then ˜f (·, ω) = (EG f )(·, ω) almost surely; see e.g. [28, Corollary 2.1.2].

The G-conditional expectation of an F-measurable set-valued mapping S : � ⇒
R
n is a G-measurable closed-valued mapping EGS such that

L1(G; EGS) = cl{EGv | v ∈ L1(S)}.

The conditional expectation is well-defined and unique as soon as S admits at least
one integrable selection; see e.g. [28, Section 2.1.1]. In this case, the support function
of EGS is the G-conditional expectation of the support function of S. This is a special
case of Theorem 7 below.

The general form of “Jensen’s inequality” in the following lemma is from [28,
Corollary 2.1.2]. We give a direct proof for completeness.

Lemma 3 If f is a convex normal integrand such that dom E f ∩ L∞(G) �= ∅ and
dom E f ∗ ∩ L1 �= ∅, then

(EG f )∗(EGv) ≤ EG f ∗(v)
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almost surely for all v ∈ L1 and

∂(EG f )(x) ⊇ EG∂ f (x)

for every x ∈ dom E f ∩ L0(G).

Proof Fenchel’s inequality f ∗(v) ≥ x · v − f (x) and the assumption that dom E f ∩
L∞(G) �= ∅ imply that EG f ∗(v) iswell-defined for all v ∈ L1. To prove the first claim,
assume, for contradiction, that there is a v ∈ L1 and a set A ∈ G with P(A) > 0 on
which the inequality is violated. Passing to a subset of A if necessary, we may assume
that E[1AEG f ∗(v)] < ∞ and thus,

E[1A(EG f )∗(EGv)] > E[1AE
G f ∗(v)] = E[1A f ∗(v)].

This cannot happen since, by Fenchel’s inequality

E[1A f ∗(v)] ≥ sup
x∈L∞(G)

E1A[x · EGv − (EG f )(x)] = E[1A(EG f )∗(EGv)],

where the equality follows by applying the interchange rule in L∞(A,G, P;Rn).
Given v ∈ L1(∂ f (x)), we have

f (x) + f ∗(v) = x · v

almost surely. Let Aν = {‖x‖ ≤ ν} so that1Aν x is bounded. Since dom E f ∗∩L1 �= ∅,
Fenchel’s inequality implies that1Aν f (x) integrable. Taking conditional expectations,

1Aν EG f (x) + 1Aν EG f ∗(v) = 1Aν x · EGv,

so by the first part,

1Aν (EG f )(x) + 1Aν (EG f )∗(EGv) ≤ 1Aν x · EGv,

which means that EGv ∈ ∂(EG f )(x) almost surely on Aν . This finishes the proof
since ν was arbitrary. �

Remark 2 If in Lemma 3, f is normal G-integrand, then the inequality can be writ-
ten in the more familiar form f ∗(EGv) ≤ EG f ∗(v). It is clear from its proof that
Lemma 3 remains valid if we replace L∞(G) by L1(G) and L1 by L∞ throughout.
More generally, one could replace L∞(G) by U ∩ L0(G) and L1 by Y , where U and
Y are decomposable spaces such that x · y ∈ L1 for all x ∈ U and y ∈ Y .

The following gives sufficient conditions for the inequalities in Lemma 3 to hold
as equalities.
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Theorem 6 Let f be a convex normal integrand such that dom E f ∩ L∞(G) �= ∅
and dom E f ∗ ∩ L1 �= ∅. If x∗ ∈ L1(G) is such that the function φ̃ : L∞ → R,

φ̃(z) := inf
x∈L∞(G)

E[ f (x + z) − (x + z) · x∗]

is subdifferentiable at the origin, then there is a v ∈ L1 such that EGv = 0 and

(EG f )∗(x∗) = EG f ∗(x∗ + v).

If x ∈ dom E f ∩ L0(G) and the above holds for every x∗ ∈ L1(G; ∂EG f (x)), then

∂(EG f )(x) = EG∂ f (x).

Proof Applying Theorem 5 with T = 0 and F0 = G gives the existence of a v ∈ L1

such that EGv = 0 and

(E f )∗(x∗) = E f ∗(x∗ + v).

On the other hand, E f = E(EG f ) by definition, so (E f )∗(x∗) = E(EG f )∗(x∗),
by [15, Theorem 2]. The first claim now follows from the fact that EG f ∗(x∗ + v) ≥
(EG f )∗(x∗) almost surely, by Lemma 3.

If x∗ ∈ L1(G; ∂EG f (x)), we have

(EG f )(x) + (EG f )∗(x∗) = x · x∗ P-a.s.

By the first part, there is a v ∈ L1 such that EGv = 0 and

(EG f )(x) + EG f ∗(x∗ + v) = x · x∗ P-a.s.

It follows that

E[ f (x) + f ∗(x∗ + v) − x · (x∗ + v)] = 0,

which by Fenchel’s inequality, implies x∗+v ∈ ∂ f (x) almost surely so ∂(EG f )(x) ⊆
EG∂ f (x). Combining this with Lemma 3 completes the proof. �

Sufficient conditions for the subdifferentiability condition are again obtained from
Lemma 2 and Theorem 4.

Corollary 3 Let f be a convex normal integrand such that dom E f ∗ ∩ L1 �= ∅,
EGx ∈ dom E f for all x ∈ dom E f ∩ L∞ and E f is strongly continuous at a point
of L∞(G) relative to aff dom E f ∩ L∞. Then for every x∗ ∈ L1(G) there is a v ∈ L1

such that EGv = 0 and

(EG f )∗(x∗) = EG f ∗(x∗ + v).
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Moreover,

∂(EG f )(x) = EG∂ f (x)

for every x ∈ dom E f ∩ L0(G).

Proof Analogously to Corollary 2, the additional conditions guarantee the subdif-
ferentiability condition in Theorem 6. Indeed, the condition EGx ∈ dom E f for all
x ∈ dom E f ∩ L∞ implies both Assumption 1 and the second condition of Assump-
tion 2; see the remarks after Assumption 2. �

The above subdifferential formula was obtained in [23] while the expression for
the conjugate was given in [28, Section 2.2, Corollary 3]. Both assumed the stronger
condition that E f be continuous at a point x ∈ L∞(G) relative to all of L∞. A
more abstract condition (not requiring the relative continuity assumed here) for the
subdifferential formula is given in the corollary in Section 2.2.2 of [28].

Let g be a convex normal integrand. As soon as epig has an integrable selection
(which happens exactly when dom Eg ∩ L1 �= ∅), the G-conditional expectation
of the epigraphical mapping epig is also an epigraphical mapping of some normal
integrand; see [28, page 140]. We denote this normal integrand by Gg. Combining [28,
Theorem 2.1.2 and Corollary 2.1.1] gives the following.

Theorem 7 (Truffert [28]) Let g be a convex normal integrand such that dom Eg ∩
L1 �= ∅ and dom Eg∗ ∩ L0(G) �= ∅. Then Gg and EGg∗ are well defined and
conjugates of each other.

Combined with Theorem 7, the results of this section on conditional expectations
yield expressions for G( f ∗) as well.

5 Dual dynamic programming

Consider again problem (SP) and define extended real-valued functions ht , h̃t :
R
n1+···+nt × � → R by the recursion

h̃T = h,

ht = EFt h̃t ,

h̃t−1(x
t−1, ω) = inf

xt∈Rnt
ht (x

t−1, xt , ω). (6)

This far reaching generalization of the classical dynamic programming recursion for
control systems was introduced in [21] and [7]. The following result from [11] relaxes
the compactness assumptions made in [21] and [7]. In the context of financial math-
ematics, this allows for various extensions of certain fundamental results in financial
mathematics; see [11] for details. An extension to nonconvex stochastic optimization
can be found in [12]. Recall that the optimum value of (SP) equals φ(0).
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Theorem 8 (Pennanen and Perkkiö [11]) Assume that h ≥ m for an m ∈ L1 and that

{x ∈ N | h∞(x) ≤ 0 P-a.s.}

is a linear space. The functions ht and h̃t are then well-defined normal integrands and
we have for every x ∈ N that

Eht (x
t ) ≥ φ(0) t = 0, . . . , T . (7)

Optimal solutions x ∈ N exist and they are characterized by the condition

xt (ω) ∈ argminxt ht (x
t−1(ω), xt , ω) P-a.s. t = 0, . . . , T,

which is equivalent to having equalities in (7).

Consider now the dual problem (DSP). We know that the optimum dual value is
at least −φ(0) and that if the values are equal, the shadow prices of information
are exactly the dual solutions. Theorem 7 gives sufficient conditions for (ht )∗ =
Ft

(h̃∗
t ) to hold. This suggests that the conjugates of ht and h̃t solve the dual dynamic

programming equations

g̃T = h∗,
gt = Ftg̃t ,

g̃t−1(v
t−1, ω) = gt (v

t−1, 0, ω).

(8)

Much like Theorem 8 characterizes optimal primal solutions in terms of the dynamic
programming equations (13), the following result characterizes optimal dual solutions
in terms of the dual recursion (8). It also gives conditions for (8) to be well-defined.

Theorem 9 Assume that dom Eh∩N∞ �= ∅ and dom Eh∗ ∩N⊥ �= ∅. Then the dual
dynamic programming equations are well-defined and we have for every v ∈ N⊥ that

Egt (Etv
t ) ≥ −φ(0) t = 0, . . . , T . (9)

In the absence of a duality gap, optimal dual solutions are characterized by having
equalities in (9) while x ∈ N and v ∈ N⊥ are primal and dual optimal, respectively,
if and only if Eh(x) < ∞, Eh∗(v) < ∞ and

Eg∗
t (x

t ) + Egt (Etv
t ) = 0 t = 0, . . . , T,

which is equivalent to having

Etv
t ∈ ∂g∗

t (x
t ) P-a.s. t = 0, . . . , T .

If the assumptions of Theorem 8 are satisfied, then there is no duality gap, gt = (ht )∗
and g̃t = (h̃t )∗.

123



Shadow price of information in discrete… 363

Proof Let x ∈ dom Eh ∩ N , v ∈ dom Eh∗ ∩ N⊥ and x̄ ∈ dom Eh ∩ N∞. We
start by showing inductively that gt = Ftg̃t is well-defined, xt , x̄ t ∈ dom Eg̃∗

t and
Et+1v

t ∈ dom Eg̃t (where ET+1 is understood as the identity mapping on L1). These
conditions imply that

g̃t−1(Etv
t−1) = gt (Etv

t ) ≤ Et g̃t (Et+1v
t ), (10)

and
g̃∗
t−1(x

t−1) ≤ g∗
t (x

t ) = EFt g̃∗
t (x

t ). (11)

Indeed, the inequality in (10) follows fromLemma 3 and Theorem 7while the equality
comes from the definition of g̃t−1. The inequality (11) holds since g̃∗

t−1(x
t−1, ω) =

cl inf xt g
∗
t (x

t−1, xt , ω), by the definition of g̃t−1. The equality in (11) holds by Theo-
rem 7 and the definition of the conditional expectation of a normal integrand. By the
assumptions, the induction hypothesis holds for t = T . The induction argument is
then completed by (10), (11) and Theorem 7.

Combining (10) and (11) with Fenchel’s inequality g0(0) ≥ −g∗
0(x0) gives

Eh∗(v) ≥ Egt (Etv
t ) ≥ Eg0(0) ≥ −Eg∗

0(x0) ≥ −Eg∗
t (x

t ) ≥ −Eh(x) (12)

for all t . Since x ∈ dom Eh∩N was arbitrary, we get (9). In the absence of duality gap,
(12) also implies that optimal dual solutions are characterized by having equalities in
(9). Likewise, we get from (12) that x and v are primal and dual optimal, respectively,
if and only if

Eg∗
t (x

t ) + Egt (Etv
t ) = 0 t = 0, . . . , T .

By Fenchel’s inequality, g∗
t (x

t ) + gt (Etv
t ) ≥ xt · (Etv

t ), so, by [13, Lemma 2],
E[xt ·(Etv

t )] = 0whenever the left side is integrable. Thus Eg∗
t (x

t )+Egt (Etv
t ) = 0

is equivalent to having g∗
t (x

t ) + gt (Etv
t ) = xt · (Etv

t ) almost surely, which means
that

Etv
t ∈ ∂g∗

t (x
t )

almost surely.
Under the assumptions of Theorem 8, the absence of a duality gap follows from

Theorem 1. We have already verified that g∗
t = EFt g̃∗

t . Conjugating each line of (8)
gives

g̃∗
T = h,

g∗
t = EFt g̃∗

t ,

g̃∗
t−1(x

t−1, ω) = inf
xt∈Rnt

g∗
t (x

t−1, xt , ω), (13)

as soon as the last expression defines a normal integrand. By Theorem 8, this is indeed
the case so g∗

t = ht and (g̃t )∗ = h̃t by uniqueness of ht and h̃t . ��
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6 Appendix

This appendix contains the proofs of Theorem 1 and Lemma 2, and Theorem 10 below
which was used in the proof of Theorem 3.

Proof of Theorem 1 The first two claims are simple consequences of Theorems 2 and
8 of [3] but for convenience of the reader, we reproduce the proofs in the present
notation. Let φ̃(z) := infx∈N∞ Eh(x + z). For any v ∈ L1,

φ̃∗(v) = sup
x∈N∞,z∈L∞

{E(z · v) − Eh(x + z)}

= sup
x∈N∞,z′∈L∞

{E(z′ · v) − E(x · v) − Eh(z′)}

= Eh∗(v) + δN⊥(v),

where the last line follows from the interchange rule [25, Theorem 14.60]. Since
φ ≤ φ̃, we have φ∗ ≥ φ̃∗. On the other hand, by Fenchel’s inequality,

h(x + z) + h∗(v) ≥ (x + z) · v, (14)

so if x + z ∈ dom Eh and v ∈ dom Eh∗ ∩ N⊥, we have

Eh(x + z) + Eh∗(v) ≥ E(z · v),

by [13, Lemma 2]. Thus,

φ(z) + Eh∗(v) ≥ E(z · v)

for all z ∈ L∞ and v ∈ N⊥ so φ∗ ≤ Eh∗ + δN⊥ = φ̃∗. This proves the first
claim. The equivalence of (a) and (b) follows by noting that v ∈ ∂φ(0) if and only if
−φ∗(v) = φ(0). By the interchange rule [25, Theorem 14.60], both (c) and (d) mean
that v ∈ N⊥ and that the optimum value of (SP) equals E[−h∗(v)], which is (b).

The optimality condition for x follows by observing that x ∈ N and v ∈ N⊥
are primal and dual optimal, respectively, with Eh(x) + Eh∗(v) = 0, if and only if
Eh(x) < ∞, Eh∗(v) < ∞ and (14) holds with z = 0 as an equality, or equivalently,
v ∈ ∂h(x) almost surely. The last two claims involving the recession functions are
direct applications of [13, Theorem5 andLemma6]with f (x, u) = h(x+u),U = L∞
and Y = L1. ��
Proof of Lemma 2 The continuity assumptionmeans that there exist x̄ ∈ N∞,M ∈ R

and ε > 0 such that Eh(x̄ +w) ≤ M when x̄ +w ∈ aff dom Eh and ‖w‖ ≤ ε. Since
dom φ̃ = N∞ + dom Eh ∩ L∞, we have aff dom φ̃ = N∞ + aff(dom Eh ∩ L∞).
Thus, if z ∈ aff dom φ̃ is such that ‖z‖ ≤ ε/ρ, Assumption 2 gives the existence of
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x ∈ N∞ andw ∈ L∞ such that x̄+w ∈ aff dom Eh, z = x+w and ‖w‖ ≤ ρ‖z‖ ≤ ε.
Thus,

φ̃(z) = inf
x ′∈N∞ Eh(x ′ + x + w) ≤ Eh(x̄ + w) ≤ M.

Since φ̃(0) is finite by assumption, this implies that φ̃ is strongly continuous and
thus strongly subdifferentiable with respect to aff dom φ̃; see [18, Theorem 11]. By
the Hahn–Banach theorem, relative subgradients on aff dom φ̃ can be extended to
subgradients on L∞. ��

The following is a simple refinement of [17, Corollary 1B].

Theorem 10 Let h be a convex normal integrand and z̄ ∈ L∞ such that Eh(z̄) is
finite. If v ∈ (L∞)∗ and ε ≥ 0 are such that

Eh(z) ≥ Eh(z̄) + 〈z − z̄, v〉 − ε ∀z ∈ L∞, (15)

then

Eh(z) ≥ Eh(z̄) + 〈z − z̄, va〉 − ε ∀z ∈ L∞

and

0 ≥ 〈z − z̄, vs〉 − ε ∀z ∈ dom Eh ∩ L∞.

Proof Let z ∈ dom Eh ∩ L∞ and define zν := 1Aν z̄ + 1�\Aν z where Aν are the sets
in the characterization of the singular component vs . For almost every ω ∈ �, we
have zν(ω) = z(ω) for ν large enough, so h(zν) → h(z) almost surely and zν → z
both weakly and almost surely. Thus, since h(zν) ≤ max{h(z̄), h(z)}, Fatou’s lemma
and (15) give,

Eh(z) ≥ lim sup Eh(zν) ≥ Eh(z̄) + lim sup〈zν − z̄, v〉 − ε

= Eh(z̄) + 〈z − z̄, va〉 − ε,

where the equality holds since zν − z̄ = 1�\Aν (z − z̄), so that

〈zν − z̄, v〉 = 〈zν − z̄, va〉 → 〈z − z̄, va〉.

Now let zν := 1Aν z + 1�\Aν z̄. We now have that h(zν) → h(z̄) almost surely and
zν → z̄ both weakly and almost surely. Since h(zν) ≤ max{h(z), h(z̄)}, Fatou’s
lemma and (15) give,

Eh(z̄) ≥ lim sup Eh(zν) ≥ Eh(z̄) + lim sup〈zν − z̄, v〉 − ε

= Eh(z̄) + 〈z − z̄, vs〉 − ε,

123



366 T. Pennanen, A.-P. Perkkiö

where the equality holds since zν − z̄ = 1Aν (z − z̄) so that

〈zν − z̄, v〉 = 〈zν − z̄, va〉 + 〈zν − z̄, vs〉 → 〈z − z̄, vs〉

which completes the proof. �
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