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Abstract

In multinomial logit models, the identifiability of parameter estimates is typically obtained
by side constraints that specify one of the response categories as reference category. When
parameters are penalized, shrinkage of estimates should not depend on the reference cat-
egory. In this paper we investigate ridge regression for the multinomial logit model with
symmetric side constraints, which yields parameter estimates that are independent of the
reference category. In simulation studies the results are compared with the usual maximum
likelihood estimates and an application to real data is given.
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1. Introduction

The multinomial logit model is the most widely used model in multi-categorical regres-
sion. It specifies the conditional probabilities of response categories through linear func-
tions of covariate vectorx. When the number of predictors is large as compared to the
number of observations, the logit model suffers from problems such as complete separa-
tion, the estimates of parameters are not uniquely defined (some are infinite) and/or the
maximum of log-likelihood is achieved at 0. The use of regularization methods can help
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to overcome such problems.
Regularization methods based on penalization typically maximize a penalized log-likelihood.
Ridge regression, one of the oldest penalization methods for linear models, was extended
to GLM type models by Nyquist (1991), although a definition of a ridge estimator for
the logistic regression model, which is a particular case of generalized linear models was
suggested by Schaefer et al. (1984) and Schaefer (1986). Segerstedt (1992) discussed a
generalization of ridge regression for ML estimation in GLM. Many alternative penaliza-
tion/shrinkage methods were proposed for univariate GLMs, among them the Lasso (Tib-
shirani (1996)), which was adapted to GLMs by Park and Hastie (2007), the Dantzig selec-
tor (James and Radchenko (2009)), SCAD (Fan and Li (2001)) and boosting approaches
(Bühlmann and Hothorn (2007), Tutz and Binder (2006)). However, few approaches have
been proposed for multicategory responses. Krishnapuram et al. (2005) consider multino-
mial logistic regression with lasso type estimates, Zhu and Hastie (2004) use ridge type
penalization and Friedman et al. (2008) use the penalties L1 (the lasso), L2(ridge regres-
sion) and mixture of the two (the elastic net).

In this paper we are defining the ridge regression (L2 penalty) for multicategory logit
models with symmetric constraints. Zhu and Hastie (2004) used this symmetric constraint
while using penalized logistic regression as an alternative to the SVM (support vector ma-
chine) for microarray cancer diagnostic problems. Friedman et al. (2008) also used the
symmetric multinomial logit model for defining paths for generalized linear models using
cyclical coordinate descent algorithm. In contrast to Zhu and Hastie (2004) and Friedman
et al. (2008), our approach is based on Fisher scoring that uses a transformed version of
the design matrix and a matrix other than the identity matrix in the ridge penalty.
In section 2 side constraints, interpretation of the parameters with symmetric side con-
straint, and the penalized model with L2-penalty is described. Section 3 compares the
ridge estimates based on symmetric side constraint with the usual MLE in terms of MSE
of π̂ππ andβ̂ββ in a simulation study. Multinomial logit model with symmetric constraint is
implemented on the real data in section 4. Section 5 concludes with some concluding
remarks.

2. Side Constraints and Regularization

The multinomial logit model is one of most oftenly used regression models when a cat-
egorical response variable has more than two (unordered) categories. Let the response
variableY ∈ {1, . . . , k} havek possible values (categories). A generic form of the multino-
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mial logit model is given by

P(Y = r |x) =
exp(xTβββr)∑k

s=1 exp(xTβββs)
=

exp(ηr)∑k
s=1 exp(ηs)

, (1)

whereβββT
r = (βr0, . . . , βrp). It is obvious that one has to specify some additional constraints

since the parametersβββT
1 , . . . , βββ

T
k are not identifiable. An often used side constraint is based

on choosing a reference category (RSC). When categoryk is chosen, one sets

βββT
k = (0, . . . ,0) yielding ηk = 0.

Of course any of the response categories can be chosen as reference. When categorys
is chosen one setsβββT

s = (0, . . . ,0) yielding ηs = 0. Throughout the paper we will use
reference categoryk when a model with a reference category is fitted. The corresponding
model is

P(Y = r |x) =
exp(xTβββr)

1+
∑q

s=1 exp(xTβββs)
for r = 1, . . . ,q. (2)

An alternative side constraint that is more appropriate when defining regularization terms
is the symmetric side constraint (SSC) given by

k∑
s=1

βββ∗s = 0. (3)

With βββ∗r denoting the corresponding parameters, the multinomial logit model is

P(Y = r |x) =
exp(xTβββ∗r )∑k

s=1 exp(xTβββ∗s)
=

exp(η∗r )∑k
s=1 exp(η∗s)

for r = 1, . . . ,q (4)

Although the models are equivalent parameters for symmetric side constraint are different
from parameters with a reference category and consequently have different interpretation.
In the case of SSC, i.e.,

∑k
s=1βββ

∗
s = 0, the ”median” response can be viewed as the reference

category, and is defined by the geometric mean. Then one obtains from (4)

P(Y = r |x)
GM(x)

=
exp(ηηη∗r )

k
√∏k

s=1 P(Y = s|x)

and

log
(P(Y = r |x)

GM(x)

)
= xTβββ∗r .
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Thereforeβββ∗r reflects the effects ofx on the logits whenP(Y = r |x) is compared to the
median responseGM(x).
It should be noted that whatever side constraint is used, the log-odds between two response
probabilities and the corresponding weights are easily computed by

log
[P(Y = r |x)
P(Y = s|x)

]
= xT(βββ∗r − βββ

∗
s),

which follows from (2) and (4) for any choice of response categoriesr, s ∈ {1, . . . , k}.
Let in the followingβββT = (βββT

1 , . . . , βββ
T
q ) andβββ∗T = (βββ∗1

T , . . . , βββ∗q
T) denote the parameter

vectors for the multinomial logit model under the two situations i.e., reference category
side constraint (βββk = 0) and symmetric side constraint (

∑k
s=1βββ

∗
s = 0). For illustration

we consider the case of a response variable with three categories. With a model which
contains only the intercept, logits are given as

log
(
π1

π3

)
= β10, log

(
π2

π3

)
= β20

with side constraintβ30 = 0, and

log
(π∗1
π∗3

)
= β∗10− β

∗
30 = 2β∗10+ β

∗
20, log

(π∗2
π∗3

)
= β∗20− β

∗
30 = β

∗
10+ 2β∗20

with symmetric side constraint
∑3

s=1 β
∗
s0 = 0. Equating the corresponding logits in both

situations, one obtains
βββ∗ = T βββ , βββ = T−1 βββ∗, (5)

where βββ∗T = (β∗10 β∗20), βββ
T = (β10 β20), and

T =
[

2/3 −1/3
−1/3 2/3

]
, T−1 =

[
2 1
1 2

]
.

For a model with an intercept andp covariates, logits are given by

log
(
πr
π3

)
= xTβββr r = 1,2,

log
(
π∗r
π∗3

)
= xTβββ∗r r = 1,2.

Equating the logits for these two cases, we get 2(p + 1) equations which can easily be
solved to get the result

B∗ = (TBT)T or B = (T−1B∗T)T ,
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whereT andT−1 are the 2× 2 matrices from above andB = (βββ1 βββ2), andB∗ = (βββ∗1 βββ∗2)
are (p+ 1)× 2 matrices composed of parameter vectors with RSC and SSC respectively.

In the general case letβββT
. j = (β1 j , . . . , βk−1, j), βββ∗T. j = (β∗1 j , . . . , β

∗
k−1, j), j = 0, . . . , p,

collect parameter vectors for single variables with reference categoryk or symmetric side
constraints respectively. Then one obtains the transformation

βββ∗. j = Tβββ. j for j = 0,1, . . . , p (6)

given as 

β∗1 j

β∗2 j
...
β∗k−2, j

β∗k−1, j


=



k−1
k −1

k · · · −1
k −1

k
−1

k
k−1

k · · · −1
k −1

k
...

...
. . .

...
...

−1
k −1

k · · · k−1
k −1

k
−1

k −1
k · · · −1

k
k−1

k




β1 j

β2 j
...
βk−2, j

βk−1, j


with the inverse transformation

β1 j

β2 j
...
βk−2, j

βk−1, j


=


2 1 · · · 1 1
1 2 · · · 1 1
...
...
. . .
...
...

1 1 · · · 2 1
1 1 · · · 1 2





β∗1 j

β∗2 j
...
β∗k−2, j

β∗k−1, j


(7)

i.e.,βββ. j = T−1βββ∗. j (for j = 0,1, . . . , p), whereT−1 is a (q× q)-matrix with diagonal entries
2 and off-diagonal elements 1. The same transformation holds for ML estimates. Esti-
mates of the parameters with symmetric side constraint can be computed by transforming
(reparameterizing) estimates with reference category side contraint and vice versa.

With πππT
i = (πi1, . . . , πiq) (q = k − 1) denoting the (q × 1)-vector of probabilities with

πir = P(Y = r |xi), the multinomial logit model has the form

πππi = h(X i βββ) = h(ηηηi), (8)

whereh is a vector-valued response function,X i is a (q× (p+1))-design matrix composed
of xi (with first term 1 for the intercept) and given as

X i =


xT

i
xT

i
. . .

xT
i
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andβββT = (βββT
1 , . . . , βββ

T
q ) is the vector of unknown parameters of length (q× (p+ 1)).

The multinomial logit model is given by

πir =
exp(xT

i βββr)

1+
∑q

s=1 exp(xT
i βββs)

r = 1, . . . ,q

which for side constraint with reference categoryk yields

log
[P(Y = r |x)
P(Y = k|x)

]
= xTβββr , r = 1, . . . ,q (9)

The log-odds compareπr = P(Y = r |x) to the probabilityπk = P(Y = k|x) of the reference
categoryk. The q logits log(P(Y = 1|x)/P(Y = k|x)), . . . , log(P(Y = q|x)/P(Y = k|x))
given by (9) determine the response probabilitiesP(Y = 1|x), . . . ,P(Y = k|x) uniquely
since the constraint

∑k
r=1 P(Y = r |x) = 1. holds. Therefore onlyq = k − 1 response

categories and parameter vectors have to be specified. The representation of the multino-
mial logit model in (8) and the corresponding response functionh depend distinctly on
the choice of the reference category. Since the parametersβββ∗ with SSC may be obtained
by reparameterization of the parametersβββ with RSC, the numerical computation of maxi-
mum likelihood estimates ofβββ∗ makes use of a transformation of the design matrixX. The
transformed design matrix for SSC has the form

X∗ = XT ∗,

whereX is the total design matrix of orderq(n× (p+ 1)) given as

X =


X1

X2
...

Xn


with X i , a q × q(p + 1) matrix (composed ofxi) as defined earlier.T∗ is a q((p + 1) ×
(p+ 1)) matrix composed of the elements ofT−1 in order to satisfyβββ. j = T−1βββ∗. j (for j =
0,1, . . . , p). For example, withk = 3 andp = 2, T∗, one obtains

T∗ = T−1
q×q ⊗ I (p+1)×(p+1) =



2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1
1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2
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where⊗ is the Kronecker matrix product. The corresponding score function

s(βββ∗) =
∂l(βββ∗)
∂βββ∗

=

n∑
i=1

si(βββ
∗),

has components
si(βββ

∗) = X∗Ti Di(βββ
∗)ΣΣΣ−1

i (βββ∗)[yi − h(ηηη∗i )],

whereDi(βββ∗) =
∂h(ηηη∗i )
∂ηηη∗

is derivative ofh(ηηη∗) evaluated atηηη∗i = X∗i βββ
∗ andΣΣΣ(βββ∗) = cov(yi) is

the covariance matrix ofith observation ofy given parameter vectorβββ∗. In matrix notation
one has

s(βββ∗) = X∗TD(βββ∗)Σ−1(βββ∗)[y − h(ηηη∗)],

wherey andh(ηηη∗) are given by

yT = (yT
1 , . . . , y

T
n ), h(ηηη∗)T = (h(ηηη∗1)

T , . . . ,h(ηηη∗n)
T).

The matrices have block diagonal form

ΣΣΣ(βββ∗) = diag(ΣΣΣ−1
i (βββ∗)), W(βββ∗) = diag(Σ−1

i (βββ∗)), D(βββ∗) = diag(Di(βββ
∗)).

Then Fisher scoring iteration, which can also be viewed as an iteratively reweighted least
square procedure, has the form

β̂ββ
∗(k+1)

= β̂ββ
∗(k)
+

(
X∗T W

(
β̂ββ
∗(k))

X∗
)−1

s
(
β̂ββ
∗(k))
.

2.1. Regularization

Regularization methods using penalization are based on penalized log-likelihood

lp(βββ) =
n∑

i=1

l i(βββ) −
λ

2
J(βββ),

wherel i(βββ) is the usual log-likelihood contribution of theith observation,λ is a tuning para-
meter andJ(βββ) is a functional which penalizes the size of parameter. In high dimensional
problems, which may also cause the non-existence of maximum-likelihood estimators,
the use of regularization methods is advantageous because penalized estimators will exist
and have better prediction error than the usual ML estimator. Ridge penalty, introduced
by Hoerl & Kennard (1970) for linear models and then extended to generalized linear
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models by Nyquist (1991), is one of the oldest penalization methods. It uses the penalty
J(βββ) =

∑p
i=1 β

2
i , yielding for binary responses the penalized log-likelihood

lp(βββ) =
n∑

i=1

l i(βββ) −
λ

2

p∑
i=1

β2
i .

For multi-categorical response model, instead of one parameter vector one has the collec-
tion of parameter vectorsβββ1, . . . , βββk, which are identifiable only under some side constraint.
A straightforward extension of the binary case is the penalty

J(βββ) =
q∑

r=1

p∑
j=1

β2
r j =

p∑
j=1

βββT
. j βββ. j ,

whereβββT
. j = (β1 j , . . . , βk−1, j) andβk j = 0, which specifiesk as reference category. However,

if a different reference category is chosen the corresponding ridge estimator would yield
different estimates, even after transformation.

A more natural choice for defining the multi-category ridge estimator is the use of sym-
metrically constrained parameters. Therefore we will use the definition

J(βββ∗) =
k∑

r=1

p∑
j=1

β∗2r j (10)

with
∑k

r=1 β
∗
r j = 0. It can also be written as

J(βββ∗) =
p∑

j=1

βββ∗T. j Pβββ∗. j (11)

whereβββ∗T. j = (β∗1 j , . . . , β
∗
k−1, j) andP = T−1. Transformation to parameters with side con-

straintβββk = 0 yields

J(βββ) =
p∑

j=1

βββT
. jT

TPT βββ. j . (12)

The use of matrixTTPT instead of the identity matrixI , will causeJ(βββ) to penalize the
size of parameters for allk categories while working with theq logits under the constraint
given in (3). For the complete design one obtains

J(βββ∗) = βββ∗TP∗ βββ∗,
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whereβββ∗ has lengthq(p + 1) and matrixP∗ differs from matrixT∗ only by having the
zero rows corresponding to the interceptsβ.0 (i.e., each of [r(p+ 1)+ 1]th row is zero for
r = 0,1, . . . , k− 2), since intercept terms are not penalized.

A general form of the penalty term for multi-categorical responses has the additive form

λJ(βββ) = λ
q∑

r=1

p∑
j=1

∣∣∣βββr j

∣∣∣γ , γ > 0

Multi-categorical ridge and lasso are special cases withγ = 2 andγ = 1 respectively.
Since shrinkage should not depend on the reference category, the penalties should use the
symmetric constraints which transform to different functions when reference categories
are used.
If we consider multinomial logit model with SSC described in (4) and the penalty term
given in (11), then the penalized log-likelihood is given by

lp(βββ
∗) =

n∑
i=1

l i(βββ
∗) −
λ

2
J(βββ∗)

=

n∑
i=1

l i(βββ
∗) −
λ

2

p∑
j=1

βββ∗T. j Pβββ∗. j

The corresponding penalized score functionsp(βββ∗) is given by

sp(βββ
∗) =

n∑
i=1

X∗Ti Di(βββ
∗)ΣΣΣ−1

i (βββ∗)[yi − h(ηηη∗i )] − λP
∗βββ∗

= X∗TD(βββ∗)ΣΣΣ−1(βββ∗)[y − h(ηηη∗)] − λP∗βββ∗

yielding the estimation equations

X∗TD(βββ∗)ΣΣΣ−1(βββ∗)[y − h(ηηη∗)] − λP∗βββ∗ = 0

whereβββ∗ is a vector of parameters of lengthq× (p+ 1), andP∗ is aq×
(
(p+ 1)× (p+ 1)

)
diagonal matrix whose elements are theq times repetition of diagonal ofP. Fisher scoring
iteration provides

β̂ββ
∗(k+1)

= β̂ββ
∗(k)
+

(
X∗T W

(
β̂ββ
∗(k))

X∗ + λP∗
)−1

sp
(
β̂ββ
∗(k))
.

9



At convergence, ifβββ∗ are the estimates (penalized) of true parameterβββ, then for the covari-
ance matrix one obtains

cov(β̂ββ
∗
) =

(
X∗T W

(
β̂ββ
∗)

X∗ + λP∗
)−1(

X∗T W
(
β̂ββ
∗)

X∗
)(

X∗T W
(
β̂ββ
∗)

X∗ + λP∗
)−1

and the hat matrix

H∗ =W∗T/2X∗
(
X∗T W

(
β̂ββ
∗)

X∗ + λP∗
)−1

X∗TW∗1/2

which we need in section 3 while deciding about the optimum value of the tuning parame-
terλ on the basis of generalized cross-validation.

3. Simulation Study

In a simulation study the results of penalization using the ridge penalty with symmetric
constraint were compared with its counterpart i.e., penalization with a reference category
and usual MLE. In this study, for multinomial logit models with three response categories
different number of continuous (independent and correlated) and categorical covariates
were considered for different sample sizes (n = 30,50,70 and 100). The situations with
different number and type of covariates used for multinomial logit models in the simulation
study were:
Ik3 : Independent covariates drawn from standard normal distribution,
Mk3 : Covariates with moderate correlation of magnitude 0.3 between covariates,
Hk3: Covariates with high correlation of magnitude 0.9 between covariates.
The parameter values used for the vectorβββ of lengthq(p+ 1) for situations Ik3, Mk3 and
Hk3 were:

p = 5: βββT = (1,5/6, . . . ,1/6,1/6,2/6, . . . ,1),

p = 10: βββT = (1,10/11, . . . ,1/11,1/11,2/11, . . . ,1),

p = 20: βββT = (1,19/20, . . . ,1/20,1/20,2/20, . . . ,1),

In addition, simulations with categorical covariates were performed:
ICk3 : 10 independent standard normal covariates, one categorical covariate with three
categories, two binay and one covariate with four categories,
MCk3 : 10 correlated covariates with correlation 0.3, one categorical covariate with three
categories, two binary and one covariate with four categories,
HCk3: 10 correlated covariates with correlation 0.9, one categorical covariate with three
categories, two binary and one covariate with four categories.
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T 1: Simulation results for comparison of ridge and MLE with SSC in terms of MSE(π̂ππ)
and MSE(̂βββ)

MLEMLEMLE SSC RidgeSSC RidgeSSC Ridge

situation p n MSE(π̂) MSE(β̂ββ) MSE(π̂) lRML (π̂) MSE(β̂ββ) lRML (β̂ββ)

Ik3 5 30 0.1359 25.8665 0.0975 −0.3500 4.2130 −1.2507
50 0.0824 5.9079 0.0658 −0.2420 2.4656 −0.7061
70 0.0549 1.5856 0.0474 −0.1510 0.9373 −0.4328

100 0.0385 0.7731 0.0354 −0.0913 0.5924 −0.2516

10 30 0.2026 216.7891 0.1504 −0.3437 152.3266 −2.1192
50 0.1641 60.6962 0.1292 −0.2756 44.7314 −1.0421
70 0.1118 9.7789 0.0925 −0.2084 6.1794 −0.7286

100 0.0740 3.5824 0.0617 −0.1957 2.1672 −0.5316

20 30 − − 0.3377 − 26.6171 −

50 − − 0.2825 − 51.4760 −

70 0.2011 485.6023 0.1794 −0.1511 426.7621 −0.9383
100 0.1529 104.4179 0.1415 −0.0950 94.7832 −0.4985

Mk3 10 30 0.2140 408.9403 0.1464 −0.4080 116.3031 −2.6988
50 0.1475 168.1165 0.1076 −0.3844 121.2961 −1.6518
70 0.1086 31.1482 0.0846 −0.2880 17.2707 −1.1140

100 0.0777 6.8345 0.0598 −0.2903 3.7639 −0.7489

20 30 − − 0.2741 − 22.8738 −

50 − − 0.2065 − 41.5213 −

70 − − 0.1753 − 44.9323 −

100 0.1318 222.6823 0.1130 −0.1846 163.3361 −1.1780

Hk3 10 30 0.2068 827.0594 0.1076 −0.8392 1008.4812 −3.5708
50 0.1521 401.0319 0.0929 −0.6888 232.4513 −2.3256
70 0.1098 288.5410 0.0546 −0.8251 13.7831 −2.7377

100 0.0791 133.4725 0.0391 −0.7781 7.0180 −2.3192

20 30 − − 0.1872 − 37.9161 −

50 − − 0.1555 − 55.5950 −

70 − − 0.1425 − 65.5167 −

100 0.1466 1402.6828 0.1131 −0.3869 1393.6544 −1.6206

ICk3 17 30 − − 0.2759 − 49.5630 −

50 − − 0.1854 − 52.4761 −

70 0.1633 388.9480 0.1049 −0.5511 289.5700 −2.1113
100 0.1195 174.8915 0.0805 −0.4609 71.6874 −1.9694

MCk3 17 30 − − 0.2852 − 49.7037 −

50 − − 0.1769 − 46.1630 −

70 0.1650 526.4872 0.1093 −0.4984 171.6959 −2.5559
100 0.1308 220.6468 0.0940 −0.3964 199.1444 −1.7828

HCk3 17 30 − − 0.2154 − 53.2974 −

50 − − 0.1796 − 70.5122 −

70 0.1602 907.3471 0.0894 −0.7270 679.7028 −2.7218
100 0.1228 411.4471 0.0646 −0.7030 16.8915 −3.0567
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The parameter values used for situations ICk3, MCk3 and HCk3 were:

p = 17: βββT =
(
(1,10/11, . . . ,1/11,1,6/7, . . . ,1/7), (1/11,2/11, . . . ,1,1/7,2/7, . . . ,1)

)
.
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F 1: Illustration of the simulation study; Box plots for comparing ridge and MLE with
SSC forn = 30 in terms of MSE(̂πππ) .

In the study, independent continuous covariates were drawn from a standard normal dis-
tribution and for each settingS = 200 data sets were used. For computing the usual ML
estimates,multinom function of librarynnet in R was used. The results of usual MLE
are not given in Table 1 if ML estimates were not converging and/or produced infinitely
large standard errors. The values of tuning parameterλ for SSC-ridge were chosen by use
of generalized cross-validation (GCV). The results of ridge estimates with symmetric side
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F 2: Illustration of the simulation study; Box plots for comparing ridge and MLE with
SSC forn = 30 in terms of log(MSE(̂βββ)) .

constraint (SSC-ridge) and the ML estimates for SSC are compared on the basis of MSE
(mean squared error) ofπ̂ππ andβ̂ββ. MSEs were computed using the estimates of allk logits
as:

MSE(π̂ππ) = 1
S

∑
s MSEs(π̂ππ) with MSEs(π̂ππ) = 1

kn

n∑
i=1

k∑
r=1

(π̂ir − πir )
2 for thesth sample

and

MSE(β̂ββ) = 1
S

∑
s ||β̂ββs− βββ||

2
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whereπ̂ππ is a vector of lengthknandβ̂ββ (vector of parameter estimates using SSC) andβββ are
of lengthk(p+ 1).

Let MSEsscand MSEML represent the MSE’s of̂πππ ( or β̂ββ) for ridge and the usual MLE using
the symmetric side constraint respectively. In Table 1 SSC-ridge estimates are compared
with ML estimates. Improvement of estimates of SSC-ridge over MLE for simulations
can be measured by MSEssc/MSEml, but because the distribution of these ratios is skewed,
we considered the mean across logarithms. In case of mean across logarithms we have
S−1∑

s log(MSEssc/MSEML ) = log((
∏

s MSEssc/MSEML )1/S) which refers to the logarithm
of geometric mean.
In Table 1,lRML(π̂ππ) andlRML(β̂ββ) represent the means of log(MSEssc/MSEML ). The negative
values oflRML indicate the improvement of the ridge method over usual MLE. Table 1
shows that usual MLEs do not exist for large number of covariates when samples size is
small, but ridge estimates do. As the number of covariates increases and also in the case of
collinearity ridge estimators definitely outperform MLEs in terms of MSE(π̂ππ) and MSE(̂βββ).
In Fig. 1 and Fig. 2, SSC-ridge is compared with MLE (if exists) in terms of box plots with
respect to MSE(̂πππ) and MSE(̂βββ) respectively for the most interested case of small samples
i.e.,n = 30. The solid circles within the boxes of each box plot represent the mean of 200
values for which the box plots are drawn.

4. Application

In this section usual ML estimates (with reference category and symmetric side constraint)
and the SSC-ridge estimates are computed for a data used by Agresti (2002) consisting of
the factors influencing the primary food choice of 219 alligators captured in Florida lakes.
Agresti (2002) fitted the baseline-category logit model using ’primary food choice’ with
five categories: Fish (F), Invertebrate (I), Reptile (R), Bird (B), and Others (O) as the
response variable with ’Fish’ as the reference category. The covariates used are L=Lake
of capture (Hancock, Oklawaha, Trafford, George), G=gender (male, female) and S=size
(<= 2.3 meters long,> 2.3 meters long. While comparing different models on the basis
of G2-values, the best fitted model is the (L+S) fitted on the data after grouping them
over gender. We fit this model to get ML estimates (with RSC and SSC). The SSC-ridge
estimates and their standard errors for this model are computed to compare them with
the ML estimates. In Table 2 the estimates and their standard errors (within brackets)
are shown for MLE with RSC (each of four logits is compared to the reference category
”F”) and SSC, and SSC-ridge (each logit is compared to the median response given by the
geometric mean). The optimum value of the tuning parameter for SSC-ridge isλ = 1.9.
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T 2: Estimates and standard errors for ”Primary Food Choice of Alligator” data
Logit Method of Estimation Intercept size<= 2.3 Hancock Oklawaha Trafford

I vs F MLE with RSC −1.5490 1.4581 −1.6581 0.9372 1.1220
(0.4249) (0.3959) (0.6128) (0.4719) (0.4905)

I vs median MLE with SSC 0.2232 1.2966 −1.8795 0.3875 −0.2103
(0.3906) (0.3159) (0.5384) (0.4595) (0.4107)

I vs median SSC-Ridge 0.1170 0.9982 −1.1208 0.4489 0.0553
(0.2478) (0.2391) (0.2863) (0.2581) (0.2521)

R vs F MLE with RSC −3.3145 −0.3513 1.2428 2.4589 2.9353
(1.0531) (0.5800) (1.1854) (1.1181) (1.1164)

R vs median MLE with SSC −1.5423 −0.5128 1.0216 1.9092 1.6030
(0.8427) (0.4509) (0.9513) (0.9089) (0.8788)

R vs median SSC-Ridge −0.6189 −0.4913 0.0201 0.6573 0.5386
(0.2774) (0.2917) (0.3044) (0.2891) (0.2851)

B vs F MLE with RSC −2.0934 −0.6306 0.6954 −0.6526 1.0881
(0.6623) (0.6425) (0.7813) (1.2020) (0.8417)

B vs median MLE with SSC −0.3209 −0.7922 0.4740 −1.2029 −0.2445
(0.5597) (0.5088) (0.6555) (0.9733) (0.6731)

B vs median SSC-Ridge −0.7121 −0.4426 0.4290 −0.4223 0.0414
(0.3042) (0.3066) (0.3021) (0.3086) (0.3023)

O vs F MLE with RSC −1.9043 0.3316 0.8263 0.0058 1.5165
(0.5258) (0.4483) (0.5575) (0.7766) (0.6214)

O vs median MLE with SSC −0.1321 0.1700 0.6050 −0.5441 0.1841
(0.4595) (0.3551) (0.4975) (0.6604) (0.5039)

O vs median SSC-Ridge −0.2307 0.1157 0.6056 −0.3643 0.2464
(0.2655) (0.2624) (0.2718) (0.3022) (0.2744)

Moreover, ridge estimates are compared with ML estimates in terms of MSPE (mean
squared prediction error). For this purpose 50 random permutations of the 219 obser-
vations were taken and each was divided into two parts: the training data set with 169
observations and the parameter estimates obtained from these observations are used to
get the squared prediction error from the test data set of other 50 observations using the
formula

SPEs =
1
kn

n∑
i=1

k∑
r=1

(π̂test
ir − π

test
ir )2,

whereπ’s are the observed responses in the form of dummy variables 0 or 1. The MSPE
for 50 random permutations computed as

MSPE=
1
50

50∑
s=1

SPEs.
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The mean squared prediction error for MLE=33.9568, and for SSC-ridge=33.89551. Be-
cause the sample size is sufficiently large, the asymptotic theory supports the results of
usual MLE and we do not see a significant improvement of ridge estimates over ML esti-
mates. The results however show a little improvement of SSC-ridge over the MLE.
To compare the MLE and ridge estimates with respect to their existence and performance
in small samples, we drew 50 random samples for each of size 30 and 50 from the original
data of 219 observations and computed MLE as well as ridge estimates for each sample.
The results (not shown here) indicated that MLE fails to exist in all samples of sizen = 30
andn = 50 but ridge estimates do exist in every case.

5. Concluding Remarks

In multinomial logit models, the identifiability of parameter estimates calls for some side
constraint, which typically means that some response category is chosen as the reference
category, so that the parameter estimates can describe the effect of x on the logits when
P(Y = r |x), (r = 1, . . . , k − 1) is compared to the pre-defined reference category. The
penalized estimates should be independent of the choice of the reference category. The
use of symmetric side constraint given in (3) leads us to the use of ”median” response
given by the geometric mean of all responses as the reference category rather than using
a particular category as reference. The use of ”median” response as reference makes the
penalization independent of reference category choice. This objective can be achieved for
L2-penalty using the Fisher scoring in a very simple way, just by making a transformation
of the actual design matrix and then using a matrix other than the identity matrix in the
ridge penalty (as defined in (11)). In case of multicategory response, using symmetric
side constraint is appropriate than to work with a reference category side constraint but
one should be careful while interpreting the parameter estimates for each logit as these
estimates are now subject to the ”median” response category as the reference rather than
a particular response category of the data. However once these estimates with SSC are
computed, one can transform these estimates back to the reference category scale by using
the inverse transformation given in (7).
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