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1. Introduction

Attempts to analyze censored data have a long tradition. Daniel Bernoulli,
for example, tried to analyze the impact of vaccination against smallpox on
mortality and morbidity already in 1766 (Bernoulli & Blower 2004, reprint with
discussion). Nowadays, more advanced standard methods are broadly available.
Classical survival models had a break-through with the well-known, omnipresent

Cox model (Cox 1972).

In this thesis we want to derive new methods for the estimation of flexible Cox-
type models. This class of models aims to fit censored survival data allowing
for smooth and time-varying effects of covariates. We can obtain very flexible
models in this class. However, additional difficulties arise when we try to per-
form variable selection or model choice. To overcome these problems we propose
an estimation scheme based on component-wise boosting that allows estimation
of the model and has a built-in variable selection approach (cf. Bithlmann &
Hothorn 2007). By decomposing the effects into their linear and flexible com-
ponents, component-wise boosting can also be utilized to choose an appropriate
modeling alternative (Kneib et al. 2007).

The thesis is organized as follows: Chapter[2] gives some basic insights in survival
models and presents some possible extensions to the Cox model. Chapter [3| goes
into more technical details. It demonstrates how the ideas from Chapter 2| can
technically be included in the model and how inference can be done. We intro-
duce the concept of P-splines and sketch their application in survival models.
Degrees of freedom for flexible survival models with P-splines are defined. The
chapter ends with an approach for variable selection and model choice in classical
estimation frameworks called two-stage stepwise procedure. In the subsequent
chapters we will illustrate means to incorporate model choice and variable selec-
tion in the boosting framework, which is the main focus of this work. Therefore,
we introduce the concept of functional gradient descent boosting and the related
likelihood-based boosting in Chapter 4] The general approaches are illustrated
by some special algorithms and the current state of boosting for survival models
is presented. We will also give some theoretical and practical background on the
choice of base-learners. Chapter |5 addresses the newly derived likelihood-based
boosting algorithm Coxge,Boost for flexible boosting in Cox-type additive mod-
els. The failure of functional gradient descent boosting in this model class is
discussed and illustrated. Problems in the likelihood-based Coxge Boost algo-
rithm are outlined and possible solutions are presented. A simulation study is
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conducted in Chapter [0] to asses the performance of the proposed Coxge,Boost
algorithm. Furthermore, we use the CoxgexBoost procedure to derive a prognos-
tic model for surgical patients with severe sepsis. The results are compared with
those of the two-stage stepwise procedure applied on the same data set. The ap-
pendix includes the derivation of the functional gradient for the full likelihood of
survival models with time-varying effects. Some computational considerations
that were made for the implementation of the boosting procedure are considered
and a demonstration of the usage of the implemented software is given. Finally,
additional figures for the simulation study in Chapter [0] are presented.



2. Survival Models

Survival models or, more generally speaking, time-to-event models have got
a broad range of applications. They can be useful, for example, in quality
control (e.g., time until failure of a machine) or social sciences (e.g., time until
marriage). However, the most important area of application is medical research.
Examples here are death caused by a special illness, death after surgery, or time
until relapse of a tumor. Death is, after healing, one of the most important and
drastic outcomes in medicine. Hence, time until death is often used as a measure
for therapeutic progress or for determination of risk factors for patients.

As we focus on medical applications (see Section and Chapter [0]), in the
following we will refer to time-to-event models as survival models without re-
stricting the methodological results to clinical or epidemiological research.

A typical problem for survival data is censoring, i.e., the event of interest (e.g.,
death caused by a special illness) is not observed until the end of the study
period for some individuals. This can be due to drop-outs, competing events
(e.g., death caused by something else) or just the end of the study.

In general it is supposed that the censoring time C' is independent of the true
survival time T* (i.e., censoring at random). We denote the observed survival
time with 7' = min (7™, C); t represents the corresponding realization. In addi-
tion an indicator for non-censoring

1 fT*<C
0=Ir<cy=9¢g i1 >C

is introduced. The pair of observed survival time and non-censoring indicator

is then regarded as observed outcome for the i-th observation.

2.1. Definitions and Interrelations

The (true) survival time 7%, which is greater or equal to zero, can be seen as
a random variable and thus be described in terms of the distribution function



Chapter 2 — Survival Models

Fr«(t) = P(T* < t), the density fr:(t) = F}.(t) or the survival function
Sp+(t) = P(T* > t) =1 — Fp«(t). (2.2)

Another well known quantity to determine the distribution of survival times is
the hazard rate

1
Ar«(t) ;= lim — Pt <T* <t+ At|T* > t). 2.
r(t) = lim =Pt <T" <t +At|T" 2 1) (2.3)
It describes the infinitesimal probability of an event (e.g., death) given that
the observed individual is under surveillance until time ¢ (e.g., the individual
survived until ¢). The cumulative hazard rate

Ap(t) = /0 Ars (u)du (2.4)

is just the integral over time of the hazard rate. All defined functions are directly
linked to each other and uniquely determine the distribution of 7%. Thus, it is
sufficient to specify one of them. One important connection should be mentioned
here: One can show that

S (t) = exp {—Ap- (1)} (2.5)

which we will need later on (see Sec. [6.1.1). The links of the other functions
can be found, for instance, in Klein & Moeschberger (2003). For simplicity, the
index T™ is dropped for all quantities, in the following.

2.2. Cox PH Model

The most commonly used model for survival time data, and other data with cen-
sored outcomes, is the Cox proportional hazards model (Cox 1972). It specifies
the hazard rate (2.3) as a semi-parametric model

Ai(t) = A(t, ;) = Ao(t) exp (Z xijﬁj> = Xo(t) exp (z8) (2.6)

Jj=1

where Ao(t) is the baseline hazard rate, x; is a p x 1 vector of covariates for
observation ¢ (i = 1,...,n) and 3 is the corresponding p x 1 coefficient vector.
Note that in the Cox model 3 and x; do not have a term for the intercept. The
intercept is implicitly included in the baseline hazard A\¢(t). An additional term
in the parametric part of the model would make the Cox model unidentifiable.

The model is called semi-parametric, as only the effects of the covariates are pa-
rameterized, whereas the baseline hazard rate remains unspecified and is usually
estimated in a nonparametric way using the Breslow estimator (Breslow 1974).



2.2 Cox PH Model

The key assumption, from which the Cox PH model derived its name, is the
proportional hazards property (PH property): With time-constant covariates
the hazard ratio

At i) Ao(t) exp(a; )
At i) Ao(t) exp(z)B)

= exp [(x; — x;) O] (2.7)

is always constant over time and thus the hazard rates are proportional. The
PH property is induced by the strict separation of time-dependent effects in the
baseline hazard rate and time-constant covariate effects in the second factor of
, the exponential function.

2.2.1. Interpretation

One of the big advantages of the Cox model is the easy interpretation of the
coeflicients (3;, or rather, exp(3;). In the case of a binary covariate x;, the latter
can be seen as hazard ratio when the other covariates are fixed. The hazard ratio
for an increase of 1 for only one covariate x;, given that the other covariates are
fixed, is

/\(t|$] =z + 1, $_j) 1' B
Mtle, =2,y P {[(z +1) — 2]3;} = exp(B)), (2.8)

where z; is the j-th covariate and x_; are the predictor variables without co-
variate j. All covariates except x; are kept fix for the interpretation of 3;. With
x = 0, which leads to comparison of z; = 1 with x; = 0, Equation (2.8) can be
seen as the special case for binary covariates z;.

More generally, exp(3;) can be interpreted as multiplicative factor on the base-
line hazard rate A\o(t), where for 5; > 0 an increase of the corresponding z-value
leads to an increased hazard rate which corresponds to a decreased mean sur-
vival time and analogously for §; < 0 to an increased mean survival time (given
that the other covariates are fixed).

The covariates form a log-linear model for the hazard rate, that means for a
continuous variable that for a distance of 10, e.g., from 1 to 11 or from 101
to 111 the same hazard ratio is assumed. This can, in some applications, be
very reasonable, whereas in others this might be very misleading. For example
age very often has got threshold values where the risk structure changes (cf.
Therneau & Grambsch 2000). Hence, modeling age in a non-linear parametric
or even non-parametric way circumvents the log-linearity and might lead to
improved models.
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2.2.2. Violation of PH Assumption

As research has shown, the Cox model is very sensible against deviations from
the PH assumption (see Bender et al. 2005). However, if the PH assumption
holds, it leads to a model, which is easy to interpret and can be fitted easily in
every standard statistical software package.

Nowadays, more sophisticated modeling possibilities are becoming widely avail-
able. For example, more and more software packages provide the opportunity
to specify Cox models with time-varying coefficients (see Sec. . However,
one needs to be careful with adding time-varying coefficients to “heal” non-
proportional hazards, as there are different causes for non-proportionality in
the Cox model (see Therneau & Grambsch 2000) including:

e omission of (important) covariates
e incorrect functional form of covariates

e incorrect model; other models would be more appropriate (e.g., accelerated
failure time (AFT) models or additive hazard models).

In all these cases, using a Cox model can lead to a model, where the proportional
hazards assumption is violated. Thus possibly meaningful covariates should be
chosen with care. Very often, the Cox model is applied just for convenience
and habit. Here as well, researchers should check if this is the best alternative.
Keeping these problems in mind, ways to determine the functional form and to
detect and model time-varying effects are needed.

2.3. Extensions to Cox PH Models

To overcome the restrictions of the Cox model as discussed in Section 2.2 some
relaxations are needed. Firstly, one might want to include non-linear effects
to the model to relax the log-linear form of covariate effects. Secondly, the
proportional hazards assumption might not hold. Hence, time-varying effects
should be used. How to include these concepts in the Cox model is discussed in
the following. Technical details will be given in Chapter [3]

2.3.1. Nonparametric Effects

As stated in Section the covariate effects in the Cox model form a log-
linear model for the hazard rate. In many circumstances this might not hold.
Therefore, transformations of the variables are necessary. Classically this can
be solved by examining a scatterplot of the martingale residuals of the null
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model (i.e., with ,é = 0) plotted against each covariate together with a scat-
terplot smoother (Therneau et al. 1990). From the smoother one can derive
the functional form under some assumptions by visual inspection. As a result
transformed covariates (e.g., 2% instead of ) can be used or cut-points might
be introduced.

More advanced approaches use smooth functions f(v) of a covariates. This
can be done with any classical smoother, such as smoothing splines, regression
splines or P-splines (see, e.g., Therneau & Grambsch 2000). These methods have
the advantage that no visual inspection is needed to determine the functional
form. Moreover, no fixed transformation is needed. The functional form is
chosen adaptively from the data. The P-spline approach will be used in this
thesis and is explained in Section [3.1.1} Despite being very flexible, it is still
feasible to estimate the induced model.

Another approach utilizes fractional polynomials (Royston & Altman 1994) for
flexible modeling of continuous covariates. A fractional polynomial of degree m
is defined for positive valued covariates x > 0 as

O(x;8,p) = Fo+ Y _ Bia", (2.9)

j=1
where p = (p1,...,pm) is a vector of powers with p; < ... < ppn
and B8 = (fo,...,0m) is a vector of coefficients. Royston & Altman

(1994) propose to choose p from a fixed set of candidate values P =
{—=2,-1,-0.5,0,0.5,1,2,..., max(3, m)}, where a redefinition for the exponent
0 is applied: 2° := logz. Variables with negative values require a shift such
that non-negativity is guaranteed. Despite the flexibility, especially for frac-
tional polynomials with a high degree m, a major drawback of this approach
remains: The approach strongly depends on the modeling alternatives given by
P, which are entered in the fractional polynomial formulation.

2.3.2. Time-Varying Effects

Time-varying effects and the concern about them have a long tradition, as the
PH assumptions can be seen as the strongest assumption in the Cox model.
Cox (1972) proposed inclusion of time-varying effects ¢(¢) using artificial time-
dependent covariates. He proposed to use g(t) = « - log(t) as time-dependent
effect and model the interaction of g(¢) and covariate w, which is assumed to
have a time-varying effect:

a-log(t) -u = a-u(t), (2.10)

where 4(t) is now a known time-dependent covariate.
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Again the fractional polynomial approach can be applied to model the functions
more flexibly than just applying one pre-specified transformation. Sauerbrei
et al. (2007) describe an extension of a multivariable fractional polynomial ap-
proach with a special focus on detecting time-varying effects. First, a model with
time-fixed effects for the full time period is determined based on the classical
multivariate fractional polynomial approach. Then the time period is restricted
to allow short-term effects to be entered in the model if they are significant. This
model serves as starting model for the next step. For each selected covariate,
together with the selected fractional polynomial, time-varying effects, based on
fractional polynomials of time, are added in a forward selection procedure if they
are significant. Thus we have a strategy in several steps: First, variables with
possible influence are selected. Second, for continuous covariates the functional
form is determined. Third, time-varying effects are analyzed to allow departures
from the PH assumption. The drawbacks remain the same as in Section [2.3.1],
i.e., the procedure highly depends on the possible fractional polynomials.

Applying the artificial covariate approach is not restricted to known functions
as in Cox’s (1972) proposal or parametric functions as in the multivariable frac-
tional polynomial approach for time-varying effects. Being a function of time,
g(t) can be flexibly modeled using again the same smoothing techniques as
for nonparametric effects, as for example, smoothing splines, regression splines
and P-splines. Thus, one gets nonparametric and flexible time-varying effects.
Again, P-splines will be our choice to model g(¢) in the following.

Cox-Type Additive Model Including both, time-varying and smooth effects in
the model, we get a Cox-type additive model as introduced by Kneib & Fahrmeir
(2007). The hazard rate then can be written as

Ai(t) = exp(mi(t)) (2.11)
with the additive predictor
L J
ni(t) = go(t) + > at)ua + Y fi(vig) + i, (2.12)
1=1 j=1

where
e go(t) is the log-baseline hazard,
e g;(t) are the time-varying effects of covariates u; , [ =1,..., L,
e f;(v;;) are the smooth effects of covariates v;; , 7 =1,...,J, and
e /A3 are linear effects as in the classical Cox model ([2.6).

As we include the log-baseline hazard gy = log(Ao(t)) in the additive predictor
(2.12) there is no need to additionally specify the classical baseline hazard \y(t)
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in (2.11). How to model and especially estimate the functional forms g;(-), [ =
0,...,L,and f;(-),j=1,...,J, in (2.12) is discussed in the following chapter.
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3. Estimation in Survival Models

This chapter deals with the technical backgrounds of Cox-type additive models.
In Section we introduce the concept of P-splines with a special focus on
survival models and derive their degrees of freedom in this context. Then we give
some insights in the estimation procedures (Sec. applied for the classical Cox
model and the flexible Cox-type additive model, as specified in Section [3.1.3] In
the last part of this chapter (Sec. we discuss the issues of variable selection
and model choice in flexible survival models. A two-stage stepwise procedure is
introduced, which tries to solve this problem for survival models in a classical
estimation framework. More on model choice and variable selection for flexible
survival models can be found in Chapter [5], where a boosting algorithm called
CoxgexBoost is derived. This approach allows to combine estimation of the
model with variable selection and model choice.

3.1. Cox-type Additive Models

We already defined the Cox-type additive model in Section in a basic way.
Now, possibilities to model and to estimate the time-varying effects, expressed
as functions g;(¢), and the smooth effects, denoted by functions f;(v;;), are
introduced.

Both functions can be modeled as splines of covariates t or v;;, respectively.
Modeling time-varying effects as product of a spline function g;(t) and a covari-
ate u; (see Gray 1992) provides a flexible extension to the classical approach

proposed by Cox (cf. Sec. [2.3.2]).

3.1.1. P-Splines

Classical modeling approaches for flexible models apply smoothing splines or
regression splines (Gray 1992) to introduce non-linear functions. The latter
can, for example, be expressed based on truncated power series basis (see
e.g., Fahrmeir & Tutz 2001). A numerically superior alternative are B-splines
(de Boor 1978, Dierckx 1993). An introduction to B-splines can be found in
Eilers & Marx (1996), which builds the basis of the following section.

11



12 Chapter 3 — Estimation in Survival Models

B-splines consist of polynomial pieces of degree g, which are specified between
given knots. They are constructed such that they are connected in each knot in
a special way. A B-spline of degree one, for example, consists of two linear pieces
(i.e., polynomials of degree one) joint at one knot (see Figure [3.1)). B-splines
of degree two consist of three quadratic pieces joint at two knots. They have a
support of four knots (see Figure 3.1]).

E.l EZ E3 E4 ES EG E7 EB 29 ElO Ell

Figure 3.1.: B-splines of degree one (upper panel) and of degree two (lower
panel); in each panel one isolated B-spline is depicted.

The general properties of a B-spline basis function of degree ¢ can be summarized
as follows:

e it consists of ¢ + 1 polynomial pieces of degree ¢;

e the polynomial pieces are joint at ¢ inner knots;

e derivatives up to order ¢ — 1 are continuous at the joining points;

e one B-spline basis function is positive on a domain spanned by ¢+ 2 knots,
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elsewhere it is zero;

e it overlaps with 2¢g polynomial pieces of its neighbors, except at the bound-
aries;

e at a given z, ¢ + 1 B-splines are non-zero.

A B-spline with degree zero is a constant (greater than zero) on an interval
between two neighboring knots and zero elsewhere. B-splines of higher degrees
can be computed recursively (based on lower degree B-splines) following a rel-
atively simple algorithm (de Boor 1978). For equidistant knots, as used in the
following, the algorithm can be further simplified. In the statistical software
package R (R Development Core Team 2007) the function bs() for calculating
B-Spline basis functions can be found in the package splines.

In the following, let By (x; ¢) denote the k-th B-spline basis function for a (given)
degree ¢ at value x. For simplicity the degree ¢ from the B-spline notation is
dropped if not needed. Let the range z,i, to Tmax be divided into intervals by s
equidistant knots. To ensure that each interval in the range of data is covered
by q + 1 B-spline basis functions of degree ¢, one needs 2q additional boundary
knots, ¢ on each side of the interval. Thus, one has s+ 2¢ knots with altogether
K = s+ g — 1 B-splines. A mathematical function can then be expressed as

K
f(x) =" BBi() (3.1)

k=1
with knots & < ... < £x. The index k connects a spline basis to a knot.

Here we define By to start at knot &. For example, the leftmost B-spline basis
function in both panels in Figure [3.1]is defined as B;. From it follows that
the function f is approximated as a weighted sum of known functions. Thus,
B = (01,...,0K) can be regarded as a normal parameter vector in a regression
problem with the design matrix

B = (B,(z),....Bx(x)), (3.2)

and column vectors By(x) = (Bi(z1), ..., Br(x,)), k=1,..., K.

The basis functions strongly depend on the number and location of knots and
thus, the resulting function f as well. A lot of research on the impact of the
number (and positioning) of knots has been done. Especially, if you take to many
knots overfitting may occur (Eilers & Marx 1996). Friedman & Silverman (1989)
and Kooperberg & Stone (1992), for example, proposed automated schemes for
choosing the knots. Nevertheless, these are numerically demanding and no good
scheme for all purposes exists.

Another solution to prevent overfitting is penalization. Therefore we choose
a relatively large number of knots and penalize too flexible models. P-splines
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(Eilers & Marx 1996) build a computationally very effective way of specifying
the penalty. To control smoothness, the differences of coefficients of adjacent
B-splines are penalized. Classical penalties are based on first or second order
differences. Using first order differences

APk = Bk — Br—1 (3.3)

can be seen as penalizing deviation from a constant fit. For second order differ-
ences

A*By = A(ABy) = Br — 2841 + Br—2 (3.4)

deviations from a linear fit are penalized. Higher order penalties A? can be
constructed and interpreted analogously. One can show that for a penalty of
order d, in the limit (A — o0), a d — 1 polynomial remains unpenalized if the
degree of the B-splines is greater or equal to d (Eilers & Marx 1996). In the
following, we will only apply second order difference penalties but the results
are not restricted to these.

We get the P-spline penalty term for differences of order d as

K

> (A8 (3.5)

k=d+1

pen'®(83) =

where \ is the smoothing parameter, determining the amount of smoothness.
The larger A gets, the more smoothing is achieved. For A = 0 the penalty
completely vanishes; hence, no smoothing is performed. The penalty (3.5) can
be written in matrix notation as
A

pen®(B) = S8 KB (36)
with K@ being the cross product of the difference matrix that means, K@ =
(DY) D@, For example, for second order differences we get

1 -2 1 0 ...0

po- | b2 1 (3.7)
L g
0 ... 0 1 -21

Inference is then based on penalized least squares estimation or in a more general
case on the penalized likelihood criterion. For survival data, the latter case
is relevant. The penalized full likelihood and further details on estimation in
survival models are discussed in Section [3.2]

As stated above, the number of knots should be relatively large when using
penalized splines. However, if we choose the degrees of freedom (df) to be small,
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we do not loose much flexibility when the number of knots is also small. Gray
(1992) suggest that there is not much gain of using more than 10 to 20 knots.
So with 3 degrees of freedom they use 10 knots in their paper. Gray (1992)
points out that due to the sparseness resulting from censoring, estimations of
time-varying effects tend to be unstable in the right tail.

Of course, in a model with more smooth effects, for each of them a separate B-
spline representation with according penalty is defined. The number
and placement of knots may potentially be different for each representation
as well as each penalty function may be different. The smoothing parameter
A is a very natural quantity to adopt as one might want different degrees of
smoothing for different covariates. Furthermore, the matrix K depends again
on the number of knots and one could also use difference matrices with other
difference orders d.

3.1.2. Degrees of Freedom

Defining degrees of freedom df instead of a smoothing parameter \ for flexible
terms is by far more intuitive. Furthermore, one can specify df such that the
resulting spline is comparable to other splines or even classical parametric terms

(compare Section [4.3.4)).

A definition for the equivalent degrees of freedom of P-splines in survival models
is given by Gray (1992). Equivalent degrees of freedom represent the effective
number of parameters in the model and replace the classical parameter count
since the penalty reduces the flexibility given by the number of parameters and
thus reduces the degrees of freedom of the resulting model. Gray (1992) derives
the degrees of freedom for the construction of tests for general linear hypotheses
CpB = 0, where C has full rank. For the global null hypothesis, 3 = 0, C is the
identity matrix and we get the overall model degrees of freedom:

Definition 3.1 Let F' be the observed Fisher matriz and Fe, be the observed,
penalized Fisher matrixz. The degrees of freedom for a flexible survival model

(2.11)) with additive predictor (2.12) then can be defined as

df := trace [F - F, ] . (3.8)

pen

The definitions for the observed Fisher matrix and the observed, penalized Fisher
matrix are derived in Section [3.2l Note that the model degrees of freedom as
defined here are slightly different from those defined by Hastie & Tibshirani
(1990a), where df := trace(2S — S?) with smoother matrix S. However, corre-
spondence can be seen with the definition of degrees of freedom in Buja et al.
(1989), where df := trace(S). The latter is the popular definition from the
spline smoothing literature (e.g., Silverman 1985).
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As F,,, can be regarded as a function of the smoothing parameter \, the degrees
of freedom can also be writen as a function of A:

df () = trace [F - F,1(\)] = trace [F(F + AK)™"]. (3.9)

pen

This shows the clear link between the smoothing parameter A and the degrees
of freedom.

The above definition of df can also be motivated by comparison with the degrees
of freedom for generalized linear models (GLMs). Here the degrees of freedom
are defined as

df = trace(H) = trace[X(X'WX +)\K) 'X'W]| =

= tracel X WX(X'WX + \K) ] (3.10)
F Foen

with the hat matrix H, the design matrix X, the weight matrix W, and A and
K as before. Thus, we see the same structure for the degrees of freedom as in
(3-8). With A = 0, i.e., without penalty, we get the usual definition of degrees
of freedom df = trace(I) = rank(X) = p.

3.1.3. Model Specification

Using P-splines in survival models is not restricted to the parametric part of
the Cox model but one can apply them to model the baseline hazard rate
and time-varying effects. This leads to Cox-type additive models (Kneib &
Fahrmeir 2007) as already introduced in Section

Ai(t) = exp (go(t) +D a®ua+ Y fivg) + w?ﬁ) -
s s

Having a P-spline representation for the baseline hazard exp(go(t)), the full
likelihood is available and thus can be used for inference.

3.2. Likelihood Inference

Classical estimation in Cox models is based on the partial likelihood (Cox 1972).
Therneau & Grambsch (2000) give a good overview of the inference in this
context. They state that a partial likelihood is generally not a likelihood in a
strong sense of being proportional to the probability of an observed data set.
Nonetheless, it can be used for likelihood-based inference.

As mentioned above, we have got the full likelihood available and therefore do
not need to use the partial likelihood. In the following, let m; = log(\;(t)) =
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.3 denote the linear predictor, including flexible terms expressed as B-spline
bases (Dierckx 1993), as already discussed in Section The column vector
x;, i = 1,...,n contains the original covariates x; for the i-th observation or
transformations of the covariates (e.g., B-spline basis functions computed for
covariate z;;). In matrix notation this can be written as § = X3, where
X = (x1,...,@,) is the design matrix for n observations. We recall that
Ai(t) = exp(mi(t)) (see Sec.[2.3)). The observed survival time ¢; and the indicator
for non-censoring §; are defined as in Section [2.1]

The (unpenalized) log-likelihood can be expressed as

n

(B) = (6m; — /0 ’ Xi(t)dt) = 8'n — 1A (3.11)

i=1

where A = (A(t ) A, (t,))" is a vector of the cumulative hazard rates
f \i(t)dt The score vector is given by the first derivative of the
log—hkehhood 1(B)

s(ﬁ)_aaﬂ )=d8X — Z/ (1) M (3.12)

where x;(u) depicts that a; may contain time-depending covariates. This can,
for example, be the case when time-varying effects are used, as these are ex-
pressed as artificial time-dependent covariates (cf. Sec. . The observed
Fisher matrix is then calculated as the negative second derivative of the log-
likelihood:

F(B) = — 6685' Z/ x; (u)x, (u)\; (u)du. (3.13)

The corresponding penalized counterparts for Cox-type additive models
with P-splines are derived in the following. Let the smoothing parameters of
the smooth functions ¢;(t),l = 0,...,L and f;(v;),j = 1,...,J be denoted by
A, 1l =0,..., L+ J, where )\, is possibly different for each function. The cross
products K;,l =0,...,L + J of the difference matrices correspond to those in
([3.6). The parameter vector B = (Ben0s- - - Bpen.rt+.75 Bunpen) forms a column
vector that consist of the penalized and unpenalized coefficients, where each of
the penalized coefficient vectors 3/, ; is a vector of coefficients as in . The
penalized log-likelihood then can be written as the difference of the log-likelihood

[(B) and the penalty

L+J

loalB) = 18) =3 2B KifBpens

=0

= 1(B) - 55KB. (3.14)
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where K = diag(M Ko, ..., Ar+sK17,0,...,0) is a block diagonal matrix re-
presenting the penalization. Note that parameters for linear effects remain un-
penalized in the model, only coefficients corresponding to smooth terms are
penalized. The penalized score function s, is derived as

Suen(8) = 55 (B) = 5(8) ~ KB (3.15)
and the penalized Fisher matrix Fj, is
82
Fpen(IB> = _Wlpen(/g) = F(,B) -+ IC. (316)

With these formulations at hand one can estimate the parameters using Fisher
scoring or any other numerical optimization method. Some more details of
estimations methods in the boosting context are given in Appendix [B.1]

3.3. Variable Selection and Model Choice in
Flexible Survival Models

As already discussed in Section 2.2.2] variable selection and model choice are
important issues for deriving a model. First, we have to think about model pre-
specifications. This needs good collaboration and communication between the
statistician and project partners. Here, considerations from background content
count as well as technical aspects. Second, we need tools that help us assessing
the functional forms and to check for deviations from the PH assumption. Here,
some approaches have been developed so far. One of these is the multivariable
fractional polynomial approach for time-varying effects (MFPT) of Sauerbrei
et al. (2007) as already mentioned in Section In the following we want
to illustrate an approach with similarities to the well-known forward stepwise
selection. Later, approaches based on boosting methods shall be discussed in
Section [5] which built the main focus of this work.

3.3.1. Introduction and Definitions

Hofner et al. (2008) propose a two-stage stepwise selection strategy to choose
both the relevant covariates and the corresponding modeling alternatives within
the choice set of possible covariates simultaneously. For categorical covari-
ates, competing modeling approaches are linear effects and time-varying effects,
whereas nonparametric modeling provides a further alternative in the case of
continuous covariates. Before continuing with the description of the procedure,
we introduce in short mixed model based inference and define an appropriate
information criterion for model comparison.
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Mixed Model Based Inference

Estimation of additive hazard regression models is based on the penalized log-
likelihood criterion . The smoothing parameters \; are crucial quantities
in obtaining penalized likelihood estimates. A full inferential procedure that
provides both estimates for the regression coefficients and the smoothing param-
eters can be derived based on a mixed model interpretation of additive hazard
regression (Kneib & Fahrmeir 2007). We first have to note that the penalty term
associated with a penalized spline can be equivalently interpreted as a special
random effects distribution. Setting the smoothing parameter A = Tiz in (3.6)

leads to 1
pen(B) = 550 KB, (3.17)

Comparing this penalty to a Gaussian distribution with density

1) e (KD ) .19

reveals that the penalty essentially equals the negative log-density of a Gaussian
random effects distribution. Within that distribution, the smoothing parameter
72 turns into a random effects variance.

A difficulty arising with the random effects distribution is its partial im-
propriety arising from the rank-deficiency of the penalty matrix K. This rank-
deficiency reflects the fact that a (d—1)-th order polynomial remains unpenalized
when applying a d-th order difference penalty as discussed in Section[3.1.1] Since
standard mixed models require proper random effects distributions, a reparame-
terization into fixed effects representing the unpenalized part and random effects
representing the penalized part has to be applied to all vectors of regression co-
efficients associated with nonparametric or time-varying effects (see Sec. m

for more details). Afterwards, the model (2.12)) can be written as
ni(t:) = w(t)vy + z(t:)v (3.19)

where v comprises the collection of all fixed effects corresponding to covariates
w(t;), v contains random effects corresponding to covariates z(¢;), and all ran-
dom effects variances are collected in the vector @ of length L + J. In terms of
the mixed model representation ([3.19), the likelihood and log-likelihood will be
denoted as L(,v) and (7, V) but actually coincide with the quantities derived
in Section 3.2

The advantage of the mixed model representation is the availability of algorithms
for the joint determination of the random effects and of their variances. The
approach is based on penalized likelihood estimation for the random effects and
marginal likelihood estimation for the variances. The latter employs a Laplace
approximation to the marginal likelihood, yielding a simple Newton-Raphson
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algorithm (see Kneib & Fahrmeir (2007) for details). The mixed model based
estimation procedure is implemented in the software package BayesX, freely
available from http://www.stat.uni-muenchen.de/ bayesx.

Information Criterion

Based on the mixed model estimation scheme from the previous section, it is
possible to obtain estimates in a model with fixed model structure, i.e., given the
modeling specification for the different covariates. However, in practice several
competing modeling strategies exist for different types of covariates. The two-
stage stepwise procedure, given in the following, provides a means of model
choice. To determine which modeling alternative should be used in the model a
suitable criterion for model comparison is needed.

Since estimation is based on mixed model methodology, it seems plausible to
base model choice on Akaikes information criterion (AIC) for mixed models.
However, two different versions of the AIC are available: The marginal AIC is
based on the marginal likelihood of the mixed model representation (3.19)) with
the random effects integrated out, i.e.,

AIC,, = —210g[/ L(v,v)dv] 4 2[dim(«) + dim(8)]. (3.20)

It consists of the log-marginal likelihood as model fit criterion and the number
of fixed effects dim(+y) plus the number of smoothing variances dim(@) as a
measure of model complexity. In contrast, the conditional AIC

AIC. = =2l(v,v) +2df (3.21)

is based on the conditional log-likelihood I(7, V) in combination with the effec-
tive degrees of freedom df as a complexity measure. The degrees of freedom are
defined as in (3.8)) and serve as an effective number of parameters in the model.
The degrees of freedom replace the usual parameter count since the effective
dimensionality reduction induced by the random effects distribution has to be
taken into account.

The random effects represent the penalized part of the nonparametric function
and integrating them out corresponds to marginalizing over parts of the func-
tion. Since the nonparametric functions are of major interest in the analyses,
a conditional model choice measure seems recommended. Moreover, the con-
ditional AIC coincides with the classical AIC from the smoothing literature as
outlined, for example, in Hastie & Tibshirani (1990b).
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3.3.2. Two-Stage Stepwise Procedure

Based on the conditional AIC, the following two-stage stepwise selection strategy
is proposed:

Starting Model: Define a starting model. Typically this will be the empty
model containing only the baseline hazard rate. An alternative possibility to
derive a non-empty starting model with preset variables is described in Sec-
tion [6.2.11

Initial Choice Set: Define an initial choice set of covariates not already in-
cluded in the starting model.

[ij Modeling Alternatives: For each covariate in the choice set, define a set
of modeling alternatives, for example, linear effect vs. time-varying effect
in case of categorical variables, or linear effect vs. nonparametric effect vs.
time-varying effect in case of continuous covariates.

ii] Estimation of Models: For each of the covariates in the choice set and for
each modeling possibility, estimate the hazard regression model obtained
from the current model by adding the covariate in the respective modeling
possibility and store the conditional AIC.

[iii] Selection Step with Stopping Criterion: If the minimal AIC, obtained
in step [ii] is smaller than the AIC, of the current model, replace the current
model with the best-fitting model from step , delete the corresponding
covariate from the choice set and go to step . Otherwise terminate the
algorithm.

[iv] Backward Deletion: Perform a backward deletion step on the current
model, i.e. estimate all hazard regression models obtained from the current
model by dropping one covariate at a time. If an AIC, reduction can be
achieved, make the reduced model with minimal AIC. the working model
and add the deleted variable again to the choice set. Continue with step

1.

The selection procedure is called two-stage since it differentiates between inclu-
sion of variables on the first stage and different modeling possibilities for the
covariates on the second stage. It proceeds in a stepwise fashion, where each
forward step for inclusion of additional terms is followed by a backward deletion
step.

A “toy example” that illustrates the application of the two-stage stepwise pro-
cedure can be found in Table 3.1 We start with an empty model containing
only the baseline hazard rate and three variables in the initial choice set with
either two or three modeling alternatives (step [i]). For each variable and each
modeling possibility, the model is fitted and the AIC. is calculated (step [if]).
“Apache II score” modeled as smooth term has the minimal AIC, and thus is
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added to the starting model. In the next iteration, only two variables are left
in the choice set. “Palliative operation for malignant disease” is added as linear
term as it is the minimizer of AIC.. In the last step of this example, age is
chosen as linear term. The inclusion of the variable, in each step, improves the
AIC, of the previous step (i.e., AIC. decreases) (step [ii]). Between step 1 and
2 no backward deletion step (step ) is needed, as only one variable is included
in the model so far. The backward step after step 2 was performed in the usual
manner but did not lead to a better model.

Of course, the proposed selection scheme can be modified at some points if
recommended by the application at hand. For example, one might think of
starting with a full model instead of the empty model but this approach will
suffer from two drawbacks: Firstly, it is not clear which model should be the full
model. In particular, for continuous covariates it is unclear whether a full model
should contain nonparametric or time-varying effects. Secondly, the full model
would typically be overly complex. This would lead to a higher computational
burden compared to the proposed strategy. Moreover, it may often be impossible
to identify the full model from given data if, for example, the percentage of
censoring is high or the number of possible covariates is large.

We have to mention that no formal test for time-varying coefficients is per-
formed. Inclusion of time-varying terms (and smooth terms as well) is due to an
AIC, based argumentation. We show an application of the two stage stepwise
procedure in Section For more details on the applications and methodol-
ogy see Hofner et al. (2008) and Moubarak et al. (2008).

In the next chapters we want to discuss another approach with built in variable
selection and model choice called boosting.
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4. Boosting Algorithms

Boosting was originally introduced in the field of machine learning for improved
prediction of binary outcomes (Schapire 1990, Freund & Schapire 1996, 1997).
Later, Breiman (1998, 1999) and Friedman et al. (2000) linked the original
AdaBoost to statistical estimation schemes as they showed that AdaBoost and
other boosting procedures can be seen as functional gradient descent algorithms
in function space. Friedman et al. (2000) show a clear connection of boosting to
forward stagewise additive modeling — which can be seen as the breakthrough
of boosting from a statisticians point of view — and give some insight on how
and why boosting works. A good overview of developments in boosting from a
statistical perspective is given in Bithlmann & Hothorn (2007).

The two special cases AdaBoost and LyBoosting (see e.g., Biihlmann & Yu 2003)
are particularly descriptive and allow to get some ideas of what is going on
in boosting. AdaBoost refits weighted data in such a way that misclassified
observations get higher weights. The weights stem from the goodness of fit.
Thus, the algorithm concentrates on observations that could not be properly
fitted in previous iterations (Ridgeway 1999). LoBoosting can be viewed as
refitting of residuals. Again, the focus is on improving the “bad predictions” in
later iterations, i.e., those observations with high residuals.

In this chapter, we give a short overview on the present state of boosting and
highlight some special boosting procedures. We will present functional gra-
dient descent boosting and the related likelihood-based boosting. Definitions
of degrees of freedom and information criteria such as the Akaike information
criterion (AIC) are addressed as well as the different possibilities of choosing
and defining base-learners. Component-wise boosting as a method for variable
selection is introduced. A model choice scheme that employs component-wise
boosting in a special way will also be considered.

4.1. Forward Stagewise Additive Modeling

In many statistical settings one wants to get estimates of a function f*(x). Semi-
parametric estimation leads to estimates of the form f(z) = M ag(x; ).
The function g(x; 3,,) is a simple parameterized function of input variables x,
determined by parameters 3,, = (81, Om2,--.). The parameters «,, are just

25
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multipliers. In the boosting context, we call g(x; 3,,) a weak learner or a base-
learner. A classical choice for the base-learner is a small regression tree. In our
case, g(x; B,,) is chosen to be a B-spline (3.1)) with pre-specified, equidistant
knots and regression coefficients 3,, combined with the difference penalty ,
i.e., a P-spline base-learner (see Sec. . The penalty needs to be added
to the estimation algorithms in an appropriate form. Minimizing the negative

log-likelihood, for example, is replaced by minimizing the negative, penalized
log-likelihood.

Friedman et al. (2000) and Friedman (2001) introduce forward stagewise addi-
tive modeling. They state, that many learning techniques aim to minimize the
expected value of a loss function p (e.g., squared error loss or likelihood-based
loss functions), i.e.,

fH(®) = af%(ﬂ)liﬂ Ey x[p(y, f(z))]. (4.1)
This can be achieved by minimizing the loss function averaged over the training
data, i.e., by minimizing the empirical risk

(G B}y = argmmin Zp<yﬂzamg >>. (42)

(am“em)m 1 2=1

This optimization problem can be very high-dimensional, as we have M pairs
of parameters where one parameter is again a vector of, classically many, coeffi-
cients. Thus, optimizing is, in most cases, computationally demanding or
even infeasible and hence, one tries to approximate (4.2)) with a “greedy stagewise
approximation”. Stagewise additive modeling is an iterative approach, where in
each iteration m, m = 1,..., M, new functions g(x;3,,) are added without
changing the parameters (aq,...,a,_1) and coefficients (B4, ...,Bm_1) of the
base-learners already added to the model. One estimates the coefficients 3,
and parameters a, by

(amaﬂm) = argmmz ( Yi f[m_l](wi) + ag(@; 5)) - (4.3)
( 7ﬁ) =1
Afterwards, the function estimates are updated by
firl(a) = (@) + dmg(@; Brn)- (4.4)
The estimation of «,, and 3,, is thus based on the loss function
p(ys, [N (@) + a g(i; ) (4.5)

with a fixed function f™=1(z) from the previous iteration.

In the machine learning community this generic approach is called boosting
(Friedman 2001). For a quadratic loss function p (i.e., Lo-loss), boostingok
reduces to refitting the residuals of the previous iteration. A detailed discussion
of LyBoosting can be found in Section [£.2.3]
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4.2. FGD Boosting

4.2.1. Generic FGD

Starting from the forward stagewise additive model, Friedman et al. (2000) and
Friedman (2001) derived the general framework for functional gradient descent
(FGD) boosting. Given the estimate f [m=1 of the previous iteration, the term
domg(; B,) in equations and can be seen as the best greedy step to-
wards the estimate of f*(x). This optimization is performed under the constraint
that the step direction g(x; B) is a member of a pre-specified parameterized class
of functions available for g. Thus, estimation can be seen as a steepest-descent
step and consequently be rewritten using the data-based negative gradient

~ Opyis f)

g — _ 2% )
OF  ly=pim-iiay

7

(4.6)

with the negative gradient vector UM = (U™, ... U™ evaluated at the
function of the previous iteration f[m_l](a:i). This gives the steepest-descent
direction in the n dimensional data space at the point f [m—1] (x), which is only
defined at the observed data points. Generalization to other points in space
can, for example, be achieved by choosing the function g(x; Bm) most parallel
to U™, This function can be estimated by minimizing the squared error loss:

3., = nS ulm -8 4.7
fin = axgmin 3, (UF" - ag(w:)) (4.7

Thus, the unconstrained negative gradient U™ can be replaced by the con-
strained estimate g(x; Bm) This leads to the least-squares problem instead
of the stagewise estimation scheme (4.3]), which results in a much more effective
estimation algorithm, especially if the latter estimate is difficult to obtain.

The first connection of boosting and steepest-descent algorithms was shown by
Breiman (1998, 1999) who derived that the AdaBoost algorithm can be seen as
steepest-descent algorithm in function space and thus is a functional gradient
descent algorithm.

When we use a likelihood-based loss function, for example the negative log-
likelihood, and directly minimize this leads to likelihood-based boosting
as introduced by Tutz & Binder (2006) (see Sec. [4.4]). Applying instead
can be seen as generic functional gradient descent (FGD) boosting as described
in Friedman (2001). The algorithm for the latter is given in the following para-
graph.
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Generic FGD Algorithm

(i) Initialization: Set the iteration index m := 0. Initialize the function
estimate fl°(.) with an offset value, typically

. 1<
01,y — . ,
fO0) = argmin E 1 p(¥i, )

or

¢y =o.

(ii) Negative gradient: Increase m by 1. Compute the negative gradient of
the loss function p(y;, f) evaluated at the function values of the previous

iteration fIm=1(x;):
a i .
Ui[m]:——p(y 1) ,i=1,...,n
OF  lp=pim-say
(ili) Estimation: Fit the negative gradient vector U™ = (U™, ... U™ to
Z1,..., T, by a real-valued base procedure (classically by least squares or

penalized least squares estimation):

base procedure

(i, Ui)iey — ™)

The base-learner §™(-) = g(-; Bm) is a member of a parameterized class
and can be regarded as an approximation of the negative gradient vector.

(iv) Update: Compute the update
ey = fImley 4 g
with step-length factor 0 < v < 1.

(v) Stopping rule: Continue iterating steps (ii) to until m = Mg, for a
given stopping iteration msgop-

The stopping iteration Mg, is usually determined based on an information
criterion (e.g., AIC) or via cross-validation. It can be seen as the major tuning
parameter in the generic FGD algorithm (see Sec. {4.5]).

The add-on package mboost (Hothorn et al. 2007) for the statistical software
package R (R Development Core Team 2007) implements boosting as a generic
functional gradient descent (FGD) algorithm for arbitrary loss functions as de-
scribed above.
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4.2.2. Step-Length

The step-length factor v is of minor importance in the above algorithm, as long
as it is small enough, e.g., v = 0.1. A smaller value of v typically requires
a larger number of boosting iterations, i.e., more computing time. Sufficiently
small values of v (such as 0.1) have empirically found to be potentially better and
almost never worse, regarding the predictive accuracy (Friedman 2001). In the
generic FGD boosting approach introduced by Friedman (2001) an additional
line search between steps and for the optimal step-length is performed.
Biithlmann & Hothorn (2007) argument that this seems unnecessary for achieving
a good estimator f [mstop] but the computational time is potentially increased.

Friedman (2001) states that choosing a small step-length factor can be seen as
incremental shrinkage, as each update in step is scaled by the learning rate
v. Decreasing the learning rate improves the prediction performance strongly.
The reason for this is less clear, as shrinkage in each boosting iteration pro-
duces a very complex result. In the best case, global shrinkage of the entire
model provides only minor improvements, far away from the dramatic effect of
incremental shrinkage. The good performance of incremental shrinkage perhaps
becomes a bit clearer, if we think, for example, of a group of highly correlated
predictors. If we choose just a fraction of the fit of the best-fitting of these
predictors in each iteration, the other predictors have the chance to enter the
model in subsequent steps. Thus, the fit of the model may be improved. If we
would include the best-fitting predictor completely in the first iteration, none of
the other predictors of this group might be able to improve this fit substantially
and hence, no more variables (of this group) would enter the model. There-
fore, in this case global shrinkage of a model where only one variable of the
highly correlated group is selected cannot improve the model in the same way
as incremental shrinkage could do.

4.2.3. L,Boosting

LsBoosting is the classical candidate for regression problems with many possible
predictors. The generic loss function is specified as squared error loss p(y, f) =
ly—I*, Thus, the following algorithm can be derived from the generic FGD

algorithm (Sec. |4.2.1)):

LoBoosting Algorithm

(i) Initialization: Set the iteration index m := 0. Initialize the function
estimate fI(-) with an offset value. The default is fl%(.) = 7.
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(ii) Negative gradient: Increase m by 1. Compute the residuals Ul-[m] =
yi — f(x;) fori =1,...,n.

(ili) Estimation: Fit the negative gradient vector U™ = (U™, ... U™ to
Z1,...,&, by areal-valued base procedure (classically by (penalized) least
squares estimation):

base procedure

(x5, Us)iy — ™)

(iv) Update: Compute the update
f[m}(.) — f[mfl](.) +v- gm0

with a step-length factor 0 < v < 1 (cf. Sec. [4.2.2)) that means, proceed
along the negative gradient vector.

(v) Stopping rule: Continue iterating steps ({i) to until m = mygp for a
given stopping iteration msop.

Note that the negative gradient vector becomes the residual vector. Thus,
LsBoosting can be regarded as the refitting of residuals. We can gain several in-
sights from this simple case. Biithlmann & Hothorn (2007) show that overfitting
occurs if one does not stop the boosting algorithm at an early stage. Smooth-
ing splines with low-order degrees of freedom adapt higher order smoothness
with continuing boosting iterations. But at the same time, overfitting is much
slower than with one single smoothing spline with increasing degrees of freedom
(Bithlmann & Yu 2003).

4.2.4. FGD Boosting for Survival Models

For survival models with censored outcome, the negative gradient of the Cox
partial likelihood can be used to fit proportional hazard models with boosting
algorithms (Ridgeway 1999). Another approach is given in Hothorn et al. (2006).
Here a weighted least squares framework is applied with weights from the inverse
probability of censoring. Therefore, we recall the definitions and notations from
Section 2.1} The observed survival times are denoted as t¢;, while ¢} are the
realizations of the true survival times. The corresponding indicator for non-
censoring is 9; and x; is the observed data. The restrictive assumption that ¢; is
conditionally independent of ¢; given x; must hold. For the true survival times
a squared error loss

p(y* f) =y = fI? (4.8)
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is considered, where y* = log(t). For the observed data y = log(t) Hothorn
et al. (2006) propose the weighted version

Povs(Y; [0, ) = (y — f)2G(f|m>, (4.9)
where
G(clz) = P(C > | X = ). (4.10)

So the observed data loss is weighted with the inverse probability for censoring
%. For model fitting, G(-|x) is estimated, for example, with the Kaplan-
Meier estimator and LoBoosting with the weighted squared error loss is applied.
Thus, one can use various base procedures as long as they allow for weighted
least squares fitting. Degrees of freedom for the boosted model and the AIC can
be derived analogously to Section [4.5

Estimation in the accelerated failure time framework, i.e., for parametric distri-
butions of the survival time, is considered by Schmid & Hothorn (2008). The
negative log-likelihood of the survival distribution is used as loss function in
the FGD framework. A simultaneous estimation step for the scale parameter of
the model is introduced. They show that the additional estimation of the scale
parameter does not effect the variable selection properties of boosting.

4.3. Choosing Base-Learners

4.3.1. Weak Learner — The Low-Variance Principle

As already briefly stated, different types of base-learners exist. A base-learner
can, for example, be a tree, a linear, or even a smooth function such as a smooth-
ing spline or P-spline. The latter will be discussed in more detail in the next
section. After choosing the appropriate functional form for a base-learner, the
question arises, how complex a non-linear base-learner should be. Biihlmann
& Hothorn (2007) give a general answer to this question: They recommend to
choose a base-learner with the desired structure and low variance. The possi-
bly enlarged estimation bias that is due to the low variance is accepted, as it
vanishes with increasing boosting iterations. For smoothing spline or P-spline
base-learners this would imply to choose the degrees of freedom small, for ex-
ample df = 4. The step-size factor v can be seen as a shrinkage factor (see
Sec. [£.2.2)). Hence, it also implies a reduced variance and a potentially larger
estimation bias.

Even if the bias of a single base-learner is large, due to the iterative nature of
boosting, the bias reduces over the iterations. Bithlmann & Yu (2003) showed
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that smoothing splines with low degrees of freedom are even capable of adapting
higher degrees of freedom of the true, underlying model.

Some remarks on the learning capacity of a base-learner and connections to its
weakness are given in Section [4.5.1]

4.3.2. P-Spline Base-Learners

P-splines as base-learners were first considered in the boosting context by Tutz
& Binder (2006) (see Sec.[f.4.1)). A thorough investigation of replacing smooth-
ing splines, as proposed in the boosting context by Biithlmann & Yu (2003),
with the computationally much more efficient P-splines was done by Schmid &
Hothorn (2007). They showed, in the framework of LoBoosting that the number
of knots in boosting, as in other modeling approaches, has very little influence
on the prediction performance, as long as it is sufficiently large (20 — 50 knots).
Moreover they showed that the degrees of freedom for P-splines should be small
(e.g., df = 4) to obtain a weak learner (cf. Sec. [£.5.1). The choice of the step
length factor v, for small values of v, is of minor importance, as a smaller value
leads to almost the same predictive power but it requires an increased number
of boosting iterations.

Note that for P-spline base-learners, as well as for smoothing splines or other
base-learners with penalty, the fitting criteria are transformed to penalized ones.
For least squares estimation thus, we get penalized least squares and in the
context of likelihood-based boosting, maximum likelihood estimation becomes
penalized maximum likelihood estimation. For P-splines the penalty matrix

(3.6) is applied in both cases.

4.3.3. Component-Wise Boosting

Component-wise boosting as presented, for example, in Bithlmann & Yu (2003),
is a useful extension to classical boosting procedures that incorporates variable
selection into boosting. Especially for high-dimensional data sets this is a big
advantage. Component-wise boosting uses different base-learners, (at least) one
for every potential predictor variable ; € R",j = 1,...,p . In each boosting
iteration not only one base-learner is fitted to the negative gradient vector U™
but all base-learners g;(x;, 3;) are estimated separately. Only the best fitting
base-learner, with respect to some criterion, is then selected. For FGD boosting,
classically the base-learner j* that minimizes the residual sum of squares is

selected:

J* = argmin Z(Uz — gi (x5, B;))2. (4.11)

1<i<p 3
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Thus, we get either a linear or an additive model including variable selection
if the base-learners are linear or smooth functions (such as P-splines), respec-
tively. As discussed later in Section it is important to stop the boosting
algorithm before overfitting occurs. Here the importance of choosing an appro-
priate stopping iteration is backed by another argument: Variable selection will,
in general, only be carried out if the number of iterations and thus the number
of potentially selected variables is small enough.

Later, in Section [4.4.1, we also introduce component-wise likelihood-based
boosting. Note that the selection criterion then is a likelihood based criterion
as, e.g., the log-likelihood or the deviance.

As Schmid & Hothorn (2007) state, component-wise boosting can even be com-
puted if the number of observations n is smaller than the number of possible
predictors p. More than n variables may enter the model as variable selection is
built into the modeling process and only one base-learner is fitted at a time. So
component-wise boosting is even capable to choose and fit more than n differ-
ent base-learners and thus is superior to procedures as stepwise linear regression
wich can maximally include n variables.

4.3.4. Model Choice

In the following, we do not restrict to one single type of base-learners in
component-wise boosting. We allow different, competing base-learners for one
covariate. Thus, with the selection of a base-learner we select a variable in
a special functional form. So, we get variable selection as in the classical
component-wise boosting approach and in addition model choice is performed
(Kneib et al. 2007).

We start with a generic model

with response function A and an additive predictor of the form
J
(@) = Bo+ Y f(=a), (4.13)
j=1

where the functions f;(x;) are a generic representation of different types of
covariate effects. To come back to the Cox-type additive model as introduced
in Sections [2.3] and and to make the model formulation more concrete,
consider the following examples of functions f;(z;): The functions can represent

e linear effects: fj(@;) = finear(Z:) = T;3, where Z; € ;.
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e smooth effects: f;j(2;) = fomooth(Z:), where T; € x; is a continuous covari-
ate and fymootn 1S @ smooth function.

o time-varying effects: f;(x;) = fimootn(t) - Zi, where (Z;,t) € x;. The covari-
ate T; can be either continuous or categorical, ¢ represents the observed
survival time. fino0tn 1S again a smooth function.

We see that a covariate Z; can enter the model in up to three different ways.
The effect can be either linear, smooth (in the case of a continuous covariate
Z;) or time-varying. Hence, the question arises, how each variable should enter
the model. One solution is, to specify a separate base-learner for each suitable
modeling possibility. Component-wise boosting then chooses between covariates
and modeling possibilities at the same time, if the boosting algorithm is stopped
after an appropriate number of iterations.

The effects can be expressed in the same way as in the Cox-type additive model.
Thus, linear effects just enter the model as linear-base-learners, smooth effects
can be added using P-spline base-learners and time-varying effects are derived
as an interaction between a P-spline of time and the covariate Z;.

To make the different base-learners comparable in terms of complexity, one could
try to define equal degrees of freedom for each term. Increasing the smooth-
ing parameter A\ leads to decreasing degrees of freedom. But as stated in Sec-
tion 3.1.1] Eilers & Marx (1996) showed that a polynomial of order d—1 remains
unpenalized by a d-th order difference penalty if the degree of the B-spline ba-
sis is large enough. Thus, we cannot make the degrees of freedom arbitrary
small. As normally we are using B-splines of degree 3 or higher, the degrees of
freedom for difference penalties of order 2 or higher remain greater than one.
Hence, making such smooth effects comparable with single linear effects seems
impossible.

Kneib et al. (2007) propose a modified parameterization of the P-splines, which
we already briefly sketched in Section[3.3] Therefore, with a continuous covariate
x, the smooth function foomm () is split into a parametric part consisting of the
unpenalized polynomial of order d — 1 and the deviation from this polynomial

fcentered (l’) :

fsmooth<x> - 60 + le +...+ Bd—lxd_1 + fcentered(x) (414)
N ~~ >y W
unpenalized, parametric part deviation from polynomial

For the parametric part, separate linear base-learners are added for each term.
The deviation from the polynomial feenterea can be included as smooth effect
with exactly one degree of freedom. Thus, we have the possibility to check,
if = has any influence at all (i.e., none of the base-learners depending on z is
selected). If x is influential, we have the additional possibility to check whether
we need a nonparametric part to describe the influence.



4.4 Likelihood-Based Boosting 35

Varying coefficient terms (Hastie & Tibshirani 1993), as time-varying effects can
be reparameterized in the same manner, i.e.,

fsmooth(t) T = 60 " T+ ﬁlt i P & 6cl71tdi1 i + fcentered(t) T s
\ - _’_/
unpenalized, parametric part deviation from polynomial
(4.15)

where t is the time and z is an arbitrary covariate.

Technically, this model decomposition is_achieved by decomposing the vector
of regression coefficients 3 into (Bunpen, Bpen)’s 1.€., into an unpenalized and a
penalized part. This can be achieved based on a spectral decomposition of the
penalty matrix. Details in the context of geoadditive regression models can be
found in Fahrmeir et al. (2004).

One should add that the clear separation and straight forward interpretation
of the resulting selections and effects get lost if one adds the decomposition of
fsmootn () and at the same time the decomposition of fyneotn(t) - to the model.
Thus, we could get linear terms, polynomial terms, and smooth terms for x as
well as interactions of x with a linearly, polynomially, and smoothly added ¢.
With this many possible base-learners, interpretation is at least tricky.

4.4. Likelihood-Based Boosting

With stagewise additive modeling as a “starting point” for boosting, leading to
generic functional gradient descent boosting on the one hand and likelihood-
based boosting on the other hand, one has a clear linkage between those two
concepts. Still, the two concepts are not the same. Likelihood-based boosting
for all simple exponential families was introduced by Tutz & Binder (2006).
They derive a single framework for generalized additive models with all kinds
of link functions and distributions.

Let ;,© = 1,...,n be again the input variables and y; the corresponding de-
pendent variable. The conditional distribution of y;|@; is assumed to follow a
simple exponential family

Yt — b(9i>

Fle) = exp{ .

+ (s, (b)} , (4.16)

where 6; is the canonical parameter and ¢ is the dispersion parameter. The
classical linear predictor 7, = ;3 is replaced by a more general predictor. In
each boosting step m, a base-learner g(x;; B,,) is fitted. This could be again a
P-spline base-learner where 3,, determines the weights of the spline functions
and the location and number of knots.
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The log-likelihood to be maximized is then given by
18) = 3- 1= 0, (1.17)
i=1

where the canonical parameter 6; is a function of 7;,. The response function h
connects the conditional expectation E(y;|x;) with the predictor such that

E(yilz:) = pi = h(n;). (4.18)

Likelihood-Based Boosting Algorithm

(i) Initialization: Set the iteration index m := 0. Initialize the additive
predictor 7% with the maximizer of the log-likelihood of the intercept
model

4 = 1)

as offset value, where nl%(-) = ¢, i.e., a model with only a constant:

;0]

N (-) = argmax I(c)

C

(ii) Estimation: Increase m by 1. Fit the model
= h (") + g ()
with base-learner g(-) = g(+; 8). The estimate 3 is determined by one-step
Fisher scoring (see below) where #™~!(.) is treated as an offset.
(iii) Update: Compute the update
") = 0" + g (),
where () = g(; B).
(iv) Stopping rule: Continue iterating steps (ii) to until m = Mmgep.

The estimation of coefficients in each boosting iteration is performed by nu-
merical optimization. A classical approach for likelihood optimization is the
Fisher scoring algorithm. Coefficients 3 are estimated iteratively starting with
an initial value 8 by

B = B0 (B s(A"), (419)

with Fisher matrix F'(-) and score vector s(-). Convergence of the algorithm is
reached when [(B3"+Y) — [(B3™) is sufficiently small. As boosting is based on
weak learners (cf. Sec. , total convergence of the Fisher scoring algorithm
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is not needed. Hence, Tutz & Binder (2006) propose to use a one-step Fisher
scoring estimate, i.e., just update once. Using a one-step Fisher scoring
estimate can be seen as analogon to the multiplication of the step-length factor
v in generic FGD boosting. Thus, a step-length factor is not needed here. To
simplify the estimation even further, Tutz & Binder choose the initial value
B® = 0 in (&19). Hence, the estimation problem in boosting iteration m
becomes

Buew = (FIm=1) " glm=1] (4.20)

where F™ is the Fisher matrix evaluated at the estimation after the previ-
ous iteration #™~!(-) and analogously s/™~! is the score function evaluated at
the estimation after the previous iteration. For penalized base-learners such
as P-spline base-learners (cf. Sec. we get a penalized estimation scheme,
where the Fisher matrix and the score vector are replaced by their penalized
counterparts.

4.4.1. Component-Wise GAMBoost

Two special cases of likelihood-based boosting are given by Tutz & Binder
(2006). Firstly, they consider a component-wise boosting algorithm for gen-
eralized additive models which they call GAMBoost with P-splines. Secondly,
GAMBoost with penalized stumps is taken into account. In the following we
will restrict to the former case of GAMBoost. The amount of smoothness that
a (P-spline) base-learner implies is chosen by specifying a single smoothing pa-
rameter A for all base-learners. To obtain a weak learner, A should be chosen
large. Tutz & Binder (2006) recommend to select A from a coarse grid such that
the number of boosting iterations mygop, is greater or equal to 50. They conclude
that the different amount of smoothing needed for each variable is automatically
adapted, as we have the variable selection step (see below). Variables that are
selected more often can potentially adapt higher order smoothness than those
that are selected only very seldom.

Component-Wise GAMBoost with P-Splines (Algorithm)

(i) Initialization: Set the iteration index m := 0.

a) Initialize the function estimates

foloy=0=1,...,J

J

b) Initialize the additive predictor /% with the maximizer of the log-
likelihood of the intercept model

p = b))
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as offset value, where 5l%(-) = ¢, i.e., a model with only a constant:

A(.) = argmax [(c).

C

(ii) Estimation: Increase m by 1. For all P-spline base-learners

g;()=9(8)),7=1,...,J
fit the model
1= b () 4 gi()).

The estimate Bj is determined by one-step Fisher scoring with penalized
Fisher matrix and penalized score function, where H™~1(.) is treated as
an offset.

(iii) Selection: Choose the base-learner g;- with

jr = arggnax [Dev (ﬁ[m_l](-)) — Dev (ﬁ[m_”(‘) + QJ())] )

where g;(-) = g( ;).
(iv) Update:

a) Compute the update for the function estimate of the selected base-
learner

A0 = 57700 +95-0)
and set f][m]() = fj[m () otherwise (i.e., for j # j*).

b) Compute the update for the additive predictor
A ) = A + gy ()

(v) Stopping rule: Continue iterating steps (ii]) to until m = Mggop.
The deviance in step [iill is defined as

Dev(ij(z;)) = —2¢Z[ Uiy )} (4.21)
/M'
where ¢ is the dispersion parameter from (4.16), h is the response function,

l;(f1;) is the log-likelihood of observation i and [;(y;) is the log-likelihood, where
fi; is replaced by y;, i.e., the maximized log-likelihood (Fahrmeir & Tutz 2001).

The maximal difference in the deviances, or analogously, as Dev (7™~!(-)) is
just a constant for all j, the minimal deviance Dev (ﬁ[m_l](-) + g;()), is chosen
as criterion for the selection of the appropriate base-learner in each boosting
step (Tutz & Binder 2006). Note that the deviance depends on the form of the
considered distribution.
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4.4.2. Likelihood-Based Boosting for Survival Models

Binder & Schumacher (2008) introduce a likelihood-based boosting algorithm for
censored time-to-event data, where they explicitly consider mandatory covari-
ates. These are covariates of clinically high importance that should be included
in the model by all means. They therefore use an offset-based update mech-
anism where mandatory covariates can be included unpenalized whereas other
covariates enter the model penalized if they are chosen. This approach proves
to be useful, in particular in high-dimensional settings.

4.5. Stopping Criteria

One way of regularization for boosting is given by using weak learners as basis
functions. Weak learners can be achieved by choosing a small step-length v
to make the base-learner g(-,3;) a “weaker” learner or by directly specifying
the base-learner such that it is “weak enough”. The latter approach is, for
example, chosen in likelihood-based boosting as described in Tutz & Binder
(2006), where the base-learner is obtained by one-step Fisher scoring. Another
way of regularization is given by restricting the number of components in the
model by choosing a relatively small stopping iteration mgop (compare [£.2.2)).
There are two ways to determine myp,. Firstly, we can use information criteria
as the AIC, the corrected AIC (Hurvich et al. 1998) or the gMDL criterion
(Hansen & Yu 2001). Secondly, cross-validation (CV) can be applied. The
latter is often very time consuming, especially for high-dimensional data sets.
Both approaches, the AIC and the CV approach, try to mimic the performance
of the model on new data taking overfitting due to over-parameterization into
account. Another possibility, especially useful for simulation studies, is to draw
an independent validation data set from the distribution that was used to sample
the learning data and optimize a stopping criterion on the validation data set.
Thus, we evaluate the performance on new data which is exactly the case we
try to emulate (when we use AIC, CV, etc.). An example would be, to fit the
model on the learning sample and to define the stopping iteration as the one
that maximizes the unpenalized likelihood (i.e., the empirical risk for likelihood-
based boosting) on the validation sample. This can be a good choice, as we do
not need to split the original data set, i.e., we do not reduce the learning sample.
Moreover, evaluating the criterion (e.g., the likelihood) on the validation sample
is typically very fast and easy and reflects exactly the quantity we are interested
in.

In all cases it is favorable to fit a larger number of iterations and determine the

appropriate stopping iteration mgop afterward, to avoid local minima (see e.g.,
Kneib et al. 2007).
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4.5.1. Definition of Hat Matrices

For LyBoost, Bithlmann & Yu (2003) give a definition of the hat matrix of
the boosting procedure as follows: Let x;,7 = 1,...,n be a one dimensional
predictor and y; be the corresponding continuous response. Thus, a base-learner
can be represented by a hat matrix (or a smoother matrix) & : R" — R™.
The hat matrix & maps the response variable y to the fitted values f (x) =
(f(a:l), ce f(xn))’ Using for simplicity f1% = 0, they show that the hat matrix
in boosting iteration m equals

By =By +vSI —Byy) =I—(I—vS)™ (4.22)

From one can conclude that if 0 < ||[I — v8|| < 1 for a suitable norm,
the base-learner has a “learning capacity” in the sense that the residual vector is
“smaller” than the response vector y. If the base-learner has a learning capacity,
B,, converges to the identity I as m — oco. Hence, y = B,,y converges to the
fully saturated model y, where all values are interpolated exactly (Biithlmann
& Hothorn 2007). This shows explicitly that one has to stop early in order to
prevent overfitting.

Schmid & Hothorn (2007) state that a base-learner is weak, if ||[I — vS]|
is close to one. Thus, a larger number of boosting iterations msgop is re-
quired to obtain a fit that is optimal with respect to some criterion (e.g., the
AIC). They conclude that ||I — vS]| is a measure for the weakness of a base-
learner. Furthermore, they show that when one uses the scaled Frobenius norm
| I —vS8||F :=n"ttrace [(I — vS)' (I — vS)| to measure the weakness of the cor-
responding smoothing spline or P-spline base-learner, for 0 < v < 1, ||I —vS||r
is strictly increasing in the smoothing parameter A and converges to 1 as A — oo.
An increase of A implies a decrease in df. Thus, choosing the degrees of freedom
df small in order to gain a weak learner as proposed, for example, by Biihlmann

& Hothorn (2007) (cf. Sec. 4.3.1)) is supported by this finding.

Component-wise boosting uses different base-learners in each boosting iteration

but only one of them is chosen adaptively (cf. Sec. 4.3.3). Bithlmann & Hothorn

(2007) state that for component-wise LoBoosting with linear least squares esti-

mation, the hat matrix of a single base-learner is given by

, @) (1))’
) (x

SO == = 4.23

E3IE 2

where the superscript (7),j = 1,...,p denotes that only the j-th predictor

variable is used. |||* is the Euclidean norm x’'x. Let j denote the base-

learner that is added in iteration m. Thus, the hat matrix of the base-learner
in iteration m is given by

N

S (U, Oy o (@1, 1. (420
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Bithlmann & Hothorn (2007) then derive the hat matrix of component-wise
LsBoosting in the m-th iteration:

Bn=B, 1 +v-8W(I-B,)=T-][(I-v 8. (4.25)
r=1
Biithlmann & Hothorn (2007) emphasize, that B,, is depending on the response

variable y via the selected base-learners 5,7 = 1,...,m and thus can only be
seen as approximative hat matrix.

In likelihood-based boosting with component-wise base-learners, Tutz & Binder
(2006) derive a hat matrix in iteration m of the form

Bm:Zm:M]

7=0 7=

—_

j_

(I — M), (4.26)

where the matrices M are given in the appendix of Tutz & Binder (2006). In the
case of the same smoother matrix & in each iteration (i.e., without component-
wise base-learners) the hat matrix simplifies to

B, = iS(I Syt =1—(I-8)"" (4.27)

J=0

which is, as Tutz & Binder (2006) state, equivalent to the form (4.22)).

4.5.2. Degrees of Freedom

In all these cases, the (approximative) hat matrix can be used to define degrees
of freedom. We follow the definition of effective degrees of freedom (Hastie &
Tibshirani 1990b), which are defined as trace of the hat matrix. Thus, we get

df(m) = trace(B,,). (4.28)

4.5.3. Definition of AIC

Using the above definitions of hat matrices (4.22)), (4.25)), (4.26) and (4.26]),
and degrees of freedom (4.28)) we can define Akaike’s information criterion for
boosting iteration m as

AIC(m) = Dev(f™) + 2. df(m), (4.29)

where Dev(f™) is the deviance of the model in the m-th boosting iteration
(Tutz & Binder 2006). We have to mention that the classical definition of the
AIC

AIC(m) = =2 - I(f"™) + 2 df(m) (4.30)
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could also be used, as the deviance (4.21)) can be written as
Dev(f") = o| =2 1(f1™) + 2-1(y)|. (4.31)

We see that the two definitions of the AIC are just rescaled versions of each
other. Hence, they are equivalent as they are just used for comparative purposes
(within the analysis).

Moreover, Biithlmann (2006) proposes the use of a corrected version of the AIC
(Hurvich et al. 1998) for Gaussian data:

14 df(m)/n
1 — (df(m) +2)/n’

AIC or(m) = log(6?) + (4.32)

where n is the number of observations, the degrees of freedom are defined as in

[E28) and
o 1L
0% == (yi — (Buy)i)*. (4.33)
=1

n -

An estimate for the optimal number of boosting iterations Mgiop opt 1S then given
by
Mstop.opt = argmin AIC(m), (4.34)
1<m<mstop
where mgop 18 the stopping iteration in the boosting algorithm, i.e., the upper
bound for the candidate number of boosting iterations and AIC(m) can be either
the classical or the bias corrected AIC (4.32)) (Bithlmann 2006).

Using the AIC to determine the stopping iteration has shown to be superior
to cross-validation in many settings. There are two reasons for this: First, it
is computationally far less demanding. Compared to five-fold cross-validation,
for example, the computational time to calculate the stopping iteration based
on the AIC is almost five times less. Second, as for example Tutz & Binder
(2006) showed, the MSE of models selected with five-fold cross-validation tends
to be higher than the one obtained by AIC-based models. However, the AIC
also has some drawbacks: The hat matrix is needed to compute the AIC, which
is possibly difficult to derive. Furthermore, for large data sets the hat matrix
becomes very large as it is an n X n-matrix. Hence, it may be superior in the
setting with many observations to use cross-validation to obtain an appropriate
stopping iteration.



5. Boosting in Survival Models
with Time-Varying Effects

Based on the theory from the preceding sections, we want to device an estimation
procedure for Cox-type models with additive structure and possibly time-varying
effects. Variable selection and model choice play another major role in this
setting. To combine all tasks, component-wise boosting methods are applied
in the following. Several boosting methods for additive survival models have

already been proposed (cf. Sec. and Sec. 4.4.2)) but none is able to deal
with time-varying effects.

The first part of this chapter (Sec. deals with a functional gradient descent
boosting approach, which shows serious problems and thus will not be regarded
in the simulation studies nor be applied to the data set of surgical patients with
severe sepsis. In Section [5.3] we develop a likelihood-based boosting approach,
which we call Coxge,Boost. We end the chapter with a discussion of the changes,
compared to Tutz & Binder’s (2006) approach, which we included in our algo-
rithm. Computational details and a toy example that illustrates the usage of
the software are presented in Appendix

5.1. Basic Considerations

Estimation of models can be done with respect to many different criteria. In
the boosting context, minimization of a loss function (FGD boosting) or max-
imization of a likelihood-based criterion (likelihood-based boosting) is usually
applied. In both cases, we base the estimation on the full log-likelihood
as introduced in Section [3.2] For FGD boosting, the negative log-likelihood is
used as loss function. Likelihood-based boosting directly aims to maximize the
log-likelihood. We only consider linear base-learners and P-spline base-learners
in the following. For the latter base-learners, the optimization criterion is al-
tered to the (negative) penalized log-likelihood as given in . Per default,
the inner knots of the P-splines are equally spaced covering the range of the cor-
responding covariate. We only use 20 (inner) knots, as increasing the number
computationally is quite demanding and empirically little is gained regarding
the prediction performance (cf. Sec. [3.1.1)). As we want to include variable se-
lection, a component-wise boosting approach is used in the following. When

43
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model choice is also desired, component-wise boosting with the decomposition
of smooth functions as described in Section is applied.

5.2. FGD Boosting for Survival Data

Functional gradient descent boosting for survival models with time-varying ef-
fects applies the generic FGD approach (Sec. 4.2.1)) and uses the negative, full
log-likelihood as loss function

oo 1) =—5ft.2) + exp(f(u, @))du, (5.1)

with the indicator for non-censoring d, the observed survival time ¢, the combi-
nation of both y = (¢,d) and x the observed covariates. The generic function
f(t,x) is equivalent to the additive predictor 7(t) as in the Cox-type additive
model (2.11)). Following the generic representation of the additive pre-
dictor we see that f(t,x) is potentially dependent on time ¢ and covariates x,
with smooth effects for some components of @, time-varying effects for others
and linear effects for the remainder.

5.2.1. Problems and Considerations

For functional gradient descent boosting we need the negative derivative of the
loss function

0
—— (v, 5.2
o 1) (5.2)
evaluated at the function estimate of f! R
means, we compute the functional derivative of p. Then we plug in f
which itself is again dependent on & and in our case of t. Hence, we have to

use a functional derivative such as the Hadamard derivative (see e.g., van der
Vaart 1998):

Definition 5.1 A function p : D, — E, defined on a subset D, of a normed
space D that contains f, is called Hadamard differentiable at f if a continuous,
linear map 'y : D — E exists such that

m=1] of the previous iteration. This

[m—1]

p(f + shs) — p(f)

S

lim
s\.0

—ps(h)|| =0,Vhs — h,s €R. (5.3)

E

In contrast to the Gateaux derivative, the directions hg of differentiation are not
fixed but may change with changing s but eventually they converge. Applying
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(p.3), one can show (see Appendix |A) that the Hadamard derivative p(h) is
equivalent to

Jy(h) = —Sh(a, ) + /0 h(z, u) exp(f(u, z))du, (5.4)

where h(x,t) denotes the direction depending on & and ¢. The question in which
direction the derivative should be computed cannot be answered so easily. A
reasonable but not compulsory direction is the direction induced by the observed
data (x;,t;)

h(m, t) = I{wi}x[07ti](m, t), (55)

where [ is the indicator function. Bithlmann & Hothorn (2007) also derive the
empirical loss function in the direction of the observed data for the formulation
of boosting in function space. However, in their case, the observed data only
consists of the covariates x; and no additional direction for time ¢ is needed. In
our case the direction becomes

hz,t) = {

0 otherwise (5.6)

This leads to a derivative that is equivalent to the naive derivative where f is
treated as a constant. The negative gradient thus is

t
~ ol f) =5 [ exp(f(u@)du (5.7
0
It shows that has the form of a martingale residual (cf. Barlow & Prentice
1988, Therneau et al. 1990). Thus, FGD boosting based on the full likelihood
simplifies to refitting martingale residuals. This can be seen as a nice and
interpretable analogy to LoBoosting, where the negative gradient vector reduces
to the classical residual vector (see Sec. [4.2.3]).

Nevertheless, this approach proves to be incapable of estimating time-varying
effects. Possible reasons for this are discussed in the following section.

Residuals in Survival Models

In survival models a vast number of different residuals is known, each with dif-
ferent applications (see e.g., Therneau & Grambsch 2000): The basic martingale
residual is used to asses the model directly and for investigation of the functional
form. The deviance residual is based on the martingale residual and was devel-
oped to reveal individual outliers. To asses individual influence score residuals
are proposed.

Schoenfeld residuals (Schoenfeld 1982) were introduced to assess the propor-
tional hazards assumption. The residuals r;,7 = 1,...,n are constructed such
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that they do not depend on time and hence can be plotted (for each variable
separately) against time ¢; to examine the proportional hazards assumption.
From these residuals we see that there should be no built-in time-dependency
in the residuals that are used to examine proportional hazards (which is very
similar to the estimation of time-varying effects). This gives a first hint that
martingale residuals are not suitable for assessing time-varying effects.

Investigation of the Negative Gradient Vector

Let us have a closer look at the negative gradient vector for observation 7 in the
m-~th boosting iteration

~ Oplys, f)

Ui[m] —
of f=fm=1 (i)

zéi—/oiexp(f(t,mi))dt. (5.8)

Note that we integrate over t from 0 to ¢; in . Thus, as long as we integrate
over a positive function the subtrahend is monotonically increasing in t;, i.e., as
t; increases the integral increases as well. This is trivially true, as the integrand
is an exponential function and hence always greater than zero (or equal to zero
only if f(t, ;) = —o0). Therefore, from follows that U™ is negatively
correlated with ¢; in each iteration m. This holds for time-constant functions
f(t,x;) = f(x;) as well as for time-dependent functions f(¢, ;). In the latter
case, the true deFeindency on time only plays a negligible role in the observed
m

dependency of U, on time {;.

Toy Example

To gain some insight and verify the previous statements, we look at a simplified
toy example: We assume that only one variable = (z1,...,z,) and time t =
(t1,...,t,)" have an (arbitrary) effect on the survival time. We use component-
wise FGD boosting where we utilize the negative gradient vector (5.8)) and only
use linear base-learners, one for time ¢ and one for @, i.e., we assume log-linear
dependencies of the hazard rate on t and .

First Step: Offset No matter how the offset is chosen, either by minimizing
the empirical risk or by setting it to zero a priori, it is just a constant. Thus,
further considerations just depend on the value itself. If we choose the offset to
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be f ' = 0, the negative gradient vector U! is initialized as:

t;
UZ-D] = 51—/ exp(0)dt =
0

N { 1—t; if §;,=1 (5.9)
More general, if one chooses the offset f O] = ¢ the negative gradient becomes

S O A el BV R

In both cases and (5.10), UM primarily depends on the time ¢. In the case
of an offset equal to zero, all censored observations lie on the negative bisecting
(half-) line and all uncensored observations lie on the negative bisector shifted
up by one. Having an offset not equal to zero, only the slope of the two (half-)
lines is changed from one to ¢. This shows that one has an almost perfect linear
dependency of UM from ¢ and thus, in component-wise boosting, a (linear)
base-learner for t is selected.

Second Step: Negative Gradient in Subsequent Boosting Iterations (Spe-
cial Case) In the following boosting iterations we get almost the same picture.
Analytically the negative gradient can be computed quite easily, if one assumes
that in all previous iterations the linear base-learner for time t was selected. As
stated above, in the first iteration this will hold almost certainly. At least in
early subsequent iterations, this can also be assumed for the same reasons, as
we will show in the following paragraph.

Let the estimateAd CoefﬁciAent Qf the linear bgse—learner for time ¢t in itferation m
be denoted by B" = (5([)7"], AImY where ﬁ([)m] is the intercept and ™ is the
slope. We then define

m—1 m—1
o™= 3" 55 and A= 3" B (5.11)
=1 =1

For simplicity we assume that the offset f ) = 0. Thus, in boosting iteration m
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we get

t;
Ui[m] = 0; — / exp {d[m] + Alml -t}dt
0

t;

= &—|(3" 0

)
exp { alm!
S - (:{[—m]} lexp (57 1,} — 1}) , (5.12)

cexp {al™ 4 40m] .t}}

where [F (t)}g = F(t;) — F(0) for an arbitrary antiderivative F'(t). Equation
shows that the negative gradient essentially is an exponential function
dependent on t;. More precisely, we get two negative exponentials scaled with
the coefficient exp {d[m}} /4™ where one has an intersection with the ordinate
in 0 and the other in 1 for censored and uncensored observations, respectively.
Thus, again we have a function strongly dependent on ¢; which is decreasing in
t;, no matter how the true relation is. This leads to further selections of the
linear base-learner of time ¢ with negative coefficient for the slope.

Simulation Results

To show that these results also empirically hold, we set up a small simulation
study. Survival times with a baseline hazard rate

At,z) = exp{0.001 -t + 3 -z} (5.13)

where simulated (for details on survival time simulations see Section [6.1.1)).
Censoring times where drawn independently from an Expo(v) distribution, with
v such that one gets roughly 90% uncensored data.

Afterwards, we tried to estimate the model using component-wise FGD boosting
where we applied the negative gradient and only used linear base-learners.
Initially 5000 boosting iterations were performed to see if the problems discussed
above might vanish in the long run. Every 10th iteration, we plotted ¢ and =
both versus U™, A selection of these plots is shown in Figure [5.1]

For UM we see in the leftmost graphic the two half-lines for the observations
as derived above in Equation (5.10). We clearly see that the censoring rate
is quite low, as more observations are located on the upper half-line. Thus,
estimation of the effect of time (solid line) is mainly influenced by the non-
censored observations. Note that the true effect of ¢ is much smaller (i.e., 0.001)
than the estimated effect and in addition it should be positive. The second
picture (from the left), in which the association of Ul and z is depicted, shows
quite a good estimation of the effect of x. The slope roughly is 2. Thus, it
is estimated a bit smaller than true effect but the sign and the magnitude are
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estimated approximately right. Even so, the sum of squared errors (SSE) for ¢
is much smaller than for x. Hence, the wrongly estimated base-learner for ¢ is
chosen to enter the model (multiplied by the step-length factor v = 0.1). In the
upper right panel, for UM, we see the two negative exponentials as presented
in (5.12). Again, the estimation of the effect of ¢ is mainly influenced by the
uncensored observations. The picture for the influence of z is practically the
same as in the first iteration. Again the linear base-learner of time ¢ is selected
to enter the model.

In the middle left panel, after 40 iterations, nothing has changed much. The
only differences are that the curvature of the negative exponentials is increasing
and, more importantly, we now have a situation where the linear base-learner for
x is selected, as the SSE of z is smaller. Note that in this simulation the base-
learner for x was almost never selected. With x entering the model, the picture
changes as we can see in the right panel in the middle (m = 51). Now the two
clearly separated lines for censored and uncensored observations become blurred.
This is due to the influence of x which now becomes visible. Nevertheless, the
negative influence of ¢ remains.

The last two graphics in the bottom row depict that, with an increasing number
of iterations, the estimated effects decrease. The effect of ¢ is still estimated to
be negative. This did not change up until the last iteration (m = 5000), where
the effect of ¢ was tiny but still slightly negative (not depicted). We can also see
that both sums of squared errors are decreasing but the SSE for ¢ is (almost)
always a little bit smaller than that of x.

In principal, for other baseline hazards we get the same results. Choosing a
higher weight for z or reducing the weight for ¢ only leads to a higher selec-
tion frequency of z. Anyhow, ¢ is always selected with a (wrongly) negative
coefficient.

Another problem with martingale residuals as response in least squares estima-
tion (as used in FGD boosting) could be the skewness of the distribution of
martingale residuals. Least squares estimation is based on symmetrically and
even normally distributed errors. Moreover, due to the skewness, the quadratic
loss function might be misleading as selection criterion for the “best” base-learner
in each iteration. Thus, both, estimation and selection of base-learners, could
be improved when we employ other estimation and selection criteria.

5.2.2. Conclusion

Using the generic functional gradient descent approach with a loss function based
on the full likelihood for survival models with time-dependent effects seems
relatively easy at first sight. However, taking a closer look, some problems
arise: First, the derivative of the negative log-likelihood is not just a simple
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derivative but it is a functional derivative such as the Hadamard derivative with
special directions of derivation. This leads to a negative gradient vector that is
equivalent to the martingale residuals. Here we get a nice parallel to LyBoosting,
where classical residuals are refitted. Inspecting the martingale residuals in their
role as response we find the second problem: Martingale residuals do not seem
to allow the estimation of time-varying effects. On the contrary, the built-in
negative correlation of the martingale residuals with time makes it impossible
to estimate time-varying effects. Even the correct sign of a possible effect cannot
be identified, far-off from assessing the right functional form.

As one possible solution to overcome these problems, we can use likelihood-
based boosting, where we do not compute and fit the negative gradient but try
to maximize the likelihood directly. Using the penalized full log-likelihood
to fit models has shown to work well in other applications with classical Newton-
Raphson estimation procedures (see e.g., Kneib & Fahrmeir 2007). This lets us
assume that maximizing this log-likelihood might also work in the boosting
framework.
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Figure 5.1.: FGD Boosting: Negative gradient vectors U™ plotted against
time ¢ and x, for m = 1 (upper left), m = 11 (upper right), m = 41
(middle left), m = 51 (middle right), m = 251 (lower left), and
m = 1001 (lower right), together with the estimated linear base-
learner (solid line) and the sum of squared errors (SSE). Note that
the base-learner with the lower SSE is selected.
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5.3. Likelihood-Based Boosting for Survival Data
(Coxq.xBoost)

As in the FGD boosting approach, we base the estimation on the full log-
likelihood (B.11)). If we are using P-spline base-learners, which will be the stan-
dard case, the log-likelihood is replaced by the penalized log-likelihood .
In contrary to FGD boosting, the log-likelihood is not used as basis for the loss
function but we directly aim to maximize it. The boosting algorithm, which we
will present in the following section, is essentially based on the likelihood-based
boosting approach as proposed by Tutz & Binder (2006) (cf. Sec. [£.4). As we
specially focus on the inclusion of flexible and time-varying terms in Cox-type
additive models, we call the new algorithm CoxgeBoost.

In the following, we denote the j-th base-learner by g;(x(t);3;). The base-
learner can be seen as a generic representation for different types of functions
(cf. Sec. [£.3.4). The covariates «(t) include classical covariates and possible
time-varying effects expressed as artificial time-dependent covariates or the time
t itself. The notation x(t) for the covariates stresses the possible dependence
on time. Thus, g;(x(t); B;) can correspond to a linear function of 7 € x(¢)
or of time ¢ € x(t) or, more flexible, a smooth function of & or t. Moreover,
time-varying effects, expressed as varying coefficients as in Section [2.3.2] can be
represented by the generic base-learner g;(x(t); 8;), where the effect of time ¢ is
either a linear or a flexible function. With this notation at hand, we can derive
the CoxgexBoost algorithm:

5.3.1. Coxgq.Boost Algorithm

(i) Initialization: Set the iteration index m := 0.

a) Initialize the function estimates
ol o
ey =o.

b) Initialize the additive predictor %) with the maximizer of the log-
likelihood of the intercept model, as offset value

) = argmaxz d; - ¢ —exp(c) - t;,

€ i=1
i.e., with the maximum likelihood estimate for a constant log-hazard:

A0l — 2?2151'
0 <->zlog( : )
Zi:lti
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(ii) Estimation: Increase m by 1. Fit all (linear and/or P-spline) base-
learners

_g]< 18]) VJG{l,,J},
determined by penalized maximum likelihood estimation

~

/6_7 - argglax lpen J (/B)

with the penalized log-likelihood (cf. Eq. (3.14))

n

lﬁﬁm::§jk (77 (@) + gy (@i (4); B))

_ /O“ exp {ﬁz[m*ﬂ (zi(t)) + g;(z:(1); ﬁ)} di’}
~pen(B), (5.14)

where pen; () is the difference penalty as in (3.6) for the j-th base-learner,
or pen;(B3) = 0 if the corresponding base-learner is unpenalized (i.e., here:
a linear base-learner).

(iii) Selection: Choose the base-learner g;« that maximizes the unpenalized
log-likelihood (cf. Eq. (3.11)))

j* = argmax l][-m} (8)),

(iv) Update:

a) Compute the update for the function estimate of the selected base-
learner

FRC =70 + v g 0)
and set fj[m]() = fj[»mfl](-) otherwise (i.e., for j # j*).
b) Compute the update for the additive predictor

O A OR 2N H Ok



54 Chapter 5 — Boosting in Survival Models with Time-Varying Effects

We classically choose the step-length factor v = 0.1 but, in general, it is
sufficient to choose v € (0, 1] small enough.

(v) Stopping rule: Continue iterating steps to until m = Mgep.

Note that the estimated additive predictor from the previous iteration is treated
as an offset in the first part of the formulas (5.14)) and (5.15)) and it is possibly
m—1

time-dependent in the integral. The term 7;  ~(x;(¢)) in the integral can be
interpreted in such a way that the estimated parameters and the time-constant
covariates of the base-learners are kept fixed and the time ¢ stays variable.
Hence, the integrand in ([5.14]) is a function depending on the coefficient 3, which
we try to estimate, and (possibly) on time £. In (5.15]), we use the estimates Bj

from step . Thus, we only have a function that (possibly) depends on time .

5.3.2. Problems and Considerations

We have to integrate over time ¢ for each base-learner, in each boosting iteration
and in each step of the optimization method (cf. App. used to determine
Bj. Hence, the estimation step (fiil), or more precisely the integrations therein,
are the computational bottleneck of the algorithm. Accelerating the integration
method can increase the speed of CoxgeBoost dramatically. We will discuss
this in more detail in Appendix [B.1.1]

Computationally, the likelihood-based boosting approach has some drawbacks
compared to the FGD approach. In the following enumeration, we will discuss
some of the problems that arise and present possible solutions.

(a) Tutz & Binder (2006) use a one-step Fisher scoring estimate for each
base-learner in each boosting iteration. Instead of this estimate, we use a full
maximum likelihood estimate and apply a step-length factor v as proposed
in the FGD boosting literature (e.g., Bithlmann & Hothorn 2007). This can
possibly be computationally more intensive but we get an estimate that is
“weakened” or “shrunken” with the same relative amount v for all elements of
the coefficient vector of the base-learner. Different amounts of shrinkage for
one-step Fischer scoring may especially occur when competing base-learners
with different numbers of parameters are used (e.g., linear base-learners
versus P-spline base-learners). This might result in a biased selection of
model terms if we use the model choice scheme from Section £.3.4]

(b) Tutz & Binder (2006) specify the smoothness of the base-learners using the
smoothing parameter A\. They propose to choose A very large in order to
obtain a weak learner. Only one single smoothing parameter is used for
all base-learners which is chosen relatively crude (see Sec. [1.4.1). How-
ever, we believe that specifying the degrees of freedom df to determine the
amount smoothness of each base-learner (separately) is much more intu-
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itive. Especially when model choice, as introduced in Section [4.3.4] should
be integrated in the boosting algorithm, we need to be able to define each
base-learner in such a way that its complexity (in terms of df) is comparable
to that of other model terms.

In FGD boosting approaches it is relatively easy to use initial degrees of
freedom df; to compute the corresponding smoothing parameter A;. As
the base-learners are fitted by (penalized) least squares estimation to the
negative gradient vector, the smoother matrix (dependent on \;) always has
the form

SD(\) = X[ X)X, + K| 7' X] (5.16)

where X; denotes the design matrix for the j-th base-learner and Kj is the
corresponding penalty matrix. Thus, we can use the equivalent degrees of
freedom

df();) = trace(SY())) (5.17)

to solve

df(A;) —df,; = 0 (5.18)

for A\; with a pre-specified value of djf ;- For a given penalty matrix (i.e., K;
fixed), the smoother matrix (5.16)) and thus the degrees of freedom ((5.17))
in the FGD boosting algorithm only depend on the design matrix X; (and
on \;).

For survival models in likelihood based-boosting, least squares estimation
is replaced by Fisher scoring (or similar likelihood optimization methods).
Therefore, the equivalent degrees of freedom are computed as in Equation

(3-8). The connection of the degrees of freedom df; of the j-th base-learner
and the smoothing parameter A\; can be derived from Equation (3.9)):

df(\;) = trace Fj[m](Fj[m] + )\jK)_l} : (5.19)

The Fisher matrix of the base-learner j in the m-th boosting iteration Fj[m]
(see Eq. ) depends on the design matrix and, at the same time, on
the hazard rate A(-) = exp(A™~U(:) + g;(-; 3;)). The additive predictor of
the previous iteration Hl™~1(.) is treated as an offset, i.e., with fixed co-
efficients, whereas the base-learner g;(-; 3;) is a function of the covariates
and the coefficients 3;. Hence, the estimated degrees of freedom do
not only depend on the design matrix, the order of the penalty and the
smoothing parameter \; but also on the coefficients ,Bj[»m}. Thus, calculating
the smoothing parameter A; as in is only possible for given (esti-
mated) coefficients Bj[m] but estimating the coefficients is only possible if
Aj is known. At the moment, this problem is solved by using where
df(\;) is estimated as in to find an approximative solution. This
allows us to specify the smoothing parameter \; (at least crudely) using
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initial degrees of freedom c@‘ ;- As we will show in Section [6.1.6, this is — to
a certain extent — a reasonable approximation.

A possible refinement could be to estimate an initial smoothing parameter
5\j using the hat matrix from the least squares estimation as just
described. With this value, initial estimations for the coefficients can be
computed which in turn can be used to compute a new, better approxima-
tion for A\; using the appropriate degrees of freedom . This smoothing
parameter \; can now be used in the first boosting iteration.

Another problem that emerges for likelihood-based boosting is that the spec-
ification of a constant smoothing parameter A; for the base-learner g;(-, 3;)
does not correspond to a fixed amount of smoothness for this base-learner.
With an increasing number of iterations m, the degrees of freedom df ] for
gi(-, B;) change, as we will show in our simulation studies (see Sec. [6.1.6)).
However, this effect is not very strong. Over numerous boosting iterations
m, only minor changes of the estimated degrees of freedom dfgm] of the j-th
base-learner are observed. Thus, again we propose to use the above approxi-
mation (see (]E[)) to specify the initial degrees of freedom dfg-O] approximately

equal to de ; and ignore the (small) changes with increasing iterations.

Again we could think of a correction. We could readjust the smoothing
parameter A; in each (or each k-th) iteration such that we get again the
desired degrees of freedom. This would lead to an increased computational
burden. As we could observe only minor deviations and as the degrees of
freedom are just an approximation themselves, readjusting \; does not
seem to be necessary.

A last problem considered here, is the computation of the AIC, which is
much more complicated for likelihood-based boosting. As we have shown
in Section [£.5.1] for FGD boosting we have one single and simple formula
to estimate the hat matrix of the model in boosting iteration m.
This is due to the same estimation procedure, i.e., (penalized) least squares,
which is (usually) common to all boosting algorithms in the generic FGD
framework (Sec. . For likelihood-based boosting, the hat matrix B,,
in iteration m must be derived anew for each estimation procedure. Tutz
& Binder (2006) deduced the hat matrix for the GAMBoost procedure,
where all simple exponential families are considered. Deriving an approxi-
mative solution for the smoother matrix of Coxge Boost, and hence having
the AIC available, will be subject to future research. As stated above,
the Coxge,Boost algorithm is computationally quite demanding. Therefore,
choosing the stopping iteration by cross-validation is generally infeasible.

In this thesis, as we mainly focus on simulation studies, we use a valida-
tion data set, as described in Section [£.5 to compute the (unpenalized)
log-likelihood criterion (3.11)). An appropriate stopping iteration is deter-
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mined as the number of boosting iterations Mgopopt that maximizes the
log-likelihood for the validation data.

We see from item (b)) that we can use initial degrees of freedom to get an
approximative value for A\;. Even if we have a slight misspecification, this is
more intuitive than defining the smoothing parameter itself. Moreover, this
allows us to use the model choice scheme as proposed by Kneib et al. (2007)
(cf. Sec. . As the problem of changing degrees of freedom is not that
strong, the different model terms stay roughly comparable even in advanced
boosting iterations. In the next chapter, we want to support these statements
with simulation studies.
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6. Simulations and an Application

6.1. Simulations

In the simulation study that is presented in the following section, we focus on
CoxgexBoost. The two-stage stepwise procedure is not examined due to the
high computational burden and the need of the user to interact after each step
of the model choice procedure. The required interaction is a result of the current
implementation of the procedure (based on R and BayesX at the same time),
which is likely to be changed in the future.

6.1.1. Simulating Survival Data

Before we can conduct simulation studies, we need to be able to sample survival
data according to a known hazard rate A(¢,x). “Standard” data, satisfying
the proportional hazards assumption, is relatively easy to sample, especially if
one sticks to data sampled from known parametric distributions such as the
exponential or the Weibull distribution.

As we mainly focus on flexible and time-varying effects, we need a more general
framework for survival data simulations. Bender et al. (2005) present an algo-
rithm for simulation of survival times according to Cox proportional hazards
models with a wider range of distributions.

Using the notation from Section one starts with the distribution function
of the Cox model

Ft,e) = 1—exp{-A(t,z)} =

= 1—exp{—/0 /\(t,m)dt}:

= 1—exp {—/0 exp(n(t, w))dt} , (6.1)

where (-, &) = exp(n(-,x)) is the hazard rate as in (2.11) with an additive
predictor 7 as in (2.12)). Note that the cumulative hazard rate A(-, ) includes
the baseline hazard rate. It can be shown that a cumulative distribution function

St

29
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is always uniformly distributed on the interval [0,1], in short F' ~ UJ0,1] (see
e.g., Mood et al. 1974). So, with T as a random variable, one can write

1 —exp{—A(T,x)} =:U ~ U0, 1]. (6.2)
For symmetry reasons the same property holds for the survivor function S(-, x):

Stz) = 1-F(,xz)=

= exp {— /Ot exp(n(t,w))dt} : (6.3)

We define U := exp{—A(T, )}, where U ~ U[0,1]. If A(-,x) is invertible one
obtains with the inversion method (see e.g., Devroye 1986)

T =AY (=log(U),x) ~ F(-,x). (6.4)

Therefore, if U is drawn from a U0, 1] distribution, the survival time T de-
rived from (6.4]) is distributed with respect to the distribution function F(-, x).
Equation (6.4) is equivalent to

- /T exp(n(t, x))dt = log U (6.5)
T 3
& /0 exp(n(t,x))dt = —logU (6.6)
—
& —logU — AT, z) = 0. (6.7)
—h(T)

Hence, we are looking for the root of h(T") for a given realization drawn from a
U0, 1] distribution. This can be calculated in R using

R> uniroot(h, c(0, t_upper))$root

where h implements the function h(T) as in and c(0, t_upper) specifies
an interval, which contains the desired root of h(T). Solving to obtain
samples of T can be seen as an extended version of the algorithm proposed by
Bender et al. (2005) where only classical Cox models are addressed. Equation
allows the use of arbitrary hazard rates A(-, ) and to draw data from the
corresponding distribution. The hazard rate is specified as the exponential of
an additive predictor 7(-, ) as in the Cox-type additive model (see Sec. [2.3)).

Censoring can be introduced by simulating, for example, exponentially dis-
tributed censoring times C;. The censoring distribution, respectively the pa-
rameters of the censoring distribution, should be chosen such that one gets the
desired censoring rate (i.e., the relative frequency of censoring for all observa-
tions).
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The realizations t; of the survival times are derived as

t; = min(T;, C;) (6.8)
and the indicator for non-censoring equals

6, = I(T; < C;). (6.9)

One should mention that it is important that the hazard rate A(-,-) is specified
in the right way: The exponent should not be chosen too large, as otherwise the
integral of the cumulative hazard rate might be (numerically) diverging.

Interpretation of Formulas for Survival Time Simulation

To get some insight into the sampling procedure, i.e., in the structure of the
sampling scheme, that we just derived, we use the following simplified case of a
classical Cox model.

Theorem 6.1 Let A(t,x) = \o(t) exp(x’'B), i.e., the case of a classical Cox
model without time-varying effects and with a nonparametric baseline hazard
rate A\o(t). Then, we can rewrite as

log(Ao(T)) = a'B + log(—log U), (6.10)
%,—/

where B =—0.

Proof. In the Cox model, the hazard rate exp(n(t,z)) is replaced by
Ao(t) exp(’@). Thus, from we get:

/T Xo(t) exp(a'B)dt = —log U
0

T ~
exp(a:’ﬁ)/o Ao(t)dt = —logU

=

& exp(2'B)Ao(T) = —log U

& Ao(T) = exp(x'B) " - (—log U)

& log(Ao(T)) = —2'B + log(—log U)

& log(Ao(T)) = x'(—B) + log(—log U) O

Thus, from Equation (6.10) we see that in this simple case we obtain a linear
model for the transformed time log(Ag(7")) with an (additive) error term e spec-
ified by the distribution of U ~ U[0,1]. In other words this means, we have
a parametric model with a parametric error term determined by the samples
from U for a (nonparametric) transformation of time, i.e. a special case of a
transformation model.
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6.1.2. Measures of prediction error

A classical measure to assess the quality of the prediction would be the mean
squared prediction error. Therefore, the expected survival time given the co-
variates IE(T|x) is needed. An estimate is defined by the model for the hazard
rate:

t = Ei(T|z) = (6.11)

A

- /Oot (t|z)dt = (6.12)
h S(t|z)dt = (6.13)

J
00 t
= / exp(—/ Mu|x)du)dt. (6.14)
0 0
Formula (6.13]) holds, as T'|x is a non-negative, real-valued random variable
with B(T|x) < co. Using £ we can, for example, calculate the estimated mean

squared prediction error

n

MSE = * St -1 (6.15)

n <
=1

The problem with this approach is that we need to integrate over the time from
zero to infinity. As the model is just estimated on a time span from t,;, to
tmax, Where (classically) it holds that ¢,., < 0o, we heavily have to extrapo-
late from the model. Thus, an arbitrarily large error can occur, depending on
how well the extrapolated model holds. The problem of extrapolation even in-
creases whenever we use splines to model smooth functions of time. For linear
effects, we have a natural way of extrapolation by just moving on with the same
slope. Splines instead have no natural way to do so. One could think of carry-
ing forward the last value (i.e., to use a constant prediction for values of time
larger than t,,.y), linear extrapolation, or even carrying on the skewness that
we have at tpax (e.g., if we have estimated a quadratic function, we extrapolate
quadratically). However, no choice is altogether superior to another one.

To overcome these problems, we could use quantile based measures, i.e. com-
pare, for example, the predicted median survival with the median survival from
the true model. Another approach tries to estimate the expected Brier score
(Brier 1950). A robust estimator with application to survival models (under the
assumption that censoring is independent of the covariates) was introduced by
Graf et al. (1999). Further refinements and consistent estimators in the case
of censoring mechanisms that are conditionally independent from the survival
times, given the covariates, were introduced by Gerds & Schumacher (2006).
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The Brier score approach is based on the prediction of the event status

1 T, >t
ORISR S (619

at a fixed time ¢ for the i-th observation. Given the covariates x;, Y;(t) can
be estimated by a risk prediction model based on the estimated survival model.
The risk prediction model is the probability of surviving until ¢, i.e., the survivor
function S(¢|x;) which can be estimated by

S(tz) = exp (— /Otj\(u]w)du> | (6.17)

This leads to the true prediction error, which is proportional to the expected
Brier score:

err(t; S) = E[(Y(t) — S(t|z))?. (6.18)

The prediction error can be estimated by

1 n

erE(t; ) = — Y _(Yi(t) — S(t|z,))? - w(t), (6.19)

n <
=1

where weights w(t) are needed to incorporate censoring (see Gerds & Schumacher
2006). Binder & Schumacher (2008) used this measure for boosting models in
the survival context and applied the integrated prediction error estimate as a
measure that summarizes the prediction errors for multiple, fixed time points:

~

t
IErr(i; S) = / ert(u; S)du. (6.20)
0

The upper boundary of the integral £ is selected in such a way that it is in the
range of the given data. Classically, one would choose it from an area, where
there is still enough data present to prevent the measure to depend on the
possibly instable boundaries. Integration over a transformation of the survivor
function as in is necessary to compute but we can restrict the
integral to areas with enough observations and therefore, the problems described
above are avoided. Incorporating this strategy to assess the predictive power of
the CoxgexBoost algorithm will be subject to future work.

6.1.3. Outline of Simulations

To gain deeper insights in the properties of the proposed Coxge,Boost procedure,
three simulation studies were performed. In all three settings, we generated data
sets consisting of 300 observations in the learning sample and 100 observations
in the validation sample. The former sample was used to fit the Cox-type
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additive model (2.11]) with CoxgexBoost, and the latter to determine the stopping
iteration mgop. First, we want to give a short outline of the simulation goals.
Afterwards, we present the exact simulation schemes and the results.

In the first setting, data was simulated without any time-varying effects. Even
the baseline hazard was chosen constant over time. This corresponds to data
from an exponential distribution (given the covariate values ). In this setting,
the goal was to evaluate the performance of the algorithm with respect to the
detection of linear and smooth effects applying the model choice scheme as
proposed in Section [4.3.4] Another interesting topic was the investigation of the
ability to perform variable selection, both in the model choice scheme and in a
variable selection scheme. The latter applies a model that only uses one type
of base-learner per covariate (linear base-learners for categorical covariates and
P-spline base-learners with 4 degrees of freedom otherwise).

The second and third setting included time-varying effects. In the second set-
ting only the baseline hazard depends on time, whereas in the third setting a
categorical covariate has an additional time-varying effect. This corresponds to
different baseline hazards in the two groups. In the second setting, we tried
to investigate, whether the algorithm chooses time-varying effects even if there
are none present. Furthermore, we investigated again the properties of variable
selection and wanted to check, if the effects are estimated “correctly”.

In the third setting, only the model choice procedure (see Sec. was used.
We investigated whether the time-varying effect was detected correctly and
whether it was estimated right. Moreover, it is again of interest, if other ef-
fects, like linear and smooth effects, are detected and modeled “correctly”.

For the first two simulation schemes we investigated the strength of variable
selection with component-wise boosting. Model choice as given in Section [4.3.4]
is applied in all three simulation settings. Obviously, model choice includes
variable selection, too. The difference is that for variable selection we only
considered linear and P-spline base-learners, the latter with 4 degrees of freedom,
and for model choice, we centered the functions and used 1 degree of freedom. In
the second and third simulation study we also added time-varying base-learners
in the model choice framework (see Tables to[6.3).

In all three schemes, we recorded the estimated degrees of freedom within each
iteration and for each repetition to check their deviation from the initially de-
fined degrees of freedom df; and to see how they change over the iterations

(cf. Sec. |5.3.2).
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Details on Simulation Scheme 1

As already stated, we have three different simulation schemes. For the first

study we simulated 400 realizations of 15 i.i.d. covariates X7, ..., Xi5 according
to
X1, Xo, X7, Xs, Xo UL
idd.
X37X47 X107X117X12 N N(Oal) (621)
X, Xs, Xi3, Xu, Xi5 % B(1,0.5).
N—— S—

effective covariates non-effective covariates

The covariate realizations x; = (z14,...,%15:),¢ = 1,...,400, were used to
simulate survival times with the hazard rate

A(t, ) = exp <2 + sin(—2] — 0.627) + 1.425
(6.22)
4 0.55in(1.523) + 74 — 275 + 0.1x6>

using the inversion method . Only the covariates X; to Xg have an effect on
the survival time. We call these covariates “effective covariates”. Covariates X5
to X15 have no effect on the sampled times. Therefore, we use the term “non-
effective covariates” for these variables. We have two uniformly distributed,
two standard normally distributed and two binary distributed covariates in the
model. X; to X3 have non-linear effects, X, and the categorical variables Xj5
and X have linear effects. The effects are depicted in Section m (see e.g.,
Fig. . The first 300 observations are used to fit the model, i.e., they are used
as learning sample. The remaining 100 observations serve as validation sample
to determine the stopping iteration. The censoring times C; are simulated i.i.d.
exponentially distributed with rate A = 1/%, i.e., with E(C) = £ 3" ¢ = ¢,
leading to a non-censoring rate of approximatively 70%.

Table gives an overview of the covariates and the way they enter the model.
In the first setting, this can be either as linear base-learner or as P-spline base-
learner. In the table we denote the base-learners with the names of the R-
functions in CoxgeBoost. The function bols() creates a linear base-learner
and bbs () represents a P-spline base-learner. bolsTime() and bbsTime() are
functions for linear and P-spline base-learners of time. Both base-learners of
time represent time-varying effects expressed as varying coefficient terms as in
Section [2.3.2] i.e., if a covariate (other than time) is associated with these base-
learners, it is modeled as an interaction of time (as linear or smooth term) with
the respective covariate. For more computational details see Appendix [B.2
Furthermore, the degrees of freedom are given in brackets for flexible base-
learners. Note that in the model choice schemes we set the degrees of freedom
df = 1 and center the function as described in Section [£.3.4]

For both settings, variable selection and model choice (which obviously also
includes variable selection), we simulated 200 randomly drawn replicates of the
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data set. Each data set was sampled with the hazard rate (6.22)). The models
were fitted using the option hardStop = FALSE in cfboost(). This should
prevent the boosting procedure to stop too early. Therefore, at the end of the
boosting procedure it is checked if the iteration with minimal risk is close to
the pre-specified number of boosting iterations mgop. If this is true, msggep is
increased, i.e., the procedure continues until the minimal risk is further away
from the boundary or until the number of boosting iterations is increased more
than four times. Hence, with an initial mg, = 400 and an increase of 100 every
time we did not reach the minimal risk early enough before the boundary, we
maximally used 800 boosting iterations.

Variable Selection

Type bols | bbs (df =4) | bolsTime | bbsTime (df = 4)
T1 — T4 continuous v
Ts — X categorical v
T7 — T12 | continuous v
13 — x15 | categorical | v

Model Choice

Type bols | bbs (df = 1) | bolsTime | bbsTime (df = 1)
T1 — T4 continuous v v
Ts — X categorical v
T7 — T12 | continuous v v
13 — T15 | categorical v

Table 6.1.: Simulation Scheme 1: Overview of combinations of covariates
and base-learners in the variable selection and model choice scheme.
Combinations with v'were used in the model formula.

Details on Simulation Scheme 2

The covariates in the second simulation scheme were sampled identically to the
first simulation study (6.21). Again, 400 realizations of the 15 covariates were
randomly drawn per replicate. The survival time was then sampled with the
hazard rate

AMt,x) = exp( — 1+ log(t) + sin(—a7 — 0.62%) + 1.423
(6.23)
+0.5sin(1.523) + 24 — 225 + o.1x6).

Thus, we see that only the intercept term was changed from 2 to —1 and a
baseline hazard log(t) was introduced. As above, we used the first 300 obser-
vations as learning sample and the rest was used as validation sample. For
variable selection we included all 15 variables as possible base-learners. Cate-
gorical covariates were added as linear base-learners, the remainder as P-spline
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base-learners with four degrees of freedom. In the model choice scheme we ad-
ditionally included linear and P-spline base-learners for time-varying effects for
all covariates and decomposed the smooth terms of continuous covariates as de-
scribed in Section [4.3.4] Especially the estimation of time-varying effects is very
time-consuming. Hence, we used only the six effective covariates in the model
formulation to decrease the computational effort. Non-effective covariates were
excluded a priory from the model. Still, we have 24 base-learners (four base-
learners for each of the four continuous covariates, three base-learners for the
two categorical covariates and two base-learners for the (log) baseline hazard)
where 14 are time-varying, which all have to be fitted in each iteration. As a
comparison, in the variable selection scheme we only have 16 base-learners (one
per covariate), where only one (for the baseline hazard) is time-varying. An
overview of the model terms we used for variable selection and model choice is

given in Table [6.2]

In the second simulation scheme we used only 50 replicates for the variable selec-
tion scheme and 50 replicates for model choice to examine the properties, as the
time until convergence of one boosting model was very high. Boosting one model
from the model choice scheme (with that many time varying base-learners) took
about one day on a Dual-Core AMD Opteron™ server with 2.8 GHz. For both
settings we chose the censoring times C; again to be i.i.d. exponentially dis-
tributed with rate A = (% Yoy 751-)71 = 1/t leading to a non-censoring rate of
approximatively 50%.

Variable Selection

Type bols | bbs (df =4) | bolsTime | bbsTime (df = 4)
t time v
T1 — T4 continuous v
Ts — Xg categorical v
X7 — 12 | continuous v
13 — T15 | categorical v

Model Choice

Type bols | bbs (df = 1) | bolsTime | bbsTime (df = 1)
t time v v
T1 — T4 continuous v v v v
Ts — Tg categorical v v v

r7 — 15 | not-included

Table 6.2.: Simulation Scheme 2: Overview of combinations of covariates
and base-learners in the variable selection and model choice scheme.
Combinations with v'were used in the model formula.
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Details on Simulation Scheme 3

In the third simulation scheme with a baseline hazard that is depending on time
and one time-varying effect, we only performed model choice. Pure variable
selection as in the settings above was omitted. To reduce the computational
burden, we decided to include only effective covariates as already done in the
model choice procedure in simulation 2. Thus, we sampled the six covariates
X1 to Xg according to

XlaXQa Z}\fl U[_171]
id.d.
X5, Xg, & B(1,0.5)
~——
effective covariates
Applying the inversion method we used 400 realizations x; = (z1;,...,%6;),7 =
1,...,400 to sample survival times with the hazard rate
At, @) = exp (2 +log(t + 0.2) + sin(—2? — 0.62%) — 0.3z
(6.25)

+0.58in(1.523) + 24 — 225 + 2V - xﬁ).

Like in both previous simulation schemes we simulated the censoring times

c; K Expo(1/t). In this case this corresponds to a non-censoring rate of
approximatively 50%. The base-learners that were used in the model are given
in Table [6.3] and correspond to those from simulation 2 (model choice).

Model Choice

Type bols | bbs (df = 1) | bolsTime | bbsTime (df = 1)
t time v v
T — x4 | continuous v v v v
rs — xg | categorical | Vv v v
Table 6.3.: Simulation Scheme 3: Overview of combinations of covariates and

base-learners in the model choice scheme. Combinations with v’ were
used in the model formula.

Again, we used the option hardStop = FALSE to reduce the run-time where
possible and to increase the number of boosting iterations when necessary. The
number of simulation replicates was 50. Again, it took about one day to estimate
one model replicate as in the model choice procedure in simulation 2.
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6.1.4. Simulation Results 1: Model Choice and Variable
Selection

In the following section, we explore the accuracy of variable selection given by the
relative frequency of (correctly) selected base-learners. This means we count the
models (simulation replicates) where the base-learner was included and ignore
how often and in which boosting iteration(s) the base-learner was selected. In
the same manner we examine the accuracy of model choice. One needs to
mention that the pure fact of inclusion in the model or even the frequency of
the selection of the base-learner of interest in one boosting model are a relatively
crude measure. For simplicity, think of a linear base-learner that is repeatedly
selected but has a very little influence in terms of the estimated coefficients.
Thus, we see that one should also take the magnitude of the selected base-
learner into account. For linear base-learners (and standardized covariates) the
estimated slope seems to be a good measure of the variable importance. For
flexible functions (e.g., P-splines) we cannot use the slope to measure variable
importance as it does not exist here. One could think of the integral over the
standardized Ls-norm of the function

1 Tmax Mstop
/ £ (@) |, da (6.26)

Tmax — Tmin Jz 5,

with covariates & € [Tmin, Tmax) as @ measure for variable importance. Note that
x could also be the time ¢. The problem of this measure is that it highly de-
pends on the quality of the estimated function. Especially at the boundaries of
the support we often have only few observations with possibly very inaccurate
predictions (cf. Sec. . These few observations might then govern the whole
measure. Thus, the measure is not only dependent on the true variable impor-
tance but also on “boundary problems”. A possible solution could be to restrict
the integral to an interval Z C [Zmin, Zmax], Where Z represents a region where
we have got enough observations for stable function estimates. This could, for
example, be based on percentiles, i.e., Z = [x¢05, To.95], Where x, is the (a-100)%
percentile.

Simulation Scheme 1 As long as we have no robust measure for the variable
importance at hand we stick to the crude measure: The frequency of selected
base-learners as introduced above. Table shows the selection frequencies of
the base-learners. Only the variables x; to x¢ have an effect on the hazard rate
and thus, on the survival time. These effective covariates are presented in
the upper half of the table. We see that all effective base-learners have a selection
frequency close to one or exactly 1 except for the base-learner of xg. The low
selection frequency of bols (xg) has two reasons: First, the base-learner has only
2 degrees of freedom (one for the intercept and one for the slope) whereas the
P-spline base-learners have 4 degrees of freedom. Second and more important,
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the effect of x4 is very small. It is 20 times smaller than the effect of the other
categorical covariate x5 (see (6.22))). Hence, the low selection frequency seems
very plausible. With the lower number of df, compared to the P-spline base-
learners, it is more surprising that bols (x;) was selected in all 200 models (rel.
freq. = 100%).

Effective Covariates
rel. freq. of selection

bbs(z1) 0.92
bbs(zs) 0.98
bbs(x3) 0.94
bbs(z4) 1.00
bols(xs) 1.00
bols(xg) 0.15

rel. freq. of selection

bbs(z7) 0.35
bbs(zs) 0.36
bbs(z9) 0.34
bbS(ZL‘lo) 0.40
bbS(ZEH) 0.36
bbs(z12) 0.34
bols(z13) 0.08
bOlS($14) 0.07
bols(z15) 0.08

Table 6.4.: Variable Selection: Simulation Scheme 1 — Relative frequencies
of the selection of the base-learners (in 200 replicates). The upper
half shows the base-learners for covariates that have an influence on
the hazard rate, the lower half those without influence.

In the lower part of Table we expect the selection frequency to be close
to zero or at least substantially smaller than for the effective covariates. All
selection frequencies are around 30% for smooth base-learners (bbs () ) and close
to zero for linear base-learners (bols()). This is less than half the frequency of
effective covariates if one compares linear with linear base-learners and smooth
with smooth base-learners. The mean number of selected base-learners was
7.395. These included on average 4.995 effective base-learners with only very
little variance (where the most of it is accounted to models that chose all six
effective base-learners). Only 2.4 non-effective variables were selected on average
with a quite large variance. This shows, that (on average) we only use half the
variables with a very high fraction of effective variables. Altogether, this reveals
that we have a reasonable variable selection scheme which is clearly not an
“oracle” (i.e., far away from being perfect).
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Applying the model choice scheme in the same data situation yields very similar
results. In Table [6.5| we see very high frequencies of selection. The base-learner
bols(xy) with only 29% selections is an exception. If we look at the true
influence of x5 (see (6.22))) it shows that this is a good result, as we have a
quadratic influence of this covariate. For the other effects, we can see some linear
trend. The sine form of x5 has some trend when we realize that we have only very
few observations at the boundary (cf. Fig. and thus, the slope in the middle
of the variable’s span dominates estimation. Another positive result is that the
selection frequency of the linear effect for x4 is strongly increased. This can
be attributed to the decomposition of the base-learners with reduced degrees of
freedom for each single base-learner. For x4 (which has in reality a linear effect)
the algorithm selected in 23% of the replicates a flexible deviation from linearity.
Thus, in some models the (wrong) impression of an underlying non-linear effect
of x4 is given. However, compared to the selection frequencies of the other
effects, this is only of minor importance. In addition, in Section we will
see that the departures from linearity are only very small. When we look at the
non-effective covariates we see that again, the frequencies of selection are much
smaller than those of the effective covariates. Again, the categorical covariates
gained more importance (w.r.t. the variable selection scheme) but they are still
less frequently selected than the base-learners bols(x5) and bols(xg) of the
effective covariates.

Note that the number of base-learners is now not equal to the number of vari-
ables. A variable is selected if any of the base-learners of this variable is selected.
On average we selected 9.97 variables with 5.465 effective variables and 4.505
non-effective variables. Thus, we realize that in the model choice scheme we
tend to select more variables and to select more non-effective variables. Per-
haps, this is due to an increased number of possible base-learners. This argu-
ment is backed by the finding that we selected 13 out of 25 base-learners. This is
again roughly half the total number of base-learners as in the variable selection
scheme. However, we selected (on average) about 5.5 non-effective base-learners
which corresponded on average to 4.5 non-effective variables. Thus, almost ev-
ery non-effective base-learner is based on another variable. Thus, the variable
selection scheme tends to lead to sparser models.
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Effective Covariates

rel. freq. of selection
bols(z1) 0.80
bbs(z1) 0.97
bols(xs) 0.29
bbs(z2) 1.00
bols(x3) 0.88
bbs(z3) 0.90
bols(z4) 1.00
bbs(x4) 0.23
bols(xs) 1.00
bols(zg) 0.48

Non-Effective Covariates
rel. freq. of selection

bols(z7) 0.36
bols(zs) 0.36
bbs(zg) 0.46
bols(zy) 0.38
bbs(xzg) 0.50
bOlS(l‘lo) 0.34
bbS(l’lo) 0.28
bols(z11) 0.32
bbs(z11) 0.29
bols(z12) 0.37
bbS((L’lg) 0.24
bOlS(ZL‘lg) 0.41
bols(z14) 0.36
bols(z15) 0.32

Table 6.5.: Model Choice: Simulation Scheme 1 — Relative frequencies of
the selection of the base-learners (in 200 replicates). The upper half
shows the base-learners for covariates that have an influence on the
hazard rate, the lower half those without influence. Wrongly assigned
smooth effects are printed in bold face.
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Simulation Scheme 2 The results from the variable selection scheme (i.e.,
component-wise boosting) applied on the data sampled with the hazard rate
(6.23) are given in table . Compared to the first simulation scheme the
setting was only altered by adding a time-varying baseline hazard rate. The
selection frequencies are almost the same as in the first setting (see Tab. [6.4).
We have again very high selection frequencies for the effective covariates with
the exception of bols(zg), which we tried to explain above. Note that the
baseline hazard, i.e., bbsTime (¢) was chosen in every simulation replicate. The
results for the non-effective covariates are also the same: We have only half the
selection frequency than for effective covariates but on average still about 2.5
wrongly selected variables in the resulting models.

Effective Covariates
rel. freq. of selection

bbsTime(t) 1.00
bbs(z:) 0.82
bbs(z2) 0.96
bbs(xs) 0.92
bbs(z4) 1.00
bols(zs) 1.00
bols(zg) 0.16

Non-Effective Covariates
rel. freq. of selection

bbs(x7) 0.40
bbs(xs) 0.38
bbs(xg) 0.34
bbS(iUl()) 0.44
bbS(ZEH) 0.40
bbs 1‘12) 0.46
bols(z13) 0.12
bols(z14) 0.14
bols(x15) 0.08

Table 6.6.: Variable Selection: Simulation Scheme 2 — Relative frequencies
of the selection of the base-learners (in 50 replicates). The upper half
shows the base-learners for covariates that have an influence on the
hazard rate, the lower half those without influence.

Table shows the selection frequencies we got in the model choice scheme.
We see that all selection frequencies for time-varying terms are very high. Most
of them are much higher than the frequencies of non-effective covariates for
variable selection. Sometimes, we even have got selection frequencies close to
one. Here we see a strong bias in favor to time-varying effects. These effects
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are included in the models as time-varying effects deliver some of the flexibility
the model terms require. This problem is already discussed in Section [2.2.2]
However, in most cases the true effects are also selected to enter the model and
the selection frequency of the true effects is typically (slightly) higher than or
at least comparable to the selection frequency of the time-varying effects. The
flexible base-learner for time t is always chosen to enter the model.

Effective Covariates

rel. freq. of selection
bolsTime(t) 0.58
bbsTime(t) 1.00
bols(x1) 0.40
bbs(z1) 0.90
bolsTime(t, x;) 0.68
bbsTime(t, x;) 0.40
bols(z2) 0.06
bbs(zs) 0.98
bolsTime(t, x2) 0.50
bbsTime(t, x) 0.34
bols(z3) 0.52
bbs(xs) 0.76
bolsTime(t, x3) 0.70
bbsTime(t, x3) 0.30
bols(z4) 0.98
bbs(x4) 0.18
bolsTime(t, x4) 1.00
bbsTime(t, x4) 0.50
bols(xs) 1.00
bolsTime(t, x5) 0.84
bbsTime(t, xs) 0.56
bols(ze) 0.32
bolsTime(t, z¢) 0.34
bbsTime(t, x¢) 0.42

Table 6.7.: Model Choice: Simulation Scheme 2 — Relative frequencies of
the selection of the base-learners (in 50 replicates). Wrongly assigned
smooth or time-varying effects are printed in bold face.

Simulation Scheme 3 The third simulation with a time-dependent baseline
hazard rate and one time-varying effect shows the same problems regarding the
selection bias. The time-varying effect of x4 is always discovered and the (log)
baseline hazard is almost always selected. Although the time-varying effect of x¢
is in truth non-linear, only in roughly half of the models a flexible time-varying
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effect is chosen.

Another problem that arises in this context is that we hardly can interpret
the resulting effects as we almost always have a mixture of different modeling
alternatives for the covariates in the model: x;, for example, is selected as
smooth effect (linear and centered smooth effect) and as (flexible) time-varying
effect at the same time. Thus, the models are not really interpretable and only
useful in the context of pure prediction.

Effective Covariates

rel. freq. of selection
bolsTime(t) 0.52
bbsTime(t) 0.92
bols(x1) 0.38
bbs(z1) 1.00
bolsTime(t, x1) 0.80
bbsTime(t, x;) 0.40
bols(z3) 0.34
bbs(xz) 0.60
bolsTime(t, x5) 0.94
bbsTime(t, x2) 0.26
bols(z3) 0.32
bbs(xz3) 0.90
bolsTime(t, x3) 0.84
bbsTime(t, x3) 0.32
bols(z4) 0.98
bbs(z4) 0.24
bolsTime(t, x,4) 1.00
bbsTime(t, x4) 0.28
bols(xs) 1.00
bolsTime(t, xs) 0.80
bbsTime(t, x5) 0.66
bols(xg) 1.00
bolsTime(t, x¢) 1.00
bbsTime(t, z) 0.44

Table 6.8.: Model Choice: Simulation Scheme 3 — Relative frequencies of
the selection of the base-learners (in 50 replicates). Wrongly assigned
linear, smooth or time-varying effects are printed in bold face.
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6.1.5. Simulation Results 2: Estimated Effects

In the following section we only used the first 20 results of each simulation
scheme and each modeling approach (variable selection / model choice). The
reason for this is that the we need to store the complete list of results returned
by cfboost () to plot the estimated fits that we will show below. These lists are
really large. Storing one such list takes in our case up to 80 MB. For 20 results
that makes already about 1.5 GB of disk space.

Simulation Scheme 1 This time we start with the model choice scheme. In
Figure [6.2] we see the estimated effects for the six effective covariates. Note that
all function estimates and all true effects are centered such that their mean is
equal to zero. This is required, as the “level” of the estimates can be altered:
In every base-learner we have parameters for the intercept to allow the overall
estimate to reach the right level. Hence, the intercept estimate of a base-learner
is not connected with the effect of the corresponding covariate and thus the
“level” of a base-learner is generally arbitrary. Actually we only want to compare
the form of the estimated effects. For z3 and x4 we did not use the mean of the
function on the complete support but only calculated the mean function on the
interval [—1,1]. This leads to a better comparable plot of the estimates. The
reasons for this will be given in the following paragraph.

Figure [6.2] shows that the effects of x1, x3, x4 and x5 are estimated reasonable
well. The estimated effects of x4 seem to have a large bias but if we take the
scale into account we see that there is no big deviation. The sine form of 3 is
estimated quite sensible in the middle part. Almost all estimations detect the
slope from —1 to 1 about right. The boundaries instead, are estimated poorly.
This is not due to a problem of boosting or Coxge,Boost in particular but caused
by the sparse data at the boundaries as depicted in Figure [6.1] Estimation of
the function is only based on a dozen observations at the boundaries. When
we look at the simulation scheme we spot that z3 is standard normally
distributed and thus, we have light tails. This problem could be circumvented in
the simulation study by choosing, for example, x3 to be uniformly distributed on
[—3, 3]. However, as normally distributed data or data with similar distributions
is very common in reality we stick to this simulation scheme. For linear effects,
the sparse tails do not pose such a big problem as we see from z4. Only in some
cases (23%, see Tab. we have deviations from linearity. The estimation
in the center region is hardly effected and only slight deviations in the areas
with less observations can be identified. Hence, linear effects seem to be hardly
effected by sparse tails.

The plots of the estimated effects for the non-effective covariates x7 to x5 can
be found in Figure (see App. [C). Altogether, the effects are more or less
oscillating around zero (if present). Again the normally distributed variables
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Figure 6.1.: Model Choice: Simulation Scheme 1 — Estimation of the effect
of x3 for one model (gray line) and real effect (dashed line) together
with rugs for the observed data. Effect estimates and the real effect
are centered.

show a higher variation at the boundaries. Categorical variables, which are
seldom selected (see Tab. [6.5)), show the smallest deviations from the horizontal
line (which corresponds to “no effect”).

The figures for the variable selection scheme (see Fig. show almost the same
results as those of the model selection approach but generally tend to be more
instable. For example, we have an almost straight line for the quadratic effect
of 5. Such deviations did not occur in the model choice setting. The deviations
from a linear fit for z, are also larger than above. Note that the ideal linear fits
of x5 and x4 are due to our model. Both variables are categorical. Thus, we
included them only with a linear base-learner. The plots for the non-effective

covariates are presented in Figure (see App. [C).
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Figure 6.2.: Model Choice:

Simulation Scheme 1 — Estimation of covariate
effects from 20 models (gray lines) and real effects (dashed lines).
Effect estimates and real effects are centered. For x5 and z4 center-
ing is only based on the “stable” areas € [—1, 1].
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Figure 6.3.: Variable Selection: Simulation Scheme 1 — Estimation of co-
variate effects from 20 models (gray lines) and real effects (dashed
lines). Effect estimates and real effects are centered. For x3 and x4
centering is only based on the “stable” areas € [—1, 1].
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Simulation Scheme 2 In the second simulation scheme, a time-dependent
baseline hazard is added. In the following section we concentrate on the model
choice scheme. In the left panel of Figure the estimated effects for time
are depicted for 20 models. Until time ¢ &~ 6 the curvature of the true effect is
fairly well estimated. Thereafter, the quality of the estimation rapidly decreases.
This is again due to the sparseness of the data as discussed above for normally
distributed data. As it can be seen from the right graphic in Figure the
survival time has a sparse right tail which leads to instable estimations as already
pointed out by Gray (1992). One has to mention that the “wrong offset” of the
estimated functions is not caused by a bad prediction for early times (as the
graph might suggest) but it is caused by the abrupt decrease of the function
estimates for later points in time. The underestimation of the function causes
a smaller overall mean. Standardizing the estimate with this decreased mean,
the level of the true effect in the graphic cannot be reached.

log(hazard rate)
2
|
log(hazard rate)
-2
|

0 2 4 6 8 10 0 2 4 6 8 10

time time

Figure 6.4.: Model Choice: Simulation Scheme 2 — Left: Estimation of the
baseline hazard from 20 models (gray lines) and real effect (dashed
line). Right: Estimation of the baseline hazard for one model (gray
line) and real effect (dashed line) together with rugs for the observed
data. Effect estimates and real effects are centered.

From Figure [6.5 one can see that the estimations are overall fairly good. Again,
we see problems for z3 and x4, which are due to sparse tails. In comparison, the
effect of x¢ is so small that the errors are negligible. Note that we did not use
non-effective covariates in the model choice scheme of the second simulation.
Estimated effects from the variable selection scheme are given in Appendix [C.1]
The same consideration as in the model choice setting apply but the results are
generally more instable as we have already seen in the first simulation scheme.
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Simulation Scheme 3 Simulation scheme three has only effective covariates
in the model formula. The focus is on the goodness of the estimation of time-
varying effects and on the performance of the simultaneous model choice al-
gorithm. In Section we showed that Coxge,Boost has real problems to
perform model choice. Note that for the plots in Figure [6.7] we did not take
into account that the boosting procedure also selected time-varying effects for
many covariates. Only the time-fixed effects are depicted except for the baseline
hazard (see Fig. and the time-varying effect of xg.
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Figure 6.6.: Model Choice: Simulation Scheme 3 — Left: Estimation of the
baseline hazard from 20 models (gray lines) and real effect (dashed
line). Right: Estimation of the baseline hazard for one model (gray
line) and real effect (dashed line) together with rugs for the observed
data. Effect estimates and real effects are centered.

Figure shows the same lack of stability in the right tail as the estimated
smooth effects of time did before. Here, the effect is even stronger since the
distribution of the survival times is heavily right-skewed. The high amount of
(early) censoring further increases the skewness.

The estimated effects from Figure are in some cases almost as good as in
the other simulations but they all tend to be a bit more instable. Especially
the estimated effects of the second covariate (z5) show big deviations from the
true, linear function. The time-varying effect of x4 (here depicted for xg = 1)
suffers from the same problem as the baseline hazard, which is equal to the
time-dependent effect if x4 = 0.
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Figure 6.7.: Model Choice: Simulation Scheme 3 — Estimation of covariate
effects from 20 models (gray lines) and real effects (dashed lines).
Effect estimates and real effects are centered. For x5 and x4 center-
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6.1.6. Simulation Results 3: Degrees of Freedom

Initial Degrees of Freedom First, we want to have a look on the initial degrees
of freedom dfg-o} for all flexible base-learners j € {1,..., J}. Later, we investigate
the changes of the degrees of freedom for each base-learner. Figure|6.8shows the
estimated degrees of freedom of the variable selection scheme in simulation 1.
The initial degrees of freedom df ; used to specify the smoothing parameters \;
with are all equal to four. The depicted degrees of freedom are computed
after estimation of the corresponding base-learner using Formula (5.19). All
initially estimated degrees of freedom dfgo] are smaller than four (dashed line).
Furthermore, all base-learners have some variability in the initially estimated
degrees of freedom. However, we see a substantially smaller variation for xq,
ro and x7 to xg. These are the variables which are sampled according to a
uniform distribution in contrast to the remaining variables which are standard
normally distributed. As the latter have a much larger variation is seems that the
variability of the (estimated) degrees of freedom dfg.o] depend on the variability
of the covariate of the corresponding base-learner.
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Figure 6.8.: Variable Selection: Simulation Scheme 1 — Estimated degrees
of freedom in the first boosting iteration (in 200 replicates) for
all flexible base-learners and initially specified degrees of freedom
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Figure [6.9) which depicts the initial degrees of freedom in the model choice
scheme, shows that this effect is drastically reduced here. All base-learners show
the same variability. The absolute amount of variation is reduced compared to
the base-learners from variable selection. However, one needs to be aware of
the reduced degrees of freedom that were initially specified to compute the
smoothing parameters \. In the model choice setting we only use one degree of
freedom for the flexible part. Thus, the relative variation is much larger than
in the variable selection scheme. The decomposition and the reduced degrees of
freedom in the model choice approach may also be a reason why the variability
of the covariates no longer influences the variance of the degrees of freedom.
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Figure 6.9.: Model Choice: Simulation Scheme 1 — Estimated degrees of
freedom in the first boosting iteration (in 200 replicates) for all flex-
ible base-learners and initially specified degrees of freedom (dashed
line).

In the upper part of Figure we see the degrees of freedom in the variable
selection scheme of simulation 2. The same base-learners as in simulation 1
have a higher variability with respect to their degrees of freedom. The base-
learner for time has also highly variable degrees of freedom. This is consistent
with the current results as time has again a higher variance than the uniformly
distributed covariates.
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boosting iteration for variable selection (top) and model choice
(bottom) (in 50 replicates) for all flexible base-learners together
with initially specified degrees of freedom (dashed line).
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The lower part of Figure [6.10| shows the initial degrees of freedom resulting from
the model choice strategy in the second simulation. Here for all base-learners
we have a relatively low variability. The flexible base-learners for x; to x4 have
a decreased median compared to simulation 1. This must be caused by the
addition of a time-varying baseline effect to the simulated data. We see that all
time-varying base-learners tend to have higher degrees of freedom. The same
effect can be seen in Figure Again, this seems to be induced by the higher
variability of time. Perhaps this tendency of base-learners that depend on time
led to the strong selection bias that we observed in Section A possible
solution would be to also standardize time (as covariate). In this case, one has to
make sure that the integral is calculated over the right span, i.e. one has to use
the real time as upper integral limit and not the standardized time. Moreover,
the problem of higher degrees of freedom for time could possibly be fixed by
refining the initial degrees of freedom as proposed in Section [5.3.2]

e
-
o ]
o
—_
—_ |
| |
1 1
—_ - \ |
—_ | : °
© ! ! | -
IS | ! ' |
| ! \ |
1 ! T 1
—_ - ! 1
—_ ! ! T ! !
| ; - 1 ! 1 !
| L \ |
] ! ! I ] —_
1 | I |
1 ! ! 1
~ \ ] 1 |_,_| ! )
- 1
S \ —_ | \ |
) \ [ —_
—t ] ) | ]
! ! - —_ | 1
° —_ —_ e |
° I
—_
o
T T T T T T T T T T T
— —~ —~ —~ —~ - — — — — —_
o) > > R B > > 3 3 > 3
£ o ol = ol o ol = ol ol ol
S 7] < @ < 7] ) @ o o [
g 8 £ 8 £ 8 E 8 £ £ E
3 = = = = = =
%) [7] %) [7] [%] %)
Qo Q Q Q Q Q
Qo Qo Qo Qo Qo Qo

Figure 6.11.: Model Choice: Simulation Scheme 3 — Estimated degrees of
freedom in the first boosting iteration (in 50 replicates) for all flex-
ible base-learners and initially specified degrees of freedom (dashed

line).

Changes of Degrees of Freedom Next, we want to examine the dependency
of the degrees of freedom on the boosting iteration. Therefore, we only chose
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a small selection of graphs to illustrate the important findings. Most of the
plots can be found in Appendix [C.2] From Figure [6.12] we see again that the
variability of the degrees of freedom increases with the variance of the covariates
of the corresponding base-learners. In the upper plot the degrees of freedom for
200 replicates of the uniformly distributed variable x; are given. The normally
distributed variable x3 (with higher variance) is depicted in the lower graph.
Furthermore, it can be noted that the degrees of freedom change only slightly
with increasing iterations. The different lengths of the lines representing the de-
grees of freedom are due to different stopping iterations. Thus we see that there
was one very long boosting run with about 700 iterations until the algorithm

stopped and lots of shorter runs with about 200 iterations.

df(m)

df(m)

Figure 6.12.: Variable Selection: Simulation Scheme 1 - Estimated degrees
of freedom traced over the boosting steps for the flexible base-
learners of x; and z3 (in 200 replicates) with initially specified
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If we look at the same plots for the corresponding variable selection scheme (see
Fig. |6.13) the assumed correlation of the variability with the variance of the
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covariates vanishes. The boosting procedure now requires more iterations until
convergence. This is due to the decomposition of the effects which leads to an
increased number of base-learners that are needed to represent one flexible term.
Perhaps it is notable that here we have a decrease in the degrees of freedom in the
first few iterations and an increase afterwards. Over time this effect disappears.
Thus, like before we cannot see major deviations from the estimated initial
degree of freedom with respect to the whole boosting procedure.
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Figure 6.13.: Model Choice: Simulation Scheme 1 — Estimated degrees of
freedom traced over the boosting steps for the flexible base-learners
of x; and z3 (in 200 replicates) with initially specified degrees of
freedom (dashed line).
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6.2. Application: Prognostic Model for Surgical
Patients

In the following section, we show an application of the two-stage stepwise proce-
dure that we presented in Section [3.3] The aim was to build a prognostic model
for patients with severe sepsis. In the second part of this section, we will apply
the proposed CoxgexBoost algorithm to the data.

Our analysis used data from a local database, which was initiated in 1993 in the
Intensive Care Unit, Department of Surgery, Campus Groflhadern, LMU Mu-
nich, Germany, for local benchmarking and quality control. The documentation
period started on March 1st, 1993, and lasted until February 28th, 2005. We
obtained relevant covariates reflecting the state of the patient on admission day,
and the 90-day survival time for 462 patients with severe sepsis.

6.2.1. Application of Two-Stage Stepwise Procedure
Starting Model

Based on subject-matter knowledge, six of the covariates included in the original
choice set should definitely be included in the final model. We therefore adapted
the two-stage selection strategy from Section to account for this fact. In a
first step, we derived a starting model, where only the modeling possibility has
to be chosen for each of the fixed covariates. This is implemented by accepting
the best-fitting modeling alternative in step of the algorithm even if it does
not reduce the conditional AIC (AIC,) of the previous model. Application of the
modified procedure to our data led to a model containing the effects presented
in the upper part of Table (in the order of inclusion). As one can see in the
last two steps, we did not use a stopping criterion (e.g., increase of AIC,) for
the selection of the starting model. This is due to the fact that we just wanted
to perform model choice but not variable selection. We will provide further
discussion of the effects of variables in the starting model along the results of
the final model in the next section.

Prognostic Model

After deciding on the optimal starting model, we derived the final prognostic
model by applying the original two-stage procedure to the choice set of remaining
covariates. Note that the fixed covariates are of course not subject to deletion
in the backward deletion step .
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Table[6.9shows the full choice set, the model alternative selected in the stepwise
procedure, and the conditional AIC obtained in the corresponding inclusion step.
The covariate set mainly represents variables indicating renal, pulmonary and
cardio-circulatory function, and nature and severity of the underlying disease.
While most covariate labels are self-explanatory, some of them require supple-
mentary explanation: “Apache II score” is a measure for the severity of disease
determined within the first 24 hours of admission and the variable “Horowitz ra-
tio” (P,O2/F;04) describes the quality of lung function by referring the arterial
partial oxygen pressure to the corresponding inspiratory oxygen concentration.

The effects of the selected smooth terms are plotted in Figure and time-
varying terms are shown in Figure In the latter, one can clearly see the
differences in the shapes of the log-baseline hazard rate for the variable “fungal
infection” (present vs. absent). In particular, Figure also reveals the ability
of additive hazard regression models to address the problem of non-proportional
hazards.

Table [6.10] shows the linear effects of the variables included in the prognostic
model.
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Figure 6.14.: Two-Stage Stepwise Procedure: Smooth terms for “Apache 11
score” (pre-selected in the starting model), “Horowitz ratio”, and
“hemoglobin concentration” in the prognostic model; Dashed lines
are 80% and 95% point-wise confidence intervals.
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Figure 6.15.: Two-Stage Stepwise Procedure: log(baseline hazard rate) in
subgroups defined by “fungal infection” (present vs. absent) and
“peritonitis” (present vs. absent).

Relevant risk factors (p < 0.05) for a shorter survival time were palliative op-
eration for malignant disease, age, creatinine concentration at admission, year
of therapy and operation for thoracic diseases. According to 95% pointwise
confidence intervals of smooth and time-varying terms, also a high Apache II
score on admission day, and the nature and localization of the infection (fun-
gal infection, peritonitis) were associated with an increased mortality. Gender,
hemoglobin concentration, the need for renal replacement or catecholamine ther-
apy, the Horowitz ratio or the primary diagnosis of a malignant disease were not
associated with mortality.

Our results show that a clinically plausible prognostic model can be constructed
on the basis of the suggested algorithm. This model can help the physician
in charge to judge the true relevance of various clinical variables for patient
outcome, and to adjust his therapeutic concepts according to individual risk
profiles.
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Variable 6] Std. Dev. p-value | 95% conf. interval
const -6.361 0.5239 < 0.001 | -7.3882  -5.3342
palliative operation for malignant diseases | 0.684 0.2021 0.001 | 0.2874 1.0798
age (in years) 0.018 0.0051 < 0.001 | 0.0081 0.0282
treatment period (after 2002 = 1) -0.527 0.1465 < 0.001 | -0.8139  -0.2393
malignant primary disease -0.176 0.1478 0.233 | -0.4660 0.1133
sex (male = 1) -0.065 0.1370 0.636 | -0.3333 0.2038
creatinine concentration (in mg/dl) 0.116 0.0498 0.020 | 0.0186 0.2140
need for catecholamine therapy 0.349 0.3282 0.288 | -0.2947 0.9923
surgery for thoracic diseases 0.559 0.2086 0.008 | 0.1497 0.9677
need for renal replacement therapy -0.522 0.3534 0.140 | -1.2148 0.1708

Unless stated otherwise, categorical variables are dummy-coded with yes = 1.

Table 6.10.: Two-Stage Stepwise Procedure: Linear effects for prognostic model presented in the order of inclusion.
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6.2.2. Application of Coxg..Boost

To asses the stability of the variable selection and model choice process of
component-wise boosting, as implemented in Coxge,Boost, we used 5 ran-
dom subsamples each with 362 observations of the severe sepsis data from
GroBhadern. The remaining 100 observations from each subsample were used
to determine the stopping iteration.

Before entering the model, all continuous covariates except time were standard-
ized on intervals [—2min— ' Zmax | — [__Twin __Zmin 4 1] where x,;, and
Tmax ~ZLmin_~ Tmax ~Lmin Tmax ~Tmin ° Tmax ~Lmin

Tmax are the minimum and maximum of the respective covariate. This was done
by dividing by the range of the covariate:

~ ZT;

Lmax — Lmin

Categorical covariates are dummy coded. Time enters the model unstandard-
ized. Standardizing the covariates further by subtracting the minimum before
dividing by the range leads to models that are no longer interpretable. To illus-
trate this, let * = (r — Tmin)/(Tmax — Tmin) denote the standardized form of z
and ¢*(t) denotes the estimated, standardized time-varying effect:

* Ak L — Tmin 4 §*<t) Ak Lmin
gt = —gt) =20———"— - (t) ——— 6.28
g ( ) Tmax — xming ( ) Tmax — Lmin g ( )xmax — Tmin ( )
We see that the subtrahend in (6.28)) is a function that only depends on ¢ and not
on the actual value of x and thus alters the baseline hazard in an unpredictable
way.

As we already have realized in the simulation studies it seems that boosting
with model choice is very instable (w.r.t. the selected base-learners) and prefers
time-varying base-learners. Table shows the selection frequencies of the
base-learners.

In contrast to the two-stage stepwise procedure, CoxgexBoost is not able to
handle preset covariates. Such an approach could be included in the boosting
framework, for example, by updating a set of mandatory covariates in every
iteration (see e.g., Binder & Schumacher 2008). However, as this is not imple-
mented in CoxgeBoost so far, we did not use mandatory covariates but treated
all covariates equal in the model choice procedure. This potentially can affect
the inclusion of further covariates heavily. Furthermore, we did not use the
complete data set but just subsamples. This again may have an influence on
the selection and estimation of base-learners.

In the following paragraph, we compare the variables that were not added to
the model when applying the two-stage stepwise (TSS) model with those that
were not selected in the Coxge,Boost model. From Table we extracted the
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variables that were never or only very seldom selected in the latter approach.
Variables printed in bold were also not included in the T'SS model. Mandatory
covariates of the T'SS model, which perhaps would not have been added in the
TSS model if a stopping criterion would have been applied, are labeled in italic.

Covariates that were never selected by Coxge,Boost are
e “Horowitz ratio”,
e “systolic blood pressure”,
e “readmission”,
e “direct postoperative admission” and
e “pneumonia’.

Sparsely selected variables, i.e., covariates that were only selected once in 5
models, are

e “Malignant primary disease”,

e “hemoglobin concentration” and
e “renal replacement therapy”.

“Surgery for thoracic disease” was only infrequently added (i.e., in 2 out of 5
models). In the two-stage stepwise model “surgery for thoracic disease” and
“renal replacement therapy” were added as the last two variables. This could
indicate that the inclusion of these covariates is at least arguable.

“Horowitz ratio” and “hemoglobin concentration” were considered to be influ-
ential in the T'SS model based on the conditional AIC. However, if we look at
Figure we see that both effects only marginally depart from the zero-line,
which would indicate that there is no effect at all. “Need for artificial ventilation”
and “emergency admission” were not included in the TSS model. Coxge,Boost
instead selected these variables as time-varying effects. As both variables have
just a relatively small linear time-varying effect (see Fig. these effects could
be artifacts as well. Only 10 out of 20 covariates can be regarded as influential
covariates in the boosting model. The TSS procedure selected 14 covariates
but 6 of these covariates were mandatory covariates. Thus, a candidate model
without a set of compulsory covariates could lead to a sparser final model. We
can conclude that both the algorithms TSS and Coxge,Boost have a comparable
strength for variable selection.

base-learner rel. freq. of selection
bols(time) 0.60
bbs(time) 0.00
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bols(Apache IT score) 1.00
bbs(Apache II score) 0.00
bols(time, Apache II score) 1.00
bbs(time, Apache II score) 1.00
bols(palliative operation) 1.00
bols(time, palliative operation) 0.00
bbs(time, palliative operation) 0.20
bols(age) 1.00
bbs(age) 0.00
bols(time, age) 0.20
bbs(time, age) 0.60
bols(treatment period) 1.00
bols(time, treatment period) 0.20
bbs(time, treatment period) 0.00
bols(malignant primary disease) 0.00
bols(time, malignant primary disease) 0.20
bbs(time, malignant primary disease) 0.00
bols(sex) 0.00
bols(time, sex) 0.00
bbs(time, sex) 0.20
bols(Horowitz ratio) 0.00
bbs(Horowitz ratio) 0.00
bols(time, Horowitz ratio) 0.00
bbs(time, Horowitz ratio) 0.00
bols(hemoglobin concentration) 0.00
bbs(hemoglobin concentration) 0.00
bols(time, hemoglobin concentration) 0.00
bbs(time, hemoglobin concentration) 0.20
bols(systolic blood pressure) 0.00
bbs(systolic blood pressure) 0.00
bols(time, systolic blood pressure) 0.00
bbs(time, systolic blood pressure) 0.00
bols(creatinine concentration) 0.80
bbs(creatinine concentration) 0.00
bols(time, creatinine concentration) 0.80
bbs(time, creatinine concentration) 0.00
bols(fungal infection) 0.00
bols(time, fungal infection) 0.20
bbs(time, fungal infection) 1.00
bols(emergency admission) 0.20
bols(time, emergency admission) 0.80
bbs(time, emergency admission) 0.00
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bols(readmission) 0.00
bols(time, readmission) 0.00
bbs(time, readmission) 0.00
bols(direct postoperative admission) 0.00
bols(time, direct postoperative admission) 0.00
bbs(time, direct postoperative admission) 0.00
bols(pneumonia) 0.00
bols(time, pneumonia) 0.00
bbs(time, pneumonia) 0.00
bols(peritonitis) 0.80
bols(time, peritonitis) 0.00
bbs(time, peritonitis) 0.00
bols(catecholamine therapy) 0.40
bols(time, catecholamine therapy) 1.00
bbs(time, catecholamine therapy) 0.00
bols(artificial ventilation) 0.00
bols(time, artificial ventilation) 1.00
bbs(time, artificial ventilation) 0.00
bols(renal replacement therapy) 0.00
bols(time, renal replacement therapy) 0.20
bbs(time, renal replacement therapy) 0.00
bols(surgery thoracic disease) 0.40
bols(time, surgery thoracic disease) 0.00
bbs(time, surgery thoracic disease) 0.00

Table 6.11.: CoxgexBoost with model selection procedure for severe sepsis data
in 5 sub-samples: Relative frequency of boosting models that se-
lected the corresponding model term.

The degrees of freedom show the same properties as in the simulations. Fig-
ure @ shows the degrees of freedom traced over mg, boosting iterations.
Each plot represents one of the five subsamples and each line in the plot rep-
resents one base-learner. We see that the degrees of freedom split up into two
subgroups in advanced iterations. Base-learners that were selected at any time
in the boosting procedure are depicted in black, those which were not selected
are given in gray. We see that all selected base-learners are in the lower group. If
a covariate was chosen with any kind of base-learner all the degrees of freedom
of other base-learners of this covariate are also reduced. Thus, all the base-
learners corresponding to this covariate fall into the lower group. Base-learners
of covariates that were never selected seem to have higher degrees of freedom
and thus represent the upper group. Altogether the degrees of freedom are rela-
tively stable over the iterations and are located in the same interval as observed
in the simulations, i.e., roughly in [0.6,0.8].
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Figure 6.16.: Coxge,Boost: Degrees of freedom with model choice procedure
for surgical patients data in 5 sub-samples: Traces over mycyp, it-
erations are depicted for selected base-learners (black lines) and
non-selected base-learners (gray lines).

As already stated in the simulation study, the resulting effects are hardly inter-
pretable as many covariates are included with different modeling alternatives.
They are added as smooth effects as well as time-varying effects. In Figure[6.17
the time-varying effects of four categorical covariates are depicted. We only
chose those covariates that were selected in (almost) all of the five models. We
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see that the log-baseline hazard without any of the 4 subgroups is only selected
in 3 out of the 5 models. Furthermore, we see that all time-varying effects were
added as linear base-learners. Only observations in the subgroup with “fungal
infection” have a quadratic log-baseline hazard rate. This is consistent in all five
models.
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Figure 6.17.: CoxgexBoost with model choice procedure for surgical patients
data in 5 sub-samples: log(baseline hazard rate) in subgroups de-
fined by “fungal infection” (present vs. absent), “emergency ad-
mission”, “catecholamine therapy” and “artificial ventilation”. All
effects are centered.
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As stated earlier, continuous covariates entered the model standardized. For
some of the covariates, time-varying effects were also estimated. Hence, we
plotted the effects of the covariates for a given time ¢ = median(t;). Note that
this does not reflect the individual combination of time ¢ and the covariate that
was the basis of the estimation. Figure shows the (time-constant) effects of
6 covariates that were frequently added to the model. “Age”, “Apache II score”
and “creatinine concentration” are continuous covariates. All three have a very
high selection frequency for flexible time-varying effects. “Apache II score”,
for example, was added as a strong non-linear effect to the T'SS model, whereas
CoxgexBoost estimated only a linear effect but added an additional time-varying
effect. This increased flexibility (due to time-varying effects) cannot properly
be depicted. All covariates given in Figure have the same directions of the
effects: Effects that were estimated positive in the T'SS model are also estimated
positive in Coxge,Boost, negative effect estimates were again estimated negative.
However, all depicted effects are smaller in CoxgeBoost with respect to their
norm. Note that this might not hold globally as we have additional time-varying
effects that modify the given effects.
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Figure 6.18.: Coxge Boost: Centered effects for the 5 sub-samples for 6 covari-
ates that where considered to be influential by the model choice
procedure for surgical patients data. “Age”, “Apache II score” and
“creatinine concentration” are continuous covariates, “palliative op-
eration”, “peritonitis” (present vs. absent) and “treatment period”
(before vs. after 2002) are categorical covariates.
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6.2.3. Comparison of Model Selection Strategies

From the results of the application of the two-stage stepwise procedure and
CoxgexBoost to the GroBhadern data set of patients with severe sepsis we can
conclude that both approaches have advantages with regard to different aspects:

e The two-stage stepwise procedure includes only one modeling alternative
from a given set of different options, whereas CoxgexBoost includes classi-
cally a variety of different modeling alternatives for one covariate. Thus,
in the boosting context, the ability to interpret the model and the relia-
bility of the model choice procedure suffer. A more sensible model choice
scheme is needed in CoxgexBoost without the selection bias in favor of
time-varying effects.

e With respect to the variable selection procedure, we can conclude that
both approaches have similar outcomes. In our application Coxge,Boost
tended to a sparser solution but this could be due to the starting model
with mandatory covariates in the two-stage stepwise model.

e In settings with a large number of possible predictors, CoxgeBoost is
more convenient than the two-stage stepwise procedure as it runs fully
automatized. Moreover, CoxgeBoost is able to perform variable selection
and model choice in data sets with n < p and can even select more
covariates p than we have got observations n.

e At the moment CoxgeBoost cannot include mandatory covariates. How-
ever, such extensions could be integrated in the algorithm. The two-stage
stepwise procedure is easily extended in such a way as we showed in the
application.

Altogether, we see that none of the approaches is superior to the other. Deci-
sions have to be based on the qualities of the algorithms in the given situation.
Especially in high-dimensional settings with many possible predictors, boosting
with its robustness against overfitting and the built in regularization is clearly
the preferred method.
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7. Summary and Outlook

In this thesis, we derived boosting methods for survival models with time-varying
effects. For that purpose we used the full likelihood (and not the partial likeli-
hood) as basis. In a first attempt, we tried to derive an algorithm that is based
on the functional gradient descent approach as introduced by Friedman (2001)
(see Sec. [£.2.1)). In Section [5.2) we developed the algorithm and showed that the
resulting boosting approach, which utilizes the martingale residuals as negative
gradient, is not working. We also tried to gain understanding of the reasons for
this failure.

In a second try we implemented a likelihood-based boosting approach as pro-
posed in Tutz & Binder (2006). The resulting Coxge,Boost algorithm is pre-
sented in Section [5.3.1} Unfortunately, the likelihood-based approach, where
one tries to maximize the (penalized) log-likelihood of the model directly, has
some drawbacks with respect to the simplicity of further results: Functional
gradient descent boosting fits all types of base-learners with the (penalized)
least squares criterion. Hence, many results (e.g., the hat matrix and AIC) can
be derived for the whole framework. On the contrary, Coxge,Boost and other
likelihood-based approaches maximize the likelihood of single base-learners with
an offset consisting of the estimations of all previous iterations. Thus, for dif-
ferent likelihoods we need to derive many results anew, such as the hat matrix
of the whole boosting procedure.

From the results of the simulation study in Section one can see that
component-wise boosting is a good variable selection procedure. To incorpo-
rate a model choice procedure in component-wise boosting, we applied the ef-
fect decomposition or for smooth effects or for time-varying effects,
respectively. Furthermore, we assigned one degree of freedom to the resulting
centered flexible base-learners to make the modeling alternatives comparable
with respect to their flexibility (cf. Sec. [£.3.4). For the differentiation of linear
and smooth effects, this provides good results. However, if one tries to distin-
guish between linear, smooth and time-varying effects at the same time, the
procedure fails due to a selection bias in favor of time-varying base-learners. A
possible solution could be to standardize the observed survival time that enters
the model as predictor variable. This will be subject to future research.

Another approach to avoid the selection bias could try to make all base-learners
comparable with respect to their degrees of freedom. Hence, the increased de-
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grees of freedom that are assigned to base-learners of covariates with higher
variance, including time-varying effects, would vanish (see Sec. [6.1.6). An idea
to refine the initial degrees of freedom is presented in Section (o).

The fact that the degrees of freedom change in every boosting iteration seems
to be of minor importance because the changes are minimal and hence, they
tend to be quite stable (see Sec. . Thus, from the current point of view no
refinements are necessary here.

As discussed in Section [6.1.4] a suitable variable importance measure could be
another helpful tool to asses and back up variable selection and model choice.
Further research is needed here, as time-varying effects in particular tend to
be very instable in the sparse, right tail (cf. Sec. . Hence, an importance
measure cannot be based on the crude, estimated effects but must take the
variability and instability of the estimations into account.

Further simulation studies should use integrated prediction error estimates as
introduced in Section [6.1.2) to check the prediction performance of the proposed
algorithm and to compare these results to other approaches or to investigate the
effect of different estimation schemes. One possible alternative to the proposed
model choice scheme in CoxgexBoost could be to fit the model in a fashion like
that proposed in the MFPT approach by Sauerbrei et al. (2007). This means,
we fit a Cox-type model with time-constant but possibly smooth effects in a
component-wise boosting framework. To estimate the model one could make
use of CoxgexBoost or apply the mboost package with the CoxPH() family. In
a second step, one could try to add time-varying effects only for the subsample
of selected variables from above, where the derived model is used as starting
model (i.e., as offset). Thus, base-learners for time-varying effects, for example,
could be restricted to covariates without smooth effects leading to a model
that is better interpretable and perhaps overcomes the instability issues that we
discussed above. Including time-varying effects for smooth effects would result
in modeling an interaction of two functions: The function of the covariate and
the function of time. This can be hardly ever estimated as we typically do not
have enough data to fit the resulting interaction surface.

Another issue that arises frequently in medical applications is that some covari-
ates are of clinically high importance and thus, should be included in the model
by all means. These mandatory covariates can be incorporated in the boosting
framework in such a way that these variables are updated in every boosting
iteration (Binder & Schumacher 2008). This approach could also be included in
CoxgexBoost in future work.

However, a more urgent extension for Coxge,Boost is to derive an appropriate
information criterion such as the AIC (see Sec. (d)). This would be very
useful to asses the model and determine an appropriate stopping iteration in
real data situations with only few observations. In this scenario, one does not
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want to spend data for an independent validation sample that could be used
to compute the empirical risk. To diminish the problem of data loss and still
to be able to assess the model, bootstrap methods or cross-validation could be
used. If we want to perform model choice when many possible predictors are
present, we need numerous base-learners — a lot of them for time-varying effects.
This drastically decelerates the estimation procedure and makes cross-validation
or bootstrap practically infeasible. A suitable approximation of the AIC could
solve this problem and allows to determine an appropriate stopping iteration,
which is needed for variable selection and model choice.
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A. Derivation of Functional
Derivative

In Section [5.2] a functional derivative of the loss function is needed for the func-
tional gradient descent boosting approach for survival data with time-varying
effects. With the loss function p(y, f) = = f(t, x) +f0t exp(f(u,x))du the
Hadamard derivative p;(h) can be derived as follows:

p(y, f + shs) — p(y, f)

= =l + a0+ [ e lf(w.) + e
+5f(t,a3)—/0texp du}
= g{ o [f(t,x) + sh(zx,t) }
+é{/0t<3xp[f( ) + sh(w,u) /Oexp du}
e

For s N\, 0 we get

oy, f+ shy) — ply, f)

S

s\,0 0 ¢
5h(:l:,t)—|—88/0 G (8, u)du

s=0

e

Lo
_6h(m,t)+/0 &gm(s,u)

— 6h(x,t) +/O h(zx,u)exp [f(u,x)] du

s=0

s

where

a) holds under regularity conditions
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b) holds, as g« (s,u) is of the form exp(a + s - b) and thus it follows:

Dgats.)|  =b-explats-b)| = b-expla)

s=0 s=0

with a = f(u,x) and b = h(x,u).



B. Software

In the following, we describe important parts of the program and give a short
introduction on how to use the software.

B.1. Computational Considerations

CoxgexBoost is implemented in the statistical software package R (R Develop-
ment Core Team 2007). Some of our functions are based on functions from
mboost (Hothorn et al. 2007). The algorithm and basic ideas were already
discussed in Section [5.3]

Estimation

We already gave a short introduction on the Fisher scoring algorithm, which
is the classical algorithm to solve maximum likelihood problems as introduced
earlier. Another optimization algorithm is the BFGS method, named after Broy-
den, Fletcher, Goldfarb and Shanno, who independently introduced this proce-
dure in 1970. It is an important member of the Quasi-Newton methods. The
Hessian is updated in a clever way instead of being computed in each iteration.
More details on the BFGS method can be found, for instance, in Press et al.
(1992).

We use the BFGS method, which is relatively fast and still accurate, to max-
imize the log-likelihood for each base-learner in each boosting iteration.
Optimizing a function with numerical methods always involves the repeated
evaluation of the functions for different arguments (here for different coefficients
B). In each evaluation of we have different values for 3 and thus, the
integral in the log-likelihood needs to be computed anew. This shows that we
need to integrate very often. Hence, a fast integration method can dramatically
speed up the algorithm.
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B.1.1. Storage and Speed

Before we maximize the log-likelihood we compute the predictions of all base-
learners that have been added until the current iteration of the boosting pro-
cedure and store the results. This prevents the maximization algorithm from
computing these results anew in every iteration.

Let m denote the current boosting iteration and J is the number of base-learners.
The subset IC C {1,...,J} represents the time-constant base-learners, whereas
L c{1,...,J} denotes the time-varying base-learners. It holds that XN L = ()
and KUL = {1,...,J}. The covariate that corresponds to the j-th base-learner
is denoted by x; = (z1;,...,%,;) for time-constant base-learners. Time-
varying base-learners depend on the covariate x;(t) = (z1,(t), ..., 2, ;(t)). The
base-leaner that is estimated in the current estimation step of the boosting it-
eration is denoted by & € {1,...,J}.

The integral for the i-th observation from Equation (5.14])) can be decomposed
in the following way, where g¢(x;(t); B) is the current base-learner, i.e., the base-

learner that is estimated in the current loop, and f][-m_l}(-), je{l,...,J}is
the function estimate for the j-th base-learner from the previous iteration.

/Oti exp{ﬁz{m_ N@()) + g (@ (0); ﬂ)}dt

ti
:/ exp{ o 4 Z fim= 1] (Ti) (B.1a)
0

keX\&
+ 3 A (D) (B.1b)
leL\¢
4 F 0 w6 (0) + geig(B); ﬂ)}df (B.1c)
- exp{ﬁm + ) f,Lm‘%z—,k)}- (B.1d)
R keK\& B
TC
/0 Z exp{ A @a@®) + £ i) + gewie (@) B)}dt (B.le)
leL\¢
h T\{/ s cu;l;nt g

The row-vector Z;(f) depicts all possible variables for the i-th observations.
Note that in the integral we only have one single observation i. To speed up
computations we compute all integration results vectorized for all observations
at the same time. As the integrate() function in R is not able to integrate
a vector of functions over a vector of different integration limits (lower limit
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always zero but upper limit ¢; dependent on observation) at the same time we
created an integration function based on the trapezoidal rule. For time-constant
base-learners with the corresponding function estimates fi[m_”(-),i €K\ we

get from (B.1d) the additive predictor (vector)

fire = exp{ > " @)} - exp{n”}. (B.2)

keK\E

Time-varying base-learners are computed on equidistant time grids

t,
G: : th i — 0,—Z,...,
' . with gi = sd sd

9n

), i=1,....,n, (B.3)

where sd + 1 = 101 subdivisions of [0, ;] are used per default. This enables us
to use the time-dependent prediction matrix

(Y N ag0) - Y A N @lgiea) )
leL\¢ leL\¢
Arv(G) = exp : : (B.4)
S A N wi(g0) o X KT @ni(gnsa))
\ lEL\E leL\¢ Y,

for integration with the trapezoidal rule. Note that (B.4) is a matrix. Both,
(B.2) and (B.4) do not depend on 3 and thus, can be used for all steps in the

maximization routine.

The current base-learner g¢(-;3) and the corresponding function estimate

fg[m_l}(-) cannot be directly added to the vector of time-constant base-
learner predictions or the matrix (B.4]) of time-varying base-learner predictions
on a grid, as the parameter 3 changes in each iteration of the maximization
procedure. However, for fixed values of 3 we can compute the integral from
Equation (5.14]): First, we predict the “current” part from Equation E. If
the current base-learner is time-varying, we use the same grids G @ for pre-
diction. Then we add the predictions either to fr¢ or 71y (G) for a time-constant
or time-varying current base-learner, respectively. Now we can apply the trape-
zoidal rule on the resulting matrix of predictions for time-varying base-learners.
This leads to a vector of estimated integrals for the time-varying base-learners
for all observations. This vector now can be multiplied with the vector ¢ of
time-constant predictions which leads to the integral we wanted to obtain.

We could show in test runs that the storage of pre-computed predictions (where
it is possible) and the usage of an integration method that is vectorized in
the observations and in the integration variable (here: time t) is about 150
times quicker than the simple usage of integrate(), where the predictions are
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evaluated in every integration anew. This is especially important as we have to
integrate very frequently as this is needed to determine the parameter estimates
for each base-learner in each boosting iteration with a numerical maximization
method (see Sec. [B.I). Note that the increased speed comes with an increased
demand of memory.

B.1.2. Checking Simulation of Survival Times

In Section we introduced a simulation scheme for survival data. We imple-
mented the method in R in the function rSurvTime (). To check the implemen-
tation, we simulated 1000 survival times given one covariate @ = (x1, ..., Z1000),

with z; & U[—1,1] using rSurvTime () with

Ai = A(t,x;) = exp(0.01 — 10z;), ¢ = 1,..., 1000, (B.5)

i.e., with a time-constant hazard rate. This corresponds to survival times simu-
lated according to a Cox-exponential model. Thus, we drew 1000 samples from
a (conditional) exponential distribution with rates \;. Plotting density estima-
tions of the 1000 replicates drawn from the conditional exponential distribution
together with the sample from rSurvTime() shows that there seems to be no

difference (Fig. [B.1]).

The same idea can be used to compare samples from rSurvTime () with a (spe-
cial) hazard rate to samples from the theoretically equivalent Cox-Weibull model
(see Bender et al. (2005) for details). Again, we plotted the density estimation
of the 1000 replicates from the Weibull distributed survival times together with
the the sample from rSurvTime (). Figure shows that there is no difference
and thus, the two sample methods can be regarded equal.

B.2. Using the Software

To show some features of the implementation of Coxge,Boost we present a toy
example in the following section. We presume that the necessary source files for
CoxgexBoost as supplemented on the attached CD are properly loaded before
the source code of the example is used. Loading all required packages and the
source files can be done by using the file “0O0_initialization.r” in the folder “R”.

B.2.1. Simulating Survival Times

Before we start explaining the functions that are used to estimate Coxge,Boost
models we explain how to sample data using the attached function rSurvTime ().
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Figure B.1.: Checking simulation algorithm: Density estimation of 1000
simulated survival times using rSurvTime () (black line) and 1000
replicates of 1000 survival times simulated according to a Cox-
exponential model (gray lines).

To make these results reproducible we start the analysis by setting a random
but known seed:

R> seed <- sample(1:10000, size = 1)
R> seed

[1] 6102
R> set.seed(seed)

Now, we sample three independent covariates according to a uniform distribution
on the interval [—1, 1]:

R> X <- matrix(NA, nrow = 400, ncol = 3)
R> X[, 1] <- runif (400, -1, 1)
R> X[, 2] <- runif (400, -1, 1)
R> X[, 3] <- runif (400, -1, 1)

The next step is to specify an R-function for the hazard rate \:

R> lambda <- function(time, x) {
exp(log(time) + 0.7 * x[1] + x[2]"2 + 0 * x[3])
}
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Figure B.2.: Checking simulation algorithm: Density estimation of 1000
simulated survival times using rSurvTime () (black line) and 1000
replicates of 1000 survival times simulated according to a Cox-
weibull model (gray lines).

Note that the function argument x expects a vector that contains only one row
of the design matrix X, i.e., x = X[i,] for changing i. Obviously, the term 0
* x[3] is not needed and is just specified here to stress that this covariate has
no effect. As we integrate the function lambda over time the function must be
vectorized in time. Thus, if we have time-constant hazard rates a nice trick to
achieve vectorization is to specify 0 * time explicitly. As expected, this results
in a vector with the length of the input vector time to be returned.

To sample censored survival data we need an additional function for the censor-

ing mechanism. In this toy example we use C' "< Expo(1 /1), where p = E(C)
can be chosen in such a way that we get the intended amount of censoring:

R> cens_fct <- function(time, mean_cens) {
censor_time <- rexp(n = length(time), rate = 1/mean_cens)
event <- (time <= censor_time)
t_obs <- apply(cbind(time, censor_time), 1, min)
return(cbind (t_obs, event))

}

As one can see, the function expects the vector of sampled, uncensored times
time and returns the observed times and the non-censoring indicator.
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Now, we can make a call to the function rSurvTime () to sample random survival
times:

R> data <- rSurvTime(lambda, X, cens_fct, mean_cens = 5)

rSurvTime () requires the functions lambda() and cens_fct() as specified
above. In addition we need to pass the covariates X to the sample function. If
the censoring function requires further arguments we can specify them as further
named arguments: Here we specified mean_cens = 5 as additional argument.

In our setting we get 80 % non-censored observations. Figure depicts the
sampled data.

Figure B.3.: Toy Example: Kaplan-Meier curve for the sampled data

B.2.2. Estimating the models

To estimate the model using cfboost () we have to specify the controls for the
boosting algorithm

R> ctrl <- boost_control(mstop = 100, nu = 0.1, risk = "oobag",
trace = FALSE, hardStop = TRUE)

The following options are some of the most important ones:
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e mstop specifies the initial number of boosting iterations,
e nu defines the step-size and

e risk determines how the empirical risk should be computed. It can take
the values "inbag", i.e., the risk is computed for the learning sample,
"oobag", i.e., the risk is computed on the out-of-bag sample and "none".
At the moment it is only reasonable to use the option "oobag" as no other
means of determining msp is implemented so far.

e trace indicates if status information should be printed in the boosting
procedure and

e hardStop indicates if the initial value of mstop is the maximal number of
iterations (hardStop = TRUE) or if it should be increased if the algorithm
did not convergence until mstop (only possible with risk = "oobag").

For an explanation of the option hardStop see also Section [6.1.3] Note that it
is generally very useful to use trace = TRUE to see the progress of the boosting
procedure and to see that R is working as the algorithm can be quite time-
demanding.

Furthermore, weights can be used to specify the learning sample (weights ==
1) and the out-of-bag sample (weights == 0), which serves as the validation
sample and is used to determine the stopping iteration mg.,. We choose the
weights such that the first 300 observations are used as learning sample and
further 100 observations serve as validation sample:

R> weights <- c(rep(1, 300), rep(0, 100))

Note that at the moment no weights other than zero or one are allowed in
cfboost ().

Now we can estimate the model with flexible base-learners as in the variable
selection scheme:

R> var_sel <- cfboost(Surv(time, event) ~ bbsTime(time) +
bbs(x.1) + bbs(x.2) + bbs(x.3), data = data,
control = ctrl, weights = weights)

Per default flexible P-spline base-learners bbs () consist of B-splines of degree
three (degree = 3) with a difference penalty of order two (differences = 2).
They have four degrees of freedom (df = 4) and 20 inner knots (knots = 20).
The base-learner bbsTime () is just a wrapper to the P-spline base-learner bbs ()
with the option timedep = TRUE.

In the same manner as in the variable selection scheme we could use cfboost ()
for model choice:
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R> mod_choice <- cfboost(Surv(time, event) ~ bolsTime (time)
+ bbsTime(time, df = 1, center = TRUE)

bols(x.1) + bbs(x.1, df = 1, center = TRUE)

bolsTime(time, z = x.1)

bbsTime(time, z = x.1, df = 1, center = TRUE)

bols(x.2) + bbs(x.2, df = 1, center = TRUE)

bolsTime(time, z = x.2)

bbsTime(time, z = x.2, df = 1, center = TRUE)

bols(x.3) + bbs(x.3, df = 1, center = TRUE)

bolsTime(time, z = x.3)

bbsTime(time, z = x.3, df = 1, center = TRUE),

data = data, control = ctrl, weights = weights)

+ + + + + + + + +

Here we use the option center = TRUE to apply the decomposition of the flexible
effects (cf. Sec. and define the centered effects with one degree of freedom.
As stated in Section [4.3.4] for the parametric part separate linear base-learners
are added with bols(). Here, the model choice scheme is not only applied to
smooth covariate effects but it is also used to add (decomposed) time-varying
effects for each covariate. For x.1 we add for example: bolsTime(time, z =
x.1) + bbsTime(time, z = x.1, df = 1, center = TRUE). Here, the effect
modifier time is specified as linear (bolsTime()) or flexible effect (bbsTime())
and x.1 is specified as covariate z, which is modeled as interaction: g() - z (see

Sec. £32).

B.2.3. Processing the Output

After the model is fitted it is essential to determine the appropriate stopping

iteration msgop. This can be done with a call to

R> mstop(var_sel)

[1] 59

Another way to get information on the fitted model together with mg;p, is:

R> summary(var_sel)
'summary.cfboost' is a.t.m. a wrapper to 'print.cfboost'
CoxFlexBoost:

Additive Survival Models with Time-Varying Effects
Fitted via Likelihood-Based Boosting

Call:
cfboost.formula(formula = Surv(time, event) ~ bbsTime(time) +
bbs(x.1) + bbs(x.2) + bbs(x.3), data = data, weights = weights,
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control = ctrl)
Number of boosting iterations: mstop = 100
Step size: 0.1
Offset: -0.1840850

Size of learning sample: 300
of test sample: 100

minimum risk: 83.08577
in iteration 59

Number of selections in 100 iterations:

bbs(time) : 45
bbs(x.1): 27
bbs(x.2): 22
bbs(x.3): 6

The call to summary () returns almost the same results as print (). The former
only returns the additional information of the number of selections for each
base-learner. It is planned to include more information in the summary() of a
cfboost model in near future.

(Classically, the function mstop() determines the optimal stopping iteration
based on the empirical risk in the validation sample. To plot the empirical
risk one can use

R> plot(risk(var_sel))

which produces Figure [B.4 This function is also available if no out-of-bag
sample is specified.

To proceed with the examination of the model a subset method is required:
R> var_sel_ms <- var_sel[mstop(var_sel)]

var_sel_ms now can be used for further analyses. Classical methods for models
are available, such as

R> coef (var_sel_ms)

which extracts the coefficients. As we used P-spline base-learners, we do not
show the results of the call to coef () as these are not very explanatory. However,
this function can be used to extract the estimated coefficients. Further, methods
to extract the fitted hazard rate (type = "hazard" (default)) or the fitted log-
hazard rate (type = "log-hazard") exist:

R> fitted(var_sel_ms)[1:10]
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Figure B.4.: Toy Example: Empirical risk in validation sample with stopping
iteration

[1] 0.7282824 2.4524128 0.6268950 0.9164832 1.8997813 0.6338802
[7] 1.1582462 1.4565169 1.3109424 1.6623828

In our case, the fitted hazard rate for the 300 in-bag samples is returned. For
simplicity we only print the first 10 fitted values. The predict () function has
the same options as fitted (). The call returns predictions for new observations,
here for the first out-of-bag observation:

R> predict(var_sel_ms, newdata = data[301, ])
[1] 0.5685829

Using predict(...,type = "log-hazard") we created, for example, Fig-
ure[C.1] A simple out-of-the-box plotting method for the results is also supplied:

R> plot(var_sel_ms)

In the variable selection scheme this leads to nice, interpretable plots as depicted
in Figure [B.5] For the model choice setting, better plots can be created using
the predict () function as mentioned above. Supplying nice standard plots in
this situation is going to be implemented in future versions of the the plot ()
function. The Figure shows quite good estimation results (which is not too
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surprising in this simple setting). Looking at the frequency of the base-learner
selection until Mg, = 59, e.g., by using summary (var_sel_ms) or

R> freq.sel(var_sel_ms)

Number of selections in 59 iterations:

bbs(time) : 28
bbs(x.1): 18
bbs(x.2): 13
bbs(x.3): 0

we see that x.3 was never selected.
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Figure B.5.: Toy Example: Estimated effects



C. Figures

This chapter contains additional graphics of the simulations of Chapter [6] For
a detailed explanation and interpretation see Sections [6.1.5 and [6.1.6]

C.1. Simulation Results 2: Estimated Effects
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Figure C.1.: Model Choice: Simulation Scheme 1 - Estimation of effects
for non-effective covariates from 20 models (grey lines) and real
effect (dashed lines). Effect estimates and true effect are centered.
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Figure C.2.: Variable Selection: Simulation Scheme 1 - Estimation of
covariate effects for non-effective covariates from 20 models (grey
lines) and real effect (dashed lines). Effect estimates and true effect
are centered.
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Figure C.5.: Variable Selection: Simulation Scheme 2 - Estimation of
covariate effects for non-effective covariates from 20 models (grey
lines) and real effect (dashed lines). Effect estimates and true effect
are centered.
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C.2. Simulation Results 3: Degrees of Freedom

Figure C.6.:
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Figure C.8.:
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Figure C.16.: Model Choice: Simulation Scheme 2 (Part 1) — Estimated
degrees of freedom traced over the boosting steps (in 200 repli-
cates) for all flexible base-learners and initially specified degrees
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Figure C.17.: Model Choice: Simulation Scheme 2 (Part 2) — Estimated
degrees of freedom traced over the boosting steps (in 200 repli-
cates) for all flexible base-learners and initially specified degrees
of freedom (dashed line).
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Figure C.18.: Model Choice: Simulation Scheme 2 (Part 3) — Estimated
degrees of freedom traced over the boosting steps (in 200 repli-
cates) for all flexible base-learners and initially specified degrees
of freedom (dashed line).
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Figure C.19.: Model Choice: Simulation Scheme 2 (Part 4) — Estimated
degrees of freedom traced over the boosting steps (in 200 repli-
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Figure C.20.: Model Choice: Simulation Scheme 3 (Part 1) — Estimated
degrees of freedom traced over the boosting steps (in 200 repli-
cates) for all flexible base-learners and initially specified degrees
of freedom (dashed line).
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Figure C.21.: Model Choice: Simulation Scheme 3 (Part 2) — Estimated
degrees of freedom traced over the boosting steps (in 200 repli-
cates) for all flexible base-learners and initially specified degrees
of freedom (dashed line).
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Figure C.22.: Model Choice: Simulation Scheme 3 (Part 3) — Estimated
degrees of freedom traced over the boosting steps (in 200 repli-
cates) for all flexible base-learners and initially specified degrees
of freedom (dashed line).
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Figure C.23.: Model Choice: Simulation Scheme 3 (Part 4) — Estimated
degrees of freedom traced over the boosting steps (in 200 repli-
cates) for all flexible base-learners and initially specified degrees
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