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September 2009

Supervised by

Prof. Ludwig Fahrmeir/Ludwig-Maximilians-Universität München

and Prof. Leonhard Held/Universität Zürich





Abstract

Bayesian hierarchical models are increasingly used in many applications. In parallel, the

desire to check the predictive capabilities of these models grows. However, classic Bayesian

tools for model selection, as the marginal likelihood of the models, are often unavailable

analytically, and the models have to be estimated with MCMC methodology. This also

renders leave-one-out cross-validation of the models infeasible for realistically sized data

sets. In this thesis we therefore propose approximate cross-validation sampling schemes

based on work by Marshall and Spiegelhalter (2003), for two model classes: conjugate

change point models are applied to time series, while normal linear mixed models are

used to analyze longitudinal data. The quality of the models’ predictions for the left-out

data is assessed with calibration checks and proper scoring rules. In several case studies

we show that the approximate cross-validation results are typically close to the exact

cross-validation results, and are much better suited for predictive model assessment than

analogous posterior-predictive results, which can only be used for goodness-of-fit checks.
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1 Introduction

One of the major tasks of statistics is to issue forecasts for the future, based on evidence

from the past (Dawid 1984). The evidence usually has the form of a data set which con-

tains the target variable one wants to predict for the future (the response), and multiple

variables known or suspected to influence the target in some way (the covariates). In

model-based statistics, a stochastic model is fit to the known data set, which can then be

used to predict unknown responses from the corresponding known covariates. If prediction

is a major task in the application, the model’s predictive capabilities must be assessed,

in order to compare it with other models or to know how to improve it. Although this

approach to statistical inference is not indisputable, the majority of the statistical dis-

cipline works with this scheme (Breiman 2001). The general problem is to find a model

which fits the past data well enough to capture those relationships between covariates and

response that are important for the prediction of future data, but does not over-interpret

noise in the data set which could lead to prediction artifacts. Models which do not cap-

ture the important relationships suffer from “underfitting”, while models over-interpreting

noise suffer from “overfitting” of the data set. In particular, a model assessment which is

only based on the goodness-of-fit of the model to the known data set will tend to favour

overfitting models, while a too simple stochastic model could lead to underfitting.

A general tool for predictive assessment of statistical models is cross-validation. The

most primitive form“consists in the controlled or uncontrolled division of the data sample

into two subsamples, the choice of a statistical predictor, including any necessary estim-

ation, on one subsample and then the assessment of its performance by measuring its

predictions against the other subsample” (Stone 1974, p. 111). So we hide an actually

known part of the past data from the model, to be able to compare its predictions with this

pseudo-future data. A popular type of cross-validation which “squeezes the data almost

dry” is leave-one-out cross-validation: “set aside one individual case, optimize for what is

left, then test on the set-aside case”, and repeat that for every case (Mosteller and Tukey

1968). Comparing different models assessed on the same data set, we can then choose

the model which has the best cross-validation performance, with regard to an appropriate

measure, and are thus protected from favouring overfitting models. Yang (2007) shows

that under regularity assumptions, cross-validation is consistent for increasing sample size

in the sense of selecting the better model with probability approaching 1.
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1 Introduction

While the generic concept of cross-validation is applicable to all estimation concepts,

usually model assessment in Bayesian inference is done differently. The classic approach

starts with expressing the prior model preferences as a prior distribution on the models,

that is, without having looked in the data set, how probable is it that each model is the

true model? Via Bayes’ theorem, these probabilities are then updated to the posterior

model probabilities by the information contained in the data set. Afterwards, the whole

model assessment can be based on these probabilities. For example, one can choose the

model with the highest posterior probability, or average the quantities of interest over

models by weighting them with the posterior probabilities. Clyde and George (2004)

give an overview of Bayesian treatment of model uncertainty. When the model prior is

constant on the (finite) model space, the posterior model probabilities are proportional to

the marginal likelihood values of the models. Even in this case where the model prior is

indifferent to the complexity of the models, this approach is guarded against overfitting

by the Bayesian “Ockham’s Razor” (Jefferys and Berger 1992). The reason is that the

marginal likelihood of a model, which is the value of the marginal density under this model

at the observed data, rewards simple models for their sharp prediction if the observed data

lies in their support. By contrast, more complex models spread their probability mass to

larger regions, and thus have lower density values.

In recent years, proper scoring rules as another general tool for predictive assessment

have become popular (Gneiting and Raftery 2007). Scoring rules assign a forecasting

distribution a (penalty) score, based on a comparison with the materialized observation.

The rule is (strictly) proper if the resulting expected score, with respect to the true

data generating distribution, is (uniquely) optimized when the forecasting distribution is

identical to the data generating distribution. This regularity requirement is necessary to

force the scoring rule to prefer honest forecasts, by addressing both the sharpness and the

calibration of the forecasts. It is also possible to separately assess the calibration, which

can be summarized as the consistency between the forecast quantiles and the observed

data quantiles (Gneiting, Balabdaoui, and Raftery 2007). Proper scoring rules are usually

utilized as distance measures between predictive distributions and observations in cross-

validation setups, where the model score is then defined as the average of the single scores

for the test samples. In time series modelling, the one-step-ahead assessment, which

iteratively enlarges the training part of the data with the next observation in time, is

an alternative. We will see that in this case, the one-step-ahead validated model score

obtained from the logarithmic scoring rule (which is the log of the predictive density

evaluated at the materialized observation) and the marginal likelihood are equivalent.

The logarithmic scoring rule is also linked to Akaike’s Information Criterion (AIC),

which is often used to compare models estimated by maximum likelihood (Akaike 1974):

2



Stone (1977) shows that the leave-one-out cross-validated log-score of a model and AIC

are asymptotically equivalent, with regard to an increasing size of the data set. This is

comprehensible, as the AIC is defined as the maximized log-likelihood (that is, the log

data density evaluated at the parameter estimate) penalized with the dimension of the

parameter in the model – so the AIC definition contains the log of the full data density.

A similar form has the Deviance Information Criterion (DIC), which was proposed by

Spiegelhalter, Best, Carlin, and van der Linde (2002) as a Bayesian measure for both

model complexity and fit: It penalizes the posterior expected deviance with an estimate

of the effective number of parameters in the Bayesian model (see appendix A.2 for the

details). The DIC can be estimated with posterior parameter samples from obtained from

Markov chain Monte Carlo (MCMC) methods, so that it can also be estimated if the

marginal likelihood of a Bayesian model is not analytically available. Another criterion,

the Bayesian Information Criterion (BIC), is asymptotically equivalent to the marginal

likelihood (Schwarz 1978). The BIC is similar to the AIC, but weights the parameter

dimension with the log of the number of observations in the data set, leading to a stronger

penalization of the maximized log-likelihood; see Kuha (2004) for a good comparison of

AIC and BIC.

The DIC is especially popular for the assessment of Bayesian hierarchical models, i. e.

models with multiple layers of parameters, which are estimated within the Bayesian in-

ference framework. In this thesis we want to do cross-validation of two special types of

Bayesian hierarchical models, where we measure the quality of the predictions for the

left out observations by proper scoring rules or calibration checks. Because the models

are estimated with computationally intensive Monte Carlo algorithms, the exact cross-

validation will only be feasible for small sample sizes. Thus, we follow Mosteller and

Tukey (1968), who further write:

“If we have to go through the full optimization calculation every time, the

extra computation may be hard to face. Occasionally we can easily calculate

[. . .] to an adequate approximation what the effect of dropping a specific

and very small part of the data will be on the optimized result. [. . .] That

is, we make one optimization for all the data, followed by one repetition per

case of a much simpler calculation, a calculation of the effect of dropping

each individual, followed by one test of that individual. When practical, this

approach is attractive.”

Except that we will draw samples from the parameter posterior instead of optimizing

the parameter of the model, this is exactly what we will do in our approximate cross-

validations, where the approximation is based on work by Marshall and Spiegelhalter

(2003). We will investigate in case studies how good these approximations are, how much

3



1 Introduction

computing time they save and what the effect is on the model choice.

The outline of the thesis is as follows. In chapter 2, we describe the tools (proper scoring

rules and calibration checks) for evaluation of the predictive distributions with respect to

the materialized observations, which are used in the following two chapters. Chapter 3

examines conjugate change point models, which are useful for time series modelling. For

three distribution families, exact and approximate predictive assessment are compared,

before the approximate approach is applied to a genetic data set. Chapter 4 examines

random effects models for longitudinal data. For two real data sets, the exact and approx-

imate approach are first compared on a subset of feasible size, before the cross-validation

is approximated on the whole data set. A simulation study with known true model will

yield interesting results. The thesis findings are summarized and discussed in chapter 5.
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2 Evaluating predictive distributions

Section 2.1 introduces the setting and nomenclature for this chapter. Tools for assessing

the probabilistic calibration of predictive distributions are described in section 2.2. The

other type of tools for evaluating forecasters in this thesis are proper scoring rules, which

are presented in section 2.3. An outlook on the application of custom summary statistics

for tests of specific aspects of predictive distributions is given in section 2.4.

2.1 Introduction

This chapter describes techniques for evaluating predictive distributions with respect to

the materialized observation which has been predicted. The predictive distributions can

belong to probabilistic forecasts of a future observation, but might also be posterior-

predictive distributions for a known observation – the origin of the predictive distribution

is not of interest in this chapter. This is in accordance with the Prequential Principle of

Dawid (1984, p. 281).

Starting with the univariate case, we assume that the predictive distribution has cumu-

lative distribution function (cdf) F and denote the prediction random variable by Y . That

is, Y ∼ F . Since our diagnostic tools will be based on Monte Carlo estimates, assume

that m independent identically distributed (iid) samples from F are available:

y[j]
iid
∼ F, j = 1, 2, . . . ,m.

The empirical cdf of this sample of size m is F̂m(y) = 1
m

∑m
j=1 I[y[j],+∞)(y). The mater-

ialized observation is x. It is a realization of the random variable X with cdf G, thus

X ∼ G.

In the multivariate case, we want to predict a vector-valued observation x ∈ Rk. It is

a realization of the random vector X. The prediction random vector is Y : Ω → Rk, and

we again assume that m iid realizations y[1], . . . ,y[m] of Y are available.

The methodology is based on comparing a single predictive distribution with the cor-

responding materialized observation. In practice however and in our applications in

chapters 3 and 4, there will be multiple observations x1, . . . ,xn and corresponding pre-

dictive cdfs F1, . . . , Fn, which shall be evaluated together. This requirement will also be

considered in the following sections.
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2 Evaluating predictive distributions

2.2 Assessing probabilistic calibration

Gneiting, Balabdaoui, and Raftery (2007, p. 247) define probabilistic calibration by means

of the countable sequences (Fi)i∈N of predictive cdfs and (Gi)i∈N of corresponding (in

practice unknown) true observation cdfs: if for all probabilities p ∈ (0, 1) the average
1
n

∑n
i=1 Gi

(
F−1

i (p)
)

converges almost surely to p when the number of instances n →
∞, then (Fi) is probabilistically calibrated relative to (Gi). (The stochastic notion of

convergence is needed because the cdfs might depend on stochastic parameters.) We will

drop the word “probabilistic” in the term from now on, because we only consider this

mode of calibration.

Note that if Fi ≡ Gi for all instances i, then the predictions are trivially calibrated.

We call a predictive distribution which is identical to the unknown true data generating

distribution the ideal forecaster. However, the upper definition is only sensible if the cdfs

are continuous and invertible. In general, calibration is best described as “the statist-

ical consistency between the distributional forecasts and the observations, and is a joint

property of the forecasts and the events or values that materialize” (Gneiting and Raftery

2007, p. 359). With the Probability Integral Transform and the Box Ordinate Transform

we present tools which can be used for the comparison of the predictions Fi and (possibly

vector-valued) observations xi (instead of the unknown Gi), to assess the calibration of

the predictions Fi.

2.2.1 Probability Integral Transform

The Probability Integral Transform (PIT) was introduced by Dawid (1984, p. 281). It is

defined as

PIT (F, x) := F (x), (2.2.1)

with the notation emphasizing that the PIT value depends on both the predictive cdf F

and the value x that materializes. The PIT is only useful for univariate observations x.

If the predictive distribution F matches the data generating distribution of a con-

tinuous random variable X exactly, then it is well-known that PIT (F,X) = F (X) ∼
U(0, 1) (Gneiting, Balabdaoui, and Raftery 2007, p. 244). Given an independent sample

x1, . . . , xn with corresponding predictive distributions F1, . . . , Fn, the empirical distri-

bution H of the PIT values F1(x1), . . . , Fn(xn) can be compared against the standard

uniform distribution. For that purpose, usually a PIT histogram is plotted. If the Fi can-

not be evaluated analytically, they can be estimated by empirical cdfs F̂i,m, using samples

yi,[1], . . . , yi,[m] from the distributions Fi. It can be shown (Gneiting, Balabdaoui, and

Raftery 2007, p. 252) that the (almost sure) convergence in n → ∞ of the PIT histogram

6



2.2 Assessing probabilistic calibration

to the density histogram of the uniform distribution is equivalent to the original definition

given above.

Characteristic deviations of the PIT histograms from uniformity can point out uncalib-

rated predictive densities, which is illustrated by histograms obtained from normal data

generating and forecasting distributions in Figure 2.1 on page 10. Here no Monte Carlo

estimation of the tail probability is necessary, since

P(Y ≤ x) = Φ

(
x − µ

σ

)

when Y ∼ N(µ, σ2) is the prediction random variable. The u-shaped form of the PIT

histogram in panel (a) is typical for underdispersed predictive distributions. This form is

understandable from the PIT definition (2.2.1): the data generating density has heavier

tails than the forecaster, and when an extreme observation is generated, the PIT value

is either very low or very high. The hump-shaped form in panel (c) is typical for overd-

ispersed predictive distributions, and can be explained similarly. A uniform PIT histogram

as in panel (b) is expected for the ideal forecaster.

For discrete random variables Xi, the PIT values are no longer distributed uniformly, so

an ordinary PIT histogram will look strange even if the predictive distribution is perfectly

calibrated. For count data and ordered categorical data, Czado, Gneiting, and Held (2009)

have proposed a modified PIT histogram. The idea can be understood quickly in terms

of the histogram-generating distribution function H. For continuous variables Xi with

realizations xi, H(y) is the average of discontinuous indicator functions I[Fi(xi),+∞)(y)

over the observations i = 1, . . . , n. So the distribution H is a mixture of the n point-

masses δFi(xi), i = 1, . . . , n. For count variables with support N0, Czado et al. (2009)

define H as the mixture of the n continuous uniform distributions U
(
Fi(xi − 1), Fi(xi)

)

over the observations i = 1, . . . , n. The resulting distribution H is thus always continuous,

and is expected to be the standard uniform distribution for perfectly calibrated Fi, in the

sense that EX H(y) = y for any y ∈ [0, 1]. This can again be checked by plotting a

density histogram of H. Recalling that the PIT values are special p-values, we can use

the mid-p-values

P(Yi < xi) +
1

2
P(Yi = xi)

which have been used e. g. by Marshall and Spiegelhalter (2003, p. 1651). For count

variables, these are the same as the midpoints of the uniform distributions supports in

the modified PIT histogram, namely

1

2

(
Fi(xi − 1) + Fi(xi)

)
.

7



2 Evaluating predictive distributions

2.2.2 Box Ordinate Transform

The Box Ordinate Transform (BOT) was introduced by Box (1980, p. 386) for the special

case of Bayesian estimation of the mean of a normal distribution. It is defined as the tail

probability

BOT (f,x) := P
(
f(Y ) ≤ f(x)

)
=

∫
I{z:f(z)≤f(x)}(y)f(y) dy, (2.2.2)

where f is the continuous Lebesgue density of Y . The BOT has strong connections to

significance (and especially likelihood ratio type) tests: Assuming that it is really the

density f which produces the observation x, what is the probability of observing an

even smaller density ordinate than the observed f(x)? The BOT can also be used for

univariate observations, but it is the only adequate calibration checking tool (from those

introduced in this thesis) for multivariate observations (leaving aside the multivariate rank

and minimum spanning tree rank histograms from Gneiting, Stanberry, Grimit, Held, and

Johnson (2008, p. 215), for example).

The BOT was hence used as a model checking tool, where f was the prior predictive

density under the assumed model. For example, Sinharay and Stern (2003, p. 214) call it

“the prior predictive method of Box”and stress that it could only be used if the parameters

prior in the assumed model was proper, as otherwise the prior predictive density would

not exist. Here, however, we are sure that our predictive distribution F with density

f exists and we have available samples y[1], . . . ,y[m] from F , so this critique need not

concern us.

From another point of view we can easily see that BOT (f,X) has a uniform distribution

whenever X really has probability density f , as stated by Gneiting, Stanberry, Grimit,

Held, and Johnson (2008, p. 220): Consider the scalar random variable Z := f(Y ) as

the transformation of Y ∼ f onto the positive real line, with cdf FZ . Thus, obviously

BOT (f,x) = FZ(f(x)). If X ∼ f , then f(X) is identically distributed to Z and has cdf

FZ , and BOT (f,X) is identically distributed to FZ(Z) = PIT (FZ , Z). So in fact, the

BOT is a PIT value on the predictive density scale! If Z is a continuous random variable,

then this raw PIT value is uniform (cf. page 6). In our applications, this condition will

be satisfied because the predictive density f will always be a Lebesgue density without

plateaus. This ensures that given Y 1,Y 2
iid
∼ f the probability of Z1 = f(Y 1) and Z2 =

f(Y 2) being identical is zero.

The last question is how we estimate the BOT value BOT (f,x). After having available

the ordinate values zx = f(x) and z[1] = f(y[1]), . . . , z[m] = f(y[m]), we could proceed as

for the univariate PIT estimation, i. e. estimate the BOT by the empirical distribution

8



2.2 Assessing probabilistic calibration

function value

B̂OT (f,x) :=
1

m

m∑

j=1

I[z[j],+∞)(zx). (2.2.3)

Yet, in our applications the predictive density function f is unknown. Thus, the ordinate

values must be estimated. The estimates are also needed for the logarithmic score and

the procedure is described in the corresponding section 2.3.3. Finally, the empirical dis-

tribution of the BOT values for all prediction locations x1, . . . ,xn can be compared to

the uniform distribution. This check for calibration of the respective predictive densities

f1, . . . , fn is usually done using histograms, analogously to the PIT histograms.

Characteristic deviations of the BOT histograms from uniformity can point out un-

calibrated predictive densities, which is nicely illustrated in Figure 5 of Gneiting et al.

(2008).i We show similar histograms obtained from normal data generating and forecast-

ing distributions in Figure 2.1. Here no Monte Carlo estimation of the tail probability is

necessary, since

P
(
f(Y ) ≤ f(x)

)
= P

(
1√

2πσ2
exp

{
− 1

2σ2
(Y − µ)2

}
≤ 1√

2πσ2
exp

{
− 1

2σ2
(x − µ)2

})

= P

((
Y − µ

σ

)2

≥
(

x − µ

σ

)2
)

= 1 − χ2

((
x − µ

σ

)2
)

,

because (Y − µ)/σ ∼ N(0, 1) when f(y) = N(y |µ, σ2) is the forecast density. The typical

right-skewed BOT histogram for underdispersed forecasts is given in panel (d). The form

can be understood from the BOT definition (2.2.2): since the data generating distribution

puts large probability mass on areas where the forecast density has very low values,

we often see small BOT values. On the other hand, BOT histograms for overdispersed

forecasts are typically left-skewed as in panel (f). When the forecast is identical to the

data generating distribution, we expect a uniform BOT histogram, here in panel (e).

However, it must be stressed that the uniform distribution of the BOT values is only

a necessary, but not a sufficient condition for the calibration of a univariate forecast

density. This is because the BOT is a PIT on the forecast density scale, and not on the

original scale. A simple example which fulfills the regularity assumptions from above is

described in the following. Let the observation random variable X be beta-distributed

X ∼ Be(2, 2), and define the forecast random variable Y := ±Z which switches the sign

of the correct forecast Z ∼ Be(2, 2) with probability 1/2. More formally, this is Y := V ·Z
iNote that their definition of the BOT on page 220 contains an error (T. Gneiting, personal communic-

ation), and our definition (2.2.2) is correct.
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(a) PIT histogram of underdispersed

forecast (σ2 = 0.25)
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(b) PIT histogram of correct forecast

(σ2 = 1)
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(c) PIT histogram of overdispersed

forecast (σ2 = 9)
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(d) BOT histogram of underd-

ispersed forecast (σ2 = 0.25)
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(e) BOT histogram of correct fore-

cast (σ2 = 1)
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(f) BOT histogram of overdispersed

forecast (σ2 = 9)

Figure 2.1 – Simulation study for the PIT (upper row) and BOT (lower row) histograms. For

each histogram, n = 100 000 standard normal observations have been simulated.

The density forecast is N(0, σ2) with different variances σ2 = 0.25, 1, 9 (columns).

with V ∼ 1
2δ−1 + 1

2δ+1. If g(x) = fZ(x) = Be(x | 2, 2) is the true data generating density,

then we have the density fY (y) = 1
2g(|y|) for the wrong forecaster Y . Its BOT value for

an observation x ∈ (0, 1) is

BOT (fY , x) = P
(
fY (Y ) ≤ fY (x)

)

= P
(

1
2g(|Y |) ≤ 1

2g(x)
)

= P
(
g(Z) ≤ g(x)

)

= BOT (g, x),

because |Y | = |V · Z| = |V | · Z = Z. So the BOT value of the wrong forecaster Y is

identical to the BOT value of the correct forecaster Z, and the distribution of the BOT

values is hence uniform also for the wrong forecaster Y . The corresponding PIT on the

10



2.3 Proper scoring rules

other hand is not uniform, because all PIT values PIT (FY , x) must be greater than 1/2.

Nevertheless, a non-uniform BOT histogram can be useful for the model critique, and

should be used for random vectors because a multivariate PIT analogue would not be

uniform for calibrated forecasts (Genest and Rivest 2001).

2.3 Proper scoring rules

In the last section, we have introduced the PIT and BOT histograms as tools for assessing

the calibration of predictive distributions. However, these tools cannot distinguish every

forecaster from the ideal forecaster. We have already given an example for the BOT, and

Gneiting, Balabdaoui, and Raftery (2007, p. 244) give an example for the PIT, which we

reiterate now. Let the true distribution be Gi = N(µi, 1), the standard normal distribution

shifted by µi
iid
∼ N(0, 1), i ∈ N. The sequence of predictive distributions Fi = N(0, 2) which

is constant over all times i is then perfectly calibrated and cannot be distinguished by the

PIT from the ideal forecaster Gi. This is easily seen from the marginal distribution of the

observations Xi: Because the conditional distribution Xi |µi ∼ N(µi, 1) is continuously

mixed by µi ∼ N(0, 1), we have the marginal distribution Xi ∼ N(0, 2) if we do not know

the shifts µi (see appendix A.4 for the short proof). Thus Xi is identically distributed

as the prediction random variable Yi, and PIT (Fi,Xi) = P(Yi ≤ Xi) ∼ U(0, 1). This

example can be well summarized as the PIT-equivalence of the climatological forecaster

Fi and the ideal/meteorological forecaster Gi, which conditions on the current weather µi

to predict the temperature Xi.

So we need other tools which help distinguishing calibrated forecasters from the ideal

forecaster. Gneiting, Balabdaoui, and Raftery (2007, p. 245) propose the paradigm of

“maximizing the sharpness of the predictive distributions subject to calibration”, where

sharpness means the precision (literally the inverse variance if it exists) of the predictive

distributions. In the example, this rule would prefer the ideal forecaster Gi with preci-

sion 1 over the climatological forecaster Fi with precision 1
2 . Yet, the direct assessment

of sharpness is problematic in practice, because the PIT histograms will be different for

all forecasters – then how should we combine this with some sharpness measure, e. g. the

sharpness diagrams from Gneiting, Balabdaoui, and Raftery (2007, p. 261)? Moreover,

for discrete distributions, these tools have not proved to be as useful as for continuous

distributions (Czado, Gneiting, and Held 2009, p. 4).

This is where the proper scoring rules help us, as they can be used for an omnibus

evaluation of both sharpness and calibration of predictive distributions. If the predictive

distribution was chosen as F , and the observation x materializes, the penalty score S(F, x)

is assigned by the scoring rule S. With the expected score under the data generating

11



2 Evaluating predictive distributions

distribution G being denoted as S(F,G) =
∫

S(F, x) dG(x), a strictly proper scoring rule

S ensures that S(G,G) ≤ S(F,G) for all forecasters F and S(G,G) = S(F,G) if and only

if F = G (Gneiting and Raftery 2007, p. 359). We drop the adjective “strictly” because

all used scoring rules in this thesis will be strictly proper. The propriety ensures that

the ideal forecaster G is preferred over all other forecasters, and that both sharpness and

calibration of the forecaster are condensed into a single score (Winkler 1996).

In practice, we often want to combine scores S(Fi, xi), i = 1, . . . , n, into an overall score,

which assesses the predictive performance of somehow comparable forecasters F1, . . . , Fn

simultaneously. Then the mean score

S(F, x) :=
1

n

n∑

i=1

S(Fi, xi)

can be computed (Gneiting and Raftery 2007, p. 360). For example, the predictive distri-

butions Fi might come from the same parametric model. Then the comparison with an-

other parametric model, producing forecasters Ei, say, is based on its mean score S(E, x).

This procedure is theoretically well-founded, because the propriety of the single scores

S(Fi, xi) ensures that the minimum of the mean score functional S(·, x) is S(G,x) where

G denotes the sequence G1, . . . , Gn of true data generating distributions. That is, the

mean score of single proper scores is again proper. When a formal statistical test for the

comparison of S(F, x) and S(E, x) shall be utilized, a permutation test can be used. The

details are given in appendix A.3.

We will use three specific scoring rules: The (continuous) ranked probability score is

abbreviated as (C)RPS and can be used for univariate distributions only (section 2.3.1),

while the energy score (ES) is the multivariate generalization (section 2.3.2). The logar-

ithmic score (log-score) can be used for scalar and vector-valued observations, and needs

predictive density evaluations instead of expectations under the predictive distributions

(section 2.3.3).

2.3.1 Continuous ranked probability score

The general CRPS is defined as

CRPS(F, x) :=

+∞∫

−∞

{
F (y) − I[x,+∞)(y)

}2
dy, (2.3.1)

which is the squared L2-distance of the cdfs of the predictive distribution F and the point-

mass δx in the realized observation x, respectively. The CRPS is (strictly) proper if one

considers predictive distributions F with finite expectation (Gneiting and Raftery 2007,

p. 367).
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2.3 Proper scoring rules

We want to use the m samples y[1], . . . , y[m] from F to estimate (2.3.1). The simplest

idea is to replace the not analytically available cdf F with the consistent estimate F̂m, and

use ĈRPSm(F, x) := CRPS(F̂m, x). The evaluation of the latter integral is easy, because

the integrand is a step function, with jumps at x and at the quantiles of the sample.

For a continuous distribution F , the sample values are (almost surely) unique, so that

the order statistic y(1), y(2), . . . , y(m) is a permutation of the original sample. Assume that

the materialized observation is between y(k−1) and y(k) for some k ∈ {2, . . . ,m}. The

formula

CRPS(F̂m, x) =

k−1∑

j=2

(y(j) − y(j−1))

(
j − 1

m

)2

+ (x − y(k−1))

(
k − 1

m

)2

+ (y(k) − x)

(
m − (k − 1)

m

)2

+

m∑

j=k+1

(y(j) − y(j−1))

(
m − (j − 1)

m

)2

is then derived straightforwardly. If x < y(1) or x > y(m), analogous formulae could be

written down, and further illustration can be found in Hersbach (2000, p. 563).

For a count distribution F with support N0, the cdfs can only jump at integer values.

Then the ranked probability score

RPS(F, x) =
∑

k∈N0

{
F (k) − I[x,+∞)(k)

}2

is derived from (2.3.1), cf. Czado, Gneiting, and Held (2009, section 3.2). If F̂m(k) is the

relative frequency of the samples less or equal to k ∈ N0, the estimator is

RPS(F̂m, x) =

max{y(m−1),x}∑

k=min{y(1),x}

{
F̂m(k) − I[x,+∞)(k)

}2
.

2.3.2 Energy score

The energy score (ES) can be applied to the prediction of multivariate quantities x ∈ Rk.

It was proposed by Gneiting and Raftery (2007, p. 367) and is defined as

ES(F,x) := E ‖Y − x‖ − 1

2
E ‖Y − Y ∗‖ , (2.3.2)

where Y ,Y ∗ iid
∼ F and ‖z‖ denotes the Euclidean norm (

∑k
j=1 z2

j )1/2 of z ∈ Rk. For

dimension k = 1, it can be shown that

ES(F, x) = E |Y − x| − 1

2
E |Y − Y ∗| =

+∞∫

−∞

{
F (y) − I[x,+∞)(y)

}2
dy = CRPS(F, x),

meaning that the ES is a generalization of the CRPS for dimensions k > 1. The proof

of the identity is detailed in appendix A.1. The ES is (strictly) proper if one considers
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2 Evaluating predictive distributions

predictive distributions F with finite expectation (Gneiting and Raftery 2007, p. 367).

(This assumption is also necessary for the identity of ES and CRPS.)

We want to use the m samples y[1], . . . ,y[m] from F to estimate (2.3.2). An efficient

Monte Carlo estimate proposed by Gneiting, Stanberry, Grimit, Held, and Johnson (2008,

p. 223) is

ÊS(F,x) =
1

m

m∑

j=1

‖y[j] − x‖ − 1

2(m − 1)

m−1∑

j=1

‖y[j+1] − y[j]‖,

where the computational cost is O(m). If all pairwise Euclidean distances of the samples

were utilized for the estimation of the expected between-forecasts distance, it would be

O(m2). The precision of the estimator, however, would not be greatly increased, because

the pairwise distances are not independent of each other.

2.3.3 Logarithmic score

Let f be the (general) density of the predictive distribution F . The logarithmic score is

then defined as

LogS(F, x) = − log f(x), (2.3.3)

where smaller score values are assigned to better predictive distributions. The logarithmic

scoring rule is (strictly) proper both for discrete distributions (Gneiting, Balabdaoui, and

Raftery 2007, p.352) and for continuous distributions when only forecasters with finite

expectation are considered (Gneiting, Balabdaoui, and Raftery 2007, p.365).

For this score, samples from F could only be used for nonparametric density estimation

of f , which is often unstable. Yet, often and also in our applications the unknown density

f(x) is a continuous mixture of known densities f(x | θ),

f(x) =

∫
f(x | θ)f(θ) dθ,

and we can produce samples θ[1], . . . , θ[m]
iid
∼ f(θ). Then the Monte Carlo estimate

f̂(x) :=
1

m

m∑

j=1

f(x | θ[j]) (2.3.4)

is preferable to a kernel density estimate which uses directly the samples y[1], . . . , y[m]

which have been drawn from the conditional densities f(y | θ[1]), . . . , f(y | θ[m]). The formal

justification for the superiority of the Monte Carlo estimate is based on the Rao-Blackwell

theorem, see Gelfand and Smith (1990, p. 402). Yet, this estimate can be considered a

special kernel density estimate where the kernels are the conditional densities, instead of

the usual Gauss or Epanechnikov kernels (Davison 2003, p. 310).
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In special cases, the logarithmic score can be computed analytically, as we will see

for the one-step-ahead and leave-one-out scores in the conjugate change point model in

section 3.3. The above Monte Carlo estimation is more often applicable, and will turn

out to be very accurate.

2.4 Custom summary statistics

The evaluation of predictive distributions in this thesis will be based on the tools in-

troduced in sections 2.2 and 2.3. However, there are many alternative proposals in the

literature, which are often tailored to posterior-predictive model checking. See the refer-

ences on page 190 in Gelman, Carlin, Stern, and Rubin (2003) for a good overview of the

literature. We just try to sketch some of the popular ideas here, if possible for general

predictive distributions.

One idea is to compute a scalar test statistic T (x) of the observed data vector x ∈ Rk.

The test statistic is chosen“to reflect aspects of the model that are relevant to the scientific

purposes to which the inference will be applied” (Gelman, Carlin, Stern, and Rubin 2003,

p. 172). For example, in a longitudinal data setting, this could be the maximum, minimum

or range of the data points x1, . . . , xk. The value T (x) can then be compared with the

distribution of the predicted test statistic, T (Y ). Usually some form of p-value is com-

puted, which corresponds to the PIT value from section 2.2.1. Note that the BOT (2.2.2)

fits in this framework with the test statistic T being the predictive density f , such that

the test statistic depends on the assumed model. However, we could also use the CRPS

to judge the compatibility of T (Y ) and T (x). Since the CRPS estimation in section 2.3.1

is based on samples, we just transform the original samples y[1], . . . ,y[m] with T to get

the required scalar samples of the predicted test statistic.

A related concept are discrepancy measures T (x,θ) which also depend on the assumed

model through the parameter θ. Then tail probabilities of the form

P
(
T (Y ,Θ) ≥ T (x,Θ)

)

are computed. For example, for a posterior-predictive check θ[b] is drawn from the

posterior distribution, and y[b] is drawn from the implied likelihood f(y |θ[b]), for b =

1, . . . , B. Afterwards the Monte Carlo estimate of the tail probability is given by

1

B

B∑

b=1

I

(
T (y[b],θ[b]) ≥ T (x,θ[b])

)
.

Gelman, Carlin, Stern, and Rubin (2003, p. 164) give an example where the parameter

is the mean of the predictive distribution, and the discrepancy measures the difference of

the distances of the 10% and 90% data quantiles to that mean. This results in a check for
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2 Evaluating predictive distributions

the symmetry fit of the predictive distribution. A similar measure which only includes the

model parameters is utilized by Sinharay and Stern (2003, p. 219) to check the normality

assumption for the random effects in a hierarchical normal model.

Rather classic regression-diagnostic type checks are presented by Gilks, Richardson, and

Spiegelhalter (1998, p. 152). For example, the residual x−E(Y ) or standardized residual(
x−E(Y )

)
/
√

Var(Y ) can be computed for scalar observations x. For a set of observations

x1, . . . , xn, the sum of squared standardized residuals gives the χ2-discrepancy

χ2 =
n∑

i=1

(
xi − E(Yi)

)2

Var(Yi)
.

This score depends on the predictive distributions Fi only through the means E(Yi) =∫
y dFi(y) and the variances Var(Yi) =

∫ (
y−E(Yi)

)2
dFi(y). It should be approximately 1

for good predictive performance, so a derived penalty type score is (χ2 − 1)2 (Czado,

Gneiting, and Held 2009, p. 8). It is interesting that the authors’ examples also comprise

the PIT, BOT and the conditional predictive ordinate fY (x), which is equivalent to the

exponent of the logarithmic score.
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3 Conjugate change point models

In section 3.1, change point models are motivated as a special time series model class.

The model framework of general conjugate change point models including prior assump-

tions, posterior inference and handling of missing observations is described in section 3.2.

Section 3.3 then proposes approximate sampling schemes for predictive assessment of

the one-step-ahead and cross-validation types, which avoid the huge computational ef-

fort imposed by the exact sampling schemes. The approaches are contrasted with the

goodness-of-fit assessment using posterior-predictive samples. The next three sections

are distributions-specific examples of the general framework: While section 3.4 and sec-

tion 3.5 deal with count likelihoods of Poisson and binomial type, respectively, section 3.6

discusses the appropriate normal model for real-valued time series. The three sections

each comprise an extensive case study of data previously analyzed in the literature, and

compare the results of exact and approximate predictive assessment. Section 3.7 analyzes

a more recent data set of larger dimension, where the exact assessment is not feasible any

longer. Finally section 3.8 summarizes the results of this chapter.

3.1 Introduction

Change point models for time series assume an (unobserved) partition of the time frame

into blocks/segments. In each block, the (unobserved) model parameter is constant. That

is, the model parameter seen as a function of the time is a step function, with the steps

occurring only at the so-called change points. Conditional on the model parameters, in-

dependent observations are recorded. Change point models are special partition models,

which also comprise models partitioning higher-dimensional spaces into homogeneous re-

gions. See Hartigan (1990) and Denison, Holmes, Mallick, and Smith (2002, chapter 7)

including the references therein for general partition models.

The recorded time can be continuous or discrete. For example, Green (1995, p. 717)

analyzes the coal mining data with the points recorded in days over 112 years, using a

continuous multiple change points model. In our case study on the same data in sec-

tion 3.4.2, we use only the year precision, and can thus use our discrete time model. The

discrete time case goes back to Chernoff and Zacks (1964). Their normal observations

model was later picked up by Yao (1984), who found a more efficient Bayes solution for it.
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3 Conjugate change point models

Barry and Hartigan (1993) also conduct a Bayesian analysis for change point problems,

and compare both approaches in a simulation study. They employ MCMC within Gibbs

sampling for producing change points draws. The approach implemented in this thesis has

been described by Hofmann (2007) for the discrete Poisson-Gamma model. He specialized

the approach from Fearnhead (2006, p. 7), who proposed filtering recursions to build a

Monte Carlo sampler for the change points samples. This “perfect simulation” avoids the

convergence issues inherent to the MCMC solutions.

Usually one is interested in identifying the borders between the blocks, that is one does

inference for the change points. Conditional on a change point configuration, the model

parameters in the blocks are estimated. Model averaging over multiple change point

configurations can be used for marginal inference of the model parameters. The model

class has several advantages, with the major one being the adaptive smoothing property:

unlike e. g. P-splines, the smoothing effect can be stronger in regions with less variability

of the observations and weaker in others with more. We also do not need to directly

specify a correlation prior, as it is done with random walk assumptions for the P-spline

coefficients. However, to get smoother parameter function estimates, model averaging has

to be done, which might be a disadvantage of the model class.

3.2 Modelling framework

Section 3.2.1 describes the data situation in which the change point model from sec-

tion 3.2.2 can be applied. The prior choice in section 3.2.3 ensures that the posterior

sampling (section 3.2.4) is easy due to conjugacy of the likelihood and the model para-

meters prior. Section 3.2.5 discusses necessary changes to the algorithm when some ob-

servations are missing.

3.2.1 Data

We assume that a time series y := (y1, y2, . . . , yn) of n scalar observations is recorded in

the time range N = {1, 2, . . . , n}. The index set N is only used for notational convenience,

in reality there will be a (strictly increasing) mapping of indexes to calendar times. In

parallel, covariates x1,x2, . . . ,xn may be observed. They comprise measurements of vari-

ables which are potentially influential for the responses y1, y2, . . . , yn. There may also be

missing responses yt. But if there are covariates, each observed yt must have an associated

xt available.
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3.2 Modelling framework

3.2.2 Model

At each time point t ∈ N , a model parameter ξt parametrizes the data generating dis-

tribution of yt. If the model includes covariates, then also xt modifies the likelihood

f(yt | ξt,xt). The dependence of the observations is only generated through the model

parameters, and conditional on these and the covariates, the observations are assumed

independent:

yt | ξt,xt
ind
∼ f(· | ξt,xt), t ∈ N .

For notational brevity we will omit the covariates in the density condition whenever they

are not necessary for understanding the formulae.

The characterizing property is the change point model for the parameters ξt. The

number of change points is k and can be any integer between 0 and n − 1. That means

we have k + 1 unique levels ξ(1), ξ(2), . . . , ξ(k+1) of the model parameters. The (location

of the) change points are

θ1 < θ2 < · · · < θk ∈ {1, 2, . . . , n − 1}.

We use the convention that the parameters level changes after the change point, so the

step function value ξt can be written as

ξt =
k+1∑

j=1

I(θj−1,θj ](t)ξ
(j) (3.2.1)

with the start point θ0 := 0 and the end point θk+1 := n. This means that ξt equals the

j-th level ξ(j) if t ∈ (θj−1, θj]. So the ξt are determined by the change points parameter

θ := (θ1, . . . , θk) and the levels parameter ξ := (ξ(1), . . . , ξ(k+1)); they can be seen as

function values ξt(ξ,θ) specified by (3.2.1).

3.2.3 Prior choice

The prior for the proposed model is naturally split into a prior for the change points, and

a prior for the model parameter levels.

Prior for the change points

The number k and the locations θ of the change points are assumed unknown. The

change points shall a priori follow a Markov process, and a sample path from this process

determines the number and the locations of the change points.

The process is specified by the prior transition probabilities

P(θj+1 = s | θj = t − 1) (3.2.2)
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3 Conjugate change point models

which are the probabilities that the (j+1)-th change point occurs at time s = t, t+1, . . . , n,

given the occurrence of the j-th change point (j = 1, 2, . . . , n − 1) at time t − 1 (t =

j + 1, j + 2, . . . , n). Here, the time s = n means that no further change point occurs in

the parameter sequence, giving a total of k = j change points. The start probabilities of

the Markov process,

P(θ1 = s) = P(θ1 = s | θ0 = 0),

are generated from the transition probabilities by setting j = 0 and t = 1, since the start

point θ0 is (by definition) always at time t − 1 = 0. Two specific change point priors will

be used: the “flat number prior” and the “binomial number prior”, which are described in

the following.

The “flat number prior” has been used by Hofmann (2007) and Held, Hofmann, Höhle,

and Schmid (2006): they place a uniform prior on the number of change points k,

P(K = k) =
1

n
I[0,n−1](k). (3.2.3)

Conditional on the number k, they place a uniform prior on the possible configurations θ

with k change points,

P(Θ = θ |K = k) =

(
n − 1

k

)
I{θ∈[1,n−1]k | θ1<···<θk}(θ). (3.2.4)

From Hofmann (2007, p. 37) we have that the prior transition probabilities for this prior

are

P(θj+1 = s | θj = t − 1) =

s−1∏

i=t

(
1 − j + 1

i + 1

)
·
(

j + 1

s + 1

)I[t,n−1](s)

. (3.2.5)

Note that the factor (j + 1)/(s + 1) is omitted when s = n, because I[t,n−1](n) = 0. The

assumed change point prior implements a model prior with interesting properties. While

each dimension k has equal prior probability, the number of models with dimension k

increases from k = 0 until k = ⌊(n − 1)/2⌋ and decreases symmetrically afterwards until

k = n− 1. So the model with no change points (k = 0) has the same prior probability as

the model with one level for each observation (k = n−1), namely 1/n. This is the largest

prior model probability. By contrast, the models with k = ⌊(n − 1)/2⌋ change points have

the smallest prior probabilities.

Alternatively, we can use a “binomial number prior”which assigns the event of a change

point occurring at a specific time the probability π ∈ [0, 1], identically and independently

for all times t ∈ {1, 2, . . . , n − 1}. So we have n − 1 Bernoulli experiments, leading to

the binomial distribution K ∼ Bin(n − 1, π) of the number of change points. Clearly

the waiting times between change point times are geometrically distributed, so the prior

transition probabilities have the form

P(θj+1 = s | θj = t − 1) = (1 − π)s−t · πI[t,n−1](s).
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3.2 Modelling framework

Therefore Yao (1984, p. 1435) describe the prior as a “discrete renewal process with

identically geometrically distributed interarrival times”. This prior was also used by Barry

and Hartigan (1993, p. 310) as a special product partition model. Fearnhead (2006, p. 205)

generalizes it to the negative binomial distribution.

Note that any valid transition kernels could be used for (3.2.2). For example, Fearnhead

(2006, p. 207) places a Poisson prior on the number of change points and draws the

locations from an order statistics distribution of uniform draws from the set {1, . . . , n−1}.

Prior for the parameters

We specify independent identical prior distributions for the parameter levels ξ(j). These

prior distributions have a hyperparameter, say φ, so we assume

ξ(j) iid
∼ f(· |φ), j = 1, . . . , k + 1 ≤ n,

if the change points configuration θ is of dimension k. For notational brevity, we will omit

the hyperparameter φ from the density condition if it is not essential.

Formally, we could always include n parameter levels in our model, which is the max-

imum number of possible blocks. However, this is only of theoretical interest, because

the unneeded parameter levels would not influence the observations and their posterior

distributions would be identical to their prior distributions. Just keep in mind that the

parameter levels prior specification is independent of the change points configuration.

The densities f(ξ(j)) shall be conjugate to the likelihood f(yt | ξt). Thus the marginal

“block” density for the a parameter block comprising all times in a set S ⊂ N is

fblock(yS) := f(yS | ys, s ∈ S, belong to the same parameter block) (3.2.6)

=

∫ ∏

t∈S
f(yt | ξ(j)) · f(ξ(j)) dξ(j)

=

∏
t∈S f(yt | ξ(j)) · f(ξ(j))

fblock(ξ
(j) |yS)

can be computed analytically, because the block posterior density

fblock(ξ
(j) |yS) := f(ξ(j) |yS and ys, s ∈ S, belong to the same parameter block)

(3.2.7)

∝
∏

t∈S
f(yt | ξ(j)) · f(ξ(j))

of the parameter level ξ(j) is known. It has the same form as the prior density, f(ξ(j) |φ),

only with an updated hyperparameter, say φS , accounting for the new information in the

data yS :

fblock(ξ
(j) |yS) = f(ξ(j) |φS)
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3 Conjugate change point models

The updated hyperparameter can be derived as in the classic case of iid observations from

a likelihood which is conjugate to the prior distribution.

So we can calculate the marginal likelihood of a change points configuration θ,

f(y |θ) =

∫
f(y, ξ |θ) dξ

=

∫
f(y | ξ,θ)f(ξ |θ) dξ,

by noting that both the likelihood

f(y | ξ,θ) =

k+1∏

j=1

∏

t∈(θj−1,θj ]

f(yt | ξ(j))

and the conditional prior of ξ

f(ξ |θ) =

k+1∏

j=1

f(ξ(j))

factorize into the k + 1 blocks because of our independence assumptions: The integral

becomes

f(y |θ) =

k+1∏

j=1

fblock(y(θj−1,θj ]). (3.2.8)

The structure of the described model is summarized in Figure 3.1: The observations yt

are conditionally independent of each other, given the covariates xt and the parameters

ξt, which specify the data generating distribution from a given likelihood family. The

change points θ and the parameters levels ξ determine the parameters ξt. The parameter

levels ξ have prior parameters φ specifying the form of the conjugate prior distribution.

The prior distribution of the configuration θ can be arbitrarily defined through the prior

transition probabilities (3.2.2) and is not shown in Figure 3.1.

3.2.4 Posterior

The advantage of the conjugacy is that the efficient forward-backward algorithm described

by Hofmann (2007) can be used to directly sample from the marginal posterior f(θ |y)

of the change points. Sampling from the conditional posterior f(ξ |θ,y) of the levels

parameter ξ is also easy due to the choice of the conjugate parameter prior. Thus, in order

to estimate the full posterior distribution of θ and ξ, ordinary Monte Carlo estimation is

possible.
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yt

xt ξt

ξθ

φ

t = 1, . . . , n

Figure 3.1 – Graphical model of the proposed framework.

Sampling the change points

In the so-called forward step, we can compute the following recursion for the conditional

density of the counts yt, yt+1, . . . , yn (t ∈ {2, 3, . . . , n − 1}) given that the j-th change

point (j ∈ {1, 2, . . . , t − 1}) occurred just before:

f(y[t,n] | θj = t − 1) =
n∑

s=t

f(y[t,n], θj+1 = s | θj = t − 1)

=

n∑

s=t

f(y[t,n] | θj+1 = s, θj = t − 1) P(θj+1 = s | θj = t − 1)

=
n∑

s=t

fblock(y[t,s])f(y[s+1,n] | θj+1 = s) P(θj+1 = s | θj = t − 1).

(3.2.9)

Note that for ease of notation the terms f(y[n+1,n] | θj+1 = n) shall evaluate to unity for

all j, similarly as an empty product from n + 1 to n.

So the conditional densities f(y[t,n] | θj = t − 1) conditioning on the j-th change point

position, which are indexed by the time t, depend on the densities

f(y[t+1,n] | θj+1 = t), . . . , f(y[n,n] | θj+1 = n − 1), f(y[n+1,n] | θj+1 = n) ≡ 1

for the (j + 1)-th change point. The start for this recursion is the single density value at

j = n − 1 with t = n,

f(y[n,n] | θn−1 = n − 1) = fblock(yn),

because the probability P(θn = n | θn−1 = n−1) equals unity. Afterwards, the conditional

densities for j = n − 2, n − 3, . . . , 1 can be computed. Finally, by setting j = 0 and t = 1
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3 Conjugate change point models

the unconditional density of the whole time series y is obtained, which is the marginal

likelihood of our whole model:

f(y) =

n∑

s=1

fblock(y[1,s])f(y[s+1,n] | θ1 = s) P(θ1 = s). (3.2.10)

The backward step consists of computing the posterior transition probabilities of the

change point locations, using the conditional densities from the forward step. From

Hofmann (2007, p. 38), we have

P(θj+1 = s | θj = t − 1,y) =
fblock(y[t,s])f(y[s+1,n] | θj+1 = s) P(θj+1 = s | θj = t − 1)

f(y[t,n] | θj = t − 1)
,

(3.2.11)

for next change point times s = t, t + 1, . . . , n, for last change point times t = j + 1, j +

2, . . . , n and for last change point indexes j = 1, 2, . . . , n − 1. Similarly as for the prior

Markov process of the change points, the posterior starting distribution is obtained with

j = 0, t = 1, yielding

P(θ1 = s |y) =
fblock(y[1,s])f(y[s+1,n] | θ1 = s) P(θ1 = s)

f(y)
, (3.2.12)

for the locations s = 1, 2, . . . , n of the first change point θ1.

In order to sample one posterior realization of the change point configuration θ, first

draw the first change point location θ1 from the posterior starting distribution in (3.2.12)

and set j = 1. Second, if the j-th change point is at t − 1 < n, then draw the location

of the next change point θj+1 from the transition distribution in (3.2.11). Afterwards

increment j and repeat the second step. However, if θj = n, all k := j − 1 change points

for the sample are already there, and the posterior realization is θ = (θ1, . . . , θk). This

may be an empty tuple if k = 0 and there are no change points at all.

In the sequential sampling algorithm, the posterior probability of a change points con-

figuration can be computed sequentially as well. If the first change point is at s, we

initialize the value with P(θ1 = s) from (3.2.12). Note that this probability has already

been computed in order to sample the first change point location. Afterwards, until the

change point location n is drawn (what finishes the configuration sample), multiply the

saved value with the appropriate transition probability from (3.2.11). Again, this prob-

ability is available anyway, so there is no relevant overhead from computing the posterior

probability P(Θ = θ |y) of a sample θ. These probabilities can then later be used to

identify the maximum a posteriori (MAP) change point sample θMAP with the highest

posterior probability. If one is interested in a single step function for the description of the

data y, then this model θMAP is “the best” in terms of the used probabilistic modelling

of the data process which has been found in the sampling process.

24



3.2 Modelling framework

Sampling the parameters given the change points

Conditional on the partition θ with k change points, the posterior density of the levels ξ

is

f(ξ |θ,y) ∝ f(y | ξ,θ)f(ξ |θ)

=
k+1∏

j=1

∏

t∈(θj−1,θj ]

f(yt | ξ(j))f(ξ(j) |φ)

∝
k+1∏

j=1

fblock(ξ
(j) |y(θj−1,θj ],φ)

=
k+1∏

j=1

f(ξ(j) |φ(θj−1,θj ]).

So we can sample from the k+1 independent block posterior distributions f(ξ(j) |φ(θj−1,θj ]),

which are updated prior distributions with parameters φ(θj−1,θj ], to obtain the realizations

of the parameter levels ξ(j). Together with θ, these yield the samples of the parameters

ξt via the deterministic link (3.2.1).

At last, we have produced a posterior sample of the parameters trend {ξt}n
t=1. Note

that only this trend can be sensibly compared between different change point samples

θ, but not the unique levels ξ(j). For example, we can use Bayesian model averaging of

the different step functions if we are only interested in the trend and not in the change

points. This is very easy because the samples ξt,[b], b = 1, . . . , B, say, are samples from

the marginal posterior

f(ξt |y) =

∫
f(ξt |θ,y)f(θ |y) dθ.

So if we just “forget” the change points configuration samples θ[b], we have averaged the

model parameters over the change point models. While this model averaged trend will

still be a step function, it will typically be smoother and is able to capture big jumps

better than e. g. splines based approaches with global smoothness assumptions.

Computational considerations

Usually at least a few thousand samples will be required for serious posterior inference.

Then, it is advisable to move on to the next change points in parallel across the samples,

finishing those samples where θj = n is generated. So if there are m samples with j-th

change point at t−1, then we need to compute the posterior probabilities P(θj+1 = s | θj =

t − 1,y) only once and not m times.

In the practical implementation of the posterior transition probabilities computation, a

trade-off between faster sampling and less memory consumption must be made. On the
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3 Conjugate change point models

one hand, saving all transition probabilities from (3.2.11) before the start would accelerate

the sampling, because we would not need to compute them again during sampling. In

fact, not only the denominators but also the numerators in (3.2.11) are all computed in

the forward step: they are summed up in (3.2.9). But the memory consumption for these

numerators is cubic in the length n of the time series: Precisely, there are

n−1∑

j=1

n∑

t=j+1

n∑

s=t

1 =
n3 − n

6

numerator values. On the other hand, computing the necessary numerators again during

the sampling needs more CPU time (how much more depends on the homogeneity of the

samples), but saves us memory. And the memory consumption can be high: For n = 400,

we need to save 10 666 600 numbers with double precision, giving a memory consumption

of approximately 85.33 MB, because in the used GCC implementation 64 bits are used for

a double number. This is still manageable on recent personal computers. But already for

a ten times longer time series, the memory usage is almost 1000 times larger and cannot

be handled easily any longer. Therefore in the implementation, for n ≤ 400 the faster

approach is used, while for n > 400, the more parsimonious strategy is applied.

Of course, (only) in principle the sampling scheme for the change points configurations

is not necessary: The posterior probability of every θ can be computed via Bayes’ theorem

P(Θ = θ |y) =
P(Θ = θ)f(y |θ)

f(y)
,

because the prior probability is determined by (3.2.3) and (3.2.4), and the likelihood (3.2.8)

as well as the normalization constant (3.2.10) can be computed. But the huge dimension

of the model space renders the use of a general purpose sampler for finite discrete dis-

tributions infeasible. There are 2n−1 possible change point configurations, so even for a

moderate length n = 100 there are approximately 6.34 · 1029 possibilities.

3.2.5 Handling of missing data

Let ot ∈ {0, 1} be the observation indicator for the response value yt. So we assume the

data is available as the length n vectors y, o and possibly x, where for ot = 0 the response

is missing and the saved value yt is just a dummy which will not be processed. The times

for which the responses are missing are collected in the set M := {t | ot = 0}, while the

times with observed responses form the complementary set N \M. What modifications

are necessary to accommodate the case when M 6= ∅, and we want to sample from

f(ξ,θ |yN\M)?

Algorithmically simplest, but computationally demanding, would be Gibbs sampling

with yM as an auxiliary variable, whose current sample y∗
M is initialized at some valid
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3.2 Modelling framework

point inside the support of the observation density before the loop. If there are also

missing covariates xt for ot = 0, then similar values like those available can be imputed

into the likelihood. The MCMC algorithm would iterate between two steps:

1. In the first step, ξ and θ are drawn from the full posterior f(ξ,θ |y∗
M,yN\M),

using the sampling scheme exactly as in section 3.2.4. Thus, we draw from the full

conditional distribution of (ξ,θ).

2. In the second step, the auxiliary variable y∗
M is drawn from the likelihood f(yM | ξ,θ),

that is |M| independent samples with the parameters being determined by the cur-

rent samples of ξ and θ are generated:

y∗t
ind
∼ f(· | ξt,xt), t ∈ M.

This distribution is the full conditional distribution of yt, resulting in a draw from

the full conditional distribution of yM.

The Markov chain then eventually converges to f(yM, ξ,θ |yN\M). If we are not inter-

ested in the distribution of yM, we can just use the samples from the marginal distribution

f(ξ,θ |yN\M). A major disadvantage of this Gibbs sampler is that the forward step has

to be recomputed in each iteration, because the auxiliary variable sample y∗
M changes.

Furthermore, convergence diagnosis for the Markov chain must be done. These two issues

render the Gibbs sampling approach unusable for all practical purposes.

Much better is drawing the parameter levels and the change points directly from

f(ξ,θ |yN\M). This requires only one forward step, and is therefore implemented in

the supplementary R-package. The idea is that the definition of the times 1, 2, . . . , n does

not change, but that those in M do not have associated observed responses. So it will be

possible to have a change point θj = t at a missing time t ∈ M. The necessary modifica-

tion is to replace y with yN\M everywhere, because we want to condition on the observed

data only. This means that all sets of the form y[t,s] are replaced with y[t,s]\M.

In the forward-backward algorithm, all conditional densities and the resulting trans-

ition probabilities derive from the block marginal likelihoods defined in (3.2.6). For the

recursion in (3.2.9), functions

gt(s) := fblock(y[t,s]\M) =

∏
r∈[t,s]\M f(yr | ξ(j)) · f(ξ(j))

fblock(ξ
(j) |y[t,s]\M)

must be evaluated at s = t, t + 1, . . . , n, for decreasing start times t. Obviously the set

[t, s] \M only changes at times s 6∈ M, so gt(s) is a step function with jumps at s 6∈ M.

If already the first response yt in the window [t, n] is missing (s = t ∈ M), then the first
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function value is

gt(t) = fblock(y∅) =

∏
r∈∅ f(yr | ξ(j)) · f(ξ(j))

fblock(ξ
(j) |y∅)

= 1,

because the empty product evaluates to 1 and fblock(ξ
(j) |y∅) ≡ f(ξ(j)). Using this simple

modification, we can sample from f(θ |yN\M) using the otherwise unchanged forward-

backward algorithm.

Similarly, to draw the j-th parameter level ξ(j) for a given change point configuration θ,

we use the updated parameter level density f(ξ(j) |φ(θj−1,θj ]\M). Note that if there are no

observations from yN\M in the j-th block, then we draw ξ(j) from its prior distribution.

So we really need a proper prior for the parameter levels, because otherwise we could not

sample from it.

3.3 Exact and approximate predictive assessment

This section introduces the key topic of this chapter: the comparison of five different

predictive sampling schemes. Section 3.3.1 describes the exact and approximate sampling

schemes for the one-step-ahead prediction, while section 3.3.2 does the same for the general

cross-validated prediction. Both sections discuss how logarithmic scores can be computed

analytically for the model class of this chapter. Section 3.3.3 finally turns to the posterior-

predictive sampling, which can be useful for goodness-of-fit assessment of the change point

models. The last section 3.3.4 compares the sampling schemes definitions and summarizes

the logarithmic score estimation results.

3.3.1 One-step-ahead predictive assessment

Given the time series from time 1 to time n, how well can our model predict the observation

at the next time n + 1? That is, how good are the one-step-ahead predictions in our

change point model? This classic task of time series models has been called “prequential

forecasting” by Dawid (1984, p. 278), merging the adjectives of the terms probability

forecasting and sequential prediction.

Exact sampling

One way to assess the one-step-ahead prediction performance in our model is to try the

prediction for the counts at times t + 1 = 1, 2, . . . , n, if we feed our algorithm only with

the counts at times 1, 2, . . . , t. For t = 0, we predict the first observation y1 from the prior

predictive distribution f(y1). The forward and backward steps must thus be computed

n − 1 times, one time less than the number of observations because the prior predictive
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samples are directly obtained from the data generating distribution parametrized by prior

parameter samples. The following sampling details are tailored to the more complicated

case t > 1. Note that a particle filter algorithm could avoid the repeated forward and

backward computations implied by our posterior sampling approach from section 3.2.4

(see Doucet, De Freitas, and Gordon (2001) for sequential Monte Carlo methods).

For the sampling from the predictive density f(yt+1 |y[1,t]), the idea is to use the con-

ditional independence of the observations yt given the parameters ξt:

f(yt+1 |y[1,t]) =

∫
f(yt+1 | ξt+1)f(ξt+1 |y[1,t]) dξt+1

So if we can sample from f(ξt+1 |y[1,t]), we just plug the realization ξt+1 into the likelihood

and keep y∗t+1 ∼ f(· | ξt+1,xt+1) as a sample from the predictive distribution.

One solution is to give the algorithm the response and observation indicator vectors

(y1, . . . , yt, 0) and (o1, . . . , ot, 0) to mark yt+1 as missing. This naturally produces samples

from f(ξt+1 |y[1,t]).

Another solution exploits the sequential structure of the model. Consider

f(ξt+1 |y[1,t]) =

∫∫
f(ξt+1 | ξt,θ[1,t])f(ξt,θ[1,t] |y[1,t]) dξt dθ[1,t],

where θ[1,t] is the change points configuration in the time series y[1,t]: The next parameter

ξt+1 only depends on the last parameter ξt and θ[1,t], because if there is no change point

at time t, then ξt+1 ≡ ξt, else we draw the next parameter from the prior f(ξ |φ). This

mixture of a point mass at ξt and the prior distribution is weighted by the probability of

a change point at time t given θ[1,t]. If θ[1,t] contains k change points with the last change

point occurring at time s, this probability is

P(θk+1 = t | θk = s,y[1,t]) = P(θk+1 = t | θk = s),

equal to the respective prior transition probability. The reason is that the event of a

change point occurrence at time t is independent of the observations until time t – they

are happening before this change point could have an effect. For the flat number prior,

this probability equals (k + 1)/(t + 1), which is the “success probability” already visible

in (3.2.5). See Hofmann (2007, p. 34) or Held, Hofmann, Höhle, and Schmid (2006,

section 2.6) for more details on the derivation. For the binomial number prior, this

probability equals the hyperparameter π. So if we have sampled ξt and θ[1,t] with k

change points, afterwards we sample

ξt+1 ∼ {1 − P(θk+1 = t | θk = s)} δξt
+ P(θk+1 = t | θk = s)f(ξ |φ).

Both solutions require n− 1 forward steps: for the first solution, the algorithm must be

run with the observation indicator vectors

(o1, 0, . . . , 0), (o1, o2, 0, . . . , 0), . . . , (o1, o2, . . . , on−1, 0),
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and for the second solution we must start the algorithm for each of the data vectors

y1,y[1,2], . . . ,y[1,n−1].

Note that this second solution is the basis for the approximate sampling described below.

Approximate sampling

The exact sampling from f(ξt+1 |y[1,t]) is computationally expensive, because for every

time t, a new forward step is necessary. An approximate version of the sampling is inspired

by Marshall and Spiegelhalter (2003).

The idea is to use the whole time series y for only one forward-backward run. That is,

the same sampling probabilities (3.2.12) and (3.2.11) are used for all learning sets {y[1,t]},
t = 1, 2, . . . , n − 1. So the change point locations θ[1,t] up to time t which are used above

are not drawn from f(θ[1,t] |y[1,t]) but from f(θ[1,t] |y). In practice, the change points

sampler is run on the whole data y and produces samples of θ. Then for the processing

of the learning set y[1,t], all change points at times t, t + 1, . . . , n − 1 are deleted from

the sample vectors to produces approximate samples of θ[1,t], which conform with the

maximum change point time t − 1 for the reduced data y[1,t]. (The conventional “change

point” at the last time t is deterministic and is of course included.)

However, sampling the parameter level ξ(k+1) ≡ ξt of the block including the time t from

the correct density f(ξ(k+1) |θ[1,t],y[1,t]) is easy: it is just the block posterior distribution

fblock(ξ
(k+1) |y(θk,t],φ). Therefore, the unknown part y[t+1,n] influences the parameter

sample ξt only indirectly, through the “pruned” samples θ[1,t] obtained from θ. Hence,

the conservatism concerning the sampling of ξt+1 and y∗t+1, which is the price for the

reduction of computing time in this approximate sampling scheme, should be moderate.

The proposed approximation of the one-step-ahead predictive density is thus

f(yt+1 |y[1,t]) =

∫∫∫
f(yt+1 | ξt+1)f(ξt+1 | ξt,θ[1,t])f(ξt,θ[1,t] |y[1,t]) dξt+1 dξt dθ[1,t]

=

∫∫∫
f(yt+1 | ξt+1)f(ξt+1 | ξt,θ[1,t])f(ξt |θ[1,t],y[1,t])f(θ[1,t] |y[1,t]) dξt+1 dξt dθ[1,t]

≈
∫∫∫

f(yt+1 | ξt+1)f(ξt+1 | ξt,θ[1,t])f(ξt |θ[1,t],y[1,t])f(θ[1,t] |y) dξt+1 dξt dθ[1,t]

=: f̃(yt+1 |y[1,t]).

Analytical logarithmic scores

The proposed conjugate change point model allows the analytical computation of the

one-step-ahead logarithmic scores

− log f(y1),− log f(y2 | y1), . . . ,− log f(yn |y[1,n−1]),
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because all marginal likelihoods f(y[1,t]), t = 1, . . . , n can be calculated in an exact one-

step-ahead sampling loop: While for t = 1, we just use f(y1) = fblock(y1) and already

have the first score, for t ≥ 2 we obtain f(y[1,t]) from (3.2.10) as a by-product from the

(reduced) posterior sampling given the data y[1,t]. Remember that the marginal likelihood

is computed at the end of the forward step, which is necessary for the change points

sampling in the backward step. Having finished the exact one-step-ahead validation loop,

we can compute the remaining logarithmic scores

− log f(yt+1 |y[1,t]) = log f(y[1,t]) − log f(y[1,t+1]), t = 1, . . . , n − 1.

Note that the sum of the one-step-ahead logarithmic scores equals the negative marginal

log-likelihood. The well-known decomposition of the marginal likelihood of the vector y

into the conditional scalar densities,

f(y) = f(yn |y[1,n−1])f(yn−1 |y[1,n−2]) · · · f(y2 | y1)f(y1),

is the equivalent on the multiplicative scale. Therefore the mean one-step-ahead log-score

can be computed directly from the marginal likelihood in the conjugate change point

model as LogS = − 1
n log f(y). Since this is a strictly monotone transformation, the

model comparison based on the one-step-ahead log-score is equivalent to that based on

the marginal likelihood. Another consequence is that the mean one-step-ahead log-score

of the reversed time series is identical to the log-score of the original time series, because

the assumed prior and likelihood are invariant to the time direction and so the marginal

likelihood is identical.

The estimation of the logarithmic scores using the Monte Carlo approach on page 14

is nevertheless sensible, because we can thus assess the Monte Carlo error which also

contributes to the difference between exact sampling and approximate sampling results.

We have compared the analytical one-step-ahead log-scores with the corresponding exact

sampling log-scores for all examined models in the case studies from sections 3.4.2, 3.5.2

and 3.6.2. The maximum absolute differences for the three sections were 0.051, 0.065 and

0.1, while the mean deviances were 0.004, 0.003 and 0.005, respectively. These Monte

Carlo errors are very small compared to the approximate sampling errors, with maximum

deviances 1.924, 1.705 and 1.253, and mean deviances 0.107, 0.098 and 0.079, respectively

in the three sections when all models are pooled. For illustration we show comparison

plots of exact sampling versus analytical log-scores for three selected models in Figure 3.2.

Only in panel (b) some points in the upper right corner are lying slightly away from the

identity line.

31



3 Conjugate change point models

Figure 3.2 – Comparison of analytical one-step-ahead log-scores (x-axis) and corresponding exact

sampling log-scores (y-axis), for three models from sections 3.4.2, 3.5.2 and 3.6.2.
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3.3.2 Cross-validation assessment

How well can our model predict the observations yt at times t ∈ T ⊂ {1, 2, . . . , n} (the

test set), if we only provide it with the observations in N \ T (the learning set)?

To answer this question, usually cross-validation is done, that is, the original data y

is repeatedly split into disjoint test and learning sets. A popular choice is to define the

test set T := {t} for all times t = 1, 2, . . . , n in turn. This corresponds to a leave-one-out

cross-validation of the model. Yet other choices may make sense, e. g. leave out whole

months in turn if the time resolution is one day. Also, the prediction of the remaining

times in T := {t + 1, t + 2, . . . , n} can be of interest. If t < n − 1, this would correspond

to a multiple-steps-ahead prediction because |T | > 1, in contrast to the one-step-ahead

prediction being assessed in section 3.3.1.

Again we want to base the predictive assessment on samples y∗
T from the predictive

density f(yT |yN\T ). So how can we efficiently generate such samples?

Exact sampling

For exact sampling from f(yT |yN\T ), we will use the conditional independence of the

observations given the parameters and change points. This leads to

f(yT |yN\T ) =

∫∫
f(yT | ξ,θ)f(ξ,θ |yN\T ) dξ dθ,

meaning that sampling from the posterior density f(ξ,θ |yN\T ) based on the learning

set, followed by sampling from the likelihood f(yT | ξ,θ), produces the required samples

y∗
T .
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3.3 Exact and approximate predictive assessment

The sampling from the learning set posterior is easy after the discussion of missing data

handling in section 3.2.5: If the original data comprised the indicator vector o, we just

mark each time in the test set T as missing to form the learning set N \ T . So we let

our sampler run with indicator variables õt := ot · (1 − IT (t)). This careful handling is

necessary because if the observation yt was missing in the original data (ot = 0), it is of

course also missing in the learning set. Finally, we get samples from f(ξ,θ |yN\T ).

Approximate sampling

The exact sampling from the cross-validation density f(yT |yN\T ) requires much compu-

tational effort, because for every test set T , a new forward step is necessary to be able to

draw from f(θ |yN\T ) in the backward step. This is relevant because usually the number

of test sets increases at the order O(n), where n is the number of time points. As the

effort for a forward step is O(n3), the cross-validation effort is usually O(n4).

An approximate version does only once sample from f(θ |y) and thus requires just one

forward step for all cross-validation iterations. Given the change points θ, this “Marshall-

Spiegelhalter version” proceeds with sampling ξ |θ,yN\T from the correct conditional

posterior distributions, as was sketched at the end of section 3.2.5. The final generation of

the predictive samples y∗
T by sampling from the likelihood f(yT | ξ,θ) remains unchanged.

That means, we make the approximation

f(yT |yN\T ) =

∫∫
f(yT | ξ,θ)f(ξ,θ |yN\T ) dξ dθ

=

∫∫
f(yT | ξ,θ)f(ξ |θ,yN\T )f(θ |yN\T ) dξ dθ

≈
∫∫

f(yT | ξ,θ)f(ξ |θ,yN\T )f(θ |y) dξ dθ

=: f̃(yT |yN\T ).

Analytical logarithmic scores

The proposed conjugate change point model allows the analytical computation of the

leave-one-out logarithmic scores

− log f(y1 |yN\{1}),− log f(y2 |yN\{2}), . . . ,− log f(yn |yN\{n}),

because all marginal likelihoods f(yN\{t}), t = 1, . . . , n can be calculated from (3.2.10)

and are a by-product of the reduced exact posterior sampling given the data yN\{t}.

Having finished the exact leave-one-out validation loop, we can compute the logarithmic

scores as

− log f(yt |yN\{t}) = log f(yN\{t}) − log f(y), t = 1, . . . , n,
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3 Conjugate change point models

using the full data marginal likelihood f(y) from the full data forward step. Analogously,

more general cross-validation logarithmic scores of the form − log f(yT |yN\T ) could be

calculated.

Again we can use the Monte Carlo estimated logarithmic scores to assess the Monte

Carlo error of the exact sampling results. We have compared the analytical with the exact

sampling log-scores for all examined models in the case studies. We found that the max-

imum absolute differences for the three sections were 0.017, 0.026 and 0.03, respectively,

while the mean absolute differences were 0.002, 0.002 and 0.002. These Monte Carlo errors

are very small compared to the approximate sampling errors, with maximum deviances

1.987, 1.007 and 1.357, and mean deviances 0.062, 0.062 and 0.054, respectively in the

three sections when all models are pooled. For illustration we show comparison plots for

three selected models in Figure 3.3. In all three panels, no clear deviations of points from

the identity line can be reported. This is not surprising because the maximum and mean

deviances are even lower here than for the one-step-ahead log-scores (cf. page 31), where

already almost no large errors were visible in the comparison plots.

Figure 3.3 – Comparison of analytical leave-one-out log-scores (x-axis) and corresponding exact

sampling log-scores (y-axis), for three models from sections 3.4.2, 3.5.2 and 3.6.2.
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3.3.3 Goodness-of-fit assessment

Obtaining samples y∗ from the posterior-predictive distribution

f(y∗ |y) =

∫∫
f(y∗ | ξ,θ)f(ξ,θ |y) dξ dθ

is easy because f(y∗ | ξ,θ) =
∏

t∈N f(y∗t | ξt): In each iteration of the posterior sampling

scheme from section 3.2.4 which produces a sample for ξt, draw y∗t from the likelihood

f(yt | ξt), for all times t ∈ N . The asterisk marks the random quantity y∗ as a hypothet-

ical replicated data vector, replicated from the original observed data vector y: Generally
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3.3 Exact and approximate predictive assessment

this means that the replication y∗ comes from the same model as the observed data y,

particularly that potential covariates xt for the observation yt are identical for the replica-

tion y∗t . However, the posterior-predictive distribution conditions on the observed data y,

and therefore issues a probabilistic forecast for a new independent replicate data set, based

on the information in the observed data.

Afterwards, the estimated distribution f(y∗t |y) can be compared to the observed count yt.

Note that yt influences its predictive distribution directly. So these posterior-predictive

checks are goodness-of-fit checks of our model rather than predictive checks. The cor-

responding question is how well our model can fit the known data, rather than how well

our model can predict new data. The question could also be phrased “Is the model con-

sistent with the data?”, as Gelman, Carlin, Stern, and Rubin (2003, p. 159) call their

posterior-predictive checking section.

If PIT histograms are produced from posterior-predictive samples, they usually show

pictures typical for an overdispersed forecast. This is then a sign for a good fit of the

probability model to the given data: if yt is fitted well by the model, the density f(y∗t |y)

will be centered around the known yt, thus producing a PIT value near 0.5. Very low

or very high PIT values would point out badly fitted counts, which could be outliers in

the data set. So for a well-fitting model we expect to see a hump-shaped histogram as in

panel (c) on page 10.

Analogously, if we look at mean scores produced from posterior-predictive samples, they

show us the goodness-of-fit of the considered model rather than the predictive performance

for new data. In fact, there are even estimation approaches based on minimizing the mean

score with respect to the model parameters (Gneiting and Raftery 2007, p. 374). Since

we do not use the scores for estimating the model, we can use them for the goodness-of-fit

assessment after the Bayesian model estimation, with smaller mean scores corresponding

to a better fit of the model. Relatively large score values for single data points can point

out badly fitted counts, analogously to extreme posterior-predictive PIT values.

3.3.4 Summary

The five different predictive sampling schemes are illustrated in Figure 3.4. The graphic

emphasizes the difference between the two predictive assessments that we have introduced

in this section: While the leave-one-out cross-validation assessment is a symmetric pro-

cedure which does not require the time series structure of the data, the one-step-ahead

assessment is asymmetric and is only sensible because we know the ordering of the data

points. The term “asymmetric” summarizes the fact that for each predicted observa-

tion, a different number of observed previous data points is utilized. If we reversed the

time series, the result of the following one-step-ahead assessment could differ from those
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3 Conjugate change point models

obtained from the original time series, except for the mean log-score and the marginal

likelihood. Yet, we would get the same leave-one-out assessment result as before, also for

the (continuous) ranked probability score. The approximate versions are distinguished

from the corresponding exact assessment strategies by the fact that data points are now

partially observed which were treated as unobserved by the exact versions. Finally, the

posterior-predictive sampling differs from the leave-one-out sampling schemes in the pre-

dicted (replicate) observation being fully observed.

Exact one-step-ahead: ?

Approximate one-step-ahead: ?

Exact leave-one-out: ?

Approximate leave-one-out: ?

Posterior-predictive: ?

Figure 3.4 – Summary graphic of the five sampling schemes, for an example of n = 6 nodes where

the observation at t = 4 is predicted, which is symbolized by the question marks (?).

The circles represent observed data ( ), partially observed data ( ) and unobserved

data ( ). While observed data is used for both the change points sampling and

the parameter levels sampling, partially observed data is only used for the change

points sampling. Unobserved data is not used for the posterior sampling.

We were able to assess the Monte Carlo error inherent to the logarithmic score estima-

tion based on samples (cf. page 14). We have observed that using a sample size of 10 000

is well sufficient to very accurately calculate both one-step-ahead and leave-one-out logar-

ithmic scores by exact sampling, without needing the marginal likelihood formula (3.2.10).

The results are encouraging, because although we do have the marginal likelihood formula

for the conjugate change point model, in more complex models it is usually not available,

particularly if MCMC methods need to be employed to produce posterior samples. For

example, Chapter 4 examines Bayesian normal random effects models which are fitted by

Gibbs sampling. We can hope that the small Monte Carlo errors translate to that model

family. Yet, also for the predictive assessment of the conjugate change point models the

results are encouraging, because the (continuous) ranked probability scores really need to

be estimated using samples, and now we can be more confident about their precision.

36



3.4 Poisson-Gamma model

3.4 Poisson-Gamma model

The Poisson-Gamma change point model is described in section 3.4.1, which is a special

case of the general framework from section 3.2. The proposed methodology from sec-

tion 3.3 is applied in a case study using a data set on coal mining previously analyzed in

the literature in section 3.4.2.

3.4.1 The special change point model

Data

The data form to which the Poisson-Gamma change point model may be applied is a

time series y of counts yt ∈ N0. For example, yt could be the infectious disease count in

year t in a certain region. In parallel, positive offsets e1, e2, . . . , en are recorded. So the

covariates are here xt = et. For the infectious disease count yt, the number of susceptible

persons in year t could be relevant and be chosen to be the offset et.

Model

We assume independent Poisson distributions for the counts yt with rates λt relative to

the offsets et:

yt |λt, et
ind
∼ Po(etλt), t ∈ N .

So the parameters are scalar for this model (ξt = λt) and the response density is f(yt | ξt,xt) =

Po(yt | etλt).

Prior

As described on page 21, we need to select a conjugate parameters prior. Since we have

specified a Poisson likelihood for the observed counts, the gamma distribution must be

the prior for the rate parameters. So for the k+1 rate levels independent identical gamma

priors with hyperparameters α, β > 0 are specified,

λ(j) iid
∼ G(α, β), j = 1, . . . , k + 1.

The hyperparameter φ has elements α, β here, and f(ξ(j) |φ) = G(λ(j) |α, β).
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3 Conjugate change point models

For the block marginal likelihood (3.2.6) we have

fblock(yS) =

∫

R+

∏

t∈S
Po(yt | etλ

(j)) · G(λ(j) |α, β) dλ(j)

=

∫

R+

∏

t∈S

(etλ
(j))yt

yt!
exp(−etλ

(j)) · βα

Γ(α)
(λ(j))α−1 exp(−λ(j)β) dλ(j)

=
∏

t∈S

eyt

t

yt!
· βα

Γ(α)

∫

R+

(λ(j))
P

t∈S
yt+α−1 exp

(
−λ(j)

[∑

t∈S
et + β

])
dλ(j)

=
∏

t∈S

eyt

t

yt!
· βα

Γ(α)

Γ(
∑

t∈S yt + α)

(
∑

t∈S et + β)(
P

t∈S
yt+α)

.

While this is not exactly a Poisson-Gamma density (because different counts yt share the

same rate λ(j)), the derivation of this block density is analogue to the derivation of a

Poisson-Gamma density.

Posterior

In order to sample the rate parameters given the change points, we need the block posterior

density (3.2.7). Its form can be derived from the product of the block Poisson likelihood

and the Gamma prior for the rate level:

fblock(λ
(j) |yS , α, β) ∝

∏

t∈S
Po(yt | etλ

(j)) · G(λ(j) |α, β)

∝ (λ(j))
P

t∈S
yt+α−1 exp

(
−λ(j)

[∑

t∈S
et + β

])

∝ G

(
λ(j) |

∑

t∈S
yt + α,

∑

t∈S
et + β

)
.

3.4.2 Case study

We use the data set on coal-mining disasters in Great Britain which has been introduced by

Maguire, Pearson, and Wynn (1952) and has been extended the last time by Raftery and

Akman (1986). In its present form, the data set gives the time interval in days between

explosions in British coal mines involving 10 or more fatalities, from the beginning of

1851 until the end of 1962. This data has been used frequently in the literature, e. g.

by Denison, Holmes, Mallick, and Smith (2002, p. 179). We will examine the number of

disasters per year; the total number is 191. The time series of length n = 112 is plotted

in Figure 3.5.
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Figure 3.5 – Coal-mining disasters data: Number of disasters (with at least 10 fatalities) per

year.

Model fitting

The assumption of Poisson distributions for the yearly disaster counts yt is sensible, be-

cause we have aggregated events in fixed length time intervals. Unfortunately we do not

have the time series of the number of working coal mines in Great Britain, so we can not

use them as offsets. Instead we set et ≡ 1 for all times t. This means that e. g. higher rates

could possibly be due to more working coal mines with comparable risks of explosions,

and need not be evidence for higher risks in the same coal mines.

The first model we will fit to the data uses the flat number prior for the change points,

and hyperparameters α = 1.7054, β = 1 for the rates prior, such that the prior mean

and variance equal the average disasters count 1.7054. This model was also considered by

Hofmann (2007, p. 26).

The second model we want to assess also uses the flat number prior for the change

points, but with hyperparameters α = 0.017054, β = 0.01 for the rates prior. So the prior

mean of the rates still equals 1.7054, but the variance is now 170.54, leading to a vaguer

prior.

39



3 Conjugate change point models

The last model we consider uses the binomial number prior with probability π = 0.2 for

a change point between any two years of the time series. The rates prior hyperparameters

are chosen as for the first model (α = 1.7054, β = 1).

Figure 3.6 – Posterior rates trends for the three change point models. Pointwise HPD (dashed

lines) as well as simultaneous (dotted lines) 95% credible intervals, which were

estimated by simulating 10 000 samples, for the rates trend are given. The change

point locations in the respective MAP models are marked with vertical lines.
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We have produced 10 000 samples each from the posterior distributions. The estimated

rates trends and the change point locations in the MAP model are shown in Figure 3.6.

The simultaneous credible bands for the rates trends were computed with the quantile

method of Besag, Green, Higdon, and Mengersen (1995, p. 30).

The differences between the model fits are interesting: Both model 1 in panel (a) and

model 2 in panel (b) have their MAP model change points at t = 41, which corresponds

to the year 1891. The posterior probabilities for these configurations are 5.28 · 10−3 and

1.72 · 10−1, respectively. Yet, the posterior rates trend averaged over the change point

configurations is much more variable for model 1 than for model 2. This is in fact an

example where a vaguer hyperprior leads to a more parsimonious model, a phenomenon

known as Lindley’s paradox (Lindley 1957). On the other hand, model 3 in panel (c)

exhibits an even more wiggly rates trend, and its MAP model with probability 1.29 ·10−11

contains 8 change points after the years 1878, 1893, 1914, 1929, 1932, 1942, 1946 and 1947.

This model obviously overfits the data.

Note that the posterior probability mass of the respective change points distribution

f(θ |y) is much more spread out to different change points configurations for model 3

than for model 1, and also more for model 1 than for model 2: this can be seen from

the MAP model probabilities of the best configurations found in the respective samples

θ[1], . . . ,θ[10 000]. A consequence is that the exploration of the posterior should be easiest
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3.4 Poisson-Gamma model

for model 2, and hardest for model 3. For the latter, model averaging is extremely

important in order not to trust a questionable best change points configuration – running

the sampler again could lead to a totally different MAP model configuration.

The log marginal likelihood values log f(y) of the three change point models are −177.487,

−187.21 and −177.986, respectively. So if we should decide on the basis of the log marginal

likelihood, model 1 would be our best choice. Yet, we want to examine the calibration

and predictive capabilities of the three models before making a final decision.

One-step-ahead predictive assessment

For practical purposes, good one-step-ahead prediction is especially important. We want

to check that for the three models in question using the sampling tools from section 3.3.1,

and the PIT and scores from chapter 2.

First, we generate 10 000 rates samples, both from the exact and the approximate

one-step-ahead predictive distributions, for all three models. That is, for each model,

and for all last times t = 0, 1, . . . , n − 1 = 111, we sample 10 000 variates exactly from

f(λt+1 |y[1,t]) and again 10 000 variates from the approximation f̃(λt+1 |y[1,t]). For the

one-step-ahead sampling of the next rate given a change point configuration, we use the

sequential approach: First the change point occurrence before the next time is sampled,

and then the rate is either drawn from the prior or set to the last rate in the observed

time series. Altogether, this takes 119, 62, 155 seconds for the exact sampling and 75, 16,

107 seconds for the approximate sampling, for the three different models, respectively.

Second, we plug each rate sample λt into the Poisson likelihood and keep one Pois-

son variate y∗t ∼ Po(λt) as a sample from the (approximated) one-step-ahead predictive

distribution Ft for time t given all prior times.

Then, we estimate the PIT values Ft(yt) and the “pre-PIT” values Ft(yt − 1), for t =

1, 2, . . . , n, using the empirical distributions F̂t of the one-step-ahead predictive samples

and the true observations yt. This is done for both sampling approaches and for all three

models, and results in the PIT histograms shown in Figure 3.7. Overall, all the models look

well calibrated. Only for model 3 in panel (c), a tendency towards too few PIT probability

in the last bin [0.9, 1.0] is observed. So the fraction of true observations falling into the

upper 10% prediction intervals is smaller than 10%, which is the fraction we expected for

perfectly calibrated predictive distributions. Therefore, the upper 10% prediction intervals

are too large. This is an argument for a slight overdispersion of model 3. This tendency is

still visible in panel (f) under the approximate sampling scheme, as the whole histogram

looks very similar to its exact counterpart. For model 1 and model 2 the histograms also

match quite well, even if the approximate panel (e) speaks for a bit better calibration of

model 1 than the exact panel (b).
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Figure 3.7 – PIT histograms for calibration assessment of the one-step-ahead prediction in the

three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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The estimated mid-PIT values 0.5
(
Ft(yt − 1) + Ft(yt)

)
, t = 1, 2, . . . , n, which were

introduced in section 2.2.1 are compared between the exact and the approximate sampling

schemes in Figure 3.8. For model 1, most departures of the approximate PIT values from

their exact counterparts occur around the probable change point 1891 in this model, see

panel (a). For model 2 in panel (b), there are more and greater differences: one might

suspect that some are related to the second step around 1950 which is visible in the model-

averaged fit in panel (b) of Figure 3.6. It is interesting that for the overfitting model 3 in

panel (c), only for a single year a relevant deviation of the approximation is observed.

Now we turn to proper scoring rules. We estimated the ranked probability scores

RPS(Ft, yt) for t = 1, 2, . . . , n. Moreover, we estimated the logarithmic scores LogS(Ft, yt).

For the prediction time t, we used the rate samples λt,[j], j = 1, . . . ,m = 10000 for the

42



3.4 Poisson-Gamma model

Figure 3.8 – Comparison of exact (x-axis) and approximate (y-axis) mid-PIT values for calibra-

tion assessment of the one-step-ahead prediction in the three change point models.

At most 5 time points where the absolute difference between the two values ex-

ceeds 0.1 are labelled.
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The exact and approximate scores of both proper scoring rules are compared in Fig-

ure 3.9. For model 1, only for a few years at the beginning of the time series there are larger

discrepancies. For the log-scores in panel (d) the overall picture is similar to the RPS in

panel (a). The same can be said about model 3 in panels (c) and (f), while the absolute

deviations of the approximate score values are even smaller. Yet, for model 2 in panels (b)

and (e), there are more larger deviations than in model 1, and the approximations do not

seem to work very well.

The differences of the approximate and exact mid-PIT values, ranked probability and

logarithmic scores are plotted against the time in Figure 3.10. Here we see more clearly

where in time large approximation errors occur: especially at the beginning of the time

series, when the difference between the exact and the approximate scheme is largest, and

around the big step in the rates trend before the turn of the century. It is difficult to

approximate the values from model 2, and easier for model 3. We expect the differences

to get smaller at the end of the time series, because then the exact and the approximate

sampling scheme share more common data. The RPS differences meet our expectations,

but there are some big mid-PIT and log-score differences near the last times.

The mean scores for the proper scoring rules assessment of the one-step-ahead pre-

diction are summarized in Table 3.1. Looking at both RPS rows in the table, it is not
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3 Conjugate change point models

Figure 3.9 – Comparison of exact (x-axis) and approximate (y-axis) scores for one-step-ahead

prediction in the three change point models (columns). The panels in the upper

row compare the RPS values, while the panels in the lower row compare the log-

scores. Time points with the 5 largest absolute differences between the exact and

approximate score values exceeding 0.25 (RPS) or 0.5 (log-score) are labelled.
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surprising that the paired permutation test comparing the RPS values from the exact and

approximate approaches gives estimated p-values 2 ·10−4 for model 1, 9 ·10−4 for model 2

and 1 · 10−4 for model 3. That is, in almost all of the 10 000 sampled permutations of

the value pairs, the resulting mean score differences were smaller than the observed differ-

ences. This suggests that the approximate assessment is conservative and underestimates

the RPS which is a generalized prediction error. If we had the exact sampling results

for the RPS, we would choose model 1 or model 3. If we had the approximate sampling

results, we would prefer model 1. If we directly compare the exact and approximate log-

scores of each model, we get p-values 4 · 10−4 for model 1, 1.8 · 10−3 for model 2 and

1 · 10−4 for model 3 of the paired permutation test. So also for this proper scoring rule,

the approximate sampling significantly underestimates the exact sampling mean scores.
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3.4 Poisson-Gamma model

Figure 3.10 – Differences of the approximate and exact mid-PIT values, ranked probability and

logarithmic scores for the one-step-ahead prediction, for model 1 ( ), model 2

( ) and model 3 ( ).
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3 Conjugate change point models

For this example if we use the logarithmic score, both the exact and the approximate

method assign model 1 the best scores – the ranking is the same under the approximate

method.

Table 3.1 – Mean ranked probability and logarithmic scores for the one-step-ahead prediction of

the three models, under the exact and approximate sampling schemes.

Scoring Rule Scheme Model 1 Model 2 Model 3

RPS
exact 0.74 0.80 0.74

approximate 0.68 0.71 0.70

log-score
exact 1.58 1.67 1.59

approximate 1.52 1.56 1.55

Leave-one-out predictive assessment

Next, we will do a cross-validation assessment where we leave one observation out in each

iteration, which is the leave-one-out strategy. How good are the models at predicting the

missing observation? And how close are the exact and approximate model assessment

results?

First, we generate 10 000 rates samples, both from the exact and the approximate

leave-one-out distributions, for all three models. That is for each model, and for each

time t = 1, 2, . . . , n = 112, we sample 10 000 variates exactly from f(λt |yN\{t}) and again

10 000 variates from the approximation f̃(λt |yN\{t}). Altogether, this takes 258, 146, 269

seconds for the exact sampling and 124, 23, 131 seconds for the approximate sampling,

for the three different models, respectively.

Second, we plug each rate sample λt into the Poisson likelihood and keep one Pois-

son variate y∗t ∼ Po(λt) as a sample from the (approximated) leave-one-out predictive

distribution Ft for time t given all other times.

The PIT histograms are shown in Figure 3.11. Model 1 and model 2 look well calibrated

if we judge them by panel (a) and panel (b), respectively. The approximate results in

panels (d) and (e) are similar to their exact counterparts. For model 3 in panel (c)

we see again a tendency towards overdispersion, which is even more pronounced in the

approximate panel (f).

The mid-PIT values 0.5
(
Ft(yt − 1) + Ft(yt)

)
, t = 1, . . . , n, are compared between the

exact and approximate sampling schemes in Figure 3.12. For model 1 and model 3, no

large deviation of an approximate PIT value from the exact PIT value is noticeable in

panels (a) and (c), respectively. For model 2 in panel (b), only two cross-validation PIT
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3.4 Poisson-Gamma model

Figure 3.11 – PIT histograms for calibration assessment of the leave-one-out prediction in the

three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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values can not be well approximated: these are again around the two steps from panel (b)

in Figure 3.6.

The exact and approximate scores of both proper scoring rules are compared in Fig-

ure 3.13. The RPS plots in the upper row look very similar to the log-score plots in the

lower row. Altogether, the exact RPS values are well approximated, except for the year

1947, which is labelled in all but one plot.

The mean scores for the proper scoring rules assessment of the leave-one-out prediction

are summarized in Table 3.2 on page 49. For the RPS values, the paired permutation

test still clearly rejects the hypotheses of same location parameters for approximate and

exact scores. However, the absolute differences between approximate and exact means are

smaller than for the one-step-ahead predictive assessment. If we had the exact sampling

results, we would choose model 1, and if we had the approximate sampling results, we
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3 Conjugate change point models

Figure 3.12 – Comparison of exact (x-axis) and approximate (y-axis) mid-PIT values for calib-

ration assessment of the leave-one-out prediction in the three change point models.

At most 5 time points where the absolute difference between the two values ex-

ceeds 0.1 are labelled.
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would choose model 3. However, the differences are quite small, and the mean model 1

scores are close to the mean model 3 scores under both sampling schemes. The differences

between exact and approximate mean log-scores are significant in the paired permutation

test for all models. If we look at the logarithmic score ranking of the models, we are again

undecided about whether model 1 or model 3 has the best predictive performance. This

result is the same under exact and approximate assessment.

Posterior-predictive checking

For comparison with the one-step-ahead and leave-one-out predictive assessments, we will

look at the results of posterior-predictive model checking.

As was described in section 3.3.3, we just plug in the posterior rate samples λt into the

Poisson likelihood to obtain samples y∗t ∼ Po(λt) from the posterior-predictive distribution

Ft, for times t = 1, 2, . . . , n. So a big advantage of these checks is that they do not require

the costly one-step-ahead- or leave-one-out-sampling of the rates, only sampling from the

likelihood is necessary in addition to the model fitting.

The PIT histograms are shown in Figure 3.14. Only model 2 in panel (b) shows a

“good” PIT histogram, while model 1 in panel (a) and especially model 3 in panel (c)

show overdispersion. This result has been expected from the rates trends in Figure 3.6:

While model 2 has a smooth fit to the given data, its rates trend does not follow every

extreme observed count. Model 1 follows the given data more closely, and model 3 already

overfits the given data. Therefore we have expected that model 3 fits the given data “best”
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3.4 Poisson-Gamma model

in the sense of “closest”, so that its posterior-predictive PIT histogram will have the most

hump-shaped form of all three models.

The mid-PIT values from the exact leave-one-out and the posterior-predictive sampling

schemes are compared in Figure 3.15. The panels look similar to those in Figure 3.12, but

there is a curvature in the point clouds which reveals the conservativeness of the posterior-

predictive PIT values: those times where the exact PIT values are smaller than 0.5, the

posterior-predictive PIT values are too large; and vice versa they are too small, where

the exact PIT values are greater than 0.5. This shrinkage is strongest for the overfitting

model 3, and weakest for the rather underfitting model 2. Note that the curvature is much

less visible for the approximate PIT values in Figure 3.12.

The exact leave-one-out scores are compared with the posterior-predictive scores in

Figure 3.16. For model 1 and model 2 in panels (a), (d) and (b), (e), the differences to

the respective plots in Figure 3.13 are not very large. This bias of the posterior-predictive

scores is more pronounced for model 3. This observation can also be explained by the

fact that model 3 fits the given data most closely among all three models, so that its

posterior-predictive distributions differ more from the corresponding exact leave-one-out

distributions than for the other models.

The mean scores are summarized and compared to the leave-one-out scores in Table 3.2.

Using the posterior-predictive model scores, model 3, the model with the most variable fit,

appears to have the best fit to the data. Note that the absolute values are much smaller

than in the leave-one-out assessment. Also based on the log-scores, model 3 scores best

among the three models, in the posterior-predictive check. The absolute values are lower

than for the exact and also for the approximate leave-one-out assessment. Following the

concept from section 3.3.3, this means that the goodness-of-fit is best for model 3, and

worst for model 2. Again, this ranking could have been expected from Figure 3.6.

Table 3.2 – Mean ranked probability and logarithmic scores for the three models, under the exact

and approximate leave-one-out and the posterior predictive sampling schemes.

Scoring Rule Scheme Model 1 Model 2 Model 3

RPS

exact leave-one-out 0.67 0.68 0.68

approximate leave-one-out 0.63 0.66 0.62

posterior-predictive 0.59 0.64 0.54

log-score

exact leave-one-out 1.53 1.54 1.53

approximate leave-one-out 1.46 1.51 1.45

posterior-predictive 1.41 1.49 1.35
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3 Conjugate change point models

Results

Overall, model 1 and model 3 are close in their predictive performances and log-marginal

likelihoods. Model 3 can fit the data more closely, and is thus favored by the posterior-

predictive checks, which means that its goodness-of-fit is best among all three considered

models. Model 1 has better calibration and wins if the log-scores are used. Model 2 has

a more parsimonious fit, but misses the rise in disasters between 1930 and 1940, and so

shows worse mean scores in all five applied sampling schemes.

The approximate predictive assessment showed very similar results compared to the

exact assessment, with only slight tendency to favoring the most complex model 3. In

particular we have seen that the approximate results are much closer to the exact results

than the posterior-predictive results. So the conservativeness of the posterior-predictive

checks could be remedied to large extent by applying the approximate sampling scheme,

while still saving much computational effort.
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3.4 Poisson-Gamma model

Figure 3.13 – Comparison of exact (x-axis) and approximate (y-axis) scores for leave-one-out

prediction in the three change point models (columns). The panels in the upper row

compare the RPS values, while the panels in the lower row compare the log-scores.

Time points where the absolute difference between the exact and approximate

score values exceeds 0.25 (RPS) or 0.5 (log-score) are labelled (at most 5 points in

each panel).
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3 Conjugate change point models

Figure 3.14 – PIT histograms for posterior-predictive checking of the three change point models.
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Figure 3.15 – Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) mid-

PIT values in the three change point models. Time points where the absolute

difference between the two values exceeds 0.1 are labelled.
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3.4 Poisson-Gamma model

Figure 3.16 – Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) scores

in the three change point models (columns). The panels in the upper row compare

the RPS values, while the panels in the lower row compare the log-scores. At most

5 time points where the absolute difference between the exact leave-one-out and

posterior-predictive score values exceeds 0.25 (RPS) or 0.5 (log-score) are labelled.
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3.5 Binomial-Beta model

Another special case of the general conjugate change point model from section 3.2 is

the combination of the binomial likelihood and the beta prior, which is presented in

section 3.5.1. The case study in section 3.5.2 assesses three different Binomial-Beta change

point models for the Tokyo rainfall data, using the five different predictive sampling

schemes from section 3.3.

3.5.1 The special change point model

Data

The Binomial-Beta model is also suitable for count data y := (y1, y2, . . . , yn) like the

Poisson-Gamma model, but here the maximum counts n1, n2, . . . , nt which could have

been observed must be available. So yt ∈ {0, 1, . . . , nt} is observed. For example, yt could

be the number of pupils passing the Abitur in year t in a certain school. Then nt is the

number of pupils writing the Abitur in year t in this school. The covariates are here the

maximum counts, or sample sizes, xt = nt.

Model

We assume independent binomial distributions with probabilities πt for the independent

nt trials:

yt |πt, nt
ind
∼ Bin(nt, πt), t ∈ N .

The model parameters are thus scalar for this model (ξt = πt) and the response density

is f(yt | ξt,xt) = Bin(yt |nt, πt).

Prior

The beta distribution is conjugate to the binomial likelihood, which we have chosen. So

in order to get a conjugate change point model, we specify independent identical beta

priors with hyperparameters α, β > 0 for the k + 1 probability levels,

π(j) iid
∼ Be(α, β), j = 1, . . . , k + 1.

The hyperparameter φ has elements α, β here, and f(ξ(j) |φ) = Be(π(j) |α, β).
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3.5 Binomial-Beta model

For the block marginal likelihood (3.2.6) we have

fblock(yS) =

1∫

0

∏

t∈S
Bin(yt |nt, π

(j)) · Be(π(j) |α, β) dπ(j)

=

1∫

0

∏

t∈S

(
nt

yt

)
(π(j))yt(1 − π(j))nt−yt · 1

B(α, β)
(π(j))α−1(1 − π(j))β−1 dπ(j)

=

∏
t∈S
(
nt

yt

)

B(α, β)

1∫

0

(π(j))
P

t∈S
yt+α−1(1 − π(j))

P

t∈S
(nt−yt)+β−1 dπ(j)

=

∏
t∈S
(nt

yt

)

B(α, β)
B

(∑

t∈S
yt + α,

∑

t∈S
(nt − yt) + β

)
.

The derivation of this block density is analogue to the derivation of a binomial-beta

density.

Posterior

In order to sample the probability parameters given the change points, we need the block

posterior density (3.2.7):

fblock(π
(j) |yS , α, β) ∝ f(yS | ys, s ∈ S, share the same parameter π(j))f(π(j) |α, β)

=
∏

t∈S
Bin(yt |nt, π

(j)) · Be(π(j) |α, β)

∝ (π(j))
P

yt∈S+α−1(1 − π(j))
P

t∈S
(nt−yt)+β−1

∝ Be

(
π(j) |

∑

t∈S
yt + α,

∑

t∈S
(nt − yt) + β

)
.

3.5.2 Case study

We use the data set on rainfall in Tokyo for the years 1983 and 1984, which has been

introduced by Kitagawa (1987, p. 1039) as an example of a nonstationary binary process.

The data set gives information for all n = 366 days if it rained neither in 1983 nor 1984

on this day in Tokyo, in only one of both years, or in both years. All calendar days were

passed twice, except day number 60, which is the 29th February of the leap year 1984 and

was thus only was passed once (there was no rain). The time series of the relative rain

frequencies is plotted in Figure 3.17.
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Figure 3.17 – Tokyo rainfall data: Relative frequency of rain in Tokyo per calendar day, over the

years 1983 and 1984.

Model fitting

We make the assumption that the probability πt of rainfall is constant over the years for

each calendar day t = 1, 2, . . . , 366. Moreover, we assume that the binary rainfall events

are independent conditional on the probabilities. Thus we arrive at the Binomial model,

where the number of Bernoulli trials is nt = 2 for t 6= 60 and n60 = 1, and the response

yt is the count of rainy calendar days t during 1983 and 1984.

The first model we will fit to the data uses the flat number prior for the change points,

and hyperparameters α = 1, β = 1 for the probabilities prior. This corresponds to a

uniform distribution with prior mean and variance

E(π(j)) =
α

α + β
=

1

2
,

Var(π(j)) = E(π(j)) · β

(α + β)(α + β + 1)
=

1

12
= 0.083.

The second model we want to assess also uses the flat number prior for the change

points, but with hyperparameters α = 0.1, β = 0.1 for the probabilities prior. So the prior
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3.5 Binomial-Beta model

mean of the probabilities still equals 1/2, but the variance is now larger at 5/24 = 0.208,

leading to a vaguer prior.

The last model we consider uses the binomial number prior with probability π = 0.2

for a change point between any two years of the time series. The probabilities prior

hyperparameters are chosen as for the first model.

Figure 3.18 – Posterior probabilities trends for the three change point models. Pointwise HPD

(dashed lines) as well as simultaneous (dotted lines) 95% credible intervals, which

were estimated by simulating 10 000 samples, for the probabilities trend are given.

The change point locations in the respective MAP models are marked with vertical

lines. (Intervals and MAP change point locations have been omitted for clarity for

model 3.)
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(b) Model 2
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(c) Model 3 mean trend with original

data

We have produced 10 000 samples each from the posterior distributions. The estim-

ated probabilities trends and the change point locations in the MAP model are shown

in Figure 3.18. The two models with the flat change points prior are similar: Both

model 1 in panel (a) and model 2 in panel (b) have their MAP model change points at

days t = 69, 297. The posterior probabilities for these configurations are 9.49 · 10−6 and

4.88 · 10−3, respectively. Analogously to the Poisson-Gamma models in section 3.4.2, the

posterior probabilities trend averaged over the change point configurations is much more

variable for model 1 than for model 2. Yet, model 3 in panel (c) exhibits a very rough

probabilities trend: the MAP model has probability 5.45 · 10−48 and contains 42 change

points. Model 3 thus shows symptoms of overfitting.

The log marginal likelihood values log f(y) of the three change point models are −325.259,

−335.244 and −331.619, respectively. So if we should decide on the basis of the log mar-

ginal likelihood, model 1 would be our best choice. In the following, we make a more

thorough predictive assessment of the three models.
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3 Conjugate change point models

One-step-ahead predictive assessment

Good one-step-ahead prediction for rainy days is very important, and the weather forecasts

use a huge amount of meteorological data to arrive at good predictions. In the context of

our example, it is rather the climatological perspective in which we are interested, because

we are averaging the two observed years.

First, we generate 10 000 probabilities samples, both from the exact and the approxim-

ate one-step-ahead predictive distributions, for all three models. That is for each model,

and for all last times t = 0, 1, . . . , n − 1 = 365, we sample 10 000 variates exactly from

f(πt+1 |y[1,t]) and again 10 000 variates from the approximation f̃(πt+1 |y[1,t]). Alto-

gether, this takes 2547, 2391, 2511 seconds for the exact sampling and 378, 218, 454

seconds for the approximate sampling, for the three different models, respectively. Note

that the computational effort is much higher here than for the shorter time series on

page 41, and that the approximate sampling saves relatively more time.

Second, we plug each probability sample πt into the Binomial likelihood and keep one

Binomial variate y∗t ∼ Bin(πt, nt) as a sample from the (approximated) one-step-ahead

predictive distribution Ft for time t given all prior times.

The estimated PIT histograms are shown in Figure 3.19. Only model 2 looks well

calibrated, both in the exact histogram (b) and the approximate histogram (e). Model 1

shows a tendency to overestimate the rain probabilities, because the upper histogram

bins in panel (a) have too low coverage, while the lower bins have too high coverage.

For model 3 in panel (c), this tendency is even more pronounced. The corresponding

approximate histograms (d) and (f) essentially match their exact counterparts.

The mid-PIT values are compared between the exact and approximate sampling schemes

in Figure 3.20. On the one hand, for the variable model 3 in panel (c), only for a single

day a relevant deviation of the approximation is observed. On the other hand, for model 1

in panel (a) and model 2 in panel (b) there are more large differences.

Now we turn to proper scoring rules. The exact and approximate scores of both the

ranked probability and the logarithmic scoring rules are compared in Figure 3.21. For

model 1, only for a few days at the beginning of the time series there are larger discrepan-

cies. For the log-scores in panel (d) the overall picture is similar to the RPS in panel (a).

The same can be said about model 3 in panels (c) and (f), while the absolute deviations

of the approximate score values are even smaller (no score approximation is more than

0.5 away from the exact score). Yet, for model 2 in panels (b) and (e), there are more

larger deviations than in model 1, and especially the approximations of the logarithmic

scores do not work well.

We plot the differences of the approximate and exact mid-PIT values, ranked probabil-

ity and logarithmic scores versus the day of year in Figure 3.22. The overfitting model 3
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3.5 Binomial-Beta model

Figure 3.19 – PIT histograms for calibration assessment of the one-step-ahead prediction in the

three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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shows smaller differences than both other models, as we have already seen in the previous

comparison plots. The parsimonious model 2 features the largest differences, quite sur-

prisingly not only around the estimated probability trend steps from Figure 3.19b, but

also between day 250 and 300 and at the end of the time series. The curves for the more

variable model 1 mostly follow the model 2 curves with smaller amplitudes.

The mean scores for the proper scoring rules assessment of the one-step-ahead prediction

are summarized in Table 3.3. Looking at both RPS rows in the table, it is not surprising

that the paired permutation test clearly rejects the hypotheses of same means in the exact

and approximate RPS values (p-values 1·10−4 for model 1, 2·10−4 for model 2 and 1·10−4

for model 3). Also if we directly compare the exact and approximate log-scores of each

model, the formal test shows the conservativeness of the approximate log-scores. However,

model 1 scores highest both under the exact and the approximate sampling scheme, both
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3 Conjugate change point models

Figure 3.20 – Comparison of exact (x-axis) and approximate (y-axis) mid-PIT values for cal-

ibration assessment of the one-step-ahead prediction in the three change point

models. At most 5 time points where the absolute difference between the two

values exceeds 0.1 are labelled.
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considering the RPS and the log-score. Therefore, the model choice using one of these

two scoring rules for one-step-ahead predictive assessment would not be changed when

the lightweight sampling scheme is used.

Table 3.3 – Mean ranked probability and logarithmic scores for the one-step-ahead prediction of

the three models, under the exact and approximate sampling schemes.

Scoring Rule Scheme Model 1 Model 2 Model 3

RPS
exact 0.31 0.32 0.32

approximate 0.29 0.30 0.30

log-score
exact 0.89 0.92 0.91

approximate 0.84 0.85 0.87

Leave-one-out predictive assessment

Next, we will leave out the data from each day in turn, and try predicting it from the

remaining data.

First, we generate 10 000 probabilities samples, both from the exact and the approx-

imate leave-one-out distributions, for all three models. Altogether, this takes 8477, 8402,

7904 seconds for the exact sampling and 466, 420, 444 seconds for the approximate

sampling, for the three different models, respectively. So the approximate sampling saves

more than an order of magnitude of computing time.

60



3.5 Binomial-Beta model

Figure 3.21 – Comparison of exact (x-axis) and approximate (y-axis) scores for one-step-ahead

prediction in the three change point models (columns). The panels in the upper

row compare the RPS values, while the panels in the lower row compare the log-

scores. At most 5 time points where the absolute difference between the exact and

approximate score values exceeds 0.25 (RPS) or 0.5 (log-score) are labelled.
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Second, we plug each probability sample πt into the Binomial likelihood and keep one

Binomial variate y∗t ∼ Bin(πt, nt) as a sample from the (approximated) leave-one-out

predictive distribution Ft for time t given all other times.

The PIT histograms are shown in Figure 3.23. Model 1 and model 2 look well calib-

rated if we judge them by panel (a) and panel (b), respectively. The approximate results

in panels (d) and (e) are quite similar to their exact counterparts, with a slight tend-

ency to signalling overdispersion for model 1. For model 3 in panel (c) we see again an

overestimation picture, which is even more pronounced in the approximate panel (f).

The mid-PIT values are compared between the exact and approximate sampling schemes

in Figure 3.24. For model 1 in panel (a), no large deviation of an approximate PIT value

from the exact PIT value is noticeable. For model 3 and model 2, only one and two days
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3 Conjugate change point models

Figure 3.22 – Differences of the approximate and exact mid-PIT values, ranked probability and

logarithmic scores for the one-step-ahead prediction, for model 1 ( ), model 2

( ) and model 3 ( ).
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3.5 Binomial-Beta model

Figure 3.23 – PIT histograms for calibration assessment of the leave-one-out prediction in the

three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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around high jumps in the model-averaged probabilities trend show larger discrepancies

between the sampling schemes in panels (c) and (b), respectively.

The exact and approximate scores of both proper scoring rules are compared in Fig-

ure 3.25. The approximation is not as good as for the Poisson-Gamma models, cf. Fig-

ure 3.13 on page 51. Particularly, it is interesting that here the overfitting model 3 shows

more large score discrepancies than in the one-step-ahead assessment and the overfitting

Poisson-Gamma model.

The mean scores for the proper scoring rules assessment of the leave-one-out prediction

are summarized in Table 3.4 on page 66. These aggregated results are more encouraging

than the pairwise comparison of the scores: both for the RPS and the log-score, the

ranking of the models (model 3 is best, then model 1 and model 2) is unaltered when we

use the approximate scores instead of the exact scores.
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3 Conjugate change point models

Figure 3.24 – Comparison of exact (x-axis) and approximate (y-axis) mid-PIT values for calib-

ration assessment of the leave-one-out prediction in the three change point models.

Time points where the absolute difference between the two values exceeds 0.1 are

labelled.
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Posterior-predictive checking

Now we will look at the results of posterior-predictive model checking.

The posterior-predictive PIT histograms are shown in Figure 3.26. While for model 2,

panel (b) still shows a good calibration for the leave-one-out prediction, the other two

models would be judged differently compared to the exact or approximate leave-one-out

assessment. panel (a) argues for a slight overdispersion of model 1, and panel (c) shows

an extreme overdispersion of model 3, which is neither apparent in the exact panel (c)

nor the approximate panel (f) of Figure 3.23 with the leave-one-out results.

The mid-PIT values are compared between the exact leave-one-out and the posterior-

predictive sampling schemes in Figure 3.27. Again, substantial shrinkage of the mid-PIT

values towards 0.5 can be seen in the panels, which is strongest for model 3 in panel (c).

This explains the stronger overdispersion pictures in Figure 3.26.

The exact leave-one-out scores are compared with the posterior-predictive scores in

Figure 3.28. For model 1 and model 2 in panels (a) – (e), the differences to the respective

plots comparing the exact with the approximate leave-one-out scores in Figure 3.25 are

not very large. Yet, panels (c) and (f) for model 3 show a much worse approximation

than the counterparts in Figure 3.25.

The mean scores are summarized and compared to the leave-one-out scores in Table 3.4.

The heavy bias of individual model 3 posterior-predictive scores which we observed in

Figure 3.28 is mirrored in the corresponding mean RPS and log-scores: if we only looked

at the mean posterior-predictive model scores, model 3, the overfitting model with the
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3.5 Binomial-Beta model

Figure 3.25 – Comparison of exact (x-axis) and approximate (y-axis) scores for leave-one-out

prediction in the three change point models (columns). The panels in the upper

row compare the RPS values, while the panels in the lower row compare the log-

scores. At most 5 time points where the absolute difference between the exact and

approximate score values exceeds 0.25 (RPS) or 0.5 (log-score) are labelled.
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most variable fit, appears to be much better than the other two models. Yet, using the

exact and also the approximate mean scores, the difference between model 3 and model 1

is not very large.

Results

Starting with the exact results, model 1 looks best in the one-step-ahead scores, with an

acceptable calibration in the corresponding PIT histogram. In the leave-one-out scores,

model 3 gets ahead of model 1, but its PIT histogram is slightly overdispersed. Compared

to the marginal likelihood rating, where model 1 was clearly preferred, the leave-one-out

assessment might tend to preferring overfitting models.

65



3 Conjugate change point models

Figure 3.26 – PIT histograms for posterior-predictive checking the three change point models.
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Figure 3.27 – Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) mid-

PIT values in the three change point models. Time points where the absolute

difference between the two values exceeds 0.1 are labelled.
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Table 3.4 – Mean ranked probability and logarithmic scores for the three models, under the exact

and approximate leave-one-out and the posterior predictive sampling schemes.

Scoring Rule Scheme Model 1 Model 2 Model 3

RPS

exact leave-one-out 0.30 0.31 0.29

approximate leave-one-out 0.27 0.29 0.25

posterior-predictive 0.25 0.28 0.21

log-score

exact leave-one-out 0.85 0.87 0.84

approximate leave-one-out 0.79 0.82 0.76

posterior-predictive 0.75 0.81 0.67
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3.5 Binomial-Beta model

Figure 3.28 – Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) scores

in the three change point models (columns). The panels in the upper row compare

the RPS values, while the panels in the lower row compare the log-scores. At most

5 time points where the absolute difference between the exact leave-one-out and

posterior-predictive score values exceeds 0.25 (RPS) or 0.5 (log-score) are labelled.
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Continuing with the performance of the proposed approximate sampling, it is encour-

aging that the exact one-step-ahead scores ranking could be replicated as well as the cor-

responding PIT histograms. The same can be said about the leave-one-out assessment.

Especially for this long time series, the gain is computational efficiency is worthwhile.

The posterior-predictive scores signal that model 3 fits the given data best, and produce

the same model ranking as the leave-one-out scores. However, the posterior-predictive PIT

histograms cannot be used as an approximation to the exact leave-one-out PIT histograms.
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3 Conjugate change point models

3.6 Normal-Normal-Gamma model

The specializations of the general framework from section 3.2 which are necessary for

the Normal-Normal-Gamma change point model are described in section 3.6.1. Three

instances of this model class are fitted to the Nile discharge data and are then subject of

predictive assessment in a case study in section 3.6.2.

3.6.1 The special change point model

Data

The Normal-Normal-Gamma change point model will be suited to modelling of time series

y := (y1, y2, . . . , yn) of real-valued observations yt ∈ R. Even if the observations are

actually restricted to a subset of R, the model can be used if a normal approximation is

sensible. For example, in the case study we will model positive-valued discharge levels,

but the range of the observations is far enough away from zero to justify the use of the

proposed model for real-valued observations.

For this model no covariates xt are considered. However, an extension to integrate

covariates via the conjugate Bayesian linear model would be straightforward.

Model

We assume independent normal distributions with means µt and precisions κt for the

observations:

yt |µt, κt
ind
∼ N(µt, 1/κt), t ∈ N .

The parametrization with the precision instead of the variance is chosen for notational

convenience.

So the parameters have two elements for this model, ξt = (µt, κt). The response density

is f(yt | ξt) = N(yt |µt, 1/κt).

Prior

The normal-gamma distribution is conjugate to the normal likelihood when both mean

and precision are unknown. So for the k + 1 parameter levels independent identical

normal-gamma priors with hyperparameters ν, λ, α, β > 0 are specified,

(µ(j), κ(j))
iid
∼ NG(ν, λ, α, β), j = 1, . . . , k + 1. (3.6.1)

The normal-gamma distribution means that if (µ, κ) ∼ NG(ν, λ, α, β), then

µ |κ ∼ N(ν, (λκ)−1)

and κ ∼ G(α, β).
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3.6 Normal-Normal-Gamma model

The hyperparameter φ has thus four elements ν, λ, α, β here, and the parameter level prior

density is f(ξ(j) |φ) = NG(µ(j), κ(j) | ν, λ, α, β).

Plugging in the block posterior µ(j), κ(j) |yS ∼ NG(νS , λS , αS , βS) from (3.6.2), we have

from (3.2.6) that the block marginal likelihood is

fblock(yS) =

∏
t∈S f(yt | ξ(j))f(ξ(j) |φ)

fblock(ξ
(j) |yS ,φ)

=

∏
t∈S N(yt |µ(j), 1/κ(j))NG(µ(j), κ(j) | ν, λ, α, β)

NG(µ(j), κ(j) | νS , λS , αS , βS)

= (2π)−
nS
2 (κ(j))

nS
2 exp

(
−κ(j)

2

∑

t∈S
(yt − µ(j))2

)

×
(2π)−

1
2 (λκ(j))

1
2 exp(−λκ(j)

2 (µ(j) − ν)2) βα

Γ(α) (κ
(j))α−1 exp(−κ(j)β)

(2π)−
1
2 (λSκ(j))

1
2 exp(−λSκ(j)

2 (µ(j) − νS)2) (βS)αS

Γ(αS) (κ(j))αS−1 exp(−κ(j)βS)

=

(
λ

λS

) 1
2 βα

(βS)αS

Γ(αS)

Γ(α)
(2π)−

nS
2

=

(
λ

πnS (nS + λ)

) 1
2 Γ(nS

2 + α)

Γ(α)
(2β)α

×
{

nS v̂S +
λnS

nS + λ
(m̂S − ν)2 + 2β

}−(
nS
2

+α)

,

where nS := |S| denotes the number of time points in the set S, while m̂S := 1
nS

∑
t∈S yt

and v̂S := 1
nS

∑
t∈S(yt − m̂S)2 abbreviate the empirical mean and variance, respectively,

in the observations yS .

Posterior

In order to sample the model parameters given the change points, we need the block

posterior density (3.2.7):
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3 Conjugate change point models

fblock(µ
(j), κ(j) |yS)

∝
∏

t∈S
f(yt |µ(j), κ(j))f(µ(j), κ(j))

=
∏

t∈S
N(yt |µ(j), 1/κ(j))NG(µ(j), κ(j) | ν, λ, α, β)

= (2π)−
nS
2 (κ(j))

nS
2 exp

(
−κ(j)

2

∑

t∈S
(yt − µ(j))2

)

× (2π)−
1
2 (λκ(j))

1
2 exp

(
−λκ(j)

2
(µ(j) − ν)2

)
βα

Γ(α)
(κ(j))α−1 exp(−κ(j)β)

∝ (κ(j))
nS+1

2
+α−1 exp

{
−κ(j)

[
1

2

∑

t∈S
(yt − µ(j))2 +

λ

2
(µ(j) − ν)2 + β

]}
.

Now the term in square brackets can be rewritten as a quadratic form in µ(j), which gives

us the normal-gamma shape:

fblock(µ
(j), κ(j) |yS)

∝ (κ(j))
nS+1

2
+α−1

× exp

{
−κ(j)

[
nS
2

v̂S +
1

2

λnS
nS + λ

(m̂S − ν)2 + β +
nS + λ

2

(
µ(j) − nSm̂S + λν

nS + λ

)2
]}

= (κ(j))
1
2 exp

{
−κ(j)(nS + λ)

2

(
µ(j) − nSm̂S + λν

nS + λ

)2
}

× (κ(j))
nS
2

+α−1 exp

{
−κ(j)

[
nS
2

v̂S +
1

2

λnS
nS + λ

(m̂S − ν)2 + β

]}

∝ NG
(
µ(j), κ(j) | νS , λS , αS , βS

)
, (3.6.2)

where the posterior parameters are

νS :=
nSm̂S + λν

nS + λ
,

λS := nS + λ,

αS :=
nS
2

+ α

and βS :=
nS
2

v̂S +
1

2

λnS
nS + λ

(m̂S − ν)2 + β.

3.6.2 Case study

We illustrate the predictive assessment with the Nile data from Cobb (1978, p. 248).

The data set comprises a total of n = 100 contiguous yearly discharge measurements of
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3.6 Normal-Normal-Gamma model

the Nile at Aswan, from 1871 to 1970. The time series is plotted in Figure 3.29. Cobb

(1978) assumed the values to be normally distributed conditional on the means, and used

conditional inference techniques to search for a single change point in the means after

fixing two possible mean values and the variance. We will allow an arbitrary number

of change points in the parameters, and assume the mean and variance of the normal

distributions in the blocks as unknown.
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Figure 3.29 – Nile discharge data: yearly discharge levels in 108 m3 measured at Aswan from

1871 to 1970.

Model fitting

We make the assumption that the mean µt and precision κt of Nile discharge yt are

piecewise constant, and fit change point models with the parameter ξt = (µt, κt). For

the prior normal-gamma distribution (3.6.1) of ξt, we center the prior distribution of µt

around the data mean by setting ν = 919.35. The precision factor λ is varied between the

models. Following Cobb (1978), who fixed the standard deviation at σ = 125, we choose

such gamma distribution parameters for κt that the prior mean for the variance σ2
t =

1/κt is 1252 = 15625. Since σ2
t is a priori inverse gamma distributed with expectation
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3 Conjugate change point models

E(σ2) = β/(α − 1), α and β can be chosen appropriately.

The first model we will fit to the data uses the flat number prior for the change points,

and hyperparameters λ = 0.1, α = 100 + 1, β = 15625 · 100 for the parameters prior.

The second model we want to assess also uses the flat number prior for the change points,

but with hyperparameters λ = 0.001, α = 10 + 1, β = 15625 · 10 for the parameters prior.

So the prior expectations of the mean and variance levels are unaltered, but the prior

variances are enlarged. For example, we now have Var(σ2) = E(σ2)2/(α − 2) = 1254/9,

compared to 1254/99 in the model 1 setting.

The last model we consider uses the binomial number prior with probability π = 0.2

for a change point between any two years of the time series. The parameters prior hyper-

parameters are chosen as for the first model.

We have produced 10 000 samples each from the posterior distributions. The estim-

ated parameters trends and the change point locations in the MAP model are shown in

Figure 3.30.

The two models with the flat change points prior are similar: Both model 1 in panel (a)

and model 2 in panel (b) have one MAP model change point after the year 1898. The

posterior probabilities for these configurations are 4.65 · 10−1 and 7.46 · 10−1, respectively.

While the simultaneous credible band shows a higher variability of the model 1 means

in panel (a), the model averaged mean trend is almost indiscernible from the model 2

trend in panel (b): both trends show a clear step downwards around their change points,

and are constant elsewhere. The corresponding averaged precision seems to step upwards,

more for model 2 than for model 1. Model 3 with the binomial change points prior in

panel (c) exhibits a more variable mean trend, which looks overfitted to the data. The

MAP model here has probability 3.22 ·10−5 and contains an additional change point after

the year 1967.

The log marginal likelihood values log f(y) of the three change point models are −640.72,

−646.668 and −647.005, respectively. So if we should decide on the basis of the marginal

likelihood, model 1 would be our best choice. Whether this choice is supported by a

predictive model assessment will be examined in the following.

One-step-ahead predictive assessment

First, we will do a one-step-ahead predictive assessment of the three models, and compare

the approximate results with the exact results.

First, we generate 10 000 parameters samples, both from the exact and the approximate

one-step-ahead predictive distributions, for all three models. That is for each model,

and for all last times t = 0, 1, . . . , n − 1 = 99, we sample 10 000 variates exactly from

f(ξt+1 |y[1,t]) and again 10 000 variates from the approximation f̃(ξt+1 |y[1,t]). Altogether,
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3.6 Normal-Normal-Gamma model

Figure 3.30 – Posterior parameters trends for the three change point models. Pointwise HPD

(dashed lines) as well as simultaneous (dotted lines) 95% credible intervals, which

were estimated by simulating 10 000 samples, for both the mean (left panels) and

the precision trends (right panels) are given. The change point locations in the

respective MAP models are marked with vertical lines.
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(c) Model 3
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this takes 84, 55, 160 seconds for the exact sampling and 26, 16, 119 seconds for the

approximate sampling, for the three different models, respectively. So for model 3, the

relative gain in computing time of the approximate sampling approach is rather small.

This is probably due to the fact that the computational effort for this short time series

lies mainly in the parameter levels sampling, and not in the change points sampling. For

the wiggly model 3, more parameter levels need to be sampled than for the other two

smooth models.

Second, we plug each parameter sample ξt = (µt, κt) into the normal likelihood and

keep one Gaussian variate y∗t ∼ N(µt, 1/κt) as a sample from the (approximated) one-

step-ahead predictive distribution Ft for time t given all prior times.

The estimated PIT histograms are shown in Figure 3.31. All exact PIT histograms do

not look very good, but the reason could be the relatively small sample size (n = 100).

The histogram in panel (b) for model 2 signals an acceptable calibration. The approximate

histogram in panel (e) does not look as good, but is similar. Also the exact histogram

for model 1 in panel (a) shows some differences between nominal and observed prediction

intervals coverages, which are still present in the approximate histogram in panel (d). One

might diagnose an overdispersion of model 3 from the exact panel (c) and also from the

approximate panel (f).

The PIT values are compared between the exact and approximate sampling schemes in

Figure 3.32. On the one hand, for the variable model 3, only for a single year a deviation

of the approximation larger than 0.1 is observed in panel (c). For model 2 in panel (b),

a few years after the MAP change point have larger deviations. On the other hand, for

model 1 in panel (a) there are more differences, which are mostly after the change point

year.

Now we turn to proper scoring rules. The exact and approximate scores of both the con-

tinuous ranked probability and the logarithmic scoring rules are compared in Figure 3.33.

Overall, the approximate sampling works well for this example. The most large differences

are observed for model 1, both for the CRPS in panel (a) and for the log-score in panel (d).

However, it is promising that the points in the figures are distributed quite evenly around

the identity line, and do not always lie in the lower-right triangular, which would mean

that the approximate score values underestimate the exact score values systematically.

There are fewer differences for model 2, where both for the CRPS in panel (b) and for

the log-score in (e), the score values for the three years immediately after the MAP model

change point 1899 (the three years in the new MAP block) are heavily underestimated

by the approximate sampling scheme. For model 3, some larger differences occur for the

CRPS in panel (c), while the differences for the log-score in panel (f) are minor.

We plot the time series of differences of the approximate and exact PIT values, con-
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3.6 Normal-Normal-Gamma model

Figure 3.31 – PIT histograms for calibration assessment of the one-step-ahead prediction in the

three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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tinuous ranked probability and logarithmic scores in Figure 3.34. Model 1 and model 2

are too optimistic about their forecast performance around the turn of the century, with

too low score values in panels (b) and (c). The exact one-step-ahead sampling predicts

still high discharge levels, while the observations materialize on a lower level, leading to

small PIT values. The approximate sampling knows about the step, and thus produces

too large PIT values around 1900, as panel (a) shows. Larger approximation errors are

also observed between 1910 and 1920, when the discharge levels fluctuate more (cf. Fig-

ure 3.29). Overall the differences seem to diminish in the late years, which is expected

because more of the data used by the approximate sampling scheme is also used by the

exact sampling scheme.

The mean scores for the proper scoring rules assessment of the one-step-ahead prediction

are summarized in Table 3.5. Looking at both CRPS rows in the table, it is not surprising
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Figure 3.32 – Comparison of exact (x-axis) and approximate (y-axis) PIT values for calibration

assessment of the one-step-ahead prediction in the three change point models. At

most 5 time points where the absolute difference between the two values exceeds 0.1

are labelled.
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that the paired permutation test clearly rejects the hypotheses of same location parameters

in the exact and approximate CRPS values on a 5% significance level (p-values 2.67 ·10−2

for model 1, 2.9 · 10−3 for model 2 and 1 · 10−4 for model 3). Also if directly compare the

exact and approximate log-scores of each model, the formal test shows the conservativeness

of the approximate log-scores. So the impression from Figure 3.33 was apparently slightly

misleading. However, the ranking of the models is unchanged in the approximate mean

scores: both in the exact and the approximate results, the CRPS ranks model 1 best,

followed by model 3 and model 2. The exact log-score ranks model 2 almost equal to

model 3: Since the mean one-step-ahead log-score is equivalent to the marginal likelihood,

we see from the values given on page 3.6.2 that model 2 is ranked slightly better by the

exact log-score. The approximate log-score slightly favours model 3, but model 1 is still

ranked highest. Therefore, the model choice using one of these two scoring rules for one-

step-ahead predictive assessment would not be changed when the lightweight sampling

scheme is used.

Leave-one-out predictive assessment

We will examine the performance of the approximate leave-one-out strategy for this ex-

ample of a Normal-Normal-Gamma change point model.

First, we generate 10 000 parameters samples, both from the exact and the approximate

leave-one-out distributions, for all three models. Altogether, this takes 149, 119, 275

seconds for the exact sampling and 44, 16, 163 seconds for the approximate sampling, for

the three different models, respectively.

76



3.6 Normal-Normal-Gamma model

Figure 3.33 – Comparison of exact (x-axis) and approximate (y-axis) scores for one-step-ahead

prediction in the three change point models (columns). The panels in the upper

row compare the CRPS values, while the panels in the lower row compare the

log-scores. At most 5 time points where the absolute difference between the exact

and approximate score values exceeds 25 (CRPS) or 0.5 (log-score) are labelled.
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Table 3.5 – Mean continuous ranked probability and logarithmic scores for the one-step-ahead

prediction of the three models, under the exact and approximate sampling schemes.

Scoring Rule Scheme Model 1 Model 2 Model 3

CRPS
exact 80.85 94.33 82.96

approximate 76.65 90.25 77.66

log-score
exact 6.41 6.47 6.47

approximate 6.35 6.42 6.41
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Figure 3.34 – Differences of the approximate and exact PIT values, continuous ranked probab-

ility and logarithmic scores for the one-step-ahead prediction, for model 1 ( ),

model 2 ( ) and model 3 ( ).
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Second, for each parameter sample ξt, we generate a normal variate from the corres-

ponding Gaussian distribution. It is a sample from the (approximated) leave-one-out

predictive distribution Ft for time t given all other times.

The PIT histograms are presented in Figure 3.35, and do not show perfectly calibrated

forecasters. Similarly to the one-step-ahead assessment, model 3 in panel (c) shows a

tendency towards overdispersion. This impression is preserved by the approximate histo-

gram in panel (f). For model 1 in panel (a) and model 2 in panel (b), the histograms could

be described as left-skewed with the second bins [0.1, 0.2] as outliers. The approximate

results in panels (d) and (e) share this characteristic.

Figure 3.35 – PIT histograms for calibration assessment of the leave-one-out prediction in the

three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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The PIT values from the exact and approximate sampling schemes are compared in

Figure 3.36. The approximations work very well, for all models. Only two greater devi-

ations are visible for model 1 in panel (a) and for model 2 in panel (b). For model 3 in
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panel (c), few differences greater than the labelling threshold 0.1 are observed.

Figure 3.36 – Comparison of exact (x-axis) and approximate (y-axis) PIT values for calibration

assessment of the leave-one-out prediction in the three change point models. At

most 5 time points where the absolute difference between the two values exceeds 0.1

are labelled.
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The exact and approximate scores of both proper scoring rules are compared in Fig-

ure 3.37. The approximations are very good for model 1 and model 2 scores: only the two

years 1898 and 1899 before the new MAP model block are underestimated in panels (a),

(d) and (b), (e), while the scores for the other years match the exact scores well. The

picture is different for model 3 in panels (c) and (f). Here especially years with large

exact scores (meaning bad prediction of the corresponding discharge values) yield too low

approximate scores.

The mean scores for the proper scoring rules assessment of the leave-one-out prediction

are summarized in Table 3.6 on page 82. The underestimation of large score values in

model 3 leads to underestimated mean scores for this model. Therefore, the approximate

approach ranks model 3 best for the leave-one-out prediction, while the exact sampling

ranks model 3 worst and favours the other models.

Posterior-predictive checking

For comparison, we will look at the results of posterior-predictive model checking.

The PIT histograms are shown in Figure 3.38. While for model 1 and model 2, panels (a)

and (b) pretty much agree with the exact and approximate leave-one-out PIT histograms

from Figure 3.35, model 3 in panel (c) is being diagnosed a severe overdispersion by the

posterior-predictive approach. This is in accordance with the closer fit to the given data.

If we compare the individual PIT values between the exact leave-one-out and the
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3.6 Normal-Normal-Gamma model

Figure 3.37 – Comparison of exact (x-axis) and approximate (y-axis) scores for leave-one-out

prediction in the three change point models (columns). The panels in the upper

row compare the CRPS values, while the panels in the lower row compare the

log-scores. At most 5 time points where the absolute difference between the exact

and approximate score values exceeds 25 (CRPS) or 0.5 (log-score) are labelled.
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posterior-predictive sampling schemes in Figure 3.39, substantial shrinkage of the PIT

values towards 0.5 can be seen for the model 3 PIT values in panel (c). For model 1 in

panel (a) and model 2 in panel (b), the approximation by the posterior-predictive PIT

values is surprisingly good.

The exact leave-one-out scores are compared with the posterior-predictive scores in

Figure 3.40. For model 1 and model 2 in panels (a), (d) and (b), (e), we see that the

posterior-predictive scores approximate small leave-one-out score values well. However,

for large score values, the posterior-predictive scores are considerably below the exact

scores. For model 3 in panels (c) and (f) the bias is already visible for small score values.

The mean scores are summarized and compared to the leave-one-out scores in Table 3.6.

The heavy bias of individual model 3 posterior-predictive scores which we observed in
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3 Conjugate change point models

Figure 3.38 – PIT histograms for posterior-predictive checking the three change point models.

0.0 0.4 0.8

0.0

0.5

1.0

1.5

2.0

(a) Model 1

0.0 0.4 0.8

0.0

0.5

1.0

1.5

2.0

(b) Model 2

0.0 0.4 0.8

0.0

0.5

1.0

1.5

2.0

(c) Model 3

Figure 3.40 is mirrored in the corresponding mean CRPS and log-scores: if we only looked

at the mean posterior-predictive model scores, model 3, the model with the most variable

fit, appears to be much better than the other two models. Yet, using the exact and also

the approximate mean scores, the difference between model 3 and model 1 is smaller.

Table 3.6 – Mean continuous ranked probability and logarithmic scores for the three models,

under the exact and approximate leave-one-out and the posterior predictive sampling

schemes.

Scoring Rule Scheme Model 1 Model 2 Model 3

CRPS

exact leave-one-out 73.98 73.88 75.15

approximate leave-one-out 72.02 72.55 65.57

posterior-predictive 69.97 70.90 58.13

log-score

exact leave-one-out 6.30 6.31 6.33

approximate leave-one-out 6.28 6.30 6.21

posterior-predictive 6.24 6.26 6.11

Results

While model 1 is clearly preferred by the marginal likelihood and the one-step-ahead

predictive assessment, model 2 shows a similar performance in the leave-one-out predictive

assessment. Model 3 is not preferred by any of these exact model choice criteria.

The situation is slightly different for the approximate results: Only for the one-step-

ahead assessment, model 1 is still preferred, while the approximate leave-one-out scores

favour model 3. However, the approximate PIT histograms for model 3 still hinted at a
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3.6 Normal-Normal-Gamma model

Figure 3.39 – Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) PIT

values in the three change point models. At most 5 time points where the absolute

difference between the two values exceeds 0.1 are labelled.
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possible overdispersion of model 3.

When we interpret the posterior-predictive results correctly as goodness-of-fit measures,

the scores seems reasonable: model 3 has the best fit, because it follows the data-points

more tightly than the other models. Also the posterior-predictive PIT histogram shows

that only few of the p-values fall into the outer bins [0, 0.1] and [0.9, 1]. Such p-values would

signal that the materialized observations were extreme compared to the fitted posterior-

predictive distribution at the respective time points. So the absence of many extreme

p-values suggests a good fit of model 3, to the known data. Yet, the results must not

be interpreted as approximations to the exact leave-one-out results, which measure the

“goodness-of-prediction” for new data.
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3 Conjugate change point models

Figure 3.40 – Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) scores

in the three change point models (columns). The panels in the upper row compare

the CRPS values, while the panels in the lower row compare the log-scores. At

most 5 time points where the absolute difference between the exact leave-one-

out and posterior-predictive score values exceeds 25 (CRPS) or 0.5 (log-score) are

labelled.
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3.7 Genetic data application

3.7 Genetic data application

We will analyze the GC composition data introduced by Fearnhead and Vasileiou (2009,

p. 133), which comprises the proportion of DNA bases that are Guanine (G) or Cytosine

(C) as opposed to Adenine or Thymine in 3 kb windows of the human chromosome 1 from

position 6 Mb to position 12 Mb. We computed the data from Build 35 of the finished

human genome assembly (hg17, May 2004) by the International Human Genome Project

for chromosome 1i, and show the time series of length n = 2000 in Figure 3.41.

We compare our models with the “IsoFinder model”, which is defined through the

change points inferred by the IsoFinder program (Oliver, Carpena, Hackenberg, and

Bernaola-Galván 2004). Its precomputed results have been obtained from the Internetii.

As IsoFinder reports single bases as change points, we have to round the values. For ex-

ample, if IsoFinder defines 6 355 231 as a change point base (meaning that starting from

base 6 355 232 a new isochore begins), we convert it to the change point index 118, be-

cause this means that we start a new block from the 119th data point, which has been

aggregated from bases 6 354 001 – 6 357 00. We arrive at 115 change points, which are

included in Figure 3.41.

3.7.1 Model fitting

Unlike Fearnhead and Vasileiou (2009, p. 135), who used (finite mixtures of) normal

distributions for modelling the GC content, we could use the binomial model with nt =

3000 samples and yt being the number of bases G or C in window t = 1, . . . , n = 2000.

This would have several advantages: First, this likelihood is better fitted to the data

generating process, and we can be sure that predicted GC percentages will always lie

in the interval (0, 1). Second, we would need to specify fewer hyperparameters for the

beta prior than for the normal-gamma prior. However, the large sample sizes nt turned

out as being problematic for this segmentation task, because the data was interpolated

by the probabilities trend. This is due to the high information contained in the data

points, which overwhelms even binomial change points priors with very small parameter π.

Another possibility would be to go back to the original DNA sequence and analyze the

corresponding binary time series. Yet, this is unfeasible because of the sheer length of

6 000 000 bases (6 Mb).

Therefore we stick to the normal approximation used by Fearnhead and Vasileiou (2009).

We will compare models with prior settings similar to those in section 3.6.2, where we

fix the hyperparameter ν = 0.487 at the marginal mean of the time series. Moreover, we

ihttp://hgdownload.cse.ucsc.edu/goldenPath/hg17/chromosomes/chr1.fa.gz
iihttp://bioinfo2.ugr.es/isochores/GB/hg17/iso_chr1.html
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Figure 3.41 – GC composition data: Proportion of G and C bases in 3 kb windows. The ticks

at the bottom symbolize the change points of the IsoFinder model.

keep the expectation of the variances at 0.003 throughout the different models, which is

slightly lower than the marginal variance 0.0039.

The first model we will fit to the data uses the flat number prior for the change points,

and hyperparameters λ = 0.1, α = 100 + 1, β = 0.003 · 100 for the parameters prior. The

second model we want to assess also uses the flat number prior for the change points, but

with hyperparameters λ = 0.001, α = 10 + 1, β = 0.003 · 10 for the parameters prior. The

last model we consider uses the binomial number prior with probability π = 0.05 for a

change point between any two GC windows of the time series, and the same parameters

prior hyperparameters as for the first model.

We have produced 5000 samples each from the posterior distributions. Probably due

to the great length of the time series, compared to the previous smaller examples, it was

necessary to store the conditional densities (3.2.9) from page 23 as long double (96 bits)

floating point numbers instead of double (64 bits). This was easy because we do the

change points sampling in C++, but would have been more difficult in R. The memory

requirements mentioned on page 26 have to be increased, but the threshold of n = 400 is
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3.7 Genetic data application

Figure 3.42 – Posterior parameters trends for the three change point models: Both the mean

(left panels) and the precision trends (right panels) are given. The change point

locations in the respective MAP models are marked with ticks above the x axis.

Credible intervals have been omitted for clarity.
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retained.

The estimated parameters trends and the change point locations in the MAP model are

shown in Figure 3.42. The two models with the flat change points prior are similar: Both

model 1 in panels (a) and model 2 in panel (b) have 27 MAP model change points, at

similar positions in the sequence. The posterior probabilities for these MAP configurations

are 2.06 ·10−25 and 1.37 ·10−17 , respectively. The model averaged mean trend for model 1

is slightly more variable than the model 2 mean trend. Model 3 with the binomial change

points prior in panel (c) exhibits a more variable mean trend. The MAP model here has

probability 2.9 · 10−48 and contains a total of 40 change points.

In Figure 3.43, the pointwise change point probabilities of the three models are com-

pared to the IsoFinder change points. Overall, there is visible agreement between the two

algorithms. Yet, the posterior probabilities are much more informative than the IsoFinder

result, which produces more change points for regions where the conjugate change point

model gives only few positions high probabilities for change points (e. g. the block between

8 Mb and 9 Mb).

The log marginal likelihood values log f(y) of the three change point models are 3256.799,

3272.511 and 3240.577, respectively. So if we should decide on the basis of the marginal

likelihood, model 2 would be our best choice. However, we want to do a predictive model

assessment, and are especially interested in the leave-one-out predictive assessment. Un-

fortunately, the exact procedure would be practically infeasible, because the change points

sampling alone took 2973, 2726 and 2478 seconds for the model fitting of the three pro-

posals, respectively. If we did an exact leave-one-out assessment, we would therefore have

to wait 69, 63 and 57 days for the result!

3.7.2 Leave-one-out predictive assessment

Thus, we will do only the approximate leave-one-out assessment for this real-world ap-

plication.

Sampling from the approximate leave-one-out parameters distributions takes 4591, 4442

and 4386 seconds for the three different models, respectively. Unfortunately, numerical

difficulties occurred for model 1, where some sampled mean parameters µt were abnormally

large, even resulting in some missing values. Therefore, we set all NAs and mean values

lower than the 0.0001 or the 0.9999 quantile to the mean of the other samples for the same

time. However, this had only to be done for 1596 out of 10 000 000 values, and should

thus have no relevant effect on the results. Afterwards, Gaussian random variables are

produced to obtain samples from the approximate leave-one-out predictive distributions.

The resulting PIT histograms are shown in Figure 3.44. All three models show obvious

overdispersion in the approximate leave-one-out predictive distributions. The degree of
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3.7 Genetic data application

Figure 3.43 – Comparison of the change point probabilities in the three models and the IsoFinder

change point locations (ticks at the x-axis).
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3 Conjugate change point models

overdispersion is greater for model 3 in panel (c) than for model 1 in panel (a), and greater

for model 1 than for model 2 in panel (b). So model 2 seems to have the best calibration

among the three models.

Figure 3.44 – PIT histograms for approximate calibration assessment of the leave-one-out pre-

diction in the three change point models.
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The mean scores for the proper scoring rules assessment of the approximate leave-one-

out prediction are summarized in Table 3.7 on page 90. While the CRPS is lowest for

model 3, the log-score points to model 2 as the as the best leave-one-out predicting model.

As the three examined models are all badly calibrated, we tried to change the prior

parameters towards are better calibrated model. The PIT histograms in Figure 3.44

give valuable hints at what might be wrong with our current prior choice: they all show

overdispersed forecast distributions. Model 2 shows a lower degree of overdispersion. If we

combine this with the precision trends in Figure 3.42, where model 2 reaches levels above

800, while both other models stay below 500, we get the impression that the assumed

variance mean value 0.003 is too high. As model 2 shows the most parsimonious mean

trend, we might also want to specify an even sparser change points prior. The new prior

choice is then ν = 0.487, λ = 1 · 10−4, α = 11, β = 0.001 · 10 for the parameters prior and

π = 0.008 for the binomial change points prior.

Table 3.7 – Mean continuous ranked probability and logarithmic scores for the approximate leave-

one-out prediction of the four models which have been fitted to the GC composition

data.

Scoring Rule Model 1 Model 2 Model 3 Model 4

CRPS 0.0235 0.0226 0.0221 0.0223

log-score −1.7016 −1.7824 −1.7489 −1.8108

90



3.7 Genetic data application

The MAP change points configuration in the new model has probability 6.11 ·10−13 and

contains a total of 28 change points. The resulting estimated parameters trends and the

change point locations in the MAP model are shown in Figure 3.46. While the mean trend

is very similar to that from the model 2, the precision trend exhibits a greater variability

and reaches now precisions over 1400. For comparison with Figure 3.43, the change point

probabilities in the new model are shown in Figure 3.45. The picture is different to the

model 2 panel (b) of Figure 3.43, but the model is more sure of the change points locations:

the change points probabilities are higher for some and lower for other locations. This is

especially helpful at 7.4 and 11 Mb, where IsoFinder and the three previous models were

very unclear about the best change points.

Figure 3.45 – Comparison of the change point probabilities in the new model and the IsoFinder

change point locations (ticks at the x-axis).
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The approximate PIT histogram is shown in Figure 3.47 shows the benefits of the

higher precisions: the calibration is better than for model 2. The log-marginal likelihood

is 3281.996, the mean approximate leave-one-out CRPS is 0.0223 and the mean log-score

is −1.8108. So all model assessment tools rank the new model highest, except the CRPS

which gives model 3 a minimally better score (cf. Table 3.7).

3.7.3 Results

The marginal likelihood, which is equivalent to the mean one-step-ahead log-score, ranks

the new model 4 highest, followed by models 2, 1 and 3. The approximate leave-one-out

log-score gives a very similar ranking, only the positions of the worst two models are

exchanged. However, the approximate leave-one-out CRPS ranks model 3 best, followed

by models 4, 2 and 1.

One possibility to somehow check the accuracy of the approximations for this concrete
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3 Conjugate change point models

Figure 3.46 – Posterior parameters trends for the new change point model.

6 7 8 9 10 12

0.40

0.45

0.50

0.55

0.60

Start position of block [Mb]

µ
t

6 7 8 9 10 12

400

600

800

1000

1200

1400

Start position of block [Mb]

κ
t

Figure 3.47 – PIT histogram for approximate calibration assessment of the leave-one-out predic-

tion in the new change point model.
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large data example would be to select a small window of 200 observations, say. For this

subset, the exact results could be computed and compared with the approximate scores,

similarly as we have done it in the three case studies in this chapter. Yet, even without

doing this subset accuracy check, it is worth considering the ranking of the marginal

likelihood values: Because they also rank the new model best, the similar result of the

approximate leave-one-out log-scores is supported.

This real-world example is instructive, because the approximate leave-one-out PIT his-

tograms could guide us from the three badly calibrated models to a better calibrated new

model. This is a very important aspect of the PIT histogram, because it provides a model

criticism tool – we do not only see that some model is ranked higher than the other model

(using the proper scoring rules), but we do also get information about what may be wrong

92



3.8 Summary

with the bad models, and what could remedy the deficiencies.

3.8 Summary

In this chapter we have investigated the performance of Marshall-Spiegelhalter type ap-

proximations to the exact one-step-ahead and leave-one-out assessment results for conjug-

ate change point models. For three different distribution families, the case studies showed

that these approximations are good and can be obtained with less computational effort,

and should be used instead of the posterior-predictive results when the out-of-sample

predictions of the models matter. While for the small problems in the case studies the

exact computations were still feasible, the approximations were vital for predictive model

assessment in the large genetic data example. For the conjugate change point models, the

marginal likelihood can be computed, which also allows the computation of Bayes factors

between competing models. Model choice for more general change point models could

be based on the one-step-ahead and leave-one-out assessments alone, when the marginal

likelihood cannot be estimated reliably. Nevertheless, Chib (1998) proposes the MCMC

estimation of marginal likelihoods for comparing models with fixed numbers of change

points. Fearnhead and Vasileiou (2009) avoid the MCMC convergence issues and can

calculate the marginal likelihood exactly. The work in this thesis is a first step towards a

more thorough predictive assessment of change point models, which is asked for by Held,

Hofmann, Höhle, and Schmid (2006, p. 435) for a more complex infectious disease counts

model.

Comparing the exact one-step-ahead with the exact leave-one-out model scores from

the case studies, we notice that both assessment types yield the same ranking for the

Poisson-Gamma example (section 3.4.2) but slightly different rankings for the binomial-

beta example (section 3.5.2): while the one-step-ahead scores favour model 1 over model 3,

the order is reversed by the leave-one-out scores. For the normal normal-gamma example

(section 3.6.2) the CRPS and log-score rankings are equal for the one-step-ahead assess-

ment (models 1, 3, 2), but the exact leave-one-out rankings differ (2, 1, 3 and 1, 2, 3,

respectively).

The mean scores tables exhibit a common pattern, across all three examined distribu-

tion families. First, within each table (see e. g. Table 3.2 on page 49), the exact scores

are always highest, followed by the approximate scores and then (for the leave-one-out

prediction) the posterior-predictive scores. So the approximate scores are a bit too optim-

istic for the examined models, but the posterior-predictive scores are no good substitutes

for the exact scores at all. Second, if we compare the scores between the one-step-ahead

and the leave-one-out tables (compare e. g. Table 3.1 on page 46 with Table 3.2), we no-
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tice that the one-step-ahead scores are always higher than the respective leave-one-out

scores. This means that the one-step-ahead prediction is more difficult than the leave-

one-out prediction, whether it is exact or approximate. Both findings can be explained

by Figure 3.4. First, the posterior-predictive sampling scheme uses the full data set,

while the approximate leave-one-out scheme only partially uses the information for the

predicted time, and the exact leave-one-out scheme only uses the information from all

other times. Analogously for the one-step-ahead prediction, the exact approach must do

without the partial ahead information used by the approximate scheme. The more data

is available, the easier is the prediction, which corresponds to lower mean scores. Second,

the exact one-step-ahead prediction does not use the data after the next time, unlike

the exact leave-one-out prediction (except for the prediction of the last time, when both

tasks coincide). For the approximate versions, the later times are used partially by the

one-step-ahead but fully by the exact scheme. Therefore here also more data is available

to the leave-one-out predictions, making it easier and thus producing lower mean scores

than the one-step-ahead predictions.

In the PIT comparison plots, we have recognized a shrinkage of the posterior-predictive

(mid-)PIT values towards 0.5 relative to the exact leave-one-out PIT values. This can

easily be explained by the conservativeness of the posterior-predictive results: The cor-

responding predictive distributions are shrunk towards to the observation which was not

known to the leave-one-out predictive distribution. Thus, the observation is less extreme

relative to the forecaster, and the PIT value is shrunk towards 0.5. The shrinkage is much

weaker for the approximate PIT values, because the information from the observation is

only partially used to sample the change points. For example in the approximate compar-

ison plot in panel (c) of Figure 3.24 (p. 64) the characteristic S-form can be noted. But

the S-form is much clearer in the corresponding posterior-predictive comparison plot in

panel (c) of Figure 3.26 (p. 66).

The PIT shrinkage explained above was strongest for overfitting models. This is nat-

ural, because the posterior-predictive distribution is more different from the leave-one-out

forecast when the model adapts more strongly to the known data. Interestingly, the com-

parison of the posterior-predictive with the corresponding leave-one-out distribution was

proposed for assessing the influence (or “leverage” in classic regression) of the individual

on its own fit by the model (Gilks, Richardson, and Spiegelhalter 1998, p. 151). This

question is closely related to the influence measures typically used in linear regression, for

example the Cook’s distance (Cook and Weisberg 1980). Furthermore, the case studies

have exemplified that the models with the best fit are not necessarily the models with

the best predictive performance. For example, the normal normal-gamma model 3 in

section 3.6.2 fits the given data best (based on the posterior-predictive scores), but has
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the worst leave-one-out predictions (based on the exact leave-one-out scores).
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4 Random effects models for longitudinal

data

In section 4.1, longitudinal data models are motivated. The random effects modelling

framework is detailed and specialized to the linear mixed model in section 4.2. Similarly

in section 4.3, the predictive assessment schemes are first presented for general random

effects models before being implemented for the linear mixed model. Section 4.4 compares

the assessment results of the correct model and three wrong models in a small-scale

simulation study. Real data are analyzed in sections 4.5 and 4.6: First the performances

of the approximate assessment scheme are evaluated for a subset, before being applied to

the full data sets. Section 4.7 summarizes the results of this chapter.

4.1 Introduction

In its most general definition, longitudinal data is a collection of multiple time series. By

contrast, in chapter 3 we examined a model class suited to the analysis of single time

series. Typically and also in our real data examples in this chapter, each time series

is produced by measuring repeatedly the outcome for a single individual. In parallel,

other variables are recorded which could be associated with the outcome trajectories.

Longitudinal data models allow a statistical analysis which accounts for the correlation

within the time series, which could be an age effect, for example. Moreover, cohort effects

can be estimated, which could be responsible for different baseline levels of the time series.

If the individuals enter the study over a long time, also calendar-time effects could be of

interest, for example if health care has improved and is relevant for the outcome.

A book-length overview of different methods in longitudinal data analysis is given by

Diggle, Heagerty, Liang, and Zeger (2002). They also present a CD4 data example from

the same data pool as our CD4 example in section 4.5. In this thesis we concentrate on

random effects models for longitudinal data: these account for unobserved heterogeneity

between individuals by declaring the differences (the random effects) to be distributed

to (typically) a normal distribution. This assumption reflects that effects which cannot

be explained by observed covariates have (approximately) a normal distribution in the

population. Note that the word “random” is in fact superfluous in our setting because
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4 Random effects models for longitudinal data

in the proposed Bayesian inference all effects are assumed to be random, mirroring the

uncertainty about them. Yet, in the frequentist inferential framework the randomness of

the parameters is a striking element, so the models were coined “random effects models”.

In particular, the implementation will focus on the linear mixed effects models, which

assume that given the population effects and random effects (thus “mixed” effects) and

the covariates, a single observation has a normal distribution.

4.2 Modelling framework

Section 4.2.1 describes the data to which the general random effects model from sec-

tion 4.2.2 can be applied. The details for the normal linear mixed effects model are given

in section 4.2.3.

4.2.1 Data

We assume that we intend to analyze a longitudinal data set comprising n individuals

i = 1, . . . , n with time series of scalar outcomes. For individual i, ni scalar outcomes yij

indexed by j = 1, . . . , ni are recorded. That is, the multiple time series yi = (yi1, . . . , yini
)′,

i ∈ N , do not need to have the same lengths. Moreover, non-equidistant measurement

times tij for the observations are allowed. The whole longitudinal data set is denoted

as Y. Usually covariates are recorded in parallel to the outcomes. The notation for the

resulting design matrices is detailed in section 4.2.2.

4.2.2 Model

The general model assumes independence of the time series yi conditional on the para-

meter vector ξ and the individual random effects αi. So the likelihood for the observations

is

yi
ind
∼ f(yi | ξ,αi), i ∈ N .

Covariates (especially times tij) may also enter the data generating distribution, but are

suppressed in the notation for clarity. Then the independence is understood conditional

on the covariates, too.

The distribution of the random effects αi is parametrized by δ:

αi
iid
∼ f(αi | δ), i ∈ N .

Usually, this distribution will be a (multivariate) normal distribution. The prior for the

non-individual parameters in ξ has a hyperparameter τ :

ξ ∼ f(ξ | τ ).
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4.2 Modelling framework

Finally, a joint hyperprior can be included for the prior parameters:

δ, τ ∼ f(δ, τ ).

The structure of the general model framework is summarized in Figure 4.1. Note that

this structure also applies to cluster data, where the index i then identifies cluster i instead

of individual i. Only the chosen likelihood with its covariates specializes the framework

to longitudinal data.

yi

αiξ

δτ

i = 1, . . . , n

Figure 4.1 – Graphical model of the proposed random effects model framework.

4.2.3 Special case linear mixed model

We consider the normal linear mixed model of Laird and Ware (1982) as a special case of

the random effects model from section 4.2.2.

For the real-valued vectors yi ∈ Rni , i ∈ N , the non-individual parameter is ξ = (β, σ2)

where β ∈ Rp is the fixed effects vector and σ2 is the regression variance. αi ∈ Rq is the

individual random effects vector for individual i. The data generating distribution for

individual i is then specified as

f(yi | ξ,αi) = Nni
(yi |µi, σ

2Ini
),

where µi := Xiβ + Ziαi is the assumed mean vector for the independent observations

with common variance σ2. X i ∈ Rni×p collects the covariate vectors xij for observation i,

i. e. it is the design matrix

X i = (xi1 |xi2 | · · · |xini
)′

for the fixed effects β. Analogously, Zi ∈ Rni×q is the design matrix for the random

effects αi.

The distribution of the random effects αi depends on a vector-valued hyperparameter,

namely the variances δ = (δ2
1 , . . . , δ

2
q )′ of the individual random effects distributions:

f(αi | δ) = Nq(αi |0,diag δ).
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4 Random effects models for longitudinal data

This assumption implies that usually the individual design matrix Zi will be composed of

some columns already present in the population design matrix Xi, which are indexed by

Z, say. Then the resulting individual vector entering the i-th predictor µi is Ziηi, where

the individual effect ηi = βZ + αi sums up the population effect βZ for these covariates

and the individual deviation αi. In this notation we have µi = XiβZ̄ + Ziηi where Z̄
collects the indexes of fixed effects without corresponding random effects. Of course it

can be sensible to have random effects without directly corresponding population effects

in the model. This is the case, for example, in model 6 in section 4.5.2.

The prior for the non-individual parameters is composed of an improper flat prior on

the fixed effects β and an inverse-gamma distribution on the regression variance σ2 with

fixed hyperparameters a, b ∈ R+:

f(ξ | τ ) ∝ IG(σ2 | a, b).

Here τ = (a, b)′ can be formally included in the model by assigning it a point-mass

hyperprior at the fixed hyperparameter values. The flat prior on β ensures that the model

can freely center these population effects at the appropriate scale, without influence of

e. g. a shrinkage prior. Yet, for the random effects αi the normal shrinkage prior is

necessary because otherwise the posterior would not exist: the population effects could

not be distinguished from the individual effects.

The random prior parameters in δ are assigned a non-degenerate hyperprior, namely the

product of identical inverse gamma distributions with fixed hyperparameters c, d ∈ R+.

So the common prior for δ and τ is

f(δ, τ ) =

q∏

k=1

IG(δ2
k | c, d) I{(a,b)′}(τ ),

where I{(a,b)′}(τ ) denotes the density of the Dirac point measure δ(a,b) in (a, b) for τ .

We will focus on models of this normal linear mixed effects model type. Specifically, the

open source program BayesXi implements the methodology with MCMC based posterior

inference. Bayesian MCMC inference with Gibbs sampling is described in the BayesX

methodology manual (Belitz, Brezger, Kneib, and Lang 2009a, section 6.1.1, p. 21). See

the reference manual by Belitz, Brezger, Kneib, and Lang (2009b) on pp. 67 and 70 for

the specification of random intercept and random slope terms, respectively. BayesX uses

“hierarchical centring” reparametrisations which often improve convergence of the MCMC

samples (Gelfand, Sahu, and Carlin 1995). Essentially this means that in the sampling

scheme, β = (β′
Z ,β′

Z̄)′ and ηi (i = 1, . . . , n) are sampled instead of β and αi. The term

stems from the fact that the individual effect ηi is centered around the population effect

ihttp://www.stat.uni-muenchen.de/~bayesx/bayesxdownload.html
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4.3 Exact and approximate predictive assessment

βZ . Of course, the original random effect samples can be recovered using the identity

αi = ηi − βZ .

4.3 Exact and approximate predictive assessment

This section introduces the three different predictive assessment schemes: the exact and

approximate cross-validation assessment schemes are presented in section 4.3.1. Sec-

tion 4.3.2 contrasts this with the posterior-predictive assessment, which can only be used

for goodness-of-fit assessment. The implementation of the three different schemes for the

linear mixed model is detailed in section 4.3.3.

4.3.1 Cross-validation assessment

The leave-one-out cross-validation for random effects models is computationally demand-

ing, because each individual i is left out in turn. The model must then be fitted to the

reduced longitudinal data set of size n − 1 to obtain a prediction (in the form of samples

from the predictive distribution) for the left out time series yi. The fitting process of-

ten and also for the linear mixed model is based on an MCMC sampling scheme, which

requires much computing time. Therefore we will propose an approximate leave-one-out

sampling scheme, which should produce results close to those of the exact leave-one-out

sampling scheme, while easing the computational burden. Note that we leave out whole

time series but not individual scalar observations in the cross-validation.

We have presented the cross-validation procedure as a leave-one-out procedure with

respect to the n vector-valued observations. However, one could also interpret it as an

n-fold cross-validation of the
∑n

i=1 ni individual scalar observations, where the test sets

are identical to the clusters. In this view, we can in principle apply scalar checking tools,

e. g. compute PIT values for the individual observations. This could be valuable, because

there is no direct generalization of the PIT for vector-valued observations. The resulting

PIT histograms can then be compared to the BOT histograms.

Exact sampling

The exact leave-one-out predictive density, for the prediction of yi from the remaining

observations YN\{i}, is given by

f(yi | YN\{i}) =

∫∫∫∫
f(yi, δ, τ , ξ,αi | YN\{i}) dδ dτ dξ dαi

=

∫∫∫∫
f(yi | ξ,αi)f(δ, τ , ξ,αi | YN\{i}) dδ dτ dξ dαi

=

∫∫∫∫
f(yi | ξ,αi)f(αi | δ)f(δ, τ , ξ | YN\{i}) dδ dτ dξ dαi.
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4 Random effects models for longitudinal data

The last equation follows because

f(αi | δ, τ , ξ,YN\{i}) = f(αi | δ),

which can be read off the graphical model in Figure 4.2: Each node in the graph is

conditionally independent of all non-descendant nodes, given all parent nodes. Since δ is

the only parent of αi, and τ , ξ and YN\{i} are non-descendants, the statement follows.

yi

αi

YN\{i}

αN\{i}

ξ

δ

τ

Figure 4.2 – Graphical model of the leave-one-out setting.

Thus, sampling from the exact leave-one-out predictive density f(yi | YN\{i}) proceeds

as follows:

1. Draw δ, τ , ξ from the reduced posterior obtained from the reduced input data

YN\{i}.

2. Draw the random effect αi from the random effects distribution with parameter δ

being the sample from above.

3. Draw the prediction sample y∗
i from the data generating distribution with the

sampled parameters ξ,αi.

Approximate sampling

The exact leave-one-out cross-validation will be infeasible for normally sized data sets,

when the reduced posterior sampling is computationally demanding. The approximate
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4.3 Exact and approximate predictive assessment

leave-one-out predictive density thus replaces the reduced posterior f(δ, τ , ξ | YN\{i}) with

the full posterior f(δ, τ , ξ | Y):

f̃(yi | YN\{i}) :=

∫∫∫∫
f(yi | ξ,αi)f(αi | δ)f(δ, τ , ξ | Y) dδ dτ dξ dαi. (4.3.1)

Sampling from f̃(yi | YN\{i}) proceeds as follows:

1. Draw δ, τ , ξ from the full posterior obtained from the full input data Y.

2. Identical to the exact sampling: Draw the random effect αi from the random effects

distribution with parameter δ being the sample from above.

3. Identical to the exact sampling: Draw the prediction sample y∗
i from the data

generating distribution with the sampled parameters ξ,αi.

Thus, only one MCMC run is necessary for a leave-one-out cross-validation, where in turn

each observation is left out from the input data, and predicted from the remaining data:

Just run a single MCMC chain, save the samples of δ and ξ and do steps 2 and 3 for each

of the samples.

Note that the notation in this chapter is deliberately close to the notation in the mixed

predictive checking section in Fahrmeir and Kneib (2010, ca. p. 178). This chapter is

actually a first step to “assessing the quality of full-data mixed predictive checking” asked

for by the authors.

4.3.2 Goodness-of-fit assessment

Analogous to the argumentation in section 3.3.3 for conjugate change point models, we

can use posterior-predictive samples to check the goodness-of-fit of random effects models.

Obtaining these samples Y∗ from

f(Y∗ | Y) =

∫∫ n∏

i=1

f(y∗
i | ξ,αi)f(ξ,αi | Y) dξ dα

is easy: For each posterior sample (ξ,α), draw the replicate y∗
i from the likelihood for all

individuals i = 1, . . . , n.

The fundamental difference to the approximate leave-one-out sampling scheme de-

scribed in section 4.3.1 is that the random effects αi are not drawn from the prior f(αi | δ)

conditional on the posterior sample δ, but directly the posterior sample αi is imputed

into the likelihood.

Then custom scalar quantities can be computed, and p-values which compare the fit-

ted posterior-predictive distributions with the actual realizations, as has already been

described in section 2.4. If the test statistics are separate for each individual, a histogram
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4 Random effects models for longitudinal data

of the resulting p-values can be drawn. Good fit is then signalled by a hump-shaped

histogram. The p-values could be used for outlier detection, i. e. individuals where some

aspects are not fitted well by the model should have striking p-values. If the test stat-

istic summarized all individuals, only one p-value could be reported for the whole model.

However, in this chapter we will only use BOT values and score values for outlier detec-

tion, because these “test statistics” have a general scope and it is not easy to manufacture

summary statistics without knowing the data very well.

4.3.3 Special case linear mixed model

In this section the implementation for the normal linear mixed model from section 4.2.3

is detailed.

Posterior-predictive samples

The linear mixed model assumes that the observations yi1, . . . , yini
from one individual i

are conditionally independent given the modelled mean vector µi (which is a function of

β or ξ, and αi) and the variance σ2:

f(yi | ξ,αi) =

ni∏

j=1

N(yij |µij , σ
2).

This is convenient, because BayesX can provide us not only posterior samples of σ2, but

also posterior samples of µij.
ii Therefore the generation of posterior-predictive samples

from f(y∗
i | ξ,αi) for the goodness-of-fit checks (where ξ and αi are samples from the full

posterior) is reduced to the generation of scalar normal random variates y∗i1, . . . , y
∗
ini

. In

particular, we do not need to compute the mean vectors µi resulting from the samples of

the fixed effects β and the random effects αi by ourselves. This can be complicated and

error-prone if the fixed effects comprise e. g. basis coefficients of nonlinear spline terms,

for which the adequate design matrix would have to be constructed in order to obtain the

corresponding contribution to the mean vector.

Approximate leave-one-out samples

For the generation of approximate leave-one-out samples, the posterior-predictive sampling

approach must be slightly modified. The reason is that the posterior mean samples

µi = Xiβ + Ziαi produced by BayesX were computed with random effects samples

αi from the full conditional distribution f(αi | δ,yi) in the Gibbs sampler. However, for

iiThis can be configured with the regress method options predict and predictmu, cf. Belitz, Brezger,

Kneib, and Lang (2009b, p. 85).
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4.3 Exact and approximate predictive assessment

the approximate leave-one-out cross-validation scheme described on page 100, we need

mean samples µ∗
i deriving from α∗

i ∼ f(αi | δ). These “prior-predictive” (Marshall and

Spiegelhalter 2007, p. 413) random effects samples can be easily produced from normal

distributions with variances being the MCMC samples of δ = (δ2
1 , . . . , δ2

q ). Afterwards,

we correct the original mean samples µi as follows:

µ∗
i = Xiβ + Ziα

∗
i

= Xiβ + Ziαi − Ziαi + Ziα
∗
i

= µi + Zi(α
∗
i − αi).

Since BayesX allows random intercept and random slope terms, but does not support

more complicated random effects terms, the construction of the corresponding design

matrices Zi is straightforward. Finally, the samples y∗ij from the data generating normal

distributions with means µ∗
ij and variance σ2 are the approximate leave-one-out samples.

Exact leave-one-out samples

In order to draw exact leave-one-out samples, the BayesX sampler must be run n times.

If we want to get samples y∗
i for the prediction of the i-th individual, given the remaining

data YN\{i}, first we need parameter samples from f(µi, σ
2 | YN\{i}) – the second step

is then again sampling from the normal likelihood. The generation of the parameter

samples from the reduced posterior can be achieved by including a weight variable in

the data frame, which is 0 if the observation belongs to individual i and 1 else.iii Thus,

the observations from individual i have no influence on the Bayesian estimation, but the

output includes mean samples µi and (of course) regression variance samples σ2. Note

that here each individual has its own set of σ2 samples, while in the approximate sampling

scheme all observations share the same variance sample per iteration. This is due to the

fact that σ2 is part of the non-individual parameter ξ, which is only sampled from the

full posterior in the approximate sampling scheme.

One potential difficulty is due to the utilized MCMC methods: for valid judgements we

need to be sure that the Markov chains have (practically) converged to their stationary

distributions, before we use the samples for further computations. Unfortunately, there

are no automatic gold-standard checks for MCMC convergence, which could be built

into the leave-one-out cross-validation loop. Therefore detailed checks using the original

samples from BayesX are only straightforward for the posterior-predictive and approxim-

ate cross-validation procedures, because they are based on merely a single Markov chain.

For the exact cross-validation procedure, the checks can nonetheless be done for the res-

iiiSee Belitz, Brezger, Kneib, and Lang (2009b, p. 63) for the specification of weights in BayesX.
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ulting parameter samples, which need to be saved in order to later produce the predictive

samples.

Logarithmic scores and BOT values estimation

For the use of the logarithmic score comparing the i-th forecaster Fi (having density fi)

with the materialized observation yi,

LogS(Fi,yi) = − log fi(yi),

the density ordinate fi(yi) must be estimated. The general Monte Carlo estimation ap-

proach was already described for general models in section 2.3.3. For the model framework

described in section 4.2.2, the materialized observation is a time series yi from an indi-

vidual i. Sampling from the predictive density for this vector proceeds hierarchically, as

was already detailed above for the three different sampling schemes: First, parameters

θi[1], . . . ,θi[m] are drawn from the full or reduced posterior, where θi comprises (µi, σ
2).

Second, the samples yi[1], . . . ,yi[m] will be drawn from the m resulting conditional dens-

ities fi(yi |θi[1]), . . . , fi(yi |θi[m]).

While the marginal density ordinate fi(yi) is unknown, the conditional density ordinate

fi(yi |θi) is known for all θi:

fi(yi |θi) =

ni∏

j=1

N(yij |µij , σ
2).

Thus, given the model parameter samples θi[k], we can again use the Monte Carlo estim-

ate (2.3.4) which is f̂i(yi) = 1
m

∑m
k=1 f(yi |θi[k]), and impute it into the logarithmic score

formula. So the full estimate for the logarithmic score comparing the i-th forecaster Fi

with the materialized observation yi is

L̂ogS(Fi,yi) = − log f̂i(yi) = log(m) − log

m∑

k=1

fi(yi |θi[k]).

The estimates − log f̂1(y1), . . . ,− log f̂n(yn) can then be averaged to obtain the mean log

score of the model. Note that this mean log score is not identical to the average of the

log scores of the individual scalar observations yij, since

1

n

n∑

i=1

log f̂i(yi) =
1

n

n∑

i=1

log
1

m

m∑

k=1

ni∏

j=1

f(yij |µij[k], σ
2
i[k])

6= 1∑n
i=1 ni

n∑

i=1

log

ni∏

j=1

1

m

m∑

k=1

f(yij |µij[k], σ
2
i[k]) =

1∑n
i=1 ni

n∑

i=1

ni∑

j=1

log f̂ij(yij).
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In order to compute the BOT estimates B̂OT (fi,yi) (i = 1, . . . , n) from (2.2.3), we do

not only need the density ordinates zyi
= f̂i(yi) of the materialized observations yi under

the respective forecast densities fi, but we also need the density ordinates zi[l] = f̂i(yi[l])

of the forecast samples yi[l], l = 1, . . . ,m. These forecast samples are available anyway as

they are necessary for the estimation of the energy score. We again use the straightforward

Monte Carlo estimates

f̂i(yi[l]) =
1

m

m∑

k=1

fi(yi[l] |θi[k]), (4.3.2)

which are computed for all forecast samples. The BOT estimate is then the fraction of

estimated forecast ordinates being smaller than the estimated observation ordinate:

B̂OT (fi,yi) =
1

m

m∑

l=1

I[zi[l],+∞)(zyi
).

4.4 Simulation study

In order to test the proposed predictive sampling schemes in a situation where the true

linear mixed model underlying the data is known, we do a small simulation study in this

section. The model which generates the test data set is described in the following.

The data set comprises n = 40 individuals with one binary covariate (e. g. sex), which

is zi = 0 (male) for the first half and zi = 1 (female) for the second half. The number

of observations, ni, is drawn from the discrete uniform distribution U{3, . . . , 10}, iid for

all individuals i = 1, . . . , n. The observation times tij are then generated iid from the

continuous uniform distribution U(0, 10), j = 1, . . . , ni. The response values are generated

from normal distributions with mean

µij = β1 + β2tij + β3zi + αi1 + αi2tij (4.4.1)

for time j of individual i, where β = (β1, β2, β3)
′ collects the fixed population effects

(intercept, slope, baseline difference for females) and αi = (αi1, αi2)
′ collects the random

effects for individual i (baseline and slope differences). So we have p = 3, q = 2,

Zi = (1ni
| ti) and Xi = (Zi | zi1ni

),

where ti = (ti1, . . . , tini
)′.

We set β = (2, 7, 10)′ as the fixed effects, and σ2 = 4 as the noise variance. The random

effects are independent Gaussian draws with variance δ2
1 = δ2

2 = 9. The resulting data set

is graphed in Figure 4.3.
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Figure 4.3 – Simulated longitudinal data set.

4.4.1 Performance of the correct model

First we want to check how the correct model performs. We choose the (default) hyper-

parameters a = b = c = d = 0.001 for the prior of the variance parameters σ2 and δ.

For generating 200 000 iterations from which every 20-th sample was saved, BayesX

needed only 64 seconds. From the traceplot of the saturated deviance (cf. appendix A.2)

in Figure 4.4 we can assume that after 40 000 iterations the Markov chain has practically

converged to its stationary posterior distribution. We will thus discard the previous saved

samples as the burn-in phase, and work with the resulting 8000 thinned-out samples.

While the generation of the approximate cross-validation model parameter samples

is done in 2 seconds, the generation of the exact equivalents takes 54 minutes – so the

approximate approach is 1791 times faster! This is because we have to run BayesX 40 times

again (with the same MCMC parameters as for the full data run) to get the exact results,

but can use the already existing samples obtained from the full data to get the approximate

results. We checked the convergence of the reduced data Markov chains in the exact cross-

validation procedure by looking at traceplots of some means and variance samples. A burn-

in of 2000 for the thinned-out samples appeared adequate here too. The production of the
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Figure 4.4 – Traceplot of the saturated deviance.

resulting forecast samples worked then the same way for all three procedures (posterior-

predictive, approximate and exact cross-validation), conditional on the respective model

parameter samples (cf. section 4.3.3).

The estimation of the BOT values raised computational questions, which already emerged

with the estimation of the posterior-predictive BOT values: As described on page 105, we

first used all m = 8000 model parameter samples. This led to a required computing time

of 2430 seconds or 40 minutes, even after a 5-fold acceleration of the slower original R-code

using highly optimized C++-code. The problem is that the complexity of the algorithm is

O(r · m ·∑n
i=1 ni), if r is the number of used model parameter samples {θi[k]}r

k=1 and m

is the number of used predictive samples {yi[l]}m
l=1. Since the effort was inconvenient for

regular practical use, we tried to use r ≪ m parameter samples. Fortunately we found

that a subset of r = 200 randomly chosen samples yields very good approximations to

the BOT values obtained from all m = 8000 samples, while requiring proportionally less

computing time – only 56 seconds in our example. The results are also stable with regard

to the choice of subset. The full sample BOT values are compared with two approxima-

tions in Figure 4.5. Given these promising results, we will always use r = 200 randomly

chosen model parameter samples for the BOT values estimation from now on.
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Figure 4.5 – Comparison of full samples BOT estimates (8000 samples) with two approximations,

resulting from different subsets of size 200. Obviously the differences between full

and approximate values are negligible, with the maximum deviances being 0.023

and 0.018, and the mean deviances being 0.006 and 0.005 for the two subsets,

respectively.
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The resulting BOT and scalar-PIT histograms of the posterior-predictive, exact and

approximate cross-validation predictions are shown in Figure 4.6. The clearest picture

is given by the histograms for the posterior-predictive forecasts. The PIT histogram

in panel (d) has the typical hump-shaped form, meaning that the posterior-predictive

forecasts are overdispersed compared to the original data. The corresponding BOT histo-

gram in panel (a) is heavily left-skewed, which fits the picture of overdispersed predictive

samples. Of course, this overdispersion is in fact desirable here, because it means that

the posterior-predictive distributions are centered around the original observations. The

BOT histogram for the exact leave-one-out forecasts in panel (c) fulfills the expectations

quite well – no large deviation from uniformity is visible. The corresponding PIT his-

togram in panel (f), obtained from the n-fold cross-validation of the individual scalar

observations, is more difficult to interpret. At least no clear over- or underdispersion

can be diagnosed. The approximate counterpart PIT histogram in panel (e) is very sim-

ilar. The BOT histogram in panel (b) shows only slightly worse calibration. Overall, the

approximate histograms are good surrogates for the exact histograms.

The approximation of the exact cross-validation logarithmic scores, energy scores and

BOT values with either the posterior-predictive or the proposed approximate sampling

scheme is visualized in Figure 4.7. Both the exact logarithmic scores in panel (d) and

the energy scores in panel (e) are very well approximated by the proposed sampling
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scheme. This is in contrast to the posterior-predictive scores, which are systematically

much lower than the exact scores. While at least a linear correlation between the exact

leave-one-out and posterior-predictive logarithmic scores is seen in panel (a), the posterior-

predictive energy scores are heavily shrunk towards 0 in panel (b). The approximation of

individual BOT values with the proposed fast sampling scheme seems to be more difficult.

In panel (f) much larger differences than e. g. in Figure 4.5 are reported. This explains

that the resulting BOT histograms in Figure 4.6 are noticeably different. Panel (c) shows

that the posterior-predictive BOT values are almost always larger than the exact BOT

values in this example.

In Table 4.1 the mean scores are presented. A small amount of conservativeness of the

approximate mean scores can be seen, as they are lower than the respective exact mean

scores. However, the differences are rather small and the order of magnitude is preserved.

By contrast, the posterior-predictive mean scores are much lower than the exact mean

scores, with the posterior-predictive energy score being almost an order of magnitude

below the exact energy score.

Table 4.1 – Mean energy and logarithmic scores under the exact and approximate leave-one-out

and posterior-predictive sampling schemes.

Scoring rule exact approximate posterior-predictive

ES 23.96 23.27 3.03

log-score 17.81 17.65 13.73

4.4.2 Comparison with other models

Now we want to see how sensitive the model assessment is to the omission of important

features of the true model. We consider three (partially) wrong models.

For the first model, we omit the binary covariate (the term β3zi in formula (4.4.1)), while

for the second model we omit the random slope (αi2tij) in the specification of the linear

predictor. Both the covariate and the random slope are omitted for model 3. So model 1

misses a fixed effect, model 2 misses a random effect and model 3 misses both a fixed and

a random effect of the true model. This time we discard the burn-in of 40 000 iterations

directly in BayesX and keep the other MCMC parameters from the correct model sampling

in section 4.4.1. The required computing takes 73, 58 and 56 seconds for the three models,

respectively.

In order to compare the goodness-of-fit of all four models (the correct model plus the

three wrong models), we look at the mean deviance and posterior-predictive energy and

log-scores in Table 4.2. It is instructive that the wrong model 1 has the best bit of all
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4 Random effects models for longitudinal data

models, with respect to all three fit criteria, although the correct model is only slightly

worse. This is due to the random intercept term in model 1, which absorbs the difference

between male and female baseline levels. If we had omitted a time-varying covariate,

this would not have worked, but the binary covariate was time-constant in the example.

Model 2 has clearly a worse fit to the data, with the deviance difference being much smaller

than the scores differences. Model 3 is slightly better than model 2, but the gap between

the two models is not large, for the same reason that the correct model and model 1 are

very close. For both model pairs, the model without the fixed binary covariate effect has

a better fit.

Table 4.2 – Posterior-predictive mean energy and logarithmic scores as well as the posterior ex-

pected saturated deviances of the correct and the three wrong models.

Fit criterion Correct model Model 1 Model 2 Model 3

ES 3.03 2.98 13.49 13.48

log-score 13.73 13.69 23.67 23.64

Deviance 265.88 265.69 266.02 265.98

The posterior-predictive BOT and PIT histograms are shown in Figure 4.8. Here the

goodness-of-fit ranking is more difficult. The model 1 BOT histogram in panel (a) is

very similar to the correct model’s histogram in panel (a) on page 113. If we compare

the model 2 and model 3 BOT histograms in panels (b) and (c), we rather come to the

conclusion that they are fitting the data better than the correct model, because they

show a larger frequency of high BOT values than the correct model’s BOT histogram.

The model 1 PIT histogram in panel (d) is similar and slightly more heavily hump-shaped

than the original model’s PIT histogram in panel (d) on page 113. Ordering the goodness-

of-fit of model 2 and model 3 and the fit of the correct model using the PIT histograms

in panels panels (e) and (f) is very difficult.

For the three wrong models, we also produced cross-validation parameter samples using

the exact leave-one-out sampling scheme, which required 2676, 2929 and 2532 seconds.

Again the approximate sampling was much faster with only 1 additional second being

required for each of the three models.

The exact cross-validation BOT and PIT histograms are shown in Figure 4.9. The

model 1 BOT histogram in panel (a) is almost as close to a uniform histogram as the

correct model’s counterpart in panel (c) on page 113. The difference of the two other

models is obvious in their cross-validation BOT histograms in panels (b) and (c): they

are much more distinct from uniform histograms. The scalar PIT histograms do not give

a comparably clear picture, with all histograms differing from each other and from the
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correct model’s PIT histogram in panel (f) on page 113. So the BOT histograms seem to

be more useful here.

The mean cross-validation scores and DIC values for all four models are presented in

Table 4.3 (see appendix A.2 for the DIC definition). The exact energy and logarithmic

scores agree that the correct model has the best predictive performance, followed by

models 1, 2 and 3. This ranking is perfectly preserved by the approximate logarithmic

scores. The approximate energy scores rank model 2 better than model 1. By contrast,

the DIC ranks model 2 and model 3 best, and sends the correct model down to the third

place with a large difference of the DIC value.

Table 4.3 – Mean energy and logarithmic scores for the cross-validated prediction of the simu-

lated data for the correct model and the three wrong models, under the exact and

approximate sampling schemes. The DIC values based on the saturated deviance

samples reported by BayesX are also shown.

Model criterion Scheme Correct model Model 1 Model 2 Model 3

ES
exact 23.96 25.95 26.29 27.45

approximate 23.27 25.20 25.05 26.61

log-score
exact 17.81 18.60 25.83 25.96

approximate 17.65 18.29 25.18 25.34

DIC 337.10 344.06 306.61 306.78

4.4.3 Results

The experiments with the simulated data set have emphasized that the posterior-predictive

results are only useful for a goodness-of-fit assessment of the models in question. In doing

so, the posterior-predictive scores should be preferred over PIT and BOT histograms,

due to their easier interpretability. The distinction of goodness-of-fit assessment on the

one hand and predictive assessment on the other hand is a very important point because

an equally good fit does not imply equally good prediction of new data. For example,

the wrong model 1 fitted the data equally well as the correct model, but was of course

outperformed by the correct model in the prediction of the left-out data.

The deviance and DIC measures appear to be less useful than proper scoring rules:

The deviance showed only small differences in the goodness-of-fit assessment, and the

DIC yielded a wrong model ranking (the correct model was not the best model) in the

predictive performance assessment.

The approximate sampling scheme worked very well for the log-scores in this example.
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4 Random effects models for longitudinal data

The approximations worked also well for energy scores. Only the approximation of the

BOT values and corresponding histograms seems to be more difficult. Overall, the trade-

off between computational efficiency and good approximation of the leave-one-out results

seems to be fine.

However, these results cannot be generalized to larger applications, because we have

only conducted a very small simulation study here, both with respect to the number

of individuals/observations and the use of only one simulated data set. A more serious

simulation study would need to be done in large scale with replications of data sets.
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Figure 4.6 – Multivariate BOT (upper row) and scalar PIT (lower row) histograms for calibration

assessment of the leave-one-out prediction in the correct random effects model. The

predictive distributions were estimated with the posterior-predictive (left column),

approximate (middle column) and exact (right column) cross-validation sampling

schemes. Only 5 bins were used for the BOT histograms because of the small sample

size of n = 40. On the other hand, 10 bins were used for the PIT histograms, where

the sample sizes are larger (
∑

n

i=1
ni = 266).
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Figure 4.7 – Comparison of the approximation of the exact cross-validation logarithmic scores

(left column), energy scores (middle column) and BOT values (right column) with

either the posterior-predictive (upper row) or the proposed approximate sampling

scheme (lower row). The exact values are the x-axis coordinates, while the approx-

imate values are the y-axis coordinates.
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Figure 4.8 – Posterior-predictive multivariate BOT (upper row) and scalar PIT (lower row) his-

tograms for goodness-of-fit assessment of the three wrong random effects models

(columns).
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Figure 4.9 – Exact cross-validation BOT (upper row) and PIT (lower row) histograms for leave-

one-out calibration assessment of the three wrong random effects models (columns).
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4.5 CD4 data

4.5 CD4 data

The CD4 data set has been compiled by Andreas Bayerstadler from the Multicenter AIDS

cohort study (MACS) Public Data Set Release P17, which can be ordered via the Inter-

netiv. The MACS study is a long-term prospective cohort study of homosexual men

recruited at four study centers in the US, which started in April 1984. The cut-off date

for the used release P17 is 1st October 2004. Biannually, the participants were tested

for human immunodeficiency virus (HIV) positivity, to estimate the date of HIV serocon-

version. Moreover, detailed questionnaires, physical examinations and other laboratory

tests were carried out. A detailed description of the MACS study can be found elsewhere

(Kaslow et al. 1987).

Our data set comprises n = 574 patients who appeared for the biannual interviews

between min ni = 1 and max ni = 41 times, which leads to a total of
∑

ni = 10606

individual observations. The (quasi-)continuous response variable is the number of the

T helper cells expressing the surface protein CD4 in a fixed blood volume. These special

white blood cell are therefore called CD4 positive cells, or Leu-3 cells, which is why

the variable is named LEU3N. See Janeway et al. (1988) for an early review. Low CD4

lymphocyte counts are associated with increased risk of progression to AIDS in HIV

infected persons (Lee et al. 1991). Therefore we are interested in modelling the individual

CD4 counts trajectories, conditional on the covariates listed in Table 4.4.

Typical trajectories are graphed for a random subset of 18 patients in Figure 4.10. We

see that while many seroconverters suffer from a decline in the number of CD4 cells, there

is even a patient (ID 5829) with steadily increasing CD4 counts after his HIV infection.

This might also be due to the availability of more and more anti-HIV active ingredients in

the mid-1990s. Patient ID 9963 supports this hypothesis, with a surge in CD4 counts after

calendar time 14, which corresponds to the year 1998, when already 13 active ingredients

were internationally approved.v Large inter-patient variability is observed, both regarding

the absolute level of the trajectories and the shape of the time series. It is clear that the

covariates from Table 4.4 will not be able to explain most of this variability, but that

there are contributing unobserved covariates. We will thus use random effect models to

adjust for these influences.

In section 4.5.1 we will first do a complete case analysis of the data. This allows an

exact leave-one-out cross-validation assessment of three different models. The results are

compared to those from the proposed approximate cross-validation scheme. Section 4.5.2

fits six different models to the whole CD4 data set, with the form of the time effect being

ivMACS Web Site: http://www.statepi.jhsph.edu
vSee e. g. http://www.vfa.de/de/forschung/txt/aids-medikamente-klassen.html for an overview of

active ingredients classes.
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4 Random effects models for longitudinal data

Covariate Description

DATE Estimated date of seroconversion (in years after 1984-01-01)

TIME Time of the visit in years after estimated seroconversion

PSSCO Psychological score (quasi-continuous)

PACKS Number of cigarette packs smoked per day (none, up to half, one,

two or more packs per day)

SMOKE Number of cigarette packs smoked per day when smoked most

(none, up to half, one, two or more packs per day)

NSEX Number of sexual partners in the last six months (none, one or

more)

DRUGS Injection of recreational drugs (binary)

Table 4.4 – Description of CD4 data set covariates. The sum of DATE and TIME recovers the

calendar time of the visit (in years after 1984-01-01). The psychological score is an

average of 20 individual answers coding the frequency of rare (1), some (2), occasional

(3), or frequent (4) negative feelings (e. g. how often one felt lonely during the last

half year).

varied. Finally, in section 4.5.3 we include the significant covariates from section 4.5.1

into the best model from the approximate cross-validation in section 4.5.2.

4.5.1 Complete case analysis

First we want to include all covariates in the model selection. We therefore discard all

observations where any covariate value is missing, and obtain a complete data set with a

total of 1040 data points from 111 individuals (1 ≤ ni ≤ 31). The smaller dimensions will

give us the possibility to compare exact and approximate cross-validation results, which

would not be possible with the original n = 574.

Model fitting

The first model includes the three categorical covariates NSEX, DRUGS, PACKS (using appro-

priate binary dummy variables) and the continuous score PSSCO. In addition, a “hockey-

stick” assumption is made for the effect of time since seroconversion, where the change

of slope can appear at the seroconversion (the origin of the variable TIME). In order to

include our hypothesis of better medical treatment in the mid-1990s into the analysis, we

also allow a change at the beginning of the year 1995 or later if the seroconversion had

not taken place yet. These time effects and the intercept are specified as random effects,

to adjust for “random”heterogeneity between the individuals. The BayesX model formula
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Figure 4.10 – CD4 cell counts trajectories for a random subset of 18 participants, whose IDs

are in the headings of the panels. The estimated dates of seroconversion (variable

DATE) are marked by vertical lines.

has then the following form:

LEU3N = PSSCO+ NSEXone+ NSEXmore+ DRUGSyes+

PACKShalf+ PACKSone+ PACKStwo+ PACKSmore+

CASEID(random) + TIME ∗ CASEID(random)+

TIMEpos ∗ CASEID(random) + TIMEposLate ∗ CASEID(random),

where we have defined the covariates TIMEpos as the positive part of TIME. The design

variable encoding the possible second change is

TIMEposLate := (TIME− max{0, 11 − DATE})+,

because 1995 is 11 years after 1984 which is the origin of the variable DATE.

The second model only includes a random intercept to adjust for different baseline CD4
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levels, and uses fixed time effects as in the first model. The other covariates are inherited:

LEU3N = PSSCO+ NSEXone+ NSEXmore+ DRUGSyes+

PACKShalf+ PACKSone+ PACKStwo+ PACKSmore+

TIME+ TIMEpos+ TIMEposLate+ CASEID(random).

The third model is more parsimonious with restriction to the time-constant covariates

SMOKE and DRUGS, a random intercept and a random slope for the time since seroconversion:

LEU3N = DRUGSyes+ SMOKEhalf+ SMOKEone+ SMOKEtwo+ SMOKEmore+

CASEID(random) + TIME ∗ CASEID(random).

Figure 4.11 – Cumulative saturated deviance quantile plots (median, lower and upper 2.5%

quantiles) for the three models.
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(c) Model 3

We produced Markov chains of length 200 000 and saved every 20-th iteration for the

three models, which required 268, 229 and 201 seconds, respectively. The cumulative

quantile plots for the saturated deviance in Figure 4.11 suggest that a burn-in of 20 000

for the raw samples, or 1000 for the saved samples, is sufficient. The DIC values (which

are estimated from the saturated deviance samples) are 1209.04, 1138.57 and 1179.04,

respectively. So model 2 would be preferred by DIC, followed by model 3 and model 1.

Note that the DIC values were computed from the whole saved samples chain, including

the burn-in which we have discarded later.

In Figure 4.12 the estimated posterior means from the three models are plotted for the

patients from Figure 4.10 which are still present in the data set with complete observations.

Note that e. g. for patient ID 4186 there is only one observation left from the original 34.

Also for ID 8889, the last observations from the original data set are missing, and perhaps

this leads to model 1 and model 2 fits without the suspected late upward trend. For
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ID 9963, we see a late upward trend in the model 1 fit. Nevertheless, the posterior mean

fixed effect part of change of slope after 1995 (TIMEposLate) is positive for both models

(69.06 and 57.27).
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Figure 4.12 – Model fits (estimated posterior means) for the patients from Figure 4.3 which are

still present in the data set with complete observations. The three models are

discerned by line (or point) type: model 1 ( , ), model 2 ( , ) and model 3

( , ). The original data is plotted in gray.

Goodness-of-fit assessment

Overall the three model fits do not differ much. In order to assess the goodness-of-fits,

we look at posterior-predictive BOT and PIT histograms in Figure 4.13. Model 1 and

model 3 seem to have a better fit to the given data than model 2: Their BOT histograms

in panels (a) and (c) are more left-skewed than the Model 2 BOT histogram in panel (b).

Also the PIT histogram for the individual scalar observations in panel (e) shows that

model 2 generates more PIT values above 0.8 than both other models. Model 1 looks best

here.

Outlying individuals can be characterized by a small BOT value, because that means
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Figure 4.13 – Multivariate BOT (upper row) and scalar PIT (lower row) histograms for goodness-

of-fit assessment of the three random effects models (columns).
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that the probability of observing a smaller posterior-predictive density ordinate is small.

Thus, the materialized (multivariate) observation is in a low-density region of the posterior-

predictive distribution. As we expect the posterior-predictive distributions to center

around the known observations and to assign high density to their neighborhood, that

is indeed an argument for an outlying observation. We show the 7 observations having a

BOT value smaller than 0.05 in at least one of the three models in Figure 4.14.

For ID 5587, the fit from model 1 is obviously better than from both other models. This

is nicely reflected by the large BOT value (0.409) while the both other models have BOT

values below 0.1. IDs 3635, 4437, 5419 are not fitted well by all models: For the latter

two IDs, an individual outlying first observation at the beginning of the time series (with

corresponding scalar PIT value 1 for all models) is probably the reason for the relatively

small posterior-predictive density ordinates. For ID 3635, some points are distant from

the mean fits, but the cause for the low BOT values is not so obvious from the plot. Note
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however that we have only visualized the means of the posterior-predictive distributions

for the time points, but not quantiles or the full forms of the respective densities. The

BOT assessment takes account of the full distribution, and not only the mean. So a small

BOT value could also be due to an underdispersed predictive distribution, although the

recorded observation lies close to the predictive mean.
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Figure 4.14 – Model fits (estimated posterior means) for the patients with small posterior-

predictive BOT values, which are noted in the top-right corners of the panels.

The three models are discerned by line type: model 1 ( ), model 2 ( ), and

model 3 ( ).

Another way to diagnose extreme observations is to look at the contributions of the

observations to the mean posterior-predictive proper score of the model. For example,

one could diagnose a multivariate trajectory as outlying if its score is outlying in the

univariate sample of scores. Here, we instead examine the 6 observations with the highest

scores in the three models, which correspond to the 5% worst scores each. Both for

model 1 and for model 3, the 6 observations with the worst energy scores are IDs 3635,

4437, 5419, 5587, 8985 and 9963. For model 2, ID 8985 is replaced with ID 7146. These

findings are similar to the BOT outliers: in model 1 and model 2, the IDs 3635, 4437 and

5419 were among those with BOT values less than 0.05. The 6 highest logarithmic scores

are assigned to IDs 2376, 4437, 5587, 7288, 8418 and 8985 for model 2 and model 3. For
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model 1, ID 5587 is replaced with ID 7288.

We plot the trajectories of those IDs with high scores, which were not already plotted in

Figure 4.14, in Figure 4.15. Strikingly all new“log-score outliers”are long time series (ni =

30, 23, 29, 25, 26, 27), but their model fits do not look very strange. This shows that high

log-scores alone are not indicative of outlying observations, because the absolute posterior-

predictive density level is not indicative. Especially for our data set with observations of

different dimensions ni, the log-scores are not appropriate, because longer time series

have a tendency to smaller density ordinates corresponding to higher log-scores. It is

rather the relative density level of the materialized observation compared with the possible

posterior-predictive density levels for the same individual, which is indicative of outliers

– and this is exactly what the BOT values are. The posterior-predictive energy scores

as generalized mean euclidean prediction errors are more appropriate than the log-scores.

Their advantage over the BOT values is the easier Monte Carlo estimation and thus more

general applicability, because they do not need known conditional densities.

calendar time

y

500

1000

1500

2000

0 5 10 15

2376 7146

0 5 10 15

7288

7300

0 5 10 15

8418

500

1000

1500

2000

8985

Figure 4.15 – Model fits (estimated posterior means) for the patients with high posterior-

predictive energy and logarithmic scores, which are not already plotted in Fig-

ure 4.14. The three models are discerned by line type: model 1 ( ), model 2

( ), and model 3 ( ).
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Cross-validation assessment

Next we want to check the leave-one-out predictive capabilities of the models. In order to

check the performance of the approximate cross-validation scheme, we have also run the

exact cross-validation scheme, and have saved every 20-th iteration out of chains of length

100 000 after a burn-in phase of 20 000 iterations. The approximate evaluations took 5, 2

and 3 seconds. The exact evaluations took much longer, with saved timings 14 643, 11 447

and 10 954 seconds for the three models. So the approximate sampling saves three orders

of magnitude of computing time! However, it should be noted that a significant part of

the required computing time for the exact cross-validation could be spared if the program

would be integrated into BayesX, because the import overhead into R is memory-intensive.

The situation is even worse on machines with small working memory when swap actions of

the operating system are necessary. Nevertheless, the exact scheme will always be at least

n times slower than the approximate scheme, because the number of necessary Markov

chains is n instead of 1 (and this single chain is only necessary if the full model has not

been sampled yet!).

In Figure 4.16 the BOT histograms from the exact and approximate sampling ap-

proaches are compared. All histograms show too large bars in the last bin [0.9, 1.0],

which means that the predictions for the left-out individuals are rather over- than un-

derdispersed. Judging from the exact BOT histogram in panel (c), model 3 has the best

calibration among the three models. The approximate counterpart in panel (f) is very

similar. The exact BOT histograms for model 1 and model 2 in panels (a) and (b) are

more left-skewed. This impression is even stronger in the approximate panels (d) and (e).

In Figure 4.17 we compare the energy and logarithmic scores resulting from the exact

and approximate sampling schemes. It is surprising that the approximate logarithmic

scores are almost perfectly matching the exact counterparts. For all three models, there

is no noticeable departure from the identity line. The approximation of the energy scores

seems to be slightly more difficult: especially for higher true scores and for model 3 in

panel (c), the conservatism of the estimates is visible.

In Table 4.5 the mean scores are compared. Judging from the exact scores, model 2 is

preferred over model 3 and model 1 by the mean energy score, while model 1 is preferred

over model 3 and model 2 by the logarithmic scoring rule. These two rankings are re-

produced by the approximate scores. The conservatism of the faster sampling scheme is

conveyed by the absolute numbers: they are always smaller than the exact ones, with the

relative error being larger for the energy scores. This behaviour is expected from the too

optimistic nature of the approximate sampling strategy.
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4 Random effects models for longitudinal data

Figure 4.16 – BOT histograms for calibration assessment of the leave-one-out prediction in the

three random effects models. The predictive distributions were estimated with the

exact (upper row, 4000 samples) and the approximate (lower row, 9000 samples)

sampling schemes.
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Table 4.5 – Mean energy and logarithmic scores for the cross-validated prediction of the three

models, under the exact and approximate sampling schemes.

Scoring Rule Scheme Model 1 Model 2 Model 3

ES
exact 758.76 733.65 748.41

approximate 740.36 717.03 728.95

log-score
exact 67.26 67.79 67.62

approximate 67.04 67.58 67.52
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4.5 CD4 data

Figure 4.17 – Comparison of exact and approximate scores for leave-one-out prediction in the

three random effects models (columns). The panels in the upper row compare the

energy scores (ES), while the panels in the lower row compare the log-scores. In-

dividuals where the absolute difference between the exact and approximate energy

score values exceeds 200 are labelled.
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Results

While the goodness-of-fit histograms did not favour model 2, its DIC and mean energy

score are the best of all three models. The calibration of the leave-one-out predictions

also appeared acceptable. This is another example for the well-known fact that the best-

fitting model for the known data is not necessarily the best-predicting model for new data.

However, the decision is not totally straightforward here because the mean logarithmic

score actually ranks model 2 worst. For a description of the known data, model 1 might

be better suited, because it has a better fit to the known data than model 2 and the best

leave-one-out log-score.

We show the posterior summaries for the fixed effects from model 2 in Table 4.6. The
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psychological score (PSSCO) has a significant association with the CD4 cell counts accord-

ing to the table, with a higher score representing negative feelings being associated with a

lower cell count. Cigarette smoking during the last six months before the interview does

not seem to have an equally intuitive association with the response, as the Bayesian point

estimates of the dummy variable coefficients (PACKS...) are positive (which could theor-

etically result from a causal “smoking increases CD4 counts” relation) but the posterior

distributions are centered around zero. The number of sexual partners (NSEX) seems to

have a strong positive association with the dependent variable, while the modelled effect

of recreational drugs usage (DRUGSyes) is not statistically significant, because a positive

and negative sign for the coefficient are almost equally probable a posteriori (59% vs.

41%).

Coefficient Mean Median SD lower upper Positive

TIME −21.19 −21.16 4.25 −29.35 −12.72 0.00

TIMEpos −45.80 −45.86 6.80 −58.61 −31.99 0.00

TIMEposLate 57.27 57.32 10.24 37.86 77.77 1.00

PSSCO −83.72 −84.12 25.10 −132.14 −34.41 0.00

PACKShalf 40.73 40.47 167.72 −287.23 366.97 0.60

PACKSone 37.41 38.71 166.28 −295.03 351.14 0.59

PACKStwo 97.97 97.79 165.77 −226.94 418.15 0.72

PACKSmore 44.05 44.44 170.18 −290.89 375.77 0.60

NSEXone 67.62 68.12 60.13 −53.16 181.85 0.87

NSEXmore 105.26 105.36 59.34 −13.24 219.12 0.96

DRUGSyes 30.62 31.21 130.94 −215.93 295.68 0.59

Table 4.6 – Posterior summaries for fixed effects coefficients in model 2: In addition to the pos-

terior mean, median and standard deviation of the coefficient, the lower and upper

bound of the 95% HPD-interval and the posterior probability that the coefficient is

positive are shown.

The proposed approximate sampling scheme yielded very good results in this data ex-

ample: the logarithmic scores were approximated very well, and the energy scores approx-

imations were only slightly worse. The leave-one-out BOT histograms were more difficult

to approximate, but the general calibration picture was retained under the parsimonious

sampling scheme.
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4.5 CD4 data

4.5.2 Analysis for all patients with covariate time

Given the promising results on the performance of the approximate cross-validation scheme

from the last section, we now want to analyze the data from all patients with respect to

the association of the fully available covariate time with the CD4 cells counts.

Model fitting

We will sample from the posterior distribution in six selected models, which are listed in

Table 4.7. Model 2 differs from model 1 in that it assumes a linear time effect only after

the seroconversion date. The idea is that the CD4 counts are constant before the HIV

infection. This assumption is also coded into model 3 and model 4, which both feature a

second basis function taking effect in seroconverters from 1995 on. The variables TIMEpos2

and TIMEposLate2 are just the squares of the linear bases TIMEpos and TIMEposLate.

The resulting time trends for model 4 are continuous. More flexible fixed time trends

are allowed in model 5 and model 6, where P-splines (Brezger and Lang 2006) are used.

Model 6 adds linear random effects as in model 4. Note that the option nofixed is used

to disable the incorporation of analogous fixed effects. We do not want them because we

already have the flexible P-spline modelling the fixed time effect, and adding another base

could lead to Markov chain convergence difficulties due to weakly identified parameters.

No. BayesX predictor formula

1 CASEID(random) + TIME ∗ CASEID(random)

2 CASEID(random) + TIMEpos ∗ CASEID(random)

3 CASEID(random)+TIMEpos∗CASEID(random)+TIMEposLate∗CASEID(random)

4 CASEID(random) + TIMEpos2 ∗ CASEID(random) + TIMEposLate2 ∗
CASEID(random)

5 TIME(psplinerw2, nrknots = 5) + CASEID(random)

6 TIME(psplinerw2, nrknots = 8) + CASEID(random) + TIMEpos ∗
CASEID(random,nofixed) + TIMEposLate ∗ CASEID(random,nofixed)

Table 4.7 – Overview of the six BayesX models for the response variable LEU3N.

We produced Markov chains of length 200 000 and saved every 20-th iteration for all six

models, but only after the burn-in phase of 100 000 iterations. We discarded the burn-in

directly in BayesX to reduce the memory allocation load for the import into R, which is

quite high due to the large number (
∑n

i=1 ni = 10606) of data points. Traceplots and

cumulative quantile plots were checked to ensure that the used burn-in was large enough.

We plot the estimated time trends in Figure 4.18. Note that the pointwise and simul-
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taneous credible intervals are almost identical here. The P-splines in panel (e) for model 5

and in panel (f) for model 6 feature the typical curve form with an inflexion point around

2.5 years after seroconversion, and curved to the right and left before and after serocon-

version, respectively. This form is mimicked in panel (c) by the TP spline with knots

at seroconversion and 1995, and constant level before seroconversion. However, the fixed

effect is invariant to the calendar time in model 5 and model 6, so strictly the trends are

not directly comparable to the trend in model 3. Model 4 in panel (d) shows a problem

of the model, as it fits negative time effects near the end of the exemplary time scale. As

there are no other covariates (but random time effects) in the models, this corresponds

to negative mean CD4 counts. An alternative would thus be to logarithmize the CD4

counts and model them instead of the original counts, which is discussed in section 4.7.

The trends in model 1 and model 2 shown in panels (a) and (b) are rather too simple

compared with the P-spline trends.

Goodness-of-fit assessment

In order to assess the goodness-of-fits, we look at posterior-predictive PIT histograms in

Figure 4.19. In all plots, the last bar for the bin (0.95, 1] is remarkably larger than the bars

to its left. This indicates that some individual observations are clearly underestimated by

the models. Model 3 in panel (c) and model 6 in panel (f) have more PIT values near 0.5

than the other models. However the differences between the histograms are small.

In Table 4.8 the posterior-predictive mean scores are listed. The scores support the

PIT histograms, because model 6 has the lowest scores and is thus ranked as the model

with the best fit by the posterior-predictive scores. The second-best fit is provided by

model 3. It is interesting that for this data, the energy and the logarithmic score agree

on the goodness-of-fit ranking of all models.

Table 4.8 – Posterior-predictive mean energy and logarithmic scores for the goodness-of-fit as-

sessment of the six models.

Fit criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ES 587.26 604.48 541.33 629.37 673.29 531.91

Log-score 125.90 126.45 124.22 126.91 128.18 123.84

We show the 15 observations having a posterior-predictive BOT value of zero in all

of the six models in Figure 4.20. Only two IDs (4437 and 5419) were already included

in the outlier Figure 4.14 from the complete data analysis, where other covariates were

considered. Individual time series with large jumps in the CD4 counts, and long time

series with clear non-linearity are obviously most difficult to fit, for all six considered
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4.5 CD4 data

Figure 4.18 – Estimated fixed effects time trends in the six models: Means ( ), pointwise HPD

( ), and simultaneous ( ) credible intervals at the 0.95 level are plotted. The

vertical lines mark the seroconversion date (mid-1989) and the year 1995 for the

virtual average patient (random effects are not included) having entered the study

in mid-1984.
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models.

Cross-validation assessment

An exact leave-one-out cross-validation assessment for each of the six models is infeasible:

For example, because already the model fit of model 1 took 1253 seconds, the iterative

fit of all 574 reduced models with the model 1 predictor form would take approxim-

ately 719 140 seconds or 200 hours. Instead, we trust the approximate sampling strategy,

and generate according samples for the six models in merely 8.1, 7.1, 8.5, 8.5, 5.8 and

8.6 seconds, respectively.

We check the calibration with the BOT histograms in Figure 4.21. All six histograms are
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Figure 4.19 – Scalar PIT histograms for goodness-of-fit assessment of the six random effects

models
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far away from an optimal uniform distribution of the BOT values. Only large fractions

for the lowest bin [0, 0.1] indicate that the histograms do not show the distribution of

posterior-predictive, but leave-one-out BOT values.

Marshall and Spiegelhalter (2007, p. 429) recommend to also check for outliers using

the approximate leave-one-out samples, which they call “mixed predictive samples”, if

one is concerned with the random effects prior distribution. They use the posterior-

predictive samples to check the likelihood assumptions, which comprises the form of the

linear predictor or equivalently the model in our application. (Of course also the identity

link and the normal distribution assumption are part of the likelihood assumptions.) If

we look for individuals having a cross-validation BOT value of 0, we find that the IDs are

2545, 2755, 3861, 7398, 8269, 8854 and 9888. This means that 6 of the 7 individuals were

already included in the posterior-predictive BOT outliers.

Turning to the model choice, BayesX reports DIC values. We are interested if the
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Figure 4.20 – Model fits (estimated posterior means) for the patients with posterior-predictive

BOT values of zero. The six models are discerned by line type: model 1 ( ),

model 2 ( ), model 3 ( ), model 4 ( ), model 5 ( ), and model 6 ( ).

approximate leave-one-out proper scoring rules yield the same result. In Table 4.9 the

mean energy and logarithmic scores of the models in question as well as the DIC values

are shown. Model 5 is preferred by the DIC (followed by models 2, 1, 4, 6, 3), and also by

the energy score (followed by models 6, 1, 3, 2, 4). By contrast, the logarithmic scoring

rule ranks model 6 best (followed by models 3, 1, 2, 5, 4). This is a large difference to the

DIC ranking, e. g. model 6 is up from the last-but-one place and model 5 is down from

the first place to the last-but-one place. Yet, all three criteria agree that a P-spline model

should be chosen.
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Figure 4.21 – Approximate BOT histograms for calibration checking of the leave-one-out predic-

tions in the six models.
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Table 4.9 – Approximate mean energy and logarithmic scores for the cross-validated prediction of

the six models, as well as the DIC based on the saturated deviance samples reported

by BayesX.

Model criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ES 1067.11 1133.65 1108.70 1539.25 904.44 1015.88

Log-score 128.87 129.41 127.82 130.34 129.65 127.25

DIC 11555.5 11531.8 11694.0 11621.1 11137.0 11669.2
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Results

The best fit to the known data is provided by model 6. As this model does also perform

well in the approximate leave-one-out cross-validation (under both proper scoring rules),

we would probably choose model 6 for the description of the known data. Model 5 does

not have an equally good fit, but could be an alternative, because the DIC and the energy

score prefer it over model 6.

4.5.3 Final model

The final model for the CD4 data is a synthesis of model 6 from section 4.5.2 and model 2

from section 4.5.1: we include the significant covariates PSSCO and NSEX (cf. Table 4.6)

into the P-spline model. We omit the covariates PACKS and DRUGS to keep the resulting

data set as large as possible. This final model thus has the BayesX formula

LEU3N = PSSCO+ NSEXone+ NSEXmore+ CASEID(random)+

TIME(psplinerw2, nrknots = 8) + TIMEpos ∗ CASEID(random,nofixed)+

TIMEposLate ∗ CASEID(random,nofixed).

The reduced data set comprises all n = 574 participants, but only
∑

ni = 6478 data

points (minimum 1, maximum 36 observations per participant). We produced a total of

5000 parameter samples for this model specification by thinning out a Markov chain of

length 200 000 and discarding a burn-in of 100 000 iterations, within 1125 seconds.

The posterior summaries of the fixed effects are tabulated in Table 4.10. Compared

with Table 4.6 on page 128 for the fixed effects in model 2 from the previous section,

the direction of the estimated associations is unaltered: Worse psychological scores are

significantly associated with decreasing CD4 cell counts, and the number of sexual partners

in the last six months is positively correlated with the CD4 cell counts. Note that the

posterior means of the coefficients are different because the covariates PACKS and DRUGS

as well as the fixed parametric effects for TIME have been omitted, and instead a fixed

P-spline effect has entered the model.

The fixed effect time trend estimate from that P-spline is graphed in Figure 4.22. The

trend is very similar to the model 6 trend in panel (f) on page 131, but the credible

intervals are wider. This is comprehensible, because the time-varying covariates PSSCO

and NSEX have entered the model, and more model parameters lead to larger uncertainty

about the covariates’ associations.

Next we want to check the goodness-of-fit of the new model. The posterior-predictive

BOT and PIT histograms are shown in Figure 4.23. If we compare the PIT histogram in
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Table 4.10 – Posterior summaries for fixed effects coefficients in the final model: In addition

to the posterior mean, median and standard deviation of the coefficient, the lower

and upper bound of the 95% HPD-interval and the posterior probability that the

coefficient is positive are shown.

Coefficient Mean Median SD lower upper Positive

PSSCO −46.37 −46.30 9.01 −63.01 −27.91 0.00

NSEXone 22.40 22.34 17.37 −11.05 55.33 0.90

NSEXmore 34.21 34.42 17.40 0.04 67.87 0.97

Figure 4.22 – Estimated fixed effects time trend in the final model: Means ( ), pointwise HPD

( ), and simultaneous ( ) credible intervals at the 0.95 level are plotted. The

vertical lines mark the seroconversion date (mid-1989) and the year 1995 for the

virtual patient (random effects are not included) having entered the study in mid-

1984, who has constant covariate values NSEX == none and PSSCO == 1.
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panel (b) with the model 6 PIT histogram in panel (f) on page 132, we do not observe

large differences. The BOT histogram in panel (a) shows a high frequency of large BOT

values, and thus also shows a good fit of the new model to the given data.

In order to check the leave-one-out calibration of the final model, we plot the approxim-

ate cross-validation BOT and PIT histograms in Figure 4.24, as the exact cross-validation

would have required ca. 179 hours. The BOT histogram in panel (a) shows a better calib-

ration than the BOT histogram in panel (f) on page 134 for the model with covariate time

only. Note however that while we have all individuals in the data set here, there are fewer

data points attached to the individuals. So the sample leading to the BOT histogram has

the same size, but it is smaller for the PIT histogram in panel (b). It shows a relatively

good calibration for the scalar predictive distributions, which do seem to have too heavy

lower tails compared to the materialized observations. This is indicated by the small bars

for the lower bins: too few observations materialize in the lower tails.
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Figure 4.23 – Posterior-predictive BOT and PIT histograms for goodness-of-fit assessment of the

final model.
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Figure 4.24 – Approximate BOT and PIT histograms for leave-one-out predictive calibration

assessment of the final model.
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4.6 BMI data

The BMI data set is a subset of the LISAvi study data, a recent German birth cohort

study originally designed to examine influence factors for the development of the immune

system and allergies in children (Jacob et al. 1999). We follow Fenske, Fahrmeir, Rzehak,

and Höhle (2008) and instead investigate the n = 2043 children’s body mass index (BMI)

dependence on risk factors already discussed in the literature. The corresponding covari-

ates are listed in Table 4.11 and are time-constant, except for the time variable age. There

are between min ni = 2 and maxni = 9 individual observations for each child, between

its birth and an age of max tij = 6.31 years. This gives the total number of data points
∑

ni = 17316. More details on the data set are given by Fenske, Fahrmeir, Rzehak, and

Höhle (2008, p. 3).

Covariate Description

age Age in years

wgain2y Weight gain until the age of 2 years

tvpc Hours spent watching TV and playing computer at the age of 4

years (4 classes)

outdoor Hours spent outdoor per day at the age of 4 years

mEdu Maternal highest level of education (5 classes)

mBMI Maternal BMI at pregnancy begin

mDiffBMI Maternal BMI gain during pregnancy

mSmoke Did the mother smoke during pregnancy?

breast Bottle-feed and/or breastfeeding, or breastfeeding only?

area Rural or urban study centre?

Table 4.11 – Description of BMI data set covariates.

In Figure 4.25 we show the trajectories of 18 randomly selected children. Typically the

BMI levels rise until the age of around 1 year and decline slowly afterwards. However,

there are also children whose BMI is highest at the end of the study time, e. g. IDs

92182314 and 95084041. Note that the absolute calendar time is not relevant for this data

set, because the neonates were recruited within in the short time of 15 months, and can

thus be treated as a time-homogeneous cohort.

viLISA is the abbreviation of “Influences of Life-style factors on the development of the Immune System

and Allergies in East and West Germany”
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Figure 4.25 – BMI trajectories for a random subset of 18 children, whose IDs are in the headings

of the panels.

4.6.1 Approximate sampling performance case study

First, we will check the performance of the approximate sampling scheme. To this end,

we take the first 100 children from the complete data set. The number of observations

per child ranges between minni = 4 and maxni = 9, giving a total of
∑

ni = 829 data

points in the subsample. The restriction to this subsample is necessary to do the exact

leave-one-out cross-validation in a manageable amount of time. See section 4.6.2 for an

analysis of the whole data set.

Model fitting

For all three candidate models, we include dummy variables for the binary covariates sex

and mSmoke. Moreover, we include a binary variable mEduHigh which is 1 if the mother

has Abitur or Fachabitur and is 0 else, that is we collate the two highest education levels

and contrast them with the lower three levels of mEdu. The variable tvpcMoreThan1

analogously collates the highest three levels of the ordinal variable tvpc. The continuous

variables mBMI and outdoor are included as well. These covariate choices are of course
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quite arbitrary, but are made to simplify the case study. All available covariates will later

be used in section 4.6.2.

The three models feature a random intercept, and differ in the modelling f(age) of the

time variable age: For the first model, we assume a hockey-stick form f(t) := α · t + β ·
(t − 1)+ with the breakpoint at the age of one year (t = 1). Both basis functions (which

are called age and ageAfter1) get fixed and random effects (parameters α, β and αi, βi,

i = 1, . . . , n, say), to adjust for unexplained heterogeneity between the children. For the

second model, a more sophisticated parametric form f(age) for the age variable is used,

which is inspired by the typical trajectories we have already seen in Figure 4.25:

f(t) := α · t + β · log(t + 1)

(t + 1)2
(4.6.1)

Together with the intercept, say γ, this function can approximate many typical features,

as Figure 4.26 shows. Both coefficients α and β are included as fixed and random effects.

The third model uses a P-spline with 8 knots to model the fixed time effect. In addition,

a random slope is included in the model.

For each of the three models, we ran BayesX with a burn-in phase of 100 000 iterations,

after which every 20-th sample of the next 200 000 iterations was saved. The overall

convergence was successfully checked with deviance traceplots. For model 1, strong auto-

correlations between the fixed effect samples of the age and ageAfter1 covariates could be

diagnosed. Since we intend to make posterior inference only for the whole time predictor

function, but not for these single coefficients, this should not concern us unduly.

We plot the estimated time trends in Figure 4.27. The P-spline fit from model 3 in

panel (c) looks too wiggly, compared with the two other parametric fits. The trend could

be smoothed stronger, if we specified other hyperparameters for the P-spline variance

prior: We used the default parameters a = b = 0.001 for the inverse-gamma prior, giving

a prior mode of b/(a + 1) ≈ 0.001. For example, setting these values to a = b = 0.0001

decreases the mode to 0.0001, leading to a stronger penalization of second-order differences

of the B-spline basis functions coefficients. Alternatively, the number of knots could be

set lower than 8. The parametric fit from model 2 in panel (b) is similar to the P-spline

fit for the age under one year. Afterwards, it is much smoother, which is of course implied

by the strong parametric assumptions of the form (4.6.1). The linear TP-spline fit from

model 1 in panel (a) is even more simple than the fit from model 2, but is still better

interpretable than the model 3 fit: sharp increase of BMI until the age of one year, and

slow decrease afterwards.
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Figure 4.26 – Possible parametric functions of the form (4.6.1) in model 2, when the intercept γ

is included.
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(d) α = 0.5, β = 20, γ = 12

Goodness-of-fit assessment

It is interesting what the different time trends can contribute to fitting the given data.

The goodness-of-fit for the individual scalar observations and the whole vector-valued

time series can be assessed with the posterior-predictive PIT and BOT histograms in Fig-

ure 4.28. The model 2 PIT histogram in panel (e) looks best among the three models: For

model 3 in panel (f), more posterior-predictive PIT values below 0.2 have been observed,

and for model 1 in panel (d), we have rather a uniform than a hump-shaped histogram.

The BOT histograms convey the same statement. The model 2 histogram in panel (b)

is stronger left-skewed than the model 3 and model 1 histograms in panels (c) and (a),

respectively. So model 2 fits the given data best, followed by model 3 and model 1, if

we measure the goodness-of-fit with the scalar observations (PIT) or on the predictive

multivariate density scale (BOT).

In Table 4.12 the posterior-predictive mean scores are listed. The numbers match the
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Figure 4.27 – Estimated fixed effects time trends (including the intercept) in the three models:

Means ( ), pointwise HPD ( ), and simultaneous ( ) credible intervals at

the 0.95 level are plotted. The positions of the x-coordinates are included in the

form of x-axis ticks.
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impression from the PIT and BOT histograms: the goodness-of-fit is best for model 2,

followed by model 3 and then model 1.

Table 4.12 – Posterior-predictive mean energy and logarithmic scores for the goodness-of-fit as-

sessment of the three models for the BMI subsample data.

Fit criterion Model 1 Model 2 Model 3

ES 2.75 1.72 1.86

Log-score 14.81 11.23 11.75

Cross-validation assessment

We produced both approximate and exact leave-one-out model parameter samples for a

predictive assessment of the three models. While the exact cross-validation sampling was

very computer-intensive (9281, 9296 and 9759 seconds), the approximate sampling based

on the samples from the model fitting was quickly done (4, 3 and 3 seconds). For the

exact sampling, for each left out child, we used BayesX to produce chains of length 100 000,

which were thinned out with parameter 20 after a burn-in phase of 20 000 iterations. No

convergence problems were found in randomly selected traceplots of the resulting means

and precisions samples.

The BOT histograms from both sampling schemes are compared in Figure 4.29. The

exact BOT histograms show that all three models are quite well calibrated. The differences
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Figure 4.28 – Multivariate BOT (upper row) and scalar PIT (lower row) histograms for goodness-

of-fit assessment of the three random effects models (columns) for the BMI sub-

sample data.
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are rather small, with the histograms for model 1 in panel (a) and model 2 in panel (b)

looking slightly better than the histogram for model 3 in panel (c). For model 1 and

model 2, the approximate histograms in panels (d) and (e) are very near to the exact

counterparts. The model 3 approximate BOT histogram in panel (f) is even a bit more

left-skewed than the exact histogram in panel (c), so the model calibration ranking would

be the same if we only had available the approximate BOT histograms.

In Figure 4.30 we compare the energy and logarithmic scores resulting from the ex-

act and approximate sampling schemes. The logarithmic scores approximation works,

although the (relative) deviances from the identity lines are larger than in Figure 4.17

for the CD4 data example. The logarithmic scores are approximated best in model 1,

as panel (d) shows. The comparison plots for the energy scores are also slightly worse

than the plots in Figure 4.17. Note that the plots actually only graph the absolute errors,

because the distances h of the points to the identity line are proportional to the the dis-
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Figure 4.29 – BOT histograms for calibration assessment of the leave-one-out prediction in the

three random effects models for the BMI subsample data. The predictive distribu-

tions were estimated with the exact (upper row) and the approximate (lower row)

sampling schemes.
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tances of the x- and y-coordinates: h = |x − y| /
√

2. The mean relative errors are 0.019,

0.026 and 0.03. So also for the energy scores, the approximation works better in model 1

than in model 2 and model 3.

In Table 4.13 the mean scores are compared, and contrasted with the DIC values. The

energy scoring rule ranks model 2 and model 3 equal and model 1 worst. If we approximate

the scores, we get lower mean energy scores, with model 2 and model 3 being ranked almost

equal. Model 1 is still the worst of the three models. The logarithmic scoring rule prefers

model 2 over model 3, but the difference is small between these two models. Model 1

is clearly worse. These conclusions are replicated in the approximate mean scores. It is

interesting that the DIC gives model 1 the lowest value, which corresponds to the best

model. The ranking of the proper scoring rules is actually reversed, because model 2 is

ranked worst by the DIC.
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Table 4.13 – Mean energy and logarithmic scores for the cross-validated leave-one-out prediction

of the BMI subsample data for the three models, under the exact and approximate

sampling schemes, as well as the DIC based on the saturated deviance samples

reported by BayesX.

Model criterion Scheme Model 1 Model 2 Model 3

ES
exact 3.27 2.67 2.67

approximate 3.20 2.60 2.58

log-score
exact 15.71 13.35 13.39

approximate 15.59 13.13 13.19

DIC 916.67 1002.77 965.21

Results

The BMI subsample data was fitted best by the parametric non-linear model 2. As this

model also had an acceptable calibration in the BOT histogram and was ranked best in

the exact leave-one-out predictive assessment by the energy and logarithmic scoring rules,

we should choose model 2 based on these subsample results. The DIC again reversed the

model ranking from the scoring rules.

The approximate cross-validation scheme worked well in this example, too: The bias

of the absolute scores was small and the exact scheme’s model rankings were preserved.

Also the approximate BOT histograms were close to the exact BOT histograms.

4.6.2 Data analysis

Now we include all n = 2043 children in our analysis, and also try to use all covariate

information. After fitting six models to the BMI data (p. 145), we first assess their

goodness-of-fit and examine outlying individuals (p. 147), before doing an approximate

cross-validation (p. 148).

Model fitting

The first three models are retained from section 4.6.1. For the second half of the six

candidate models we try to improve model 2 and model 3 and include the additional cov-

ariates wgain2y, mDiffBMI, breast and area: In model 4, the design variables mDiffBMI

and breastbreastFeed are added as ordinary fixed effects to the model 2 configuration,

modifying the baseline level of the child’s BMI. The variables wgain2y and areaurban

are added as interaction terms with age. For example, a statistically significantly positive

coefficient for the latter interaction would then be interpreted as a larger increase of BMI
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over the first six years of life for children living in an urban area, compared with children

living in rural areas. In model 5, the same fixed effect terms are added, this time to the

model 3 configuration. In order to smooth the employed P-spline more strongly, we now

specify lower hyperparameters a = b = 0.0001 for the corresponding variance parameter,

as we suggested earlier. In model 6, we extend model 4 by using all three and four dummy

variables from the covariates tvpc and mEdu, respectively, instead of just the two binary

variables tvpcMoreThan1 and mEduHigh.

For each of the models, we let BayesX Gibbs sample Markov chains of length 200 000.

In order to keep the memory load at a manageable size, we saved only every 40-th sample

after a burn-in of 100 000 iterations. The result is a sample size of 2500, which should

still be large enough to keep the Monte Carlo errors low. This required computing times

of 2160, 2117, 2148, 2563, 2568 and 2770 seconds for the six models, respectively. As

already observed in the Markov chains for the case study in section 4.6.1, we see high

auto-correlations between coefficients samples for the fixed effect of age. In the last three

models we also note strong negative correlations between age and wgain2yAge, and to

a lower extent between age and areaurbanAge. This is comprehensible, as the linear

predictor part with age is

(
αage,i + βage + βwgain2yAgewgain2yi + βareaurbanAge I(areai == urban)

)
· ageij

for observation j from child i. Since the weight gain until 2 years (covariate wgain2y) is

always positive, a larger fixed effect βage can be balanced to a certain degree by a smaller

interaction effect βwgain2yAge to retain a similar level of the coefficients sum. If one wor-

ried about these posterior correlations, one could try centering the covariate wgain2y to

“decorrelate” the coefficients. Here we are not interested in the single coefficients samples,

but only in the whole age trend, and so do not have problems with the correlations.

The estimated fixed effects of age according to the six different models are depicted

in Figure 4.31. For the last three models, we set the continuous variables wgain2y and

mDiffBMI to the data point means 8.91 and 5.12, and also the (originally binary) design

variables breastbreastFeed and areaurban to the means 0.6 and 0.79, respectively. This

shall ensure that the plots are comparable with the plots from the first three models, which

do not include the four covariates wgain2y, mDiffBMI, breast and area. The forms of

the trends from model 1 in panel (a) and from model 2 in panel (b) are similar to the

subsample results in Figure 4.27. Due to the increased number of observations, the credible

intervals are much narrower here. This is also the case for model 3 in panel (c), with the

mean curve now being smoother than for the subsample.The bump between age 2 and

4 can probably be explained by the local fitting of the B-spline bases, because there are

almost no observations around the age of 3 years in the data set. It is instructive that the

model 5 fit in panel (e) is indiscernible from the model 3 fit: This means that the different

148



4.6 BMI data

P-spline variance prior is outweighed by the large number of data points, so that we do

not see a clear difference between both trends. Probably only a decreased flexibility of

the spline with a lower number of knot locations would have a visible effect on the age

trend. Panel (d) with the model 4 fit is indiscernible from panel (b). This is actually the

check that the adjustment with the means of the four additional covariates works. The

mean trend is also very similar to the model 6 trend in panel (f). Because in model 6, the

effects of the time-constant covariates mEdu and tvpc are modelled as 7 dummy variables

instead of only 2, the posterior uncertainty about the baseline level for the time trend is

larger which is reflected by the wider credible intervals.

Goodness-of-fit assessment

We plot the posterior-predictive BOT histograms in Figure 4.32. Model 1 provides the

worst fit to the data, as the histogram in panel (a) is less left-skewed than the other

histograms. Both P-spline models are able to fit the data more closely, if we judge the

goodness-of-fit by their histograms in panels (c) and (e). Models 2, 4 and 6 with the

nonlinear parametric time trends have the most left-skewed BOT histograms in panels (b),

(d) and (f). It is not clear which one of the three fits best.

Analogously to defining outlying individuals as individuals with a high posterior-predictive

energy score (cf. page 123), we can look at the posterior-predictive mean energy scores

of the models to get numbers for the overall model fits. We also include the mean logar-

ithmic scores in Table 4.14. Both scoring rules assign model 2 the best fit, followed by the

other two parametric models 6 and 4, the P-spline models 3 and 5 and finally the simple

model 1. The table also shows the posterior expected saturated deviance for the models,

which is a traditional goodness-of-fit criterion, see e. g. Spiegelhalter, Best, Carlin, and

van der Linde (2002, p. 601). Model 2 has the lowest mean deviance, so that it fits best

also according to this measure. It is followed by models 1, 6, 3, 5 and 4. It is interesting

that the simple model 1 is ranked second by the deviance, but last by the scoring rules.

Table 4.14 – Posterior-predictive mean energy and logarithmic scores of the six models, as well

as the posterior expected saturated deviance.

Fit criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ES 2.59 1.54 1.84 1.56 1.87 1.55

Log-score 14.50 10.42 11.77 10.46 11.84 10.45

Deviance 17312.25 17310.30 17316.27 17319.09 17319.07 17314.14

We show the 8 observations having a posterior-predictive BOT value of less than 0.01

in all of the six models in Figure 4.33. The children with IDs 91083394, 94089313 and
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94182011 feature untypical BMI jumps at the ages of one and two years. These could

be described as truly outlying trajectories. It would be interesting to remove the three

children from the statistical analysis, to check if the results are strongly influenced by

them. The remaining five children seem to have more normal BMI time series, which are

too complicated to be acknowledged by the six models. IDs 91080697, 92082611, 92185191

and 95086051 have a very sharp BMI rise in the first life months, which is not followed

adequately by the models. For ID 91982761, the BMI rise occurs too late with regard

to the model, so that the third measurement is far below the fitted means, and leads to

small posterior-predictive density ordinates and BOT values.

Cross-validation assessment

The approximate leave-one-out BOT histograms for the six BMI models are shown in

Figure 4.34. Since the histograms summarize n = 2043 observations here instead of

n = 100 in Figure 4.29, the appearances are more regular. However, the “calibration

message” of the histograms is similar: All models are quite well calibrated, with model 3

in panel (c) and model 5 in panel (e) perhaps being calibrated slightly worse than the

other models.

Again in this data example, we observe the pattern of approximate leave-one-out BOT

histograms with the first bar for the bin [0, 0.1] being larger, and the rest being left-skewed

with the last bar for the bin (0.9, 1] being largest. The pattern is much less pronounced

here than in Figure 4.21 for the CD4 data, but it is recognizable.

If we are concerned about the model calibration at the individual observations level,

we can inspect the approximate scalar-PIT histograms for the six BMI models. They are

shown in Figure 4.35. For all models, there are too few small scalar-PIT values below 0.1

compared to uniform histograms. This means that the lower tails of the scalar predictive

distributions are rather too heavy, because too few observations materialize in the lowest

parts of the distributions. The model 1 histogram in panel (a) looks worst. The model 3

and model 5 histograms in panels (c) and (e) are better, but still have too large bars for

the bin (0.95, 1]. This is removed in the remaining panels for the nonlinear parametric

time trends models, who still suffer from the too heavily left tailed predictions.

We are interested if the approximate leave-one-out proper scoring rules yield the same

result as the DIC. In Table 4.15 the mean energy and logarithmic scores of the models

in question as well as the DIC values are shown. Starting with the logarithmic scoring

rule, model 6 is ranked as the best model, closely followed by model 4, then models 2,

5, 3 and finally model 1. So the log-scores prefer the nonlinear parametric models, from

which the most complex is ranked highest. The energy scoring rule also ranks model 6

best, together with the P-spline model 5. Model 4 is only slightly worse, models 2 and 3
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are ranked equally and model 1 is again at the last place. Thus the proper scoring rules

agree that the simple model 1 with the linear TP-spline time trend is the worst of all

six models. By contrast, the DIC is lowest for model 1, so the DIC ranks model 1 as

the best of all six models. The P-spline models 5 and 3 get the second and third places,

respectively. The nonlinear parametric models 6, 4 and 2 share the last places. This

result is analogous to the result for the subsample data, where Table 4.9 showed that the

DIC preferred the simple over the P-spline and the nonlinear parametric model, while the

ranking was reverse for the proper scoring rules.

Table 4.15 – Approximate mean energy and logarithmic scores for the cross-validated prediction

of the six models, as well as the DIC based on the saturated deviance samples

reported by BayesX.

Model criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ES 3.11 2.62 2.62 2.53 2.52 2.52

Log-score 15.38 13.01 13.35 12.87 13.21 12.85

DIC 18963.6 21392.1 19963.2 21164.4 19643.6 21160.4

Results

From the total six models fitted to the whole BMI data set, models 2, 4 and 6 provided

the best fit to the data. This was stated both by the posterior-predictive BOT histograms

and the posterior-predictive scoring rules. By contrast, the posterior expected deviance

also favoured the simple parametric model 1, besides model 2.

The leave-one-out calibration was better for model 2, 4 and 6 than for the other three

models, if we judge this by means of the approximate leave-one-out BOT histograms.

The approximate mean scores, which also consider the sharpness of the leave-one-out

predictions, rank model 6 best, followed by model 4 and model 2 in the logarithmic

scoring rule and model 5 and model 4 in the energy scoring rule. Thus, we would choose

model 6 from all models, ignoring that the DIC ranks the oversimplistic model 1 best.

4.6.3 Final model

It is interesting if the P-spline can be combined with the nonlinear parametric func-

tion (4.6.1) into a single model. We examine a model which is based on model 5 from

section 4.6.2 with a P-spline for the fixed effect of age. It features not only a random

slope, but also the nonlinear part from function (4.6.1) to include the whole parametric

function f(age) as random effect. This form of individual departure from the population
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trend could be useful to better fit some outliers from Figure 4.33. Furthermore we take

only 7 instead of 8 knots for the P-spline, to smooth the population trend slightly stronger.

We produced a total of 2500 parameter samples for this model specification by thinning

out a Markov chain of length 200 000 and discarding a burn-in of 100 000 iterations, within

2898 seconds. The posterior summaries of the fixed effects are tabulated in Table 4.16.

We see significant positive associations of male sex, mother’s BMI at pregnancy begin,

mother’s BMI gain during pregnancy and breast feeding with the BMI level. Also the

more hours spent outdoors at the age of 4 years, the higher is the BMI level of the child,

according to the model. The posterior mean estimate for wgain2y can be interpreted as

if the child gained one kilogram more weight until the age of 2 years, than the BMI would

rise additional 0.09 points per year. By contrast, the association of an urban study center

with the BMI is slightly negative. The 95% HPD interval ends near zero for areaurbanAge

and for mEduHigh, so these correlations are only borderline significant. It is even more

uncertain if maternal smoking or TV/computer usage is associated with the child’s BMI

trajectory.

Coefficient Mean Median SD lower upper Positive

sexmale 0.11 0.11 0.04 0.02 0.19 0.99

mBMI 0.05 0.05 0.01 0.04 0.06 1.00

mDiffBMI 0.11 0.11 0.01 0.09 0.14 1.00

mSmokeyes −0.07 −0.07 0.06 −0.19 0.06 0.15

mEduHigh −0.08 −0.08 0.05 −0.18 0.00 0.03

tvpcMoreThan1 0.04 0.04 0.05 −0.06 0.14 0.77

outdoor 0.05 0.05 0.02 0.01 0.08 1.00

breastbreastFeed 0.17 0.17 0.05 0.08 0.26 1.00

wgain2yAge 0.09 0.09 0.00 0.08 0.10 1.00

areaurbanAge −0.03 −0.03 0.01 −0.05 0.00 0.03

Table 4.16 – Posterior summaries for fixed effects coefficients in the final model: In addition

to the posterior mean, median and standard deviation of the coefficient, the lower

and upper bound of the 95% HPD-interval and the posterior probability that the

coefficient is positive are shown.

The fixed effect age trend estimate is graphed in Figure 4.36. The trend is noticeably

smoother than in panel (e) on page 153. This is supposedly due to the use of 7 instead of

8 knot locations. Yet, the overall picture has not changed much, only after 6 years (where

few data points are observed and the uncertainty is large) the mean curve differs from the

original model 5 curve.
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The mean deviance is 17321.7, the mean posterior-predictive log-score and energy score

are 10.6 and 1.59, respectively. While this is the worst mean deviance of all models, the

scores are almost as good as for the models 2, 4 and 6 with fixed nonparametric age trend

(cf. Table 4.14 on page 147). The posterior-predictive BOT and PIT histograms are shown

in Figure 4.37. The BOT histogram in panel (a) attests the new model a better fit than

the old model 5, with panel (e) on page 154. The PIT histogram in panel (b) reinforces

this conclusion.

In order to check the leave-one-out calibration of the final model, we plot the approxim-

ate cross-validation BOT and PIT histograms in Figure 4.38, as the exact cross-validation

would have required ca. 1645 hours. The predictive calibration looks very good in the

BOT histogram in panel (a) compared with the histograms in Figure 4.34 on page 156.

The PIT histogram in panel (b) is good too, but has similar defects to the other models’

PIT histograms in Figure 4.35 on page 157.

The DIC is 21103.7, and the approximate cross-validation log-score and energy score

are 12.95 and 2.54, respectively. That ranks the new model between the old P-spline

models and the nonlinear parametric models with respect to the DIC and the log-score.

The energy score is the fourth best of all seven models which have been examined.
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Figure 4.30 – Comparison of exact and approximate scores for leave-one-out prediction in the

three random effects models (columns) for the BMI subsample data. The panels

in the upper row compare the energy scores (ES), while the panels in the lower

row compare the log-scores. Individuals where the absolute difference between

the exact and approximate score values exceeds 0.5 (ES) or 1.5 (log-scores) are

labelled.
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4.6 BMI data

Figure 4.31 – Estimated fixed effects time trends (including the intercept) in the six models:

Means ( ), pointwise HPD ( ), and simultaneous ( ) credible intervals at

the 0.95 level are plotted. For models 4–6, the time trends samples which were

averaged include the sampled effects of the covariates wgain2y, mDiffBMI, breast

and area at their data point means.
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4 Random effects models for longitudinal data

Figure 4.32 – Posterior-predictive BOT histograms for goodness-of-fit assessment of the six mod-

els.
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Figure 4.33 – Model fits (estimated posterior means) for the children with posterior-predictive

BOT values less than 0.01 in all of the six models, which are discerned by line type:

model 1 ( ), model 2 ( ), model 3 ( ), model 4 ( ), model 5 ( ), and

model 6 ( ).
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4 Random effects models for longitudinal data

Figure 4.34 – Approximate BOT histograms for calibration assessment of the leave-one-out pre-

dictive distributions implied by the six models.
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4.6 BMI data

Figure 4.35 – Approximate scalar-PIT histograms for cross-validated calibration assessment of

the scalar predictive distributions in the six models.
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Figure 4.36 – Estimated fixed effects time trend in the final model: Means ( ), pointwise HPD

( ), and simultaneous ( ) credible intervals at the 0.95 level are plotted. The

trends samples which were averaged include the sampled effects of the covariates

wgain2y, mDiffBMI, breast and area at their data point means.
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4 Random effects models for longitudinal data

Figure 4.37 – Posterior-predictive BOT and PIT histograms for goodness-of-fit assessment of the

final model.
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Figure 4.38 – Approximate BOT and PIT histograms for leave-one-out predictive calibration

assessment of the final model.
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4.7 Summary

4.7 Summary

In this chapter, we have applied the Marshall-Spiegelhalter approach to Bayesian random

effects models, which have been estimated with the MCMC implementation of BayesX.

The cross-validation assessment for the longitudinal data was understood as a leave-one-

out loop on the level of the individuals, as opposed to the level of single observations.

For a simulated data set and two real data examples, we have compared the exact cross-

validation results with the Marshall-Spiegelhalter approximations, and found that the

results were very close to each other: the ranking of the models by means of the scoring

rules was mostly preserved by the approximate scheme, and the bias of the absolute scores

was small, especially for the logarithmic scoring rule. Also the calibration results were

essentially retained under the approximate scheme, although the approximation of single

BOT values and resulting BOT histograms was more difficult than the score approxima-

tion.

Moreover, we have experienced that the goodness-of-fit assessment of the longitudinal

models can be based on the posterior-predictive model scores. This usage of posterior-

predictive samples should be favoured over the production of BOT or PIT histograms,

due to the easier and objective interpretability and ranking of the models’ results. A

related topic is the detection of outlying individuals, which we understood as individuals

which cannot be fitted well by the model. For this task, the BOT values can be utilized,

with smaller BOT values indicating a worse fit. While the energy score values can also

be used, the single posterior-predictive logarithmic scores should be interpreted carefully,

especially when the dimensions ni of the time series vary.

In comparison with the current default model criteria printed by BayesX, namely the

posterior expected deviance and the DIC, the approximate model scores were competitive:

for the simulated data, the DIC could not identify the correct model as the best model,

in contrast to the approximate scores. Also for the BMI data set, the DIC preferred a too

simple model, judging both from the goodness-of-fit of this model and its approximate

leave-one-out scores. The posterior expected deviance, too, seems to have a tendency to

prefer (too) simple models, as the BMI data analysis suggests. These findings motivate an

integration of the approximate leave-one-out cross-validation scheme into BayesX, so that

the users would also be provided with the posterior-predictive and approximate leave-one-

out energy and logarithmic scores of the fitted model as an interesting supplement to the

current output.
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5 Summary and Discussion

In this thesis, we have implemented exact and approximate predictive assessment for two

Bayesian hierarchical model classes: While the conjugate change point models are applic-

able to single time series data, the random effects models are used to analyze longitudinal

data. For the time series, two natural assessment schemes were used, which assess either

the quality of one-step-ahead or leave-one-out predictions. For the longitudinal data, only

the leave-one-out scheme is sensible on the level of individuals. However, for data sets

with equally long time series, one could also imagine a one-step-ahead scheme which works

on the level of individual observations. The predictions and the materialized observations

were compared with PIT/BOT transformations and proper scoring rules to address both

the calibration and the sharpness of the predictions. These evaluations of the predictive

distributions were fully based on samples (either directly from the forecasters or from

their underlying distributions), and can thus be applied to a wide range of situations.

For both model classes, the implemented approximations of the Marshall-Spiegelhalter

type worked well: Although always an optimistic bias of the approximate scores and PIT

values could be observed, the conveyed statement of the exact results was often retained by

the approximate results. The advantage of the approximations is entirely computational,

but this advantage can be vital for large data sets. The approximate predictive assessment

schemes should thus be utilized when the exact assessment is not feasible any longer, as

was the case for the genetic data in section 3.7 or the full CD4 and BMI data sets in

sections 4.5 and 4.6, respectively. For the latter two data examples, we selected a small

subset of the data to be able to compare with the approximate with the exact results,

at least for a smaller part of the data. This strategy could be generalized in statistical

practice: test the approximate scheme on a small subsample of the data, and if it yields

satisfactory approximations to the exact scheme, apply the approximate scheme to the

whole data set, where the exact scheme is infeasible.

An important point of this thesis is the contrasting of the exact and approximate

predictive assessment results with the analogous posterior-predictive results. We have

shown that the easily accessible posterior-predictive results are suitable for, and only for,

the goodness-of-fit assessment of the considered models. This comprises the detection of

poorly fitted observations, by comparing the posterior-predictive distributions with the

corresponding known observations. However, in general the posterior-predictive results
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5 Summary and Discussion

are far away from the corresponding exact and approximate predictive assessment results:

the sampling scheme is just much too optimistic about the forecasting capabilities of the

models. The scores are thus shrunk to 0, the PIT values are shrunk to 0.5 and the BOT

values are shrunk to 1. Moreover, it is crucial to remember that a model which fits the

known data well is not guaranteed to be a good forecaster for yet unknown data. This

was shown very clearly in the simulated data analysis with the random effects model in

section 4.4. That is the fundamental problem of overfitting models, and many examples

were given in the case studies in sections 3.4–3.6.

To conclude, we propose two possible extensions of topics covered in this thesis.

First, note that due to the definition of our change point model in section 3.2.2, there

is a shortcoming of the modelling approach. It is relevant for the Tokyo rainfall data

case study in section 3.5.2 and was neither avoided by Kitagawa (1987), who introduced

the data set into the literature: There is no implemented connection between the rain

probabilities on 31st December and 1st January. However, since the data is a “cyclic”

time series, it would be better to somehow penalize probability trend differences between

these two adjacent days. To remedy this shortcoming, our change point model could be

extended to cyclic time series. Essentially the blocks y[1,θ1] before the first change point

and y(θk ,n] after the last change point would have to share the same model parameter

ξ(1) ≡ ξ(k+1). Yet, note that two change points are necessary in this cyclic time series

model to distinguish two seasons in the year: if k = 1, then the “first” and the “last” block

would still share the same parameter. In order to allow a change point between the last

observation yn and the first observation y1, an optional change point at time n could be

introduced. From the other perspective, the normal time series structure is a special case

of the cyclic time series, where there is a fixed change point between the end and the

start of the time series. Moreover, the cyclic time series framework could be extended

to seasonal time series, which cannot be summarized into a single cyclic time series as it

was the case for the Tokyo rainfall data. For example, instead of the rainy days we could

have recorded temperature measurements. Then the model parameters for the seasonal

trend could still form a cyclic time series, and each observation would be assigned the

appropriate parameter via the calendar day.

Second, the sampling based evaluation of the predictive distributions offers a very easy

possibility to consider transformations of the independent variable. We will illustrate

that point with the CD4 data from section 4.5, where the direct modelling of the un-

transformed counts with a normal linear mixed model posed problems – the calibration

of the considered models was unsatisfactory. A conventional transformation of the CD4

counts is the square root transformation, which is the variance-stabilizing transforma-

tion for Poisson-distributed count data. So we could transform the counts, and consider
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models for the root-counts. These would produce predictive samples for the square root

of the CD4 counts. In order to compare these new models with the old models on the

original scale, we could then just square the root-count predictive samples to map them

onto the original count scale. The squared samples would then produce BOT, PIT, and

proper scoring rule values which could be compared directly with the old models’ results.

Analogously, we could try to fit the natural logarithm of the CD4 counts, to avoid the

problem that the normal likelihood includes impossible negative counts in the inference.

These models could be compared directly with the other models on the original counts

scale, too, by exponentiating the predictive log-counts samples of the log-CD4 models.

To mention an example for the conjugate change point models, in section 3.7 we could

try to model the logit transformed GC proportions instead of the original proportions,

which could lead to a better normal approximation of the observations conditional on the

means.
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A Appendix

A.1 CRPS formula

We will show that for x ∈ R and Y, Y ∗ iid
∼ G with finite expectation E(Y ) =

∫
y dG(y) the

identity

E |Y − x| − 1

2
E |Y − Y ∗| =

∫ {
G(y) − I[x,+∞)(y)

}2
dy (A.1.1)

holds. The integration in (A.1.1) and hereafter extends over the entire real line.

The proof follows lemmas 2.1 and 2.2 of Baringhaus and Franz (2004, p. 192), which

start with two independent random variables X ∼ F and Y ∼ G with finite expectations.

First note the basic identity

|x − y| =





x − y =
∫

I[y,x)(u) du if x ≥ y

y − x =
∫

I[x,y)(u) du if x < y

=

∫
I[y,x)(u) + I[x,y)(u) du,

which is true because [x, y) = ∅ and thus I[x,y)(u) ≡ 0 if x ≥ y (and analogously for

x < y). Therefore the expected distance between X and Y can be rewritten as

E |X − Y | = E

∫
I[Y,X)(u) + I[X,Y )(u) du

=

∫
E I[Y,X)(u) + E I[X,Y )(u) du

=

∫
P(Y ≤ u < X) + P(X ≤ u < Y ) du

=

∫
P(Y ≤ u) P(u < X) + P(X ≤ u) P(u < Y ) du

=

∫
G(u)(1 − F (u)) + F (u)(1 − G(u)) du, (A.1.2)

where we have used Fubini’s theorem for the change of integration and expectation order,

and the stochastic independence of X and Y .

Now introduce two independent copies of X and Y , namely X∗ ∼ F and Y ∗ ∼ G.
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A Appendix

From (A.1.2) it follows that

E |X − Y | − 1

2
E |X − X∗| − 1

2
E |Y − Y ∗|

=

∫
G(u)(1 − F (u)) + F (u)(1 − G(u)) − 1

2
· 2F (u)(1 − F (u)) − 1

2
· 2G(u)(1 − G(u)) du

=

∫
G(u) − F (u)G(u) + F (u) − F (u)G(u) − F (u) + F (u)2 − G(u) + G(u)2 du

=

∫
F (u)2 − 2F (u)G(u) + G(u)2 du

=

∫
(F (u) − G(u))2 du. (A.1.3)

If we choose the cdf F (u) := I[x,+∞)(u), we arrive at the point-mass-in-x distributed

X,X∗ iid
∼ δx. Therefore we can substitute x for X,X∗ in identity (A.1.3), giving

E |x − Y | − 1

2
E |Y − Y ∗| =

∫
(I[x,+∞)(u) − G(u))2 du,

because E |X − X∗| = E |x − x| = 0. This completes the proof of identity (A.1.1).

A.2 Saturated Deviance and DIC

The saturated deviance in the model framework from section 4.2.3 is defined as

D(ξ,α) = 2 log

{
g(y |σ2)

f(y | ξ,α)

}
.

It compares the likelihood f(y | ξ,α) =
∏n

i=1 Nni
(yi |µi, σ

2Ini
) of the parameters to the

data density where the means µi are replaced by the actual observations yi, g(y |σ2) =
∏n

i=1 Nni
(yi |yi, σ

2Ini
), by means of the well-known likelihood ratio statistic.

The Deviance Information Criterion (DIC) was proposed by Spiegelhalter, Best, Carlin,

and van der Linde (2002) and is based on the (saturated) deviance. Let

pD := E
[
D(ξ,α) |y

]
− D(ξ̄, ᾱ)

be the difference between the posterior expected deviance and the deviance at the posterior

expected parameter values ξ̄ := E(ξ |y), ᾱ := E(α |y). pD is the effective number of

parameters in the Bayesian model. The DIC is then defined in analogy to the AIC as

DIC := D(ξ̄, ᾱ) + 2pD.

It is oriented as the proper scoring rules, i. e. lower DIC values correspond to better models.
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A.3 Paired permutation test for difference of mean scores

Suppose we have computed two scores ri and si for the prediction of each observation yi,

i = 1, . . . , n. In our applications, the score ri is usually obtained from some model, say

Mr, predicting the observation yi from (a subset of) the remaining observations yN\{i},

while si is obtained from the prediction prescribed by Ms. The proper scoring rule which

compares the forecasters Fr,i and Fs,i with the materialized observation yi is of course the

same for both models, e. g. the CRPS and ri = CRPS(Fr,i, yi), si = CRPS(Fs,i, yi).

We want to compare the mean scores r̄ and s̄ with a formal significance test, in order to

examine if their difference d̄ = r̄ − s̄ is statistically significant on a certain level (usually

0.01 or 0.05). Then the paired permutation test provides a convenient solution, because

unlike e. g. the paired Student t-test, it does not require distribution assumptions or trust

in asymptotic behaviour.

The null hypothesis is that the mean scores µr and µs in the population are equal,

µ = µr = µs. The alternative hypothesis is the contrary, µr 6= µs. We have estimated

the population parameters µr and µs by r̄ and s̄ from a paired sample of size n. The

idea of the permutation test is that under the null hypothesis, the values of ri and si

could be exchanged without changing the expected means in the two score sets. These

would still be E(R̄) = E(S̄) = µ. Exchanging the values of the i-th pair is equivalent to

changing the sign of the difference di = ri − si. So a permuted test statistic is simulated

as d̄∗[b] = 1
n

∑n
i=1 di · (−1)zi,[b] where zi,[b] is drawn from a Bernoulli distribution with

probability 0.5 for all observations i = 1, . . . , n. The randomized permutation is done for

b = 1, . . . , B = 10000, say. Then the two-sided p-value

p = P(|D∗| > |d|) = P(|D| > |d| |H0 is true)

can be approximated by the Monte Carlo estimate

p̂ =
1

B

B∑

b=1

I(|d∗[b]| > |d|).

If n is small enough, all 2n permutations can be considered. Baker and Tilbury (1993)

have devised a fast algorithm for the approximation of the resulting “exact” p-value with

fixed accuracy in polynomial time. See Jolliffe (2007, p. 646) for permutation tests applied

to the inference of verification measures in meteorology.
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A.4 Normal-normal mixture

Let x |µ ∼ N(µ, 1) and µ ∼ N(0, 1). Then we have from Held (2008, p. 148) that the

posterior of µ is again a normal distribution, namely

µ |x ∼ N

(
1

2
x,

1

2

)
.

Thus we have from Bayes’ theorem that the marginal density of x is

f(x) =
f(x |µ)f(µ)

f(µ |x)

=

1√
2π

exp
{
−1

2(x − µ)2
}
· 1√

2π
exp

{
−1

2µ2
}

√
2√
2π

exp
{
−1

2 · 2(µ − 1
2x)2

}

=
1√

2π
√

2
exp

{
−1

2

[
x2 − 2µx + µ2 + µ2 − 2(µ2 − 1

2µx + 1
4x2)

]}

=
1√

2π
√

2
exp

{
− 1

2 · 2x2

}

= N(x | 0, 2).
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B Nomenclature

AIC Akaike’s Information C riterion

BIC Bayesian Information C riterion

BOT Box Ordinate T ransform

(C)RPS (Continuous) ranked probability score

cdf cumulative d istribution f unction

DIC Deviance Information C riterion

DIC Deviance Information C riterion

ES Energy score

iid independent identically d istributed

MCMC M arkov chain M onte Carlo

pdf probability density f unction

PIT Probability Integral T ransform

[s, t], (s, t] For integers s ≤ t, we abbreviate [s, t] := {s, s + 1, . . . , t} If s > t, [s, t] := ∅.
Similarly, for integers s < t, define (s, t] := {s + 1, s + 2, . . . , t} and for s ≥ t

we have (s, t] := ∅.

yS For S ⊂ N , yS := {yt | t ∈ S}. Therefore, if S = ∅, yS = ∅.

N The set of all indexes is N := {1, 2, . . . , n}.

n The number of observations (individuals) is denoted as n.

(B |C) If B = (bij) ∈ Rk×m and C = (cij) ∈ Rk×n are matrices with the same

number of rows (k), then A = (B |C) denotes the matrix which is concat-

enated from the columns of B and the columns of C. That is, A = (aij)
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with elements

aij =





bij if 1 ≤ j ≤ m

ci,j−m if m + 1 ≤ j ≤ m + n.

1k The one-vector of dimension k ∈ N is 1k := (1, 1, . . . , 1)′.

Ik The identity matrix of dimension k ∈ N is Ik := diag 1k.

diag x For x ∈ Rk, diag x is the diagonal matrix with the elements of x arranged

on the diagonal:

diag x :=




x1 0

x2

. . .

0 xk




δx The Dirac point measure in x is denoted as δx.

IA(x) The indicator function for the set A is IA and returns 1 if the argument is

an element of A and 0 else.

‖z‖ the Euclidean norm (
∑k

j=1 z2
j )1/2 of z ∈ Rk

Φ The cdf of the standard normal distribution is denoted as Φ.

O(h(m)) The notation O(h(m)) describes an algorithm with complexity h(m) in the

variable m. More formally, if g(m) ≥ 0 is the exact computational run-time

given m (e. g. the number of samples), then g(m) = O(h(m)) means that

|g(m)| ≤ M |h(m)| for some M > 0 and sufficiently large m. For example, if

h ≡ id then the algorithm has linear complexity O(m).

θ[b] We denote the b-th sample of some parameter θ using a parenthesized index

as θ[b] for better distinction from the other indexes.

y∗ The replication of y is denoted as y∗ – this notation is needed for the

posterior-predictive distributions (this is only used for replications with the

letter y).
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