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Abstract. Self-supervised learning of convolutional neural networks can
harness large amounts of cheap unlabeled data to train powerful feature
representations. As surrogate task, we jointly address ordering of visual
data in the spatial and temporal domain. The permutations of training
samples, which are at the core of self-supervision by ordering, have so
far been sampled randomly from a fixed preselected set. Based on deep
reinforcement learning we propose a sampling policy that adapts to the
state of the network, which is being trained. Therefore, new permuta-
tions are sampled according to their expected utility for updating the
convolutional feature representation. Experimental evaluation on unsu-
pervised and transfer learning tasks demonstrates competitive perfor-
mance on standard benchmarks for image and video classification and
nearest neighbor retrieval.

Keywords: deep reinforcement learning · self-supervision · shuffling ·
action recognition · image understanding

1 Introduction

Convolutional neural networks (CNNs) have demonstrated to learn powerful
visual representations from large amounts of tediously labeled training data [24].
However, since visual data is cheap to acquire but costly to label, there has
recently been great interest in learning compelling features from unlabeled data.
Without any annotations, self-supervision based on surrogate tasks, for which
the target value can be obtained automatically, is commonly pursued [32, 28,
17, 3, 34, 10, 31, 35, 30, 39, 27, 9, 18, 45]. In colorization [27], for instance,
the color information is stripped from an image and serves as the target value,
which has to be recovered. Various surrogate tasks have been proposed, including
predicting a sequence of basic motions [30], counting parts within regions [35] or
embedding images into text topic spaces [39].

The key competence of visual understanding is to recognize structure in vi-
sual data. Thus, breaking the order of visual patterns and training a network
to recover the structure provides a rich training signal. This general framework
of permuting the input data and learning a feature representation, from which
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the inverse permutation (and thus the correct order) can be inferred, is a widely
applicable strategy. It has been pursued on still images [34, 36, 10, 9, 11] by em-
ploying spatial shuffling of images (especially permuting jigsaws) and in videos
[32, 28, 17, 6] by utilizing temporally shuffled sequences. Since spatial and tempo-
ral shuffling are both ordering tasks, which only differ in the ordering dimension,
they should be addressed jointly.

We observe that there has been unused potential in self-supervision based on
ordering: Previous work [28, 17, 34, 36, 6] has randomly selected the permuta-
tions used for training the CNN. However, can we not find permutations that
are of higher utility for improving a CNN representation than the random set?
For instance, given a 3× 3 jigsaw grid, shuffling two neighboring image patches,
two patches in faraway corners, or shuffling all patches simultaneously will learn
structure of different granularity. Thus diverse permutations will affect the CNN
in a different way. Moreover the effect of the permutations on the CNN changes
during training since the state of the network evolves. During learning we can
examine the previous errors the network has made when recovering order and
then identify a set of best suited permutations. Therefore, wrapped around the
standard back-propagation training of the CNN, we have a reinforcement learn-
ing algorithm that acts by proposing permutations for the CNN training. To
learn the function for proposing permutations we simultaneously train a policy
and self-supervised network by utilizing the improvement over time of the CNN
network as a reward signal.

2 Related Work

We first present previous work on self-supervised learning using one task or a
combination of surrogate approaches. Then we introduce curriculum learning
procedures and discuss meta-learning for deep neural network.

Self-Supervised Representation Learning: In self-supervision, the fea-
ture representation is learned indirectly by solving a surrogate task. For that
matter, visual data like images [53, 10, 27, 9, 56, 50, 41, 11, 18] or videos
[32, 28, 17, 30, 40, 52, 53, 6] are utilized as source of information, but also text
[39] or audio [38]. In contrast to the majority of recent self-supervised learning
approaches, Doersch et al. [11] and Wang et al. [53] combine surrogate tasks to
train a multi-task network. Doersch et al. choose 4 surrogate tasks and evalu-
ate a naive and a mediated combination of those. Wang et al., besides a naive
multi-task combination of these self-supervision tasks, use the learned features to
build a graph of semantically similar objects, which is then used to train a triplet
loss. Since they combine heterogeneous tasks, both methods use an additional
technique on top of the self-supervised training to exploit the full potential of
their approach. Our model combines two directly related ordering tasks, which
are complementary without the need of additional adjustment approaches.

Curriculum Learning: In 2009 Bengio et al.[4] proposed curriculum learn-
ing (CL) to enhance the learning process by gradually increasing the complexity
of the task during training. CL has been utilized by different deep learning
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Fig. 1. (A) Deep RL of a policy for sampling permutations. (B) Permuting training
images/videos by the proposed actions of (A) to provide self-supervision for our network
architecture (C). (D) Evaluating the update network (C) on validation data to receive
reward and state.

methods [19, 48, 7] with the limitation that the complexity of samples and their
scheduling during training typically has to be established a priori. Kumar et. al
[26] define the sample complexity from the perspective of the classifier, but still
manually define the scheduling. In contrast, our policy dynamically selects the
permutations based on the current state of the network.

Meta-Learning for Deep Neural Networks: Recently, methods have
proposed ways to improve upon the classical training of neural networks by, for
example, automatizing the selection of hyper-parameters [2, 8, 42, 58, 16, 37].
Andrychowicz et al. [2] train a recurrent neural network acting as an optimizer
which makes informative decisions based on the state of the network. Fan et al.
[16] propose a system to improve the final performance of the network using a
reinforcement learning approach which schedules training samples during learn-
ing. Opitz et al. [37] use the gradient of the last layer for selecting uncorrelated
samples to improve performance. Similar to [2, 16, 37] we propose a method
which affects the training of a network to push towards better performances.
In contrast to these supervised methods, where the image labels are fixed, our
policy has substantial control on the training of the main network since it can
directly alter the input data by proposing permutations.

3 Approach

Now we present a method for training two self-supervised tasks simultaneously
to learn a general and meaningful feature representation. We then present a
deep reinforcement learning approach to learn a policy that proposes best suited
permutations at a given stage during training.
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3.1 Self-Supervised Spatiotemporal Representation Learning

Subsequently, we learn a CNN feature representation (CaffeNet [22] architecture
up to pool5) for images and individual frames of a video using spatiotemporal
self-supervision (see Fig. 1C). Training starts from scratch with a randomly
initialized network. To obtain training samples for the spatial ordering task, we
divide images into a m × m regular grid of tiles as suggested by [34](Fig. 1B
top). For temporal ordering of u frames from a video sequence(Fig. 1B bottom),
shuffling is performed on frame level and with augmentation (detailed in Sect.
4.1). Note that we do not require an object-of-interest detection, as for example
done in [32, 28] by using motion (optical flow), since our approach randomly
samples the frames from a video.

For the following part of this section, we are going to talk about a sample
x in general, referring to a sequence of frames (temporal task) or a partitioned
image (spatial task). Let x = (x1, x2, . . . ) be the sample that is to be shuffled
by permuting its parts by some index permutation ψi = (ψi,1, ψi,2, · · · ),

ψi(x) :=
(
xψi,1 , xψi,2 , . . .

)
. (1)

The set of all possible permutations Ψ? contains u! or (m ·m)! elements. If, for
example, u = 8 the total number of possible permutations equals 8! = 40320. For
practical reasons, a pre-processing step reduces the set of all possible permuta-
tions, following [34], by sampling a set Ψ ⊂ Ψ? of maximally diverse permutations
ψi ∈ Ψ . We iteratively include the permutation with the maximum Hamming
distance d(·,·) to the already chosen ones. Both self-supervised tasks have their
own set of permutations. For simplicity, we are going to explain our approach
based on a general Ψ without referring to a specific task. To solve the order-
ing task of undoing the shuffling based on the pool5 features we want to learn
(Fig. 1(C)), we need a classifier that can identify the permutation. The classi-
fier architecture begins with an fc6 layer. For spatial ordering, the fc6 output of
all tiles is stacked in an fc7 layer; for temporal ordering the fc6 output of the
frames is combined in a recurrent neural network implemented as LSTM [20]
(see Fig. 1(C) and Sect. 4.1 for implementation details). The output of fc7 or
the LSTM is then processed by a final fully connected classification layer. This
last fc layer estimates the permutation ψi applied to the input sample and is
trained using cross-entropy loss. The output activation ϕi, i ∈ {1, . . . |Ψ |} of the
classifier corresponds to the permutation ψi ∈ Ψ and indicates how certain the
network is that the permutation applied to the input x is ψi. The network is
trained in parallel with two batches, one of spatially permuted tiles and one of
temporally shuffled frames. Back-propagation then provides two gradients, one
from the spatial and one from the temporal task, which back-propagate through
the entire network down to conv1.

The question is now, which permutation to apply to which training sample.
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3.2 Finding an Optimal Permutation Strategy by Reinforcement
Learning

In previous works [32, 28, 17, 34, 6], for each training sample one permutation
is randomly selected from a large set of candidate permutations ψi ∈ Ψ . Select-
ing the data permutation independent from the input data is beneficial as it
avoids overfitting to the training data (permutations triggered only by specific
samples). However, permutations should be selected conditioned on the state of
the network that is being trained to sample new permutations according to their
utility for learning the CNN representation.

A Markov Decision Process for Proposing Permutations: We need
to learn a function that proposes permutations conditioned on the network state
and independent from samples x to avoid overfitting. Knowingly, the state of the
network cannot be represented directly by the network weights, as the dimen-
sionality would be too high for learning to be feasible. To capture the network
state at time step t in a compact state vector s, we measure performance of the
network on a set of validation samples x ∈ Xval. Each x is permuted by some
ψi ∈ Ψ . A forward pass through the network then leads to activations ϕi and a
softmax activation of the network,

y?i =
exp(ϕi)∑
k exp(ϕk)

. (2)

Given all the samples, the output of the softmax function indicates how good a
permutation ψi can already be reconstructed and which ones are hard to recover
(low y?i ). Thus, it reflects the complexity of a permutation from the view point of
the network and y?i can be utilized to capture the network state s. To be precise,
we measure the network’s confidence regarding its classification using the ratio
of correct class l vs. second highest prediction p (or highest if the true label l is
not classified correctly):

yl(x) =
y?l (x) + 1

y?p(x) + 1
, (3)

where x ∈ Xval and adding 1 to have 0.5 ≤ yl ≤ 2, so that yl > 1 indicates a
correct classification. The state s is then defined as

s =

 y1(x1) . . . y1(x|Xval|)
...

...
y|Ψ |(x1) . . . y|Ψ |(x|Xval|),

 (4)

where one row contains the softmax ratios of a permutation ψi applied to all
samples x ∈ Xval (see Fig. 1(D)). Using a validation set for determining the state
has the advantage of obtaining the utility for all permutations ψi and not only
for the ones applied in the previous training phase. Moreover, it guarantees the
comparability between validations applied at different time points independently
by the policy. The action a = (x, ψi) ∈ A = X × Ψ of training the network by
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applying a permutation ψi to a random training sample x changes the state s
(in practice we sample an entire mini-batch of tuples for one training iteration
rather than only one). Training changes the network state s at time point t into
s′ according to some transition probability T (s′|s, a). To evaluate the chosen
action a we need a reward signal rt given the revised state s′. The challenge is
now to find the action which maximizes the expected reward

R(s, a) = E[rt|st = s, a], (5)

given the present state of the network. The underlying problem of finding suitable
permutations and training the network can be formulated as a Markov Decision
Process (MDP)[49], a 5-tuple < S,A, T,R, γ >, where S is a set of states st, A
is a set of actions at, T (s′|s, a) the transition probability, R(a, s) the reward and
γ ∈ [0, 1] is the discount which scales future rewards against present ones.

Defining a Policy: As a reward rt we need a score which measures the
impact the chosen permutations have had on the overall performance in the
previous training phase. For that, the error

E := 1− 1

|Ψ | · |Xval|

|Ψ |∑
l=1

∑
x∈Xval

δ l , argmax
p={1,...,|Ψ|}

y?p(x)
(6)

with δ the Kronecker delta, can be used to assess the influence of a permutation.
To make the reward more informative, we compare this value against a baseline
(BL), which results from simply extrapolating the error of previous iterations,
i.e. EBLt+1 = 2Et−Et−1. We then seek an action that improves upon this baseline.
Thus, the reward rt obtained at time point t + 1 (we use the index t for r at
time step t+ 1 to indicate the connection to at) is defined as

rt := EBLt+1 − Et+1. (7)

We determine the error using the same validation set as already employed for
obtaining the state. In this way no additional computational effort is required.

Given the earlier defined state s of the network and the actions A we seek to
learn a policy function

π(a|s, θ) = P (at = a|st = s, θt = θ), (8)

that, given the θ parameters of the policy, proposes an action a = (x, ψi) for a
randomly sampled training data point x based on the state s, where π(a|s, θ)
is the probability of applying action a ∈ A at time point t given the state s.
The parameters θ can be learned by maximizing the reward signal r. It has been
proven that a neural network is capable of learning a powerful approximation of
π [33, 49, 46]. However, the objective function (maximizing the reward) is not
differentiable. In this case, Reinforcement Learning (RL)[49] has now become a
standard approach for learning π in this particular case.

Policy Gradient: There are two main approaches for attacking deep RL
problems: Q-Learning and Policy Gradient. We require a policy which models
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Fig. 2. Training procedure of π. The policy proposes actions [at,k]Kk=1 to permute the
data X, used for training the unsupervised network. The improvement of the network
is then used as reward r to update the policy.

action probabilities to prevent the policy from converging to a small subset of
permutations. Thus, we utilize a Policy Gradient (PG) algorithm which learns
a stochastic policy and additionally guarantees convergence (at least to a local
optimum) as opposed to Q-Learning. The objective of a PG algorithm is to
maximize the expected cumulative reward (Eq. 5) by iteratively updating the
policy weights through back-propagation. One update at time point t + 1 with
learning rate α is given by

θt+1 = θt + α
(∑

t′≥t
γt

′−trt′
)
∇ log π(a|s, θ), (9)

Action Space: The complexity of deep RL increases significantly with the
number of actions. Asking the policy to permute a sample x given the full space Ψ
leads to a large action space. Thus, we dynamically group the permutations into
|C| groups based on the state of the spatiotemporal network. The permutations
which are equally difficult or equally easy to classify are grouped at time point
t and this grouping changes over time according to the state of the network.
We utilize the state s (Eq. 4) as input to the grouping approach, where one
row si represents the embedding of permutation ψi. A policy then proposes one
group cj ∈ C of permutations and randomly selects one instance ψi ∈ cj of the
group. Then a training data point x is randomly sampled and shuffled by ψi.
This constitutes an action a = (x, ψi). Rather than directly proposing individual
permutations ψi, this strategy only proposes a set of related permutations cj .
Since |C| << |Ψ |, the effective dimensionality of actions is significantly reduced
and learning a policy becomes feasible.

Network State: To obtain a more concise representation ŝ = [ŝj ]
|C|
j=1 of

the state of the spatiotemporal network (the input to the policy), we aggregate
the characteristics of all permutations within a group cj . Since the actions are
directly linked to the groups, the features should contain the statistics of cj
based on the state of the network. Therefore we utilize per group (i) the number
of permutations belonging to cj and (ii) the median of the softmax ratios (Eq.
3) over the (ψi, x) pairs with ψi ∈ cj and x ∈ Xval

ŝ = [|cj |,median
(
[si]ψi∈cj

)
]
|C|
j=1. (10)

The median over the softmax ratios reflects how well the spatiotemporal net-
work can classify the set of permutations which are grouped together. Including
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the size |cj | of the groups helps the policy to avoid the selection of very small
groups which could lead to overfitting of the self-supervised network on certain
permutations. The proposed ŝ have proven to be an effective and efficient rep-
resentation of the state. Including global features, as for example the iteration
or learning rate utilized in previous work [15, 16], does not help in our scenario.
It rather increases the complexity of the state and hinders policy learning. Fig.
1(D) depicts the validation process, including the calculation of state ŝ and the
reward r.

Training Algorithm: We train the self-supervised network and the pol-
icy simultaneously, where the training can be divided in two phases: the self-
supervised training and the policy update (see Fig. 2 and Algorithm 1 in section
A of the Appendix). The total training runs for T steps. Between two steps t
and t + 1 solely the self-supervised network is trained (π is fixed) using SGD
for several iterations using the permutations proposed by π. Then, ŝ is updated
using the validation procedure explained above. At each time step t an episode
(one update of π) is performed. During episode t, the policy proposes a batch
of K actions [at]

K
k=1, based on the updated state ŝt, which are utilized to train

the self-supervised network for a small amount of iterations. At the end of the
episode, another validation is applied to determine the reward rt for updating π
(Eq. 9). The two phases alternate each other until the end of the training.

Computational Extra Costs during Training: With respect to the basic
self-supervised training, the extra cost for training the policy derives only from
the total number of episodes × the time needed for performing an episode. If
the number of SGD iterations between two policy updates t and t+ 1 is signif-
icantly higher than the steps within an episode, the computational extra costs
for training the policy is small in comparison to the basic training. Fortunately,
sparse policy updates are, in our scenario, possible since the policy network
improves significantly faster than the self-supervised network. We observed a
computational extra cost of ∼40% based on the optimal parameters. Previous
work, [15, 58] which utilize deep RL for meta-learning, need to repeat the full
training of the network several times to learn the policy, thus being several times
slower.

4 Experiments

In this section, we provide additional details regarding the self-supervised train-
ing of our approach which we evaluate quantitatively and qualitatively using
nearest neighbor search. Then, we validate the transferability of our trained
feature representation on a variety of contrasting vision tasks, including image
classification, object detection, object segmentation and action recognition (Sec-
tion 4.2). We then perform an ablation study to analyze the gain of the proposed
reinforcement learning policy and of combining both self-supervision tasks.
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Table 1. Quantitative evaluation of our self-supervised trained feature representation
using nearest neighbor search on split1 of UCF-101 and Pascal VOC 2007 dataset.
Distance measure is cosine distance of pool5 features. For UCF101, 10 frames per
video are extracted. Images of the test set are used as queries and the images of the
training set as the retrieval targets. We report mean accuracies [%] over all chosen test
frames. If the class of a test sample appears within the topk it is considered correctly
predicted. We compare the results gained by (i) a random initialization, (ii) a spatial
approach [34], (iii) a temporal method [28], and (iv) our model. For extracting the
features based on the weights of (ii) and (iii) we utilize their published models

Methods
UCF101 Pascal

Top1 Top5 Top10 Top20 Top50 Top1 Top5 Top10 Top20 Top50

Random 18.8 25.7 30.0 35.0 43.3 17.6 61.6 75.5 85.5 94.2

Jigsaw [34] 19.7 28.5 33.5 40.0 49.4 39.2 71.6 82.2 89.5 96.0
OPN [28] 19.9 28.7 34.0 40.6 51.6 33.2 67.1 78.5 87.0 94.6
Ours 25.7 36.2 42.2 49.2 59.5 54.3 73.0 83.0 89.9 96.2

4.1 Self-Supervised Training

We first describe all implementation details, including the network architecture
and the preprocessing of the training data. We then utilize two different datasets
for the evaluation of the feature representation trained only with self-supervision.

Implementation Details: Our shared basic model of the spatiotemporal
network up to pool5 has the same architecture as CaffeNet [22] with batch
normalization[21] between the conv layers. To train the policy we use the Policy
Gradient algorithm REINFORCE (with moving average subtraction for variance
reduction) and add the entropy of the policy to the objective function which im-
proves the exploration and therefore prevents overfitting (proposed by [54]). The
policy network contains 2 FC layers, where the hidden layer has 16 dimensions.
We use K-means clustering for grouping the permutations in 10 groups. The val-
idation set contains 100 (|Xval| = 100) samples and is randomly sampled from
the training set (and then excluded for training). The still images utilized for
the spatial task are chosen from the training set of the Imagenet dataset [44].
For training our model with the temporal task, we utilize the frames from split1
of the human action dataset UCF-101 [47]. We use 1000 initial permutations for
both tasks (|Ψ | = 1000). Further technical details can be found in the Appendix,
section B.

Nearest Neighbor Search: To evaluate unsupervised representation learn-
ing, which has no labels provided, nearest neighbor search is the method of
choice. For that, we utilize two different datasets: split1 of the human action
dataset UCF-101 and the Pascal VOC 2007 dataset. UCF-101 contains 101 dif-
ferent action classes and over 13k clips. We extract 10 frames per video for
computing the nearest neighbor. The Pascal VOC 2007 dataset consists of 9,963
images, containing 24,640 annotated objects which are divided in 20 classes.
Based on the default split, 50% of the images belong to the training/validation
set and 50% to the testing set. We use the provided bounding boxes of the dataset
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Fig. 3. Unsupervised evaluation of the feature representation by nearest neighbor
search on the VOC07 dataset. For every test sample we show the Top5 nearest neigh-
bors from the training set (Top1 to Top5 from left to right) using the cosine distance
of the pool5 features. We compare the models from (i) supervised training with the
Imagenet classification task, (ii) our spatiotemporal approach, (iii) OPN as a temporal
approach [28], (iv) Jigsaw as a spatial method [34] and (v) a random initialization.

to extract the individual objects, whereas patches with less than 10k pixels are
discarded. We use the model trained with our self-supervised approach to ex-
tract the pool5 features of the training and testing set and the images have an
input size of 227×227. Then, for every test sample we compute the Topk nearest
neighbors in the training set by using cosine distance. A test sample is consid-
ered as correctly predicted if its class can be found within the Topk nearest
neighbors. The final accuracy is then determined by computing the mean over
all testing samples. Tab. 1 shows the accuracy for k = 1, 5, 10, 20, 50 computed
on UCF-101 and Pascal VOC 2007, respectively. It can be seen, that our model
achieves the highest accuracy for all k, meaning that our method produces more
informative features for object/video classification. Note, that especially the ac-
curacy of Top1 is much higher in comparison to the other approaches.
We additionally evaluate our features qualitatively by depicting the Top5 near-
est neighbors in the training set given a query image from the test set (see Fig.
3). We compare our results with [34, 28], a random initialization, and a network
with supervised training using the Imagenet dataset.

4.2 Transfer Capabilities of the Self-Supervised Representation

Subsequently, we evaluate how well our self-trained representation can transfer
to different tasks and also to other datasets. For the following experiments we
initialize all networks with our trained model up to conv5 and fine-tune on the
specific task using standard evaluation procedures.

Imagenet [44]: The Imagenet benchmark consists of ∼1.3M images divided
in 1000 objects category. The unsupervised features are tested by training a
classifier on top of the frozen conv layers. Two experiments are proposed, one
introduced by [55] using a linear classifier, and one using a two layer neural
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Table 2. Test accuracy [%] of the Ima-
genet classification task. A Linear[55] and
Non-linear[34] classifier are trained over
the frozen features (pool5) of the meth-
ods shown in the left column. (*: indicates
our implementation of the model, +: in-
dicates bigger architecture due to missing
groups in the conv layers)

Method Non-
Linear

Linear

Imagenet 59.7 50.5
Random 12.0 14.1

RotNet+[18] 43.8 36.5

Videos [52] 29.8 -
OPN* [28] 29.6 -
Context [10] 30.4 29.6
Colorization[55] 35.2 30.3
BiGan[12] 34.8 28.0
Split-Brain[56] - 32.8
NAT[5] 36.0 -
Jigsaw[34] 34.6 27.1
Ours 38.2 36.5

Table 3. Transferability of features
learned using self-supervision to action
recognition. The network is initialized un-
til conv5 with the approach shown in
the left column and fine-tuned on UCF-
101 and HMDB-51. Accuracies [%] are
reported for each approach. ’*’: Jigsaw
(Noroozi et al. [34]) do not provide results
for this task, we replicate their results us-
ing our PyTorch implementation

Method UCF-101 HMDB-51

Random 47.8 16.3
Imagenet 67.7 28.0

Shuffle&Learn [32] 50.2 18.1
VGAN [50] 52.1 -
Luo et. al [30] 53.0 -
OPN [28] 56.3 22.1

Jigsaw* [34] 51.5 22.5
Ours 58.6 25.0

network proposed by [34]. Tab. 2 shows that our features obtain more than 2%
over the best model with a comparable architecture, and almost 4% in the linear
task. The modified CaffeNet introduced by [18] is not directly comparable to
our model since it has 60% more parameters due to larger conv layers (groups
parameter of the caffe framework[22]).

Action recognition: For evaluating our unsupervised pre-trained network
on the action recognition task we use the three splits of two different human
action datasets: UCF-101 [47] with 101 different action classes and over 13k clips
and HMDB-51 [25] with 51 classes and around 7k clips. The supervised training
is performed using single frames as input, whereas the network is trained and
tested on every split separately. If not mentioned otherwise, all classification
accuracies presented in this paragraph are computed by taking the mean over
the three splits of the corresponding dataset. For training and testing we utilize
the PyTorch implementation 1 provided by Wang et al. [51] for augmenting the
data and for the finetuning and evaluation step, but network architecture and
hyperparameters are retained from our model. Table 3 shows that we outperform
the state-of-the-art by 2.3% on UCF-101 and 2.9% on HMDB-51. During our
self-supervised training our network has never seen videos from the HMDB-51
dataset, showing that our model can transfer nicely to another dataset.

Pascal VOC: We evaluate the transferability of the unsupervised features
by fine-tuning on three different tasks: multi-class object classification and ob-

1 https://github.com/yjxiong/temporal-segment-networks

https://github.com/yjxiong/temporal-segment-networks
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Table 4. Evaluating the transferability of representations learned using self-supervision
to three tasks on Pascal VOC. We initialize the network until conv5 with the method
shown in the left column and fine-tune for (i) multi-label image classification[23], (ii)
object detection using Fast R-CNN [43] and (iii) image segmentation[29]. (i) and (ii)
are evaluated on PASCAL VOC’07, (iii) on PASCAL VOC’12. For (i) and (ii) we
show the mean average precision (mAP), for (iii) the mean intersection over union
(mIoU). The fine-tuning has been performed using the standard CaffeNet, without
batch normalization and groups 2 for conv[2,4,5]. (’+’: significantly larger conv layers)

Method Classification[13] Detection[13] Segmentation[14]

Imagenet 78.2 56.8 48.0
Random 53.3 43.4 19.8

RotNet[18]+ 73.0 54.4 39.1

OPN[28] 63.8 46.9 -
Color17[27] 65.9 - 38.4
Counting[35] 67.7 51.4 36.6
PermNet[9] 69.4 49.5 37.9
Jigsaw[34] 67.6 53.2 37.6
Ours 74.2 52.8 42.8

ject detection on Pascal VOC 2007 [13], and object segmentation on Pascal
VOC 2012 [14]. In order to be comparable to previous work, we fine-tuned the
model without batch normalization, using the standard CaffeNet with groups
in conv2, conv4 and conv5. Previous methods using deeper networks, such as
[53, 11], are omitted from Table 4. For object classification we fine-tune our
model on the dataset using the procedure described in [23]. We do not require
the pre-processing and initialization method described in [23] for any of the
shown experiments. For object detection we train Fast RCNN[43] following the
experimental protocol described in [43]. We use FCN[29] to fine-tune our fea-
tures on the segmentation task. The results in Table 4 show that we significantly
improve upon the other approaches. Our method outperforms even [18] in ob-
ject classification and segmentation, which uses batch normalization also during
fine-tuning and uses a larger network due to the group parameter in the conv
layers.

4.3 Ablation Study

In this section, we compare the performances of the combined spatiotemporal
(S+T) model with the single tasks (S,T) and show the improvements achieved
by training the networks with the permutations proposed by the policy (P).

Unsupervised Feature Evaluation: In Fig. 5 the models are evaluated
on the Pascal VOC object classification task without any further fine-tuning by
extracting pool5 features and computing cosine similarities for nearest neighbor
search as described in section 4.1. This unsupervised evaluation shows how well
the unsupervised features can generalize to a primary task, such as object classi-
fication. Fig 5 illustrates that the combined spatiotemporal model (S+T) clearly
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Fig. 4. Permutations chosen by the policy
in each training episode. For legibility, ψi
are grouped by validation error into four
groups. The policy, updated after every
episode, learns to sample hard permuta-
tions more often in later iterations

Fig. 5. The test accuracy from Top1 near-
est neighbor search evaluation on VOC07
is used for comparing different ablations
of our architecture during training. The
curves show a faster improvement of the
features when the policy (P) is used

Table 5. We compare the different models on the multi-object classification task using
the Pascal VOC07 and on the action recognition task using UCF-101. (S):Spatial task,
(T): Temporal task, (S+T):Spatial and Temporal task simultaneously, (S+P):Spatial
task + Policy, (S+T):Temporal task + Policy, (S&T):first solely Spatial task, followed
by solely Temporal task, (S+T+P):all approaches simultaneously

Method S S+P T T+P S&T S+T S+T+P

Pascal 67.6 71.3 64.1 65.9 69.8 72.0 74.2
UCF-101 51.5 54.6 52.8 55.7 54.2 57.3 58.6

outperforms the networks trained on only one task (by 7% on the spatial and
14% on the temporal model). Furthermore, the combined network shows a faster
improvement, which may be explained by the regularization effect that the tem-
poral has on the spatial task and vice-versa. Fig. 5 also shows, that each of the
three models has a substantial gain when the CNN is trained using the policy.
Our final model, composed of the spatiotemporal task with policy (S+T+P),
reaches almost the supervised features threshold (”imagenet” line in Fig. 5).

Supervised Fine-Tuning: In Tab. 5, a supervised evaluation has been per-
formed starting from the self-supervised features. Each model is fine-tuned on
the multi-class object classification task on Pascal VOC 2007 and on video classi-
fication using UCF-101. The results are consistent throughout the unsupervised
evaluation, showing that the features of the spatiotemporal model (S+T) out-
perform both single-task models and the methods with RL policy (S+P and
T+P) improve over the baseline models. The combination of the two tasks has
been performed in parallel (S+T) and in a serial manner (S&T) by initializing
the temporal task using the features trained on the spatial task. Training the
permutation tasks in parallel provides a big gain over the serial version, showing
that the two tasks benefit from each other and should be trained together.

Policy Learning: Fig. 4 shows the permutations chosen by the policy while
it is trained at different episodes (x-axis). The aim of this experiment is to ana-
lyze the learning behavior of the policy. For this reason we initialize the policy
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Fig. 6. Error over time of the spatial task, computed using the validation set and sorted
by the average error. Each row shows how the error for one permutation evolves over
time. (A): with Policy, (B): without policy

network randomly and the CNN model from an intermediate checkpoint (aver-
age validation error 72.3%). Per episode, the permutations are divided in four
complexities (based on the validation error) and the relative count of permuta-
tions selected by the policy is shown per complexity. Initially the policy selects
the permutations uniformly in the first three episodes, but then learns to sample
with higher frequency from the hard permutations (with high error; top red)
and less from the easy permutations (bottom purple), without overfitting to a
specific complexity but mixing the hard classes with intermediate ones.

Fig. 6 depicts the spatial validation error over the whole training process of
the spatiotemporal network with and without the policy. The results are con-
sistent with the unsupervised evaluation, showing a faster improvement when
training with the permutations proposed by the policy than with random per-
mutations. Note that (B) in Fig. 6 shows a uniform improvement over all per-
mutations, whereas (A) demonstrates the selection process of the policy with a
non-uniform decrease in error.

5 Conclusion

We have brought together the two directly related self-supervision tasks of spatial
and temporal ordering. To sample data permutations, which are at the core of
any surrogate ordering task, we have proposed a policy based on RL requiring
relatively small computational extra cost during training in comparison to the
basic training. Therefore, the sampling policy adapts to the state of the network
that is being trained. As a result, permutations are sampled according to their
expected utility for improving representation learning. In experiments on diverse
tasks ranging from image classification and segmentation to action recognition in
videos, our adaptive policy for spatiotemporal permutations has shown favorable
results compared to the state-of-the-art.

This work has been supported in part by DFG grant OM81/1-1, the Heidelberg
Academy of Science, and an Nvidia hardware donation.
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6. Brattoli, B., Büchler, U., Wahl, A.S., Schwab, M.E., Ommer, B.: Lstm self-
supervision for detailed behavior analysis. In: IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (2017)

7. Chang, H.S., Learned-Miller, E., McCallum, A.: Active bias: Training more accu-
rate neural networks by emphasizing high variance samples. In: Advances in Neural
Information Processing Systems. pp. 1003–1013 (2017)

8. Chen, Y., Hoffman, M.W., Colmenarejo, S.G., Denil, M., Lillicrap, T.P., Botvinick,
M., Freitas, N.: Learning to learn without gradient descent by gradient descent.
In: International Conference on Machine Learning. pp. 748–756 (2017)

9. Cruz, R.S., Fernando, B., Cherian, A., Gould, S.: Deeppermnet: Visual permuta-
tion learning. In: CVPR (2017)

10. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning
by context prediction. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 1422–1430 (2015)

11. Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. arXiv
preprint arXiv:1708.07860 (2017)
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18 U. Büchler, B. Brattoli, B. Ommer

57. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors
emerge in deep scene cnns. arXiv preprint arXiv:1412.6856 (2014)

58. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)



Appendix

A Algorithm for Updating the Policy

Alg. 1 describes the training procedure for one episode t in detail. Per episode,
the weights θ of the policy network are updated using Eq.9 of the main paper.
The state ŝ based on the clustering C and reward r are computed using the
function Validation(Xval, Φ) following Section 3.2 (paragraph Network State) of
the main paper. The function TrainCNN(Φ, b) performs one step (forward and
backward pass) of the self-supervised network on the batch b given the weights
Φ.

Algorithm 1 Episode t: policy network update

Input: X, Xval, π, θ, Φ, ŝ, C,B . data, val set, policy, policy weights, CNN weights
1: state, groups, batchsize
2: for all k = 1, ...,K do
3: b← ∅ . set of permuted samples
4: a ∼ πθ(ŝ) . sample an action (a group)
5: repeat
6: x ∼ X . random sample
7: ψ ∼ ca ∈ C . sample random permutation from chosen group
8: b← [b, ψ(x)] . permute the sample
9: until |b| == B

10: Φ← TrainCNN(Φ, b) . Train the CNN given batch bψ

11: end for
12: ŝ, r, C ←Validation(Xval, Φ) . Update ŝ,C and compute r
13: θ ← Eq.9 . Update policy weights using r
Output: θ, s, Φ, C

B Technical Details

This section adds some further technical information to the implementation de-
tails mentioned in section 4.1 of the main paper. All deep networks are imple-
mented using the PyTorch1 framework. For the spatiotemporal network, we use
SGD with a starting learning rate of 0.001 which we reduce after 200k itera-
tions by a factor of 10. Our network runs in total for 350k iterations. We use a
batchsize of 128 for both spatial and temporal tasks. For the spatial classifica-
tion branch, the fc6-layer has a size of 1024, fc7 has 4096 dimensions. For the

1 http://pytorch.org/

http://pytorch.org/
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Fig. C.1. Evaluation of the optimal size for Xval.

temporal task we use an fc6-layer with 512 neurons and one LSTM layer with
the hidden dimension of 256. The policy network is trained using the ADAM
optimizer with a starting learning rate of 0.01. For the temporal task, we ran-
domly crop a patch with the size of 224x224 per frame and resize to 75x75. For
the spatial task, each tile has the size of 75x75. Having the same input as the
temporal task simplifies the implementation phase. As in [1], conv1 has stride
2 during the unsupervised training, and it is changed to 4 during all evaluation
experiments. As augmentation, we randomly crop each tile/frame, apply a ran-
dom color jittering to each of them and normalize the tiles/frames separately.
For the spatial task we divide an input image x into 9 non-overlapping parts.
For the temporal task, we randomly select 8 frames from each video.

C Size of Validation Set

In Sect. 4.1 of the main paper, we mention the usage of 100 images for the
validation set Xval. Fig. C.1 shows an evaluation of the optimal size for the
validation set based on the mean and standard deviation of the error (y-axis)
using several randomly sampled validation sets with size |Xval| = 10, 20, 50, 100
or 200 at different time steps (x-axis). We randomly sample 5 different sets per
size and compute for every set the mean error given the checkpoints of the self-
supervised network trained without policy at iteration 50k, 100k, 150k, 200k,
250k, 300k and 350k. Fig. C.1 then shows the mean and standard deviation over
the 5 sets regarding a specific size and iteration. While the overall tendency of
the error over the consecutive training iterations is similar for all validation sizes,
|Xval| = 10, 20, 50 show comparably large standard deviation. For the other two
sizes there is only little difference which motivates our choice of |Xval| = 100.
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(a) Frequency of the softmax ratios y?i
given all entries of s (Eq. 2 of main sub-
mission) at time point 300k.

(b) Pairwise p-values for a different
amount of groups at several check-
points.

Fig.D.1. Analysis of the optimal amount of groups.

D Number of Groups

We declare in Sect. 4.1 of the main paper the choice of 10 groups which we
are going to analyze subsequently. As defined in the main paper, we use the
softmax ratios y?i (Eq. 3 of the main submission) to determine the complexity
of a permutation from the view point of the network. Fig. B.1(a) shows the
distribution of all y?i over the (ψi, x) pairs with ψi ∈ Ψ and x ∈ Xval (all
entries of s (Eq. 4 of main submission)) at time point 300k as histogram. We
compute this distribution for all ψi which are part of a group. We then test the
distributions of the different groups for equality using the Kolmogorov-Smirnov-
Test (KS-test; Null-Hypothesis is that the distributions are the same). If the
p-value returned by the KS-test is smaller than a predefined significance value
α = 0.01 the Null-Hypothesis can be rejected and the distributions are assumed
to be different. We utilize this measure to identify groups which have a similar
distribution and should therefore be grouped together. In this way, we can find
the optimal amount of groups without having two separate groups with the same
distribution/difficulty. Fig. B.1(b) depicts the matrices of pairwise p-values for
|C| = 10, 15 and 20 at time point 150k, 250k and 350k. It can be seen, that
there are already several groups for |C| = 15 where the Null-Hypothesis cannot
be rejected anymore (values higher than α), i.e. |C| = 15 is already to high for
avoiding groups of similar complexity. Therefore, 10 groups seems to be the best
choice for the clustering approach.

E Baseline Error EBL Description

In Eq. 8 of the main paper we define the baseline error EBLt+1 as the minimum error
that the policy network needs to achieve to receive a positive reward. Fig.E.1
illustrates more in details the use of this baseline with respect to the reward
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computation. The baseline EBLt+1 is computed by linear extrapolation based on
the error Et−1 and Et in the previous time points t− 1 and t. For extrapolating
EBLt+1 we use the equation

f(u3) = f(u1) +
u3 − u1
u2 − u1

(f(u2)− f(u1)). (1)

where a point (u, f(u)) corresponds to our errors (t, Et) and the extrapolated
point f(u3) corresponds to our baseline error EBLt+1. Substituting {u1, u2, u3}
with {t− 1, t, t+ 1} and f(u) with Et results in

EBLt+1 = Et−1 +
(t+ 1)− (t− 1)

t− (t− 1)
(Et − Et−1) = 2Et − Et−1. (2)

Fig. E.1. The reward rt is positive when the error Et+1, obtained by training the
self-supervised network using the policy, is below the extrapolated baseline error EBLt+1
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Table F.1. Validation accuracy after one epoch of training using the policy in the left
column. The accuracy is relative to the random policy. The experiment is repeated for
several checkpoints, the reported accuracy is the mean and std over those repetitions.
The performances when using the inverse policy are worse than the random policy
baseline, while our policy always outperforms the baseline.

Method Relative Accuracy

RL policy (125± 14)%
Inverse policy (78± 16)%

F How Decisive Are the Permutations?

In this section we evaluate the impact on performance that permutation selec-
tion has during training. In particular, we use our trained policy for selecting the
permutations and evaluate the model after one epoch. As baseline we use the
random policy which selects the permutations uniformly at random. Moreover,
we evaluate the permutations which are discarded by our policy. Therefore, we
utilize an inverse policy in order to understand the importance of the permuta-
tion selection. It turns out that the inverse policy impairs training, producing
features worse than the random policy ((78 ± 16)%, see Table F.1), while our
policy always increases the performance with respect to the random policy.
The validation accuracy shown in Table F.1 refers to unsupervised training. We
initialize the network from a given checkpoint and train for one epoch following
one of the three policies. The final result is the ratio between our/inverse policy
and the baseline random policy. Then we average over several checkpoints.

G Permutation Selection of our Policy

As discussed in the introduction of the main paper, defining the complexity of
a permutation should depend on the state of the network and not, for example,
only on the degree of shuffling independently of the network. For this reason,
we utilize the validation error as input for our policy. When illustrating how
often permutations with a particular shuffling (Hamming distance to the not-
shuffled sequence) are selected by our policy during the training process (see
Fig. G.1) one should not be able to recognize a specific pattern, as for example
a curriculum that selects easy samples (strongly permuted) at earlier iterations
and harder ones (only small changes) at later iterations. Fig. G.1 shows that our
trained policy does not follow a simple curriculum learning procedure. It selects
the permutations only based on the state of the network as can be seen in Fig.
4 of the main article. Qualitative examples of chosen permutations, depicted in
Fig. G.2, confirm this behavior as no correlation between the degree of shuffling
and the training iteration is visible.
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Fig.G.1. Percentage of permutations chosen by the policy at diverse training iters. The
permutations are structured using the Hamming distance to the not-shuffled sequence.

Fig.G.2. Qualitative examples of permutations with a high or low probability to be
chosen by the policy at different time points.

H Extra Computational Costs

Policy Cost Calculation

In this section we derive the computational cost of using the policy during train-
ing relative to the computation of the basic self-supervised training. Including
the policy introduces three additional phases in the training algorithm: action
sampling (policy inference), update of the policy, and validation for computing
state ŝ and reward r. The inference and update of the policy are omitted from
the calculation since their cost is orders of magnitude lower with respect to the
main network, given the minor size of the policy network. Therefore the cost of
the policy derives from the computational cost V of the validation phase. In fact,
for each sample in the validation set (100 samples following Sec.C), the main
network performs one forward pass per each of the 1000 permutations, resulting
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in

V =
100 · 1000

128
≈ 780 (3)

where 128 is the batch size (Sec 4.1). The validation phase is then performed
twice per episode t, at the beginning (computing ŝt) and the end of the episode
(for the reward rt). The final computational cost of using the policy is calculated
by multiplying the episode cost by the number of episodes T = 90 performed
during the entire training

CC = T · (2 · V ). (4)

The number of total updates T is set to 90 since the policy does not benefit from
an higher frequency of updates (no additional performance gain), which would
only increase the computational cost.
We can compute the policy cost in relation to the self-supervised training as

CC

I
=
T · (2 · V )

I
=

90 · (2 · 780)

350000
≈ 40%. (5)

given the total number of iterations I = 350k to train the self-supervised network
(Sec 4.1 in the main submission).

Performance Relative to Computation

Fig.5 in the main submission shows the performances of the unsupervised fea-
tures during training, based on the iterations of the self-supervision network.
Since our goal was to compare the convergence speed of the main network with
and without policy, Fig.5 does not consider the additional iterations necessary for
training the policy. For Fig. H.1 we normalize the x-axis by taking into account
the episodes needed to train the policy network. Since the extra cost mainly
derives from the forward passes of the self-supervised network during the vali-
dation phase, we use the total number of forward passes on the x-axis. Fig.H.1
shows that, even considering the extra computational cost needed to train the
policy, there is a big advantage of using the policy during training.

Fig.H.1. Unsupervised object classification on Pascal VOC 2007 per number of to-
tal forward passes computed by the self-supervised network. The x-axes contains the
unsupervised training plus the validation for the policy. ’Random’ and ’Imagenet’ are
computed using respectively random weights and features trained with labels on Ima-
geNet.
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I Visualizations

I.1 Activations

Figure I.1 and I.2 show the top activations for different conv5 units of our self-
supervised trained model following the approach described in [3]. In short, we
run all images of a particular dataset through the network and output the top
activations per unit contained in the conv5 layer. In Figure E.I.1 we show three
neurons over three different datasets: Imagenet, Pascal VOC, and UCF-101. Due
to the number of images included in the Imagenet dataset, we only use the test
set for visualizing the top activations. For UCF-101 we use one frame per video
contained in the training set of split1. Having a consistent activation across
different datasets shows the transfer capability of our feature representation. In
particular the first row of Figure E.I.1 is the activation of a unit responding to
eyes, the second recognizes faces and the third reacts to sky in landscapes. Figure
E.I.2 shows additionally that the network learns to recognize very particular
object parts, like the tires of a four-wheel vehicle.

Fig. I.1. Rows: Top activations of 3 dif-
ferent conv5 neurons across three datasets
(columns). Note, that the neurons exhibit
the same behavior in all datasets; The
first unit focuses on eyes, the second on
faces and the third on sky in a landscape.

Fig. I.2. Top activations of a single neu-
ron firing on car wheels. The same neu-
ron is evaluated on different images of Im-
agenet (1st row) and Pascal VOC (2nd
row).

I.2 Characteristic Details

In Fig. I.1 and I.2 we have visualized individual neurons of the learned repre-
sentation. Now we apply the visualization procedure of [2] to illustrate how well
a representation has captured salient details of an object. As in Sect. 4.2 of the
main submission, we evaluate our representation learned using self-supervision
by transferring it to the task of image classification on Pascal VOC 2007. As
described in Sect. 4.2, the network is initialized up to conv5 using (i) supervised
training by means of the Imagenet classification task, (ii) our spatiotemporal self-
supervision with the proposed sampling procedure (S+T+P, cf. Tab. 5), (iii) our
approach without the sampling procedure (S+T), and (iv) no pre-training, i.e.,
random weights. Each of these initialized networks is then fine-tuned on Pascal
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VOC. Applying [2] yields a class-specific saliency map which indicates the re-
lationship of individual pixels to the final classification. A good representation
should, therefore, capture essential aspects of the object. Fig. I.3 shows that
supervised pre-training on Imagenet using millions of images, which serves as
an upper bound for our task, is followed by our self-supervised approach with
sampling strategy (S+T+P). Without the policy, significantly more details are
lost, as can be seen from (S+T). This underlines that the initial representation
learned by our full model has captured more of the characteristic structure than
the random permutations used in the literature. The last column highlights the
importance of self-supervised pre-training compared to a random initialization.

Fig. I.3. Class Saliency Maps of image classification models using 4 different ap-
proaches as initialization.
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