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Abstract We are concerned with determining the model risk of contingent claims
when markets are incomplete. Contrary to existing measures of model risk, typically
based on price discrepancies between models, we develop value-at-risk and expected
shortfall measures based on realized P&L from model risk, resp. model risk and
some residual market risk. This is motivated, e.g., by financial regulators’ plans to
introduce extra capital charges for model risk. In an incomplete market setting, we
also investigate the question of hedge quality when using hedging strategies from a
(deliberately) misspecified model, for example, because the misspecified model is
a simplified model where hedges are easily determined. An application to energy
markets demonstrates the degree of model error.

1 Introduction

We are concerned with determining model risk of contingent claims when mar-
ket models are incomplete. Contrary to existing measures of model risk, based on
price discrepancies between models, e.g., [8, 26], we develop measures based on
the realized P&L from model risk. This is motivated by financial regulators’ plans
to introduce extra capital charges for model risk, e.g., [5, 13, 17]. In a complete
and frictionless market model, the “residual” P&L observed on a perfectly hedged
position is due to pricing and hedging in a misspecified model. The distribution of
this P&L can therefore be taken as an input for specifying measures of model risk,
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such as expected loss, value-at-risk, or expected shortfall, [10]. In an incomplete
market, model risk cannot be entirely isolated from market risk by hedging, and fur-
ther, it is not a priori clear, which hedging strategies are most effective under model
uncertainty. The purpose of this paper is to investigate these questions.

The analysis in [10] is primarily focussed on complete and frictionless market
models, as this allows for a convenient separation into P&L from market risk and
P&L from model risk: Since market risk is hedgeable, any remaining P&L is due to
pricing and hedging in a misspecified model. In the setting of incomplete markets,
one would rather distinguish between hedgeable and unhedgeable (or residual) P&L,
expressing that the unhedgeable P&L refers to model uncertainty and some unhedged
market risk. However, from a practical perspective, as an institution needs to take
care of both market risk and model risk—either through hedging or through capital
requirements—the distinction is of minor importance.

In addition, the determination and choice of effective hedging strategies in incom-
plete markets is not as straightforward as the replicating argument in a complete
market, but is of high practical relevance. The techniques developed in this paper are
suitable to comparing the effectiveness of hedging strategies in incomplete markets
under model uncertainty.

Model risk is associated with uncertainty about the model or probability measure
that governs the probabilistic behavior of unknown outcomes. In this context, uncer-
tainty refers to uncertainty in the Knightian sense, e.g., [16, 23], in which case the
model uncertainty or model ambiguity is expressed by a set of probability measures,
each of which defines a valid pricing and hedging model.

A set of axioms for measures of model risk, in the spirit of coherent and convex
risk measures [1, 18], was put forward by [8]. A popular measure fulfilling these
axioms is a contingent claim’s price range across the set of models expressing the
model uncertainty. This measure is generalized by [2] to account for a distribution
on the model set. It thus allows to incorporate the likelihood of the models into the
price range and as such to derive value-at-risk and expected shortfall type measures.
However, these measures do not account for the potential losses from model risk
realized when hedging in a misspecified model. In a complete market setup, [10]
develop value-at-risk and expected shortfall measures on the distribution of losses
from model risk, and show that these measures fulfill the axioms for model risk (with
the usual exception of value-at-risk not being subadditive).

As a generalization of [10], we develop measures for unhedged risk in incomplete
markets, comprising both market and model risk. This applies, for example, when
asset price processes are subject to jumps under the pricing measure, where, if at
all, perfect replication of contingent claims is possible only under conditions not
met in practice (such as infinitely many hedging instruments). Furthermore, in an
incomplete market setting, we investigate the question of hedge quality when using
hedging strategies from a (deliberately) misspecified model, for example, because
the misspecified model is a simplified model where hedges are easily determined.
A typical case could be to use a simplified complete market model to determine a
replication strategy, when it is known that the actual market is incomplete.
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Several simulation studies investigate the risk from hedging in a simplified model,
e.g., [11, 24, 25]. However, to the best of our knowledge, this is never compared to
the residual risk in the alternative model when following a risk-minimizing strategy.
Yet, this comparison is important for selecting an appropriate model for pricing and
hedging.

In a case study, we study the respective loss distributions and measures when
applied to options on energy futures. Empirical returns in the energy spot and future
markets behave in a spiky way and thus need to be modeled with jump processes.
However, to reduce the computational cost and to attain a parsimonious model, often
simplified continuous asset price processes are assumed. Based on the measures of
model risk, we assess the quality and robustness of hedging in a continuous asset
price model when the underlying price process has jumps relative to determining
hedges in the jump model itself. As asset price models, we employ continuous and
pure-jump versions of the Schwartz model [27], calibrated to the spot market at the
Nordic energy exchange Nord Pool.

The paper is structured as follows: In Sect. 2, we construct the loss variable and loss
distribution relevant for model risk. Section3 defines measures on the distribution
of losses from model risk and relates them to the axioms for measures of model
uncertainty introduced by [8]. In Sect. 4, we introduce a way of measuring the relative
losses from hedging in a misspecified model as opposed to hedging in the appropriate
model. Finally, Sect. 5 contains a case study from the energy market to illustrate the
relative loss measure and draw conclusions about the quality of hedging strategies
determined in a complete model with continuous asset price processes, when the
underlying market is in fact subject to jumps.

2 Losses from Hedged Positions

In this section, we formalize the market setup and the loss process expressing the
residual losses from a hedged position. In the case of a complete and frictionless
market, these losses correspond to model risk, whereas in the case of an incomplete
market, these losses comprise in addition the market risk that is not hedged away.

2.1 Market and Model Setup

We begin with a standard market setup under model certainty, as in e.g., [22]. On a
probability space (§2, F, @) endowed with a filtration (F;);>¢ satisfying the “usual
hypotheses” are defined adapted asset price processes (S} );>0, j = O, ...,d. The
asset with price process S” represents the money market account, whereas S!, .. ., §¢
are risky assets. All prices are discounted, that is, expressed in units of the money
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market account, and Q-martingales, with Q a martingale measure equivalent to the
objective probability measure.

Throughout we shall assume that S is a Markov process. This applies to many
models commonly used in practice, such as the Black—Scholes model, exponential
Lévy models, exponential additive models, and stochastic volatility models, such as
the Heston model. We shall see below that the Markov assumption simplifies the
analysis considerably.

Fixing a time horizon 7', we consider European-type claims with Fr-measurable
integrable payoff. Other claims, in particular, path-dependent options, such as Barrier
options, can be integrated into the analysis; we refer to [10] for the more general
case.

In addition to the risky assets S = (S L., s ), there may be tradeable options
maturing at 7 written on S, with observable market prices at time 0, so-called bench-
mark instruments. Their Fr-measurable payoffs are denoted by (H;);cs, and their
observed market prices by C7, i € I, or by [C}’id, C f‘Sk], i € I, if no unique price is
available. These benchmark instruments can be used for static hedging, potentially
reducing a claim’s model risk.

A trading strategy is a predictable process @ = (¢O, e, ¢d, ui,...,uy), where
qb-/ = (qb,] )¢>0 denotes the holdings in asset j and u; € R denotes the static holding of
benchmark instrument i . The time-¢ value of the portfolio is V;(®) = Z?zo #! S +

Z{Zl uiH,i, with Hti, i =1,...,1,the time-f prices of the benchmark instruments.
To rule out arbitrage opportunities, we require that @ is admissible. Further, @ is
assumed to be self-financing, thatis, dV;(®) = Z?:l qb,/ dS,/ +Zil=l Uj dH,i,t > 0.

A contingent claim with Fr-measurable payoff X is hedgeable if there exists a
replicating strategy, i.e., a self-financing trading strategy @ such that V7 (@) = X.
Hedging eliminates any P&L arising from market risk, and, because of the absence of
arbitrage opportunities, the claim’s price process and the price of the hedging strategy
agree for all 0 < ¢ < T. In an incomplete market, in the absence of a replicating
strategy, losses from market risk may be eliminated or reduced by super-replicating
strategies, e.g., [14], or by risk-minimizing strategies, e.g., [19, 20], but some P&L
due to market risk remains.

Aside from market risk, a stakeholder (trader, hedger, shareholder, regulator) may
be concerned about model risk when pricing and hedging a contingent claim. Model
risk refers to potential losses from mispricing and mishedging, because model Q is
possibly misspecified. This uncertainty regarding model Q is captured by a set Q of
martingale measures for the asset price processes, e.g., [8, 9], which may incorporate
uncertainty about both the model type and model parameters.

Let

C=1X €o(Sp)| supE[Xz] <oot,
QeQ

be the set of contingent claims under consideration, where we require square-
integrability, because for claims with finite second moments quadratic minimizing
hedging strategies exist, which will be employed later. The set of trading strategies
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considered is

S :[@Ifb admissible, predictable, self-financing, @; € o (S;),Vt >0
T
and E /(¢-f)2d[s-/,sf] <00,j=0,...,d}.
0

The condition @; € o (S;) implies that the hedging strategy is a Markov process.

Working on a set of measures requires further conditions, in particular, as the
measures in Q need not be absolutely continuous with respect to Q. More specifi-
cally, the asset price processes must be consistent under all measures and specifying
trading strategies requires the notion of a stochastic integral with respect to the set
of measures.

In case the models in Q are diffusion processes, [28] develop the necessary tools
from stochastic analysis, such as existence of a stochastic integral, martingale rep-
resentation, etc. Although this restricts the joint occurrence of certain probability
measures, it does not exclude any particular measure. For our purposes, this limi-
tation does not play a role, as we are primarily interested in choosing a rich set of
possible models to cover the model uncertainty. For details, we refer to [10].

In the general case, we pose the following condition on the set of measures Q,
which ensures that all objects are well defined when working with uncountably many
measures.

Assumption 1 There exists a universal version of the stochastic integral f(; ¢ds,
¢ € S. In addition, for all Q € Q, the integral coincides Q—a.s. with the usual
probabilistic construction and fé ¢ dS is F;-measurable.

2.2 Loss Process

Consider a short position in a claim X € C and a trading strategy @ € S. The time-T
loss of X that we consider is given by

L7 (X, ®):=—-(Vr(9) = 7Y), (D

where Vr(¢) = Vr((¢,0,...,0))and Y = X — Zilzl u;H;. If@ calibrates to the
market prices of the benchmark instruments, i.e., E[Hi] = Ci*, i=1,...,1,then
L7(X, ®) = —(Vr(®)— X), which corresponds to the overall realized loss from the
position. However, if Q does not calibrate perfectly to the benchmark instruments,
then there is additional instantaneous P&L at time O from trading the benchmark
instruments. This is not included in Eq. (1), and will be ignored in what follows, as
this is booked as (sunk) trading cost and as is does not give rise to further risks.
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The goal will be to extend this variable to a loss process L;(X, @), t < T, with
@ a hedging, resp. replicating strategy under Q. As both the time-r price, E[Y|F;]
and the strategy ¢ are defined only Q-a.s., one must be explicit in specifying the
version to be used when dealing with models that are not absolutely continuous with
respect to @ In our setup, we have E[Y|f,] = E[Y|St] = f(S;) for some Borel-
measurable function f, and likewise for the trading strategy. Since Q expresses the
model uncertainty when employing Q for pricing and hedging, it must not be involved
in the choice of the respective versions of the pricing and hedging strategies.

Assumption 2 The versions of E[Y |S¢],t < T, and ¢ are chosen irrespective of the
measures contained in Q.

We further impose lineargy conditions on the versions of E[Y|.’Ft] and ¢, which
are in general only fulfilled Q—a.s. but for all practically relevant models and claims
hold for all w € §2. This will be important for the axiomatic setup in Sect.3.2.

Assumption 3 Let X1, X, € C, &1 = (¢1,ul, ... ,ub), &> = (¢, ul, ..., u3) €
Sand define Y; := X; — zi[:l ul H;, j = 1,2.Forallt < T, itholds that

ElaY; + bY>|Fil(w) = aE[Y1|Fil(w) + bE[Y2|Fil(®), a,beR, we R
and
Vi(ad1(®) + bgp(w)) = aVi(¢p1(w)) + bVi(d2(w)), a,beR, we 2.

E[Y1|S7](0) = Y1 (0), ® € £2.

Assumptions 2 and 3 will be fulfilled in typical cases relevant in practice. Suppose
for example that S is a Black—-Scholes model under Q. Then prices and the replicating
strategy of European payoffs can be determined via the Black—Scholes PDE, and
these are suitable versions fulfilling the assumptions.

Definition 1 Let X € Cand @ = (¢, uy,...,us) € S. The loss process associated
with a short position in X and the trading strategy @ is given by

L= L(X,®) = —(Vi(¢) — E[Y|S;])

d t
=—(Vo+ D [¢/dS/ —E[Y|S])). 0<t<T, (2
j=1°

with Y = X — >/, u; H; and Vo = E[Y].
If @ is a replicating strategy under Q, then L; = 0 Q—a.s., but possibly for some

Q € Q,Q(L; = 0) < 1, which expresses that @ fails to replicate X under Q. A
model-free hedging strategy is defined as follows:

Definition 2 The trading strategy @ = ((¢1)o<s<T, U1, - .., 1) 1S a model-free or
model-independent replicating strategy for claim X with respect to Q, if L; = 0,
t>0,Q-as., forallQ € Q.
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Note that our definition of the hedge error based on a continuous time integral sep-
arates model risk from a discretization error. When actually calculating the hedge
error, it is necessary to use a time grid small enough such that the discretization error
is negligible.

The following proposition shows that the overall expected loss at time 7' from
replicating in Q when the market evolves according to Q instead of Q depends
only on the price difference.

Proposition 1 1. The total expected loss from replicating under Q claim X, that is
E[L7] plus the initial transaction cost E[Zl 1 Ui (H0 CH)1, when the market
evolves according to Qyy is just the price difference in the two models, —(E[ X ]—
EQv[X]).

2. The price range measure, deﬁned by supgeo EQ[X] — infgeg EQ[X], can be

expressed as SUPy g EQ[L ], where L? denotes the loss variable from hedging
under Q.

Proof See [10].

If a claim cannot be replicated, then—given the static hedging component

Z{:l u; Hi—a hedging strategy can be defined as a solution (170, ) e RxS
of the optimization problem

d T
inf E[U(L7(X, ®))] = inf E pds — ,
(VoeR,®eS) (LT ( )] (VoeR,®eS) go/

3)

where U : R — R, weighs the magnitude of the hedge error. The most common
choice is U(x) = x2, which minimizes the quadratic hedge error. This so-called
quadratic hedging has the advantage that the resulting pricing and hedging rules
become linear and it is also the analytically most tractable rule. Under this choice of
U (x), if S is a martingale, then a solution exists and ‘70 = E[Y], [20].

Of course, in an incomplete market, L7 (X, @) entails not only losses due to model
misspecification, but some losses due to market risk as well, since QL7 (X, ®) =
0) < 1, that is, P&L is incurred even when there is no model uncertainty.

For the explicit determination of L;(X, @) in some examples, we refer to [10]. It
is worth noting that in a complete market setup, the loss process corresponds to the
tracking error of [15].

2.3 Loss Distribution

The next step is to associate a distribution with the loss variable L;, t < T, based
on which risk measures such as value-at-risk and expected shortfall can be defined.
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This is achieved by considering an extended probability space (£2, F, [P), where
JF now incorporates in addition the model uncertainty and P contains information
about the degree of uncertainty associated with each model. To make this precise,
let G C F be a o-algebra such that conditioning on G eliminates the uncertainty
about the pricing measure Q € Q. In this setting, the measures in Q constitute a
regular conditional probability with respect to G. For existence and construction of
this probability space, we refer to [10].

In this setup, the models can be indexed by a random variable 0 € ® C R, with
o(0) = G, so that Qg = P(:|o()) and

P(B) = E[P(B|o(0))] = /]P’(B|o(9)) dP = /]P’(B|9 =a)u(da), BelF,
2 ®

where p is the distribution of 6. In particular, losses from hedging in a misspecified
model under model uncertainty have distribution function

P(L; <x)= [ Qu(L; <x)p(da), 0<r=<T.
®

The following proposition is proved in [10].

Proposition 2 A strategy @ is a model-free hedging strategy for claim X P-a.s. if
and only if P(L, = 0) = 1.

Hence, model uncertainty is expressed by the unconditional distribution P,
whereas model certainty is expressed via the conditional distribution P(-|o (6)).

A concrete approach to determining the distribution 6 is presented in [10]. Here,
probability weights are assigned to the models in Q via the Akaike Information
Criterion (AIC), e.g., [6, 7], which trades off calibration quality against model com-
plexity.

3 Measures of Model Risk

The loss distribution aggregated across the measures in Q from Sect.2.3 is the key
input to define measures of model risk. For the time being, we continue to work
in a setting where a particular model Q is used for pricing and hedging, as this is
appropriately quantifies the model risk from a bank’s internal perspective.

If a claim cannot be replicated, and the trading strategy @ is merely a hedg-
ing strategy in some risk-minimizing sense, then the loss variable L;(X, @) from
Definition 1 features not only model risk, but also the unhedged market risk. To dis-
entangle model risk from the market risk, one could first determine the market risk
from the unhedged part of the claim under Q and set this into relation to the overall
residual risk. This requires taking into account potential diversification effects, since
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risks are not additive. We shall continue to work under the setup of measuring resid-
ual risk, and use the terminology “model risk,” although some market risk is also
present.

Market incompleteness can also be seen to be a form of model risk, as—in addition
to the uncertainty on the objective measure—it causes uncertainty on the equivalent
martingale measure. However, hedging strategies would typically be chosen that are
risk minimizing not under the martingale measure, but risk minimizing under the
objective measure. In the case of continuous asset prices, this implies that hedging
is done under the minimal-martingale measure, which is uniquely determined. In
practice, it is more common to choose an equivalent measure that calibrates suf-
ficiently well, and in this case one could argue that incompleteness also increases
model uncertainty. In our setup, this would be reflected by a larger set Q.

3.1 Value-at-Risk and Expected Shortfall

The usual value-at-risk and expected shortfall measures are defined as follows:

Definition 3 Let L, (X, @) be the time-7 loss from the strategy & that hedges claim
X under Q. Given a confidence level @ € (0, 1),

1. Value-at-risk (VaR) is given by
VaR, (L;(X, ®)) =inf{l e R: P(L;(X, D) > 1) <1 —«},

that is, VaR, is just the o-quantile of the loss distribution;
2. Expected shortfall (ES) is given by

1
(I —a)

1
ESo(Li(X, ®)) = /VaRu(L,(X, @)) du.

In the presence of benchmark instruments, the hedging strategy in model Q may
not be unique. If the claim X can be replicated, then [T = {® € S : Q(L;(X, ®) =
0) = 1, ¢ < T}isthe set of replicating strategies for claim X in model @ Otherwise,
we focus on quadratic hedging and define [T = {® = (450, o ,¢>j, Ui, ..., uy) €
S, (uy,...,uy) € R! : & = & under @}, where @ refers to the quadratic risk-
minimizing strategy attaining the infimum in (3) with U(x) = x?. Because in an
incomplete market, the loss from hedging entails some market risk aside from model
risk, the benchmark instruments play a more important role than in complete market,
as they are not necessarily redundant, but may reduce the hedge error under Q.

To abstract from the particular hedging strategy chosen, we define measures that
quantify the minimal degree of model dependence, indicating that when pricing and
hedging under measure Q, the model dependence cannot be further reduced. This is
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reasonable in the sense that it is not of interest whether a position is indeed hedged
or not. Rather the hedging argument serves only to eliminate (or reduce, in case the
claim cannot be replicated) P&L from market risk. Choosing the minimal degree
allows to appropriately capture claims that can be replicated in a model-free way.

Definition 4 Concrete measures capturing the model uncertainty when pricing and
hedging claim X according to model Q are given by

I e, (X) = infocn BIL (X, )71,

2. UGk s (X) = inf ey VaRy (ILi (X, @),

3. g s (X) = infper ESq (L (X. @)).

4 Py s (X) = infocry max(VaRa (L (X, ©)), 0),
5

. P,y (X) = infoery max (ESq (Li (X, ©)). 0).
The measures /L%R,ayt and ,ugs,w capture model uncertainty in an absolute sense,

and are thus measures of the magnitude or degree of model uncertainty. The measures

p%R o and ,0}93 o.; consider losses only. As such, they are suitable for defining a

capital charge against losses from model risk.

Contrary to the case of bank internal risk measurement, a regulator may wish to
measure model risk independently of a particular pricing or hedging measure, taking
a more prudent approach. To abstract from the pricing measure, one would first
define the set Qy < Q of potential pricing and hedging measures (e.g., measures
that calibrate sufficiently well) and then define the risk measure in a worst-case sense
as follows:

Definition 5 Let ui@H (X) be a measure of model uncertainty when pricing and
hedging X according to model Qy € Qp. The model uncertainty of claim X is
given by

w(X) = sup p2(X). )
@HéQH

Capital charges can then be determined from either /L%R’ it (X), resp. /,LgS’ ot (X),
or from wUvaR .t (X), resp. UES, e, (X).

3.2 Axioms for Measures of Model Risk

Cont [8] introduces a set of axioms for measures of model risk. A measure satisfying
these axioms is called a convex measure of model risk. The axioms follow the general
notion of convex risk measures, [18, 21], but are adapted to the special case of model
risk. In particular, these axioms take into account the possibility of static hedging



Model Risk in Incomplete Markets with Jumps 49

with liquidly traded option and of hedging in a model-free way. More specifically,
the axioms postulate that an option that can be statically hedged with liquidly traded
options is assigned a model risk bounded by the cost of replication, which can be
expressed in terms of the bid-ask spread. Consequently, partial static hedging for
a claim reduces model risk. Further, the possibility of model-free hedging with the
underlying asset reduces model risk to zero. Finally, to express that model risk can
be reduced through diversification, convexity is required.

Here we only state the following result, which ensures that our measures fulfill
the axioms proposed in Cont [8]. The proof is given in [10] for complete markets
and can be easily generalized to an incomplete market.

Proposition 3 The measures MgQEJ(X), Mgs,a,t(x) and p%’a’t(X) satisfy the

axioms of model uncertainty. The measures ,ugaR,a’t(X) and p%R’a’t(X) satisfy
Axioms 1, 2, and 4.

4 Hedge Differences

Instead of considering the P&L arising from model misspecification as in Sect. 2.2,
one might be interested in a direct comparison of hedging strategies implied by
different models. For example, one might wish to assess the quality of hedging
strategies determined from a deliberately misspecified, but simpler model, in a more
appropriate, but more involved model.

We first explain the idea with respect to one alternative model Qs € Q and outline
then how measures with respect to the entire model set can be built. As before, Q
is the model for pricing and hedging and, fixing a claim X € C, IT is the set of
quadratic risk-minimizing (QRM) hedging strategies for X under Q (containing
various hedging strategies, depending on how static hedges with the benchmark
instruments are chosen).

We seek an answer to the following question: If the market turns out to follow
Qp, what is the loss incurred by hedging in Q instead of hedging in Qu? Let
@ = (¢p,uy,...,u;) € Il be the QRM strategy for ¥ = X — Z{Zl u; H;, and let
@) be the respective QRM strategy for ¥ derived under Q. The relative difference
of the hedge portfolio compared to the hedge portfolio when using the strategy of
Qs is given by

d t
LA(X, ®, @) = EW[Y] - E[Y]+ > / ($3 — 7 ds. (5)
j=1%
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This variable differs from L;(X, @), cf. Eq.(2), in that it expresses the difference
between the hedging strategies @ and @, whereas L; (X, @) describes the difference
between the hedging strategy @ and the claim X.!

The next proposition provides some insight on the different nature of the two
variables.

Proposition 4 The following properties hold for the processes L (X, @, ®y) and
L(X, ®):

LAX, @, @) is a Qu-martingale with L§ (X, @, ®p) = EQv[Y] — E[Y]
E[Ly(X, )] = E@[Y] — E[Y]

L?(X, @, ®y) = L7 (X, D) Qu—a.s. if Y can be replicated under Q
L,A(X, D, Dy) — Li(X, D) = EQM[YLE] — E[YU’:,] Qup—-a.s. if Y can be
replicated under Q.

R

Proof 1. This follows directly from the definition of L (X, &, ®) and the fact
that ®M and @ are in S.

2. See Proposition 1. _

3. If Y can be replicated, then ¥ = E@u[y] + Z?:l fOT ¢1,dS/ Qu—a.s., and
consequently L2 (X, @, @) = Y — (E[Y] + Z?:l fOT ¢J dS7) Qu-a.s.. The
claim follows by observing that L; (X, @) = —(E[Y] + 27:1 fOT ¢j dsi —v).

4. Using that LA(X, @, @yy) = EQ[Y|F] - EY]+ X9, [; ¢/ dS/ Qu-as.,

since Y can be replicated under Qy, the claim follows with the definition of
L:(X, D).

Observe that the variable L, (X, @) is neither a sub-martingale nor a super-martingale
as shown in the example in [10, Sect.3.5.].

As an example, Fig. 1 shows the distributions of L;(X, @) and L,A(X , D, Dy)
for an at-the-money call option X = (S — K)T with Sy = K = 1, with expiry
T in 3months, at time + = T /2, dynamically hedged with the underlying asset,
ie., @ = (¢), resp. @y = (¢pr). Under the misspecified model Q, the asset price
process corresponds to a geometric Brownian motion with 20 % volatility, whereas
under Qs the asset price process follows a geometric Brownian motion with 25 %
volatility. The correlation of the two loss variables is 67.97 %. At maturity 7, both
variables agree.

Generalizing the relative hedge difference to a set of models is not straightforward,
as the loss variable LZA (X, @, @jy) depends explicitly on Qp and, as such, a version
of the variable that is valid under all models cannot be constructed. [12] shows how
a loss distribution under model uncertainty can be constructed, which can then be
used to define the usual risk measures such as value-at-risk and expected shortfall.

! There is no need to pose specific conditions on the version of the hedging strategy @, chosen,
since in the following only properties of L2 (X, &, @) under Qy are analyzed.
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Fig. 1 Loss att = 1/2T from dynamically hedging an at-the-money call option with a maturity
T of 3 months based on 10,000 simulations and 1,000 time steps. Left Distribution of L,(X, @),
E[L,(X, ®)] = 0.0053. Right Distribution of L2 (X, @, @), E[LA (X, @, ®41)] = 0.0099, which
equals the initial price difference

5 Application to Energy Markets

As areal-worked example, we study the loss variables and risks from hedging options
on futures in energy markets. The spot and future prices in energy markets are
extremely volatile and show large spikes, and a realistic model for the price dynamics
should therefore involve jumps. However, continuous models based on Brownian
motions are not only computationally more tractable, but prevalent in practice. Our
analysis sheds light on the risks of hedging in a simplified continuous model instead
of a model involving jumps.

Assume given a probability space (£2, (F;)o<;<7) With a measure P on which a
two-dimensional Lévy process (L;) = (L1, L2;);~0 with independent components
is defined. A popular two-factor model for the energy spot price is developed by
Schwartz and Smith [27]. The spot is driven by a short-term mean reverting factor to
account for short-term energy supply and energy demand and a long-term factor for
changes in the equilibrium price level. In its extended form, [4, Sect. 5], the logarithm
of the spot price is

logSi=A+ X+ Y; (6)

with (A;);=0 a deterministic seasonality function, (X;);~o a Lévy driven Ornstein
Uhlenbeck process with dynamics dX; = —AX;dr +dL;; and (Y;);~¢ defined by
dY; = dL; . We further assume that the cumulant function ¥ (z) := 10g(IE[e<Z'L1)])
is well defined for z = (z1, z2) € R?, |z] < C, for C € R. Due to the independence
of L1 and L, the cumulant transforms of both processes add up and we have ¥ (z) =
¥1(z1) + W2 (z2) where ¥ and ¥, is the cumulant for L1 and L, respectively.

We consider the pricing and hedging of options on the future contract. In contrast
to, for example, equity markets, the future contract in energy delivers over a period
of time [T, T>] instead of a fixed time point by defining a payout
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1
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Tz_Tl/rr )

T

in return for the agreed future price. While the spot is not tradable due to lack of
storage opportunities, the future is tradable and used for hedging both options on the
future itself and options directly on the spot price. Assuming that the future price F;
equals its expected payout

bl

1
=EQ . TI/S, dr|F (8)

T

under a pricing measure Q ~ ~ P, the value F; is derived in analytic form in [4]. Under
the assumption that L and L, are normal inverse Gaussian (NIG) distributed Lévy
processes an approximate process (F )i <7 is determined in [4] by matching first
and second moments such that (Ft )i <15 1s of exponential additive type. We assume

in this application that Q = PP. The value of I?IL is then

t t t
Fl = Fyexp (— / Wy (SF ) + w2k () ds + / shydry s+ / k) sz,s>
0 0 0

€))

with time-dependent, deterministic functions X 1L (t) and 22L (t). The process FL
depends on the interval [T}, T>], but in order to avoid overloading the notation and
since we shall only consider a single delivery period in our example, we simply
write F L Z‘lL and 22" . The market under this model is incomplete and claims can in
general only be hedged with risk-minimizing strategies. Integral representations for
prices and quadratic risk-minimizing hedge positions of call and put payoffs can be
derived, and we refer the reader to [4, Prop.3.9.] for further details and the explicit
formulas.

As a pricing and hedging model, we consider a simplified version of (6), which
is driven by two (nonstandard) independent @—Brownian motions (Bj;);~o and
(B2,1)i=0 defined on (£2, (F;)o<:<7) and we derive, again by moment matching,
an analog approximate future price process FB of the form

t t t
FP = Fyexp ( / vE(zEe) +ef (2F ) ds+ / =P () dB s + / =7 (s)de,s> (10)
0 0 0

with time-dependent, deterministic functions Z‘]B (t) and Z‘ZB (¢) and with lI/IB (z) and
lI/QB (z) being the cumulant transforms of B 1 and B; ;.
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Although the model has two sources of randomness, it is a complete model under
the filtration generated by the future price itself as the next proposition shows, which
means that all practically relevant claims can be replicated.

Proposition 5 Let (G;); <7 be the filtration generated by F FB up to time't, i.e., G; :=
o{F; FB s < t}. Then the market consisting of F FB and a constant riskless bank account
isa complete financial market with respect to (G;);<T.

Proof See [12].

We estimate the parameters for both models based on future and spot data from
Nord Pool energy exchange. We use average daily system peak load electricity
spot prices for the period from January 2011 until May 2013 (prices as shown
on Bloomberg page “ENOSOSPK”) and weekday prices for front month and sec-
ond month future contracts. For details on the estimation procedure, we refer to
[4, Sect.5.2.]. In Table 1, we collect the parameter estimates for the two factors of
both models, the simplified model with two nonstandard Brownian motions and the
model with two independent NIG-Lévy processes. The estimates for the Brownian
factor are only the drift term p and the volatility term o. The NIG distribution is a
four-parameter distribution with scale parameter §, tail heaviness «, skew parameter
B, and the location parameter v, see [3].

Figure 2 shows the empirical return distributions of both factors together with the
density function of the estimated distribution. It is obvious that the NIG distribution
provides a significantly better fit to the empirical returns than the normal distribution.

The claim to be hedged is an option on a future with a one-week delivery period
trading one month prior to expiry, so that 77 = 23 and 7> = 30. Based on the
parameter estimates, we determine scahng terms Z‘ (t) and Z‘ () for the dynamics
of FL and scaling terms 5 (¢) and 22 (¢) for the dynamlcs of FB, respectively.
Assuming that the measures Q and Q are orthogonal, we define an aggregating
process F such that F = FB Q-as. and F = I?,L Q-a.s.. Pricing and hedging is
performed under Q, and there is only one alternative measure, denoted by Q. Our
model set is thus Q = {Q, Q). Applying the Akaike Information Criterion (AIC),
we assign a probability distribution to the model set Q. It turns out that model Q gets
assigned a probability of basically 1 due to its much better fit of the returns and we
simulate according to this model.

We consider an at-the-money call option X := (1/‘7}2 — Fy)™" and calculate the
hedge positions implied by Q. For the simulation of the process under Q, we use 600
time steps in order to reduce the discretization error. We investigate the distribution
of L? (X, @, dg) and L7 (X, @), with @ and @ dynamic hedging strategy as there
are no benchmark instruments. As implied by Proposition 5, the hedging strategy is
actually a perfect hedge under the model Q.

Figure 3 shows on the left-hand side the distributions under Q of L7 (X, @) and
L? (X, @, @q). To compare, Fig. 3 shows the distribution under Q of the hedge error
L7 (X, ®9) when hedging under Q (top right). Here, the hedge error is introduced
by market incompleteness.
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Table 1 Estimated parameters for the NIG distributions of L ; and L, ; and parameters for the
normal distributions of By ; and B> ;

A A

a B D 8
Ly, 1.9240 —0.8860 0.0176 0.0622
Ly, 33.3008 —1.0988 —0.0009 0.0071
4 P
By, 0.2328 —0.0004
By, 0.0133 0.0002
60 6
g 50 ¢ g 5F
% 40 ¢ % 4t
g 30 g 3t
'g 20 F g 2k
2 0} 2t
0—6.10 -0.05 0.00 0.05 0?10 —?O —i.S -1.0 -0.5 0.0 O.\S 15_
Return Return

Fig. 2 Empirical distributions of long-term factor (/eft) and short-term factor (right) together with
fitted NIG distribution (solid line) and normal distribution (dashed line)

It turns out that the loss due to the misspecified model Q is minor compared to the
loss due to the incompleteness. The loss due to model misspecification as measured by

L?(X, @, ®q) has amean-squared value ofu%é’t(X) = EQ[(Lﬁ(X, D, (PQ))Z] =
9.50. The mean-squared hedge error from hedging under the misspecified model is
greater with MgQE,z(X) = EQ[(LT(X, ®))?] = 34.61. Although the magnitude
appears high, it is relativized by the fact that even under correct model specifica-
tion the mean-squared hedge error E@[(LT(X , @Q))z] is 25.54. The initial prices

under the two models are EQ[X ] = 10.954 and EQ[X] = 8.068, respectively.
If we consider the variance of the loss variables, which corrects for the mean, it
turns out that the impact from the misspecified hedge is rather low. For the variable
LY(X, @, D), we get Var(L7 (X, @, @g)) = 1.07. We find that Var(L7 (X, @))
and IEQ[(LT(X, @Q))Z] = Var(L7(X, ®q)) are similar with 25.71 and 25.56,
respectively. The lower right of Fig.3 shows a scatter plot of (L7(X, ®) and
L7 (X, @@). The two variables show a correlation of 97.91 %, implying a strong
linear dependence between the hedge error under model Q (market risk) and the
hedge error due to using the misspecified model Q.

The fact that the impact due to hedging in the wrong model is relatively low in
this case study should not be misinterpreted. It confirms a stylized fact that is well
known for diffusion processes (see [15]), namely that, hedging is robust, as long as
the overall variance of the underlying is described sufficiently well by the model.



Model Risk in Incomplete Markets with Jumps 55

Relative Frequency

Relative Frequency

Fig.

- o 0.12 | o
0.10
e 2 010f
0.0
s | = 008}
0.06 3 -
5 0.06 |
0.04 | | B —
E 0.04
0.02 ] &-’ 0.02
0.00 t=== __] 0.00 —|
-25 =20 -15 -10 -5 0 5 10 -25 =20 -15 -10 -5 0 5
Hedge error Hedge error
04} [ 3
=
03} | [] 2 0
: 15}
9]
02} =
| o -5
| T
0.1} ] .
-10
0.0 =] = L
—6 —4 -2 0 -10 -5 0 5 10
Hedge error Hedge error
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Pq) < -). Lower right Scatter plot of L7 (X, @) and L7 (X, ®q)

The overall volatility in our setup is the same for both models due to the moment
matching procedure and uncertainty in this volatility is likely to result in greater
model risk. The study makes also clear that the hedging error due to incompleteness
cannot be neglected.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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