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Abstract

Bayesian hierarchical models are increasingly used in many applications. In parallel, the
desire to check the predictive capabilities of these models grows. However, classic Bayesian
tools for model selection, as the marginal likelihood of the models, are often unavailable
analytically, and the models have to be estimated with MCMC methodology. This also
renders leave-one-out cross-validation of the models infeasible for realistically sized data
sets. In this thesis we therefore propose approximate cross-validation sampling schemes
based on work by Marshall and Spiegelhalter (2003)), for two model classes: conjugate
change point models are applied to time series, while normal linear mixed models are
used to analyze longitudinal data. The quality of the models’ predictions for the left-out
data is assessed with calibration checks and proper scoring rules. In several case studies
we show that the approximate cross-validation results are typically close to the exact
cross-validation results, and are much better suited for predictive model assessment than

analogous posterior-predictive results, which can only be used for goodness-of-fit checks.
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1 Introduction

One of the major tasks of statistics is to issue forecasts for the future, based on evidence
from the past (Dawid 1984). The evidence usually has the form of a data set which con-
tains the target variable one wants to predict for the future (the response), and multiple
variables known or suspected to influence the target in some way (the covariates). In
model-based statistics, a stochastic model is fit to the known data set, which can then be
used to predict unknown responses from the corresponding known covariates. If prediction
is a major task in the application, the model’s predictive capabilities must be assessed,
in order to compare it with other models or to know how to improve it. Although this
approach to statistical inference is not indisputable, the majority of the statistical dis-
cipline works with this scheme (Breiman 2001]). The general problem is to find a model
which fits the past data well enough to capture those relationships between covariates and
response that are important for the prediction of future data, but does not over-interpret
noise in the data set which could lead to prediction artifacts. Models which do not cap-
ture the important relationships suffer from “underfitting”, while models over-interpreting
noise suffer from “overfitting” of the data set. In particular, a model assessment which is
only based on the goodness-of-fit of the model to the known data set will tend to favour
overfitting models, while a too simple stochastic model could lead to underfitting.

A general tool for predictive assessment of statistical models is cross-validation. The
most primitive form “consists in the controlled or uncontrolled division of the data sample
into two subsamples, the choice of a statistical predictor, including any necessary estim-
ation, on one subsample and then the assessment of its performance by measuring its
predictions against the other subsample” (Stone 1974, p. 111). So we hide an actually
known part of the past data from the model, to be able to compare its predictions with this
pseudo-future data. A popular type of cross-validation which “squeezes the data almost
dry” is leave-one-out cross-validation: “set aside one individual case, optimize for what is
left, then test on the set-aside case”, and repeat that for every case (Mosteller and Tukey
1968). Comparing different models assessed on the same data set, we can then choose
the model which has the best cross-validation performance, with regard to an appropriate
measure, and are thus protected from favouring overfitting models. [Yang (2007) shows
that under regularity assumptions, cross-validation is consistent for increasing sample size

in the sense of selecting the better model with probability approaching 1.
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While the generic concept of cross-validation is applicable to all estimation concepts,
usually model assessment in Bayesian inference is done differently. The classic approach
starts with expressing the prior model preferences as a prior distribution on the models,
that is, without having looked in the data set, how probable is it that each model is the
true model? Via Bayes’ theorem, these probabilities are then updated to the posterior
model probabilities by the information contained in the data set. Afterwards, the whole
model assessment can be based on these probabilities. For example, one can choose the
model with the highest posterior probability, or average the quantities of interest over
models by weighting them with the posterior probabilities. |Clyde and George (2004])
give an overview of Bayesian treatment of model uncertainty. When the model prior is
constant on the (finite) model space, the posterior model probabilities are proportional to
the marginal likelihood values of the models. Even in this case where the model prior is
indifferent to the complexity of the models, this approach is guarded against overfitting
by the Bayesian “Ockham’s Razor” (Jefferys and Berger 1992). The reason is that the
marginal likelihood of a model, which is the value of the marginal density under this model
at the observed data, rewards simple models for their sharp prediction if the observed data
lies in their support. By contrast, more complex models spread their probability mass to

larger regions, and thus have lower density values.

In recent years, proper scoring rules as another general tool for predictive assessment
have become popular (Gneiting and Raftery 2007). Scoring rules assign a forecasting
distribution a (penalty) score, based on a comparison with the materialized observation.
The rule is (strictly) proper if the resulting expected score, with respect to the true
data generating distribution, is (uniquely) optimized when the forecasting distribution is
identical to the data generating distribution. This regularity requirement is necessary to
force the scoring rule to prefer honest forecasts, by addressing both the sharpness and the
calibration of the forecasts. It is also possible to separately assess the calibration, which
can be summarized as the consistency between the forecast quantiles and the observed
data quantiles (Gneiting, Balabdaoui, and Raftery 2007)). Proper scoring rules are usually
utilized as distance measures between predictive distributions and observations in cross-
validation setups, where the model score is then defined as the average of the single scores
for the test samples. In time series modelling, the one-step-ahead assessment, which
iteratively enlarges the training part of the data with the next observation in time, is
an alternative. We will see that in this case, the one-step-ahead validated model score
obtained from the logarithmic scoring rule (which is the log of the predictive density

evaluated at the materialized observation) and the marginal likelihood are equivalent.

The logarithmic scoring rule is also linked to Akaike’s Information Criterion (AIC),

which is often used to compare models estimated by maximum likelihood (Akaike 1974):



Stone (1977) shows that the leave-one-out cross-validated log-score of a model and AIC
are asymptotically equivalent, with regard to an increasing size of the data set. This is
comprehensible, as the AIC is defined as the maximized log-likelihood (that is, the log
data density evaluated at the parameter estimate) penalized with the dimension of the
parameter in the model — so the AIC definition contains the log of the full data density.
A similar form has the Deviance Information Criterion (DIC), which was proposed by
Spiegelhalter, Best, Carlin, and van der Linde (2002) as a Bayesian measure for both
model complexity and fit: It penalizes the posterior expected deviance with an estimate
of the effective number of parameters in the Bayesian model (see appendix for the
details). The DIC can be estimated with posterior parameter samples from obtained from
Markov chain Monte Carlo (MCMC) methods, so that it can also be estimated if the
marginal likelihood of a Bayesian model is not analytically available. Another criterion,
the Bayesian Information Criterion (BIC), is asymptotically equivalent to the marginal
likelihood (Schwarz 1978). The BIC is similar to the AIC, but weights the parameter
dimension with the log of the number of observations in the data set, leading to a stronger
penalization of the maximized log-likelihood; see [Kuha (2004) for a good comparison of
AIC and BIC.

The DIC is especially popular for the assessment of Bayesian hierarchical models, i.e.
models with multiple layers of parameters, which are estimated within the Bayesian in-
ference framework. In this thesis we want to do cross-validation of two special types of
Bayesian hierarchical models, where we measure the quality of the predictions for the
left out observations by proper scoring rules or calibration checks. Because the models
are estimated with computationally intensive Monte Carlo algorithms, the exact cross-
validation will only be feasible for small sample sizes. Thus, we follow Mosteller and
Tukey (1968), who further write:

“If we have to go through the full optimization calculation every time, the
extra computation may be hard to face. Occasionally we can easily calculate
[...] to an adequate approximation what the effect of dropping a specific
and very small part of the data will be on the optimized result. [...] That
is, we make one optimization for all the data, followed by one repetition per
case of a much simpler calculation, a calculation of the effect of dropping
each individual, followed by one test of that individual. When practical, this

approach is attractive.”

Except that we will draw samples from the parameter posterior instead of optimizing
the parameter of the model, this is exactly what we will do in our approximate cross-
validations, where the approximation is based on work by Marshall and Spiegelhalter

(2003). We will investigate in case studies how good these approximations are, how much
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computing time they save and what the effect is on the model choice.

The outline of the thesis is as follows. In chapter Bl we describe the tools (proper scoring
rules and calibration checks) for evaluation of the predictive distributions with respect to
the materialized observations, which are used in the following two chapters. Chapter
examines conjugate change point models, which are useful for time series modelling. For
three distribution families, exact and approximate predictive assessment are compared,
before the approximate approach is applied to a genetic data set. Chapter Hl examines
random effects models for longitudinal data. For two real data sets, the exact and approx-
imate approach are first compared on a subset of feasible size, before the cross-validation
is approximated on the whole data set. A simulation study with known true model will

yield interesting results. The thesis findings are summarized and discussed in chapter B



2 Evaluating predictive distributions

Section I introduces the setting and nomenclature for this chapter. Tools for assessing
the probabilistic calibration of predictive distributions are described in section The
other type of tools for evaluating forecasters in this thesis are proper scoring rules, which
are presented in section An outlook on the application of custom summary statistics

for tests of specific aspects of predictive distributions is given in section 2241

2.1 Introduction

This chapter describes techniques for evaluating predictive distributions with respect to
the materialized observation which has been predicted. The predictive distributions can
belong to probabilistic forecasts of a future observation, but might also be posterior-
predictive distributions for a known observation — the origin of the predictive distribution
is not of interest in this chapter. This is in accordance with the Prequential Principle of
Dawid (1984, p. 281).

Starting with the univariate case, we assume that the predictive distribution has cumu-
lative distribution function (cdf) F' and denote the prediction random variable by Y. That
is, Y ~ F. Since our diagnostic tools will be based on Monte Carlo estimates, assume

that m independent identically distributed (iid) samples from F' are available:

id ‘
ymZLF, i=12,...,m.

The empirical cdf of this sample of size m is Fj,(y) = L 5™ ]I[y[j],+oo)(y). The mater-

m 2aj=1
ialized observation is x. It is a realization of the random \iariable X with cdf G, thus
X ~G.

In the multivariate case, we want to predict a vector-valued observation & € RF. It is
a realization of the random vector X. The prediction random vector is Y : @ — R¥, and
we again assume that m iid realizations yyj, ..., Y, of Y are available.

The methodology is based on comparing a single predictive distribution with the cor-
responding materialized observation. In practice however and in our applications in
chapters Bl and B, there will be multiple observations @1, ..., x, and corresponding pre-
dictive cdfs Fy,..., F,, which shall be evaluated together. This requirement will also be

considered in the following sections.
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2.2 Assessing probabilistic calibration

Gueiting, Balabdaoui, and Raftery (2007, p. 247) define probabilistic calibration by means
of the countable sequences (F;);ecy of predictive cdfs and (G;)ien of corresponding (in
practice unknown) true observation cdfs: if for all probabilities p € (0,1) the average
%Z?Zl G; (F[l(p)) converges almost surely to p when the number of instances n —
00, then (F;) is probabilistically calibrated relative to (G;). (The stochastic notion of
convergence is needed because the cdfs might depend on stochastic parameters.) We will
drop the word “probabilistic” in the term from now on, because we only consider this
mode of calibration.

Note that if F; = G; for all instances 4, then the predictions are trivially calibrated.
We call a predictive distribution which is identical to the unknown true data generating
distribution the ideal forecaster. However, the upper definition is only sensible if the cdfs
are continuous and invertible. In general, calibration is best described as “the statist-
ical consistency between the distributional forecasts and the observations, and is a joint
property of the forecasts and the events or values that materialize” (Gneiting and Raftery
2007, p. 359). With the Probability Integral Transform and the Box Ordinate Transform
we present tools which can be used for the comparison of the predictions F; and (possibly
vector-valued) observations x; (instead of the unknown G;), to assess the calibration of

the predictions Fj.

2.2.1 Probability Integral Transform

The Probability Integral Transform (PIT) was introduced by Dawid (1984, p. 281). It is
defined as

PIT(F,z) := F(x), (2.2.1)

with the notation emphasizing that the PIT value depends on both the predictive cdf F
and the value x that materializes. The PIT is only useful for univariate observations .
If the predictive distribution F' matches the data generating distribution of a con-
tinuous random variable X exactly, then it is well-known that PIT(F,X) = F(X) ~
U(0,1) (Gneiting, Balabdaoui, and Rattery 2007, p. 244). Given an independent sample
Z1,...,Ty with corresponding predictive distributions Fi,..., F),, the empirical distri-
bution H of the PIT values Fj(z1),...,F,(x,) can be compared against the standard
uniform distribution. For that purpose, usually a PIT histogram is plotted. If the F; can-
not be evaluated analytically, they can be estimated by empirical cdfs Fi,m, using samples
Yi1] - - - > Yi[m] from the distributions Fj. It can be shown (Gneiting, Balabdaoui, and
Raftery 2007, p. 252) that the (almost sure) convergence in n — oo of the PIT histogram
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to the density histogram of the uniform distribution is equivalent to the original definition
given above.

Characteristic deviations of the PIT histograms from uniformity can point out uncalib-
rated predictive densities, which is illustrated by histograms obtained from normal data
generating and forecasting distributions in Figure Z1] on page M0 Here no Monte Carlo

estimation of the tail probability is necessary, since

P(Yg@:@(x_“)

g

when Y ~ N(u,0?) is the prediction random variable. The u-shaped form of the PIT
histogram in panel @ is typical for underdispersed predictive distributions. This form is
understandable from the PIT definition (ZZZT]): the data generating density has heavier
tails than the forecaster, and when an extreme observation is generated, the PIT value
is either very low or very high. The hump-shaped form in panel is typical for overd-
ispersed predictive distributions, and can be explained similarly. A uniform PIT histogram
as in panel is expected for the ideal forecaster.

For discrete random variables X;, the PIT values are no longer distributed uniformly, so
an ordinary PIT histogram will look strange even if the predictive distribution is perfectly
calibrated. For count data and ordered categorical data,|Czado, Gneiting, and Held (2009))
have proposed a modified PIT histogram. The idea can be understood quickly in terms
of the histogram-generating distribution function H. For continuous variables X; with
realizations x;, H(y) is the average of discontinuous indicator functions Ijf, () +00) ()
over the observations ¢ = 1,...,n. So the distribution H is a mixture of the n point-
masses 0p;(y,), ¢ = 1,...,n. For count variables with support Ny, [Czado et al. (2009)
define H as the mixture of the n continuous uniform distributions U(F;(z; — 1), Fj(z;))
over the observations i = 1,...,n. The resulting distribution H is thus always continuous,
and is expected to be the standard uniform distribution for perfectly calibrated Fj, in the
sense that Ex H(y) = y for any y € [0,1]. This can again be checked by plotting a
density histogram of H. Recalling that the PIT values are special p-values, we can use

the mid-p-values

1
P(Y; < z;) + 5 P(Y; = ;)

which have been used e.g. by Marshall and Spiegelhalter (2003, p. 1651). For count
variables, these are the same as the midpoints of the uniform distributions supports in

the modified PIT histogram, namely

%(Fi(%‘ — 1) + Fi(z)).
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2.2.2 Box Ordinate Transform

The Box Ordinate Transform (BOT) was introduced by Box (1980, p. 386) for the special
case of Bayesian estimation of the mean of a normal distribution. It is defined as the tail

probability

BOT(f,2)i= B(/(¥) < /@) = [Liagcron@iwdy. (222

where f is the continuous Lebesgue density of Y. The BOT has strong connections to
significance (and especially likelihood ratio type) tests: Assuming that it is really the
density f which produces the observation @, what is the probability of observing an
even smaller density ordinate than the observed f(x)? The BOT can also be used for
univariate observations, but it is the only adequate calibration checking tool (from those
introduced in this thesis) for multivariate observations (leaving aside the multivariate rank
and minimum spanning tree rank histograms from Gneiting, Stanberry, Grimit, Held, and
Johnson (2008, p. 215), for example).

The BOT was hence used as a model checking tool, where f was the prior predictive
density under the assumed model. For example, Sinharay and Stern (2003], p. 214) call it
“the prior predictive method of Box” and stress that it could only be used if the parameters
prior in the assumed model was proper, as otherwise the prior predictive density would
not exist. Here, however, we are sure that our predictive distribution F' with density
[ exists and we have available samples Y[y, ..., Y[y, from F, so this critique need not

concern us.

From another point of view we can easily see that BOT'(f, X) has a uniform distribution
whenever X really has probability density f, as stated by Gneiting, Stanberry, Grimit,
Held, and Johnson (2008, p. 220): Consider the scalar random variable Z := f(Y) as
the transformation of Y ~ f onto the positive real line, with cdf Fz. Thus, obviously
BOT(f,x) = Fz(f(x)). If X ~ f, then f(X) is identically distributed to Z and has cdf
Fz, and BOT(f,X) is identically distributed to Fz(Z) = PIT(Fyz,Z). So in fact, the
BOT is a PIT value on the predictive density scale! If Z is a continuous random variable,
then this raw PIT value is uniform (cf. page @l). In our applications, this condition will
be satisfied because the predictive density f will always be a Lebesgue density without
plateaus. This ensures that given Y1,Y 5 i f the probability of Z; = f(Y'1) and Zs =
f(Y3) being identical is zero.

The last question is how we estimate the BOT value BOT(f,x). After having available
the ordinate values 25 = f(z) and 2y = f(Yp))s- - 2m) = f(Ypm)), we could proceed as

for the univariate PIT estimation, i.e. estimate the BOT by the empirical distribution
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function value
— 1
BOT(fa :D) = E Z H[Z[j],Jroo)(Z:z:)- (223)

Yet, in our applications the predictive density function f is unknown. Thus, the ordinate
values must be estimated. The estimates are also needed for the logarithmic score and
the procedure is described in the corresponding section Finally, the empirical dis-
tribution of the BOT values for all prediction locations «1,...,x, can be compared to
the uniform distribution. This check for calibration of the respective predictive densities
f1,..., fn is usually done using histograms, analogously to the PIT histograms.
Characteristic deviations of the BOT histograms from uniformity can point out un-
calibrated predictive densities, which is nicely illustrated in Figure 5 of Gneiting et al.
(2008) 8 We show similar histograms obtained from normal data generating and forecast-
ing distributions in Figure EXJl Here no Monte Carlo estimation of the tail probability is

necessary, since

P < 50) =P (e { o =) < e { - w2}

because (Y — p)/o ~ N(0,1) when f(y) = N(y |, 0?) is the forecast density. The typical
right-skewed BOT histogram for underdispersed forecasts is given in panel The form
can be understood from the BOT definition (ZZZ2): since the data generating distribution
puts large probability mass on areas where the forecast density has very low values,
we often see small BOT values. On the other hand, BOT histograms for overdispersed
forecasts are typically left-skewed as in panel When the forecast is identical to the
data generating distribution, we expect a uniform BOT histogram, here in panel @
However, it must be stressed that the uniform distribution of the BOT values is only
a necessary, but not a sufficient condition for the calibration of a univariate forecast
density. This is because the BOT is a PIT on the forecast density scale, and not on the
original scale. A simple example which fulfills the regularity assumptions from above is
described in the following. Let the observation random variable X be beta-distributed
X ~ Be(2,2), and define the forecast random variable Y := +7 which switches the sign
of the correct forecast Z ~ Be(2,2) with probability 1/2. More formally, thisisY :=V-Z

Note that their definition of the BOT on page 220 contains an error (T. Gneiting, personal communic-
ation), and our definition [Z2ZZ) is correct.
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(d) BOT histogram of underd-(e) BOT histogram of correct fore-(f) BOT histogram of overdispersed

ispersed forecast (o = 0.25) cast (0% =1) forecast (0% = 9)

Figure 2.1 — Simulation study for the PIT (upper row) and BOT (lower row) histograms. For
each histogram, n = 100000 standard normal observations have been simulated.

The density forecast is N(0,02) with different variances o® = 0.25,1,9 (columns).

with V.~ 16_1 + 3641, If g(x) = fz(z) = Be(x|2,2) is the true data generating density,
then we have the density fy(y) = 39(|y|) for the wrong forecaster Y. Its BOT value for

an observation z € (0,1) is

because |Y| = |V -Z| = |V|-Z = Z. So the BOT value of the wrong forecaster Y is
identical to the BOT value of the correct forecaster Z, and the distribution of the BOT

values is hence uniform also for the wrong forecaster Y. The corresponding PIT on the

10
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other hand is not uniform, because all PIT values PIT(Fy,z) must be greater than 1/2.
Nevertheless, a non-uniform BOT histogram can be useful for the model critique, and
should be used for random vectors because a multivariate PIT analogue would not be

uniform for calibrated forecasts (Genest_and Rivest 2001]).

2.3 Proper scoring rules

In the last section, we have introduced the PIT and BOT histograms as tools for assessing
the calibration of predictive distributions. However, these tools cannot distinguish every
forecaster from the ideal forecaster. We have already given an example for the BOT, and
Gueiting, Balabdaoui, and Raftery (2007, p. 244) give an example for the PIT, which we
reiterate now. Let the true distribution be G; = N(u;, 1), the standard normal distribution
shifted by p; N (0,1), i € N. The sequence of predictive distributions F; = N(0, 2) which
is constant over all times ¢ is then perfectly calibrated and cannot be distinguished by the
PIT from the ideal forecaster GG;. This is easily seen from the marginal distribution of the
observations X;: Because the conditional distribution X; |u; ~ N(u;,1) is continuously
mixed by p; ~ N(0, 1), we have the marginal distribution X; ~ N(0, 2) if we do not know
the shifts p; (see appendix [AZ] for the short proof). Thus X; is identically distributed
as the prediction random variable Y;, and PIT(F;, X;) = P(Y; < X;) ~ U(0,1). This
example can be well summarized as the PIT-equivalence of the climatological forecaster
F; and the ideal/meteorological forecaster G;, which conditions on the current weather p;
to predict the temperature X;.

So we need other tools which help distinguishing calibrated forecasters from the ideal
forecaster. |Gneiting, Balabdaoui, and Raftery (2007, p. 245) propose the paradigm of
“maximizing the sharpness of the predictive distributions subject to calibration”, where
sharpness means the precision (literally the inverse variance if it exists) of the predictive
distributions. In the example, this rule would prefer the ideal forecaster G; with preci-
sion 1 over the climatological forecaster F; with precision % Yet, the direct assessment
of sharpness is problematic in practice, because the PIT histograms will be different for
all forecasters — then how should we combine this with some sharpness measure, e. g. the
sharpness diagrams from |Gneiting, Balabdaoui, and Raftery (2007, p. 261)? Moreover,
for discrete distributions, these tools have not proved to be as useful as for continuous
distributions (Czado, Gneiting, and Held 2009, p. 4).

This is where the proper scoring rules help us, as they can be used for an omnibus
evaluation of both sharpness and calibration of predictive distributions. If the predictive
distribution was chosen as F', and the observation x materializes, the penalty score S(F, x)

is assigned by the scoring rule S. With the expected score under the data generating

11
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distribution G being denoted as S(F,G) = [ S(F,z)dG(x), a strictly proper scoring rule
S ensures that S(G,G) < S(F,G) for all forecasters I' and S(G,G) = S(F,G) if and only
if = G (Gneiting and Raftery 2007, p. 359). We drop the adjective “strictly” because
all used scoring rules in this thesis will be strictly proper. The propriety ensures that
the ideal forecaster G is preferred over all other forecasters, and that both sharpness and
calibration of the forecaster are condensed into a single score (Winkler 1996)).

In practice, we often want to combine scores S(Fj, z;), i = 1,...,n, into an overall score,
which assesses the predictive performance of somehow comparable forecasters Fi, ..., F,

simultaneously. Then the mean score

n

S(F,z) = % > S(F, @)

i=1

can be computed (Gneiting and Raftery 2007, p. 360). For example, the predictive distri-
butions F; might come from the same parametric model. Then the comparison with an-
other parametric model, producing forecasters Ej, say, is based on its mean score S(E, z).

This procedure is theoretically well-founded, because the propriety of the single scores

S(F;, x;) ensures that the minimum of the mean score functional S(-,z) is S(G,x) where
G denotes the sequence G,...,G, of true data generating distributions. That is, the

mean score of single proper scores is again proper. When a formal statistical test for the

comparison of S(F,z) and S(E,x) shall be utilized, a permutation test can be used. The
details are given in appendix [AZ3

We will use three specific scoring rules: The (continuous) ranked probability score is
abbreviated as (C)RPS and can be used for univariate distributions only (section ZZ3I),
while the energy score (ES) is the multivariate generalization (section ZZ32). The logar-
ithmic score (log-score) can be used for scalar and vector-valued observations, and needs

predictive density evaluations instead of expectations under the predictive distributions

(section ZZ33)).

2.3.1 Continuous ranked probability score

The general CRPS is defined as

+o0
CRPS(F,z) = / [F(y) ~ Ty sony )} dy, (2.3.1)

which is the squared Lo-distance of the cdfs of the predictive distribution F' and the point-
mass J, in the realized observation z, respectively. The CRPS is (strictly) proper if one
considers predictive distributions F' with finite expectation (Gneiting and Raftery 2007,
p. 367).
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2.3 Proper scoring rules

We want to use the m samples yi, ...,y from F to estimate Z3T]). The simplest
idea is to replace the not analytically available cdf I’ with the consistent estimate F,,, and
use mm(ﬂ ) := CRPS(E,,,z). The evaluation of the latter integral is easy, because
the integrand is a step function, with jumps at x and at the quantiles of the sample.

For a continuous distribution F, the sample values are (almost surely) unique, so that

the order statistic y(1),y(2),- - -, ¥Y(m) is a permutation of the original sample. Assume that
the materialized observation is between y;_1) and y) for some k € {2,...,m}. The
formula
k-1 . 2 2
j—1 k—1
PS(Fp, - — — Y(k— —
m—(k-1)\" <« m—(j—1)\?
+ (Y — ) ( - ) +jzk;1(y(j) —Yi-1) ( p

is then derived straightforwardly. If z < y() or & > y,,), analogous formulae could be
written down, and further illustration can be found in [Hersbach (2000, p. 563).
For a count distribution F' with support Ny, the cdfs can only jump at integer values.

Then the ranked probability score

RPS(F.z) = 3" {F(k) — I 400 (k) }
keNy
is derived from (), cf. [Czado, Gneiting, and Held (2009, section 3.2). If E, (k) is the

relative frequency of the samples less or equal to k£ € Ny, the estimator is

max{y(m_1),7} )
RPS(Fpa)= Y {Fm(k:) - H[$7+OO)(/<:)} .
k=min{y(),z}

2.3.2 Energy score

The energy score (ES) can be applied to the prediction of multivariate quantities & € R¥.
It was proposed by [Gneiting and Raftery (2007, p. 367) and is defined as

1
ES(F,z) =E|Y —z|| - ~E||Y - Y*|, (2.3.2)
2

where Y, Y™ Y F and ||z|| denotes the Euclidean norm (Zk;l ,2:])1/2 of z € RF. For

dimension k = 1, it can be shown that
1 N 2
ES(F.a) =E|Y 2l = 3EIY =¥ = [ {F(y) ~ Luso )}’ dy = CRPS(F.)

meaning that the ES is a generalization of the CRPS for dimensions & > 1. The proof
of the identity is detailed in appendix [AJl The ES is (strictly) proper if one considers
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2 Evaluating predictive distributions

predictive distributions F' with finite expectation (Gneiting and Raftery 2007, p. 367).
(This assumption is also necessary for the identity of ES and CRPS.)

We want to use the m samples ypy, ..., Ypy, from F to estimate [Z3Z). An efficient
Monte Carlo estimate proposed by (Gneiting, Stanberry, Grimit, Held, and Johnson (2008,
p. 223) is

ES ley 1l - ZHijrl] Yyl

where the computational cost is O(m). If all pairwise Euclidean distances of the samples
were utilized for the estimation of the expected between-forecasts distance, it would be
O(m?). The precision of the estimator, however, would not be greatly increased, because

the pairwise distances are not independent of each other.

2.3.3 Logarithmic score

Let f be the (general) density of the predictive distribution F'. The logarithmic score is
then defined as

LogS(F,x) = —log f(z), (2.3.3)

where smaller score values are assigned to better predictive distributions. The logarithmic
scoring rule is (strictly) proper both for discrete distributions (Gneiting, Balabdaoui, and
Raftery 2007, p.352) and for continuous distributions when only forecasters with finite
expectation are considered (Gneiting, Balabdaoui, and Raftery 2007, p.365).

For this score, samples from F could only be used for nonparametric density estimation
of f, which is often unstable. Yet, often and also in our applications the unknown density

f(z) is a continuous mixture of known densities f(x |6),

:/ﬂwmﬂmw

and we can produce samples 0y, ..., 0, ud f(@). Then the Monte Carlo estimate
R 1 &
fla) = = 3 flarloy) (2.3.4)
j=1
is preferable to a kernel density estimate which uses directly the samples yij, ..., Yy

which have been drawn from the conditional densities f(y | 0}y)), - -, f(y | 0n)). The formal
justification for the superiority of the Monte Carlo estimate is based on the Rao-Blackwell
theorem, see (Gelfand and Smith (1990, p. 402). Yet, this estimate can be considered a
special kernel density estimate where the kernels are the conditional densities, instead of

the usual Gauss or Epanechnikov kernels (Davison 2003, p. 310).
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2.4 Custom summary statistics

In special cases, the logarithmic score can be computed analytically, as we will see
for the one-step-ahead and leave-one-out scores in the conjugate change point model in
section The above Monte Carlo estimation is more often applicable, and will turn

out to be very accurate.

2.4 Custom summary statistics

The evaluation of predictive distributions in this thesis will be based on the tools in-
troduced in sections and B33 However, there are many alternative proposals in the
literature, which are often tailored to posterior-predictive model checking. See the refer-
ences on page 190 in (Gelman, Carlin, Stern, and Rubin (2003) for a good overview of the
literature. We just try to sketch some of the popular ideas here, if possible for general
predictive distributions.

One idea is to compute a scalar test statistic T'(x) of the observed data vector x € RF.
The test statistic is chosen “to reflect aspects of the model that are relevant to the scientific
purposes to which the inference will be applied” (Gelman, Carlin, Stern, and Rubin 2003,
p. 172). For example, in a longitudinal data setting, this could be the maximum, minimum
or range of the data points x1,...,z;. The value T'(x) can then be compared with the
distribution of the predicted test statistic, 7(Y"). Usually some form of p-value is com-
puted, which corresponds to the PIT value from section ZZZ11 Note that the BOT [EZ2)
fits in this framework with the test statistic T" being the predictive density f, such that
the test statistic depends on the assumed model. However, we could also use the CRPS
to judge the compatibility of T(Y") and T'(x). Since the CRPS estimation in section 22311
is based on samples, we just transform the original samples yp), ..., Y[, with T" to get
the required scalar samples of the predicted test statistic.

A related concept are discrepancy measures T'(x, @) which also depend on the assumed

model through the parameter 8. Then tail probabilities of the form
P(T(Y,0) > T(x,0))

are computed. For example, for a posterior-predictive check O is drawn from the
posterior distribution, and yp, is drawn from the implied likelihood f(y|8y), for b =
1,..., B. Afterwards the Monte Carlo estimate of the tail probability is given by

B
1
B ZH <T(y[b}, Op) > T(x, 9[b])) :
b=1
Gelman, Carlin, Stern, and Rubin (2003, p. 164) give an example where the parameter

is the mean of the predictive distribution, and the discrepancy measures the difference of
the distances of the 10% and 90% data quantiles to that mean. This results in a check for
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2 Evaluating predictive distributions

the symmetry fit of the predictive distribution. A similar measure which only includes the
model parameters is utilized by [Sinharay and Stern (2003, p. 219) to check the normality
assumption for the random effects in a hierarchical normal model.

Rather classic regression-diagnostic type checks are presented by Gilks, Richardson, and
Spiegelhalter (1998, p. 152). For example, the residual 2 — E(Y") or standardized residual
(3: —IE(Y)) / \/\T(Y) can be computed for scalar observations x. For a set of observations

T1,...,%n, the sum of squared standardized residuals gives the y?-discrepancy

& (o - E(%)?
X = ZZ:; Var(Y;)

This score depends on the predictive distributions F; only through the means E(Y;) =
J ydF;(y) and the variances Var(Y;) = f(y—IE(YZ))2 dF;(y). It should be approximately 1
for good predictive performance, so a derived penalty type score is (x? — 1)? (Czado,
Gneiting, and Held 2009, p. 8). It is interesting that the authors’ examples also comprise
the PIT, BOT and the conditional predictive ordinate fy (x), which is equivalent to the

exponent of the logarithmic score.
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3 Conjugate change point models

In section Bl change point models are motivated as a special time series model class.
The model framework of general conjugate change point models including prior assump-
tions, posterior inference and handling of missing observations is described in section
Section then proposes approximate sampling schemes for predictive assessment of
the one-step-ahead and cross-validation types, which avoid the huge computational ef-
fort imposed by the exact sampling schemes. The approaches are contrasted with the
goodness-of-fit assessment using posterior-predictive samples. The next three sections
are distributions-specific examples of the general framework: While section B4 and sec-
tion B3 deal with count likelihoods of Poisson and binomial type, respectively, section
discusses the appropriate normal model for real-valued time series. The three sections
each comprise an extensive case study of data previously analyzed in the literature, and
compare the results of exact and approximate predictive assessment. Section B analyzes
a more recent data set of larger dimension, where the exact assessment is not feasible any

longer. Finally section summarizes the results of this chapter.

3.1 Introduction

Change point models for time series assume an (unobserved) partition of the time frame
into blocks/segments. In each block, the (unobserved) model parameter is constant. That
is, the model parameter seen as a function of the time is a step function, with the steps
occurring only at the so-called change points. Conditional on the model parameters, in-
dependent observations are recorded. Change point models are special partition models,
which also comprise models partitioning higher-dimensional spaces into homogeneous re-
gions. See Hartigan (1990) and Denison, Holmes, Mallick, and Smith (2002, chapter 7)
including the references therein for general partition models.

The recorded time can be continuous or discrete. For example, |Green (1995 p. 717)
analyzes the coal mining data with the points recorded in days over 112 years, using a
continuous multiple change points model. In our case study on the same data in sec-
tion B.Z2 we use only the year precision, and can thus use our discrete time model. The
discrete time case goes back to |[Chernoff and Zacks (1964). Their normal observations

model was later picked up by [Yao (1984)), who found a more efficient Bayes solution for it.
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3 Conjugate change point models

Barry and Hartigan (1993)) also conduct a Bayesian analysis for change point problems,
and compare both approaches in a simulation study. They employ MCMC within Gibbs
sampling for producing change points draws. The approach implemented in this thesis has
been described by [Hofmann (2007)) for the discrete Poisson-Gamma model. He specialized
the approach from [Fearnhead (2006, p. 7), who proposed filtering recursions to build a
Monte Carlo sampler for the change points samples. This “perfect simulation” avoids the

convergence issues inherent to the MCMC solutions.

Usually one is interested in identifying the borders between the blocks, that is one does
inference for the change points. Conditional on a change point configuration, the model
parameters in the blocks are estimated. Model averaging over multiple change point
configurations can be used for marginal inference of the model parameters. The model
class has several advantages, with the major one being the adaptive smoothing property:
unlike e. g. P-splines, the smoothing effect can be stronger in regions with less variability
of the observations and weaker in others with more. We also do not need to directly
specify a correlation prior, as it is done with random walk assumptions for the P-spline
coeflicients. However, to get smoother parameter function estimates, model averaging has

to be done, which might be a disadvantage of the model class.

3.2 Modelling framework

Section B2T] describes the data situation in which the change point model from sec-
tion can be applied. The prior choice in section ensures that the posterior
sampling (section BZZ7) is easy due to conjugacy of the likelihood and the model para-
meters prior. Section B2ZZH discusses necessary changes to the algorithm when some ob-

servations are missing.

3.2.1 Data
We assume that a time series y := (y1,¥2,...,yn) of n scalar observations is recorded in
the time range N' = {1,2,...,n}. The index set AV is only used for notational convenience,

in reality there will be a (strictly increasing) mapping of indexes to calendar times. In
parallel, covariates x1, xs,...,x, may be observed. They comprise measurements of vari-
ables which are potentially influential for the responses 41,¥2,...,%,. There may also be
missing responses y;. But if there are covariates, each observed y; must have an associated

x; available.
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3.2 Modelling framework

3.2.2 Model

At each time point ¢ € N, a model parameter &, parametrizes the data generating dis-
tribution of y;. If the model includes covariates, then also x; modifies the likelihood
f(ys | &, x1). The dependence of the observations is only generated through the model
parameters, and conditional on these and the covariates, the observations are assumed

independent:

| €y P F( € ), tEN.

For notational brevity we will omit the covariates in the density condition whenever they
are not necessary for understanding the formulae.

The characterizing property is the change point model for the parameters &;. The
number of change points is k and can be any integer between 0 and n — 1. That means
we have k£ 4 1 unique levels E(l),£(2), . ,E(kﬂ) of the model parameters. The (location

of the) change points are
01 <Oy <---<Oe{l,2,...,n—1}.

We use the convention that the parameters level changes after the change point, so the

step function value &; can be written as

k+1

&= Zﬂ(ej,l,ej](t)f(j) (3.2.1)
=1

with the start point 6y := 0 and the end point 641 := n. This means that &, equals the
j-th level £U) if ¢ € (0j—1,6;]. So the &, are determined by the change points parameter
0 := (01,...,0r) and the levels parameter & := (E(l),...,ﬁ(kﬂ)); they can be seen as
function values &,(&, @) specified by (B2Z1]).

3.2.3 Prior choice
The prior for the proposed model is naturally split into a prior for the change points, and
a prior for the model parameter levels.

Prior for the change points

The number k£ and the locations @ of the change points are assumed unknown. The
change points shall a priori follow a Markov process, and a sample path from this process
determines the number and the locations of the change points.

The process is specified by the prior transition probabilities

P(aj—I—l =S ’ Hj =t — 1) (3.2.2)
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3 Conjugate change point models

which are the probabilities that the (j+1)-th change point occurs at time s = ¢,t+1,...,n,
given the occurrence of the j-th change point (j = 1,2,...,n — 1) at time ¢t — 1 (¢t =
j+1,7+2,...,n). Here, the time s = n means that no further change point occurs in
the parameter sequence, giving a total of k& = j change points. The start probabilities of
the Markov process,
P60y =s) =P(0; = s| 0y =0),

are generated from the transition probabilities by setting j = 0 and ¢ = 1, since the start
point 0y is (by definition) always at time ¢ — 1 = 0. Two specific change point priors will
be used: the “flat number prior” and the “binomial number prior”, which are described in
the following.

The “flat number prior” has been used by [Hofmann (2007) and Held, Hofmann, Hohle,

and Schmid (2006): they place a uniform prior on the number of change points k,

P(K = k) = %H[Ovn_u(k). (3.2.3)

Conditional on the number k, they place a uniform prior on the possible configurations 6

with k change points,

PO=6|K=k)— <” ; 1) PP ()} (3.2.4)

From Hofmann (2007, p. 37) we have that the prior transition probabilities for this prior

are

s—1 . . I (8)
g1 (j+1\
P(9j+1:s|9j:t—1):1—[<1—Hl)-<S+1> . (3.2.5)

i=t

Note that the factor (j +1)/(s + 1) is omitted when s = n, because Iy, ,_qj(n) = 0. The
assumed change point prior implements a model prior with interesting properties. While
each dimension k has equal prior probability, the number of models with dimension k
increases from k = 0 until £ = |(n — 1)/2] and decreases symmetrically afterwards until
k =n —1. So the model with no change points (k = 0) has the same prior probability as
the model with one level for each observation (k = n— 1), namely 1/n. This is the largest
prior model probability. By contrast, the models with k = [(n — 1)/2] change points have
the smallest prior probabilities.

Alternatively, we can use a “binomial number prior” which assigns the event of a change
point occurring at a specific time the probability = € [0, 1], identically and independently
for all times ¢t € {1,2,...,n — 1}. So we have n — 1 Bernoulli experiments, leading to
the binomial distribution K ~ Bin(n — 1,7) of the number of change points. Clearly
the waiting times between change point times are geometrically distributed, so the prior

transition probabilities have the form

P(9]+1 =S | 9_] =t — 1) = (1 — 71')372t . WH[t,n—l](s).
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3.2 Modelling framework

Therefore [Yao (1984, p. 1435) describe the prior as a “discrete renewal process with
identically geometrically distributed interarrival times”. This prior was also used by Barry
and Hartigan (1993, p. 310) as a special product partition model. [Fearnhead (20006, p. 205)
generalizes it to the negative binomial distribution.

Note that any valid transition kernels could be used for (B2Z2). For example, Fearnhead
(2006, p. 207) places a Poisson prior on the number of change points and draws the

locations from an order statistics distribution of uniform draws from the set {1,...,n—1}.

Prior for the parameters

We specify independent identical prior distributions for the parameter levels E(j ). These

prior distributions have a hyperparameter, say ¢, so we assume
DT (1g), j=1,....k+1<n,

if the change points configuration @ is of dimension k. For notational brevity, we will omit
the hyperparameter ¢ from the density condition if it is not essential.

Formally, we could always include n parameter levels in our model, which is the max-
imum number of possible blocks. However, this is only of theoretical interest, because
the unneeded parameter levels would not influence the observations and their posterior
distributions would be identical to their prior distributions. Just keep in mind that the
parameter levels prior specification is independent of the change points configuration.

The densities f(E(j)) shall be conjugate to the likelihood f(y;|€;). Thus the marginal

“block” density for the a parameter block comprising all times in a set S C N is

foiock(ys) == f(ys|ys,s €S, belong to the same parameter block) (3.2.6)
— [TL o169 e ag®
teS

_ Tlies fe | €9) - (€Y
Fotock(€Y9) | ys)

can be computed analytically, because the block posterior density

Friock(€D) |ys) := f(€Y) |ys and ys, s € S, belong to the same parameter block)

(3.2.7)
oc [ £(we|€9) - £(£9)
teS

of the parameter level E(j ) is known. It has the same form as the prior density, f (E(j ) | p),
only with an updated hyperparameter, say ¢ g, accounting for the new information in the
data yg:

Foioek (€9 | ys) = F(§Y) | )
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3 Conjugate change point models

The updated hyperparameter can be derived as in the classic case of iid observations from
a likelihood which is conjugate to the prior distribution.

So we can calculate the marginal likelihood of a change points configuration 6,

fy|8) = /f(y,£|9)d£
- / f(y|€.0)F(€)0)de,

by noting that both the likelihood

k+1
fwleo) =11 I FfwleY)
J=1t€(0;-1,04]

and the conditional prior of &

k+1

f(&16) = Hf

factorize into the k£ 4+ 1 blocks because of our independence assumptions: The integral

becomes

k+1

F10) =[] fotockWs,_,.0,)- (3.2.8)
7j=1

The structure of the described model is summarized in Figure Bk The observations
are conditionally independent of each other, given the covariates x; and the parameters
&;, which specify the data generating distribution from a given likelihood family. The
change points @ and the parameters levels £ determine the parameters &;. The parameter
levels € have prior parameters ¢ specifying the form of the conjugate prior distribution.
The prior distribution of the configuration @ can be arbitrarily defined through the prior
transition probabilities (B2Z2) and is not shown in Figure Bl

3.2.4 Posterior

The advantage of the conjugacy is that the efficient forward-backward algorithm described
by Hofmann (2007)) can be used to directly sample from the marginal posterior f(0|y)
of the change points. Sampling from the conditional posterior f(£]6,y) of the levels
parameter £ is also easy due to the choice of the conjugate parameter prior. Thus, in order
to estimate the full posterior distribution of 8 and &, ordinary Monte Carlo estimation is

possible.
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3.2 Modelling framework

Figure 3.1 — Graphical model of the proposed framework.

Sampling the change points

In the so-called forward step, we can compute the following recursion for the conditional
density of the counts yi, yri1,...,yn (t € {2,3,...,n — 1}) given that the j-th change
point (5 € {1,2,...,t — 1}) occurred just before:

F@Win 105 =t—=1) = fWpn 0541 =s]0; =t —1)
s=t
=Y fWpn |01 = 5,0, =t = 1)P(6;11 = 5[0, =t — 1)
s=t

=" Fotock Wit f Wpss10) | 0511 = ) P(O41 = 5[ 6; =t — 1).
s=t
(3.2.9)

Note that for ease of notation the terms f(y,4.1,,)[0j+1 = n) shall evaluate to unity for
all j, similarly as an empty product from n + 1 to n.
So the conditional densities f(yp |0 =t — 1) conditioning on the j-th change point

position, which are indexed by the time ¢, depend on the densities

FWprin 10501 =), fWUpm 10541 == 1), f(Ypqin) 041 =n) =1

for the (j + 1)-th change point. The start for this recursion is the single density value at
j=n—1with t = n,
f(y[n,n} [0n—1 =7 —1) = foiock(Yn),

because the probability P(6,, = n| 6,1 = n— 1) equals unity. Afterwards, the conditional
densities for j =n —2,n—3,...,1 can be computed. Finally, by setting j =0 and t =1
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3 Conjugate change point models

the unconditional density of the whole time series y is obtained, which is the marginal

likelihood of our whole model:
fly) = Z Totock(Y,6) f (Ypsg1,m) |61 = 8) P(01 = 5). (3.2.10)
s=1

The backward step consists of computing the posterior transition probabilities of the
change point locations, using the conditional densities from the forward step. From
Hofmann (2007, p. 38), we have

 Jotock Y, ) f Ypsq1m) | 0541 = $)P(0j11 = s[0; =t — 1)

P(9j+1:5|9j:t_1,y)_ f(y[tﬂaj:t_l) ’

(3.2.11)

for next change point times s = t,t + 1,...,n, for last change point times ¢t = j + 1,5 +
2,...,n and for last change point indexes j = 1,2,...,n — 1. Similarly as for the prior
Markov process of the change points, the posterior starting distribution is obtained with

j=0,t=1, yielding

_ Jotock (Y1) f(Ypsr1mp |01 = 5) P(01 = 5)
f(y)

for the locations s = 1,2,...,n of the first change point 6.

P01 = s|y) : (3.2.12)

In order to sample one posterior realization of the change point configuration 6, first
draw the first change point location 6; from the posterior starting distribution in (BZI2)
and set j = 1. Second, if the j-th change point is at ¢t — 1 < n, then draw the location
of the next change point #;,1 from the transition distribution in BZTII). Afterwards
increment j and repeat the second step. However, if §; = n, all k := j — 1 change points
for the sample are already there, and the posterior realization is @ = (61,...,6;). This
may be an empty tuple if £ = 0 and there are no change points at all.

In the sequential sampling algorithm, the posterior probability of a change points con-
figuration can be computed sequentially as well. If the first change point is at s, we
initialize the value with P(6; = s) from [BZZIZ). Note that this probability has already
been computed in order to sample the first change point location. Afterwards, until the
change point location n is drawn (what finishes the configuration sample), multiply the
saved value with the appropriate transition probability from BZZTI)). Again, this prob-
ability is available anyway, so there is no relevant overhead from computing the posterior
probability P(® = 0 |y) of a sample 8. These probabilities can then later be used to
identify the mazimum a posteriori (MAP) change point sample 6@74p with the highest
posterior probability. If one is interested in a single step function for the description of the
data y, then this model @7 4p is “the best” in terms of the used probabilistic modelling

of the data process which has been found in the sampling process.
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3.2 Modelling framework

Sampling the parameters given the change points

Conditional on the partition 8 with k£ change points, the posterior density of the levels &

is

f(&16,y) o f(y[€,0)f(£]0)

k+1

=1 I fwle9)EYe)
J=1te(0;-1,9]
k+1

o [T foroek (€9 1w, 0,1 ®)
=1
Rl

= H f(g(]) | ¢(9j,1,9]’])‘
j=1

So we can sample from the k41 independent block posterior distributions f (& () | b, 1793'])’
which are updated prior distributions with parameters d’(ej_ 1,0;]» tO obtain the realizations
of the parameter levels é(j ). Together with 8, these yield the samples of the parameters
&, via the deterministic link (BZZT]).

At last, we have produced a posterior sample of the parameters trend {&,;}} ;. Note
that only this trend can be sensibly compared between different change point samples
0, but not the unique levels E(j ). For example, we can use Bayesian model averaging of
the different step functions if we are only interested in the trend and not in the change
points. This is very easy because the samples &, ), b = 1,..., B, say, are samples from

the marginal posterior
f(&1v) = [ £(&16.5)76]y)de.

So if we just “forget” the change points configuration samples 6}, we have averaged the
model parameters over the change point models. While this model averaged trend will
still be a step function, it will typically be smoother and is able to capture big jumps

better than e. g. splines based approaches with global smoothness assumptions.

Computational considerations

Usually at least a few thousand samples will be required for serious posterior inference.
Then, it is advisable to move on to the next change points in parallel across the samples,
finishing those samples where ¢; = n is generated. So if there are m samples with j-th
change point at ¢—1, then we need to compute the posterior probabilities P(0;41 = s|6; =
t — 1,y) only once and not m times.

In the practical implementation of the posterior transition probabilities computation, a

trade-off between faster sampling and less memory consumption must be made. On the
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3 Conjugate change point models

one hand, saving all transition probabilities from [BZTIl) before the start would accelerate
the sampling, because we would not need to compute them again during sampling. In
fact, not only the denominators but also the numerators in ([B2ZTI1]) are all computed in
the forward step: they are summed up in (BZZ9). But the memory consumption for these
numerators is cubic in the length n of the time series: Precisely, there are

n—1 n n ’I’L3 —n

PIDID

6

j=1t=j+1 s=t

numerator values. On the other hand, computing the necessary numerators again during
the sampling needs more CPU time (how much more depends on the homogeneity of the
samples), but saves us memory. And the memory consumption can be high: For n = 400,
we need to save 10 666 600 numbers with double precision, giving a memory consumption
of approximately 85.33 MB, because in the used GCC implementation 64 bits are used for
a double number. This is still manageable on recent personal computers. But already for
a ten times longer time series, the memory usage is almost 1000 times larger and cannot
be handled easily any longer. Therefore in the implementation, for n < 400 the faster
approach is used, while for n > 400, the more parsimonious strategy is applied.

Of course, (only) in principle the sampling scheme for the change points configurations

is not necessary: The posterior probability of every 8 can be computed via Bayes’ theorem

PO =20)f(y|0)
f(y) ’

because the prior probability is determined by [BZ3)) and ([B24)), and the likelihood [BZH)

as well as the normalization constant (B2ZI0) can be computed. But the huge dimension

P(© =6]y) =

of the model space renders the use of a general purpose sampler for finite discrete dis-
tributions infeasible. There are 2"~! possible change point configurations, so even for a

moderate length n = 100 there are approximately 6.34 - 10%? possibilities.

3.2.5 Handling of missing data

Let o; € {0,1} be the observation indicator for the response value y;. So we assume the
data is available as the length n vectors y, o and possibly x, where for o; = 0 the response
is missing and the saved value y; is just a dummy which will not be processed. The times
for which the responses are missing are collected in the set M := {t|o; = 0}, while the
times with observed responses form the complementary set N'\ M. What modifications
are necessary to accommodate the case when M # (), and we want to sample from
F(6.01ypnmn)?

Algorithmically simplest, but computationally demanding, would be Gibbs sampling

with y,, as an auxiliary variable, whose current sample y’, is initialized at some valid

26



3.2 Modelling framework

point inside the support of the observation density before the loop. If there are also
missing covariates x; for o; = 0, then similar values like those available can be imputed
into the likelihood. The MCMC algorithm would iterate between two steps:

1. In the first step, £ and @ are drawn from the full posterior f(&,0 [y}, Yn\a),
using the sampling scheme exactly as in section B2l Thus, we draw from the full
conditional distribution of (&, 6).

2. In the second step, the auxiliary variable y’ , is drawn from the likelihood f(y | &, ),
that is | M| independent samples with the parameters being determined by the cur-

rent samples of & and 6 are generated:
ind
y;fk "~ f("snmt)v teM.

This distribution is the full conditional distribution of g, resulting in a draw from

the full conditional distribution of y .

The Markov chain then eventually converges to f(yus, €, 0| yp\aq)- If we are not inter-
ested in the distribution of y ,,, we can just use the samples from the marginal distribution
f(&,0]yana). A major disadvantage of this Gibbs sampler is that the forward step has
to be recomputed in each iteration, because the auxiliary variable sample 4, changes.
Furthermore, convergence diagnosis for the Markov chain must be done. These two issues
render the Gibbs sampling approach unusable for all practical purposes.

Much better is drawing the parameter levels and the change points directly from
f(&,0]ynag). This requires only one forward step, and is therefore implemented in
the supplementary R-package. The idea is that the definition of the times 1,2,...,n does
not change, but that those in M do not have associated observed responses. So it will be
possible to have a change point 6; =t at a missing time ¢ € M. The necessary modifica-
tion is to replace y with yn o¢ everywhere, because we want to condition on the observed
data only. This means that all sets of the form yy,  are replaced with y g\ p-

In the forward-backward algorithm, all conditional densities and the resulting trans-
ition probabilities derive from the block marginal likelihoods defined in [B26). For the

recursion in ([BZ9), functions

e f@r [ €9) - f(€D)
Jotock (&(]) | y[t,s}\M)

9t(5) = fotock(Yp,sp\ M) =
must be evaluated at s = t,£+ 1,...,n, for decreasing start times ¢. Obviously the set

[t,s] \ M only changes at times s € M, so g;(s) is a step function with jumps at s & M.
If already the first response ; in the window [t,n| is missing (s =t € M), then the first
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3 Conjugate change point models

function value is

e f(yr |€9)) - F(E9)
t) = oc = ‘ B 1,
9t(t) = foioek(Yp) Fotock (€D | yp)

because the empty product evaluates to 1 and fblgck(ﬁ(j) lyy) = f(g(j)). Using this simple
modification, we can sample from f(0 |y A\ ) using the otherwise unchanged forward-
backward algorithm.

Similarly, to draw the j-th parameter level &€ G) for a given change point configuration 0,
we use the updated parameter level density f(é(j) | ¢(€j7179j}\M)' Note that if there are no
observations from yn o¢ in the j-th block, then we draw E(j ) from its prior distribution.
So we really need a proper prior for the parameter levels, because otherwise we could not

sample from it.

3.3 Exact and approximate predictive assessment

This section introduces the key topic of this chapter: the comparison of five different
predictive sampling schemes. Section B3] describes the exact and approximate sampling
schemes for the one-step-ahead prediction, while section does the same for the general
cross-validated prediction. Both sections discuss how logarithmic scores can be computed
analytically for the model class of this chapter. Section B33l finally turns to the posterior-
predictive sampling, which can be useful for goodness-of-fit assessment of the change point
models. The last section B34 compares the sampling schemes definitions and summarizes

the logarithmic score estimation results.

3.3.1 One-step-ahead predictive assessment

Given the time series from time 1 to time n, how well can our model predict the observation
at the next time n 4+ 17 That is, how good are the one-step-ahead predictions in our
change point model? This classic task of time series models has been called “prequential
forecasting” by [Dawid (1984, p. 278), merging the adjectives of the terms probability

forecasting and sequential prediction.

Exact sampling

One way to assess the one-step-ahead prediction performance in our model is to try the
prediction for the counts at times t +1 = 1,2,...,n, if we feed our algorithm only with
the counts at times 1,2,...,t. For t = 0, we predict the first observation y; from the prior
predictive distribution f(y;). The forward and backward steps must thus be computed

n — 1 times, one time less than the number of observations because the prior predictive
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3.3 Exact and approximate predictive assessment

samples are directly obtained from the data generating distribution parametrized by prior
parameter samples. The following sampling details are tailored to the more complicated
case t > 1. Note that a particle filter algorithm could avoid the repeated forward and
backward computations implied by our posterior sampling approach from section B4
(see IDoucet, De Freitas, and Gordon (2001) for sequential Monte Carlo methods).

For the sampling from the predictive density f(yi+1|yp ), the idea is to use the con-

ditional independence of the observations y; given the parameters &;:

e yg) = / W | o) FEvn | 9p1.) s

So if we can sample from f(&;,1 | Y1), we just plug the realization &, into the likelihood
and keep yi,, ~ f(-| &1, Ti41) as a sample from the predictive distribution.

One solution is to give the algorithm the response and observation indicator vectors
(y1,---,9,0) and (o01,...,0,0) to mark y;11 as missing. This naturally produces samples

from f(&;44 ’y[l,t})'
Another solution exploits the sequential structure of the model. Consider

€ lypg) = / / F(Ent 1€0010.0) F (€0 Opug |ypg) dE; dOp g,

where 61y 4 is the change points configuration in the time series y; ;: The next parameter
&:+1 only depends on the last parameter £ and 61 4, because if there is no change point
at time ¢, then &, = &, else we draw the next parameter from the prior f(§|¢). This
mixture of a point mass at &, and the prior distribution is weighted by the probability of
a change point at time ¢ given 6[; 4. If 6|1 4 contains k change points with the last change

point occurring at time s, this probability is
P(Ok1 =t]0k = 5,y11,49) = P(Ort1 = 1[0 = s),

equal to the respective prior transition probability. The reason is that the event of a
change point occurrence at time ¢ is independent of the observations until time ¢ — they
are happening before this change point could have an effect. For the flat number prior,
this probability equals (k + 1)/(t + 1), which is the “success probability” already visible
in (B2ZH). See [Hofmann (2007, p. 34) or Held, Hofmann, Hoéhle, and Schmid (2006,
section 2.6) for more details on the derivation. For the binomial number prior, this
probability equals the hyperparameter 7. So if we have sampled §, and 6, with k

change points, afterwards we sample

§ip1 ~ {1 —POkt1 =10k = 5)} 0¢, + P(Ory1 =10k = 5)f (€] D).

Both solutions require n — 1 forward steps: for the first solution, the algorithm must be

run with the observation indicator vectors

(01,0,...,0),(01,02,0,...,0),...,(01,02,...,0,1,1,0),
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3 Conjugate change point models

and for the second solution we must start the algorithm for each of the data vectors

Y1, y[1,2}’ B ay[l,nfl}‘

Note that this second solution is the basis for the approximate sampling described below.

Approximate sampling

The exact sampling from f(&,,1 |y ) is computationally expensive, because for every
time ¢, a new forward step is necessary. An approximate version of the sampling is inspired
by Marshall and Spiegelhalter (2003)).

The idea is to use the whole time series y for only one forward-backward run. That is,
the same sampling probabilities (B2ZT2) and (BZTT) are used for all learning sets {y}; 4},
t=1,2,...,n—1. So the change point locations 6| ;; up to time ¢ which are used above
are not drawn from f(6[y ) |yp ) but from f(6)14|y). In practice, the change points
sampler is run on the whole data y and produces samples of @. Then for the processing
of the learning set yp; 4, all change points at times ¢,¢ + 1,...,n — 1 are deleted from
the sample vectors to produces approximate samples of 6y 5, which conform with the
maximum change point time ¢t — 1 for the reduced data Y1 (The conventional “change
point” at the last time ¢ is deterministic and is of course included.)

However, sampling the parameter level & (k+1) = &, of the block including the time ¢ from
the correct density f(ﬁ(kH) | 01,4, Yp1,¢) is easy: it is just the block posterior distribution
Fotocr(EFTY | Y (0,4, ®)- Therefore, the unknown part yp,;,) influences the parameter
sample &; only indirectly, through the “pruned” samples 6[; ; obtained from 6. Hence,
the conservatism concerning the sampling of &, and y;,;, which is the price for the
reduction of computing time in this approximate sampling scheme, should be moderate.

The proposed approximation of the one-step-ahead predictive density is thus
P 1) = [[[ 5001160006001 1608100 £(E0 000 |ypg) o d€, a6
— [[] £ €00 £€a 1600080076 1611010 Bl i) i 6y 611
~ /// f(yt+1 ’£t+1)f(£t+1 ’5157 9[1,t])f(5t ‘ 9[1,t}7y[1,t])f(‘9[1,t} \y) d€t+1 dg, da[l,t}
=: flyes1 lypg)-

Analytical logarithmic scores

The proposed conjugate change point model allows the analytical computation of the

one-step-ahead logarithmic scores

—log f(y1), —log f(y2|y1), .-, —log f(yn | Yp n-1))
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3.3 Exact and approximate predictive assessment

because all marginal likelihoods f (y[l,t]), t=1,...,n can be calculated in an exact one-
step-ahead sampling loop: While for ¢ = 1, we just use f(y1) = foock(y1) and already
have the first score, for ¢ > 2 we obtain f(yp ) from @ZIN) as a by-product from the
(reduced) posterior sampling given the data Y[1,1- Remember that the marginal likelihood
is computed at the end of the forward step, which is necessary for the change points
sampling in the backward step. Having finished the exact one-step-ahead validation loop,

we can compute the remaining logarithmic scores
—log f(ye+1|ypg) =log f(yp,g) —log f(Ypegyy): t=1,...,n—1L

Note that the sum of the one-step-ahead logarithmic scores equals the negative marginal
log-likelihood. The well-known decomposition of the marginal likelihood of the vector y

into the conditional scalar densities,

F@) = FWn |l ypm—1)f Wn—1|Ypn—g) - fW2ly1)f(y1),

is the equivalent on the multiplicative scale. Therefore the mean one-step-ahead log-score
can be computed directly from the marginal likelihood in the conjugate change point
model as LogS = —%log f(y). Since this is a strictly monotone transformation, the
model comparison based on the one-step-ahead log-score is equivalent to that based on
the marginal likelihood. Another consequence is that the mean one-step-ahead log-score
of the reversed time series is identical to the log-score of the original time series, because
the assumed prior and likelihood are invariant to the time direction and so the marginal

likelihood is identical.

The estimation of the logarithmic scores using the Monte Carlo approach on page [[4]
is nevertheless sensible, because we can thus assess the Monte Carlo error which also
contributes to the difference between exact sampling and approximate sampling results.
We have compared the analytical one-step-ahead log-scores with the corresponding exact
sampling log-scores for all examined models in the case studies from sections B2
and The maximum absolute differences for the three sections were 0.051, 0.065 and
0.1, while the mean deviances were 0.004, 0.003 and 0.005, respectively. These Monte
Carlo errors are very small compared to the approximate sampling errors, with maximum
deviances 1.924, 1.705 and 1.253, and mean deviances 0.107, 0.098 and 0.079, respectively
in the three sections when all models are pooled. For illustration we show comparison
plots of exact sampling versus analytical log-scores for three selected models in Figure
Only in panel @ some points in the upper right corner are lying slightly away from the
identity line.
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3 Conjugate change point models

Figure 3.2 — Comparison of analytical one-step-ahead log-scores (x-axis) and corresponding exact
sampling log-scores (y-axis), for three models from sections B-Z2 B2 and BG2A
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3.3.2 Cross-validation assessment

How well can our model predict the observations y; at times ¢t € 7 C {1,2,...,n} (the
test set), if we only provide it with the observations in A\ 7 (the learning set)?

To answer this question, usually cross-validation is done, that is, the original data y
is repeatedly split into disjoint test and learning sets. A popular choice is to define the
test set 7 := {t} for all times t = 1,2,...,n in turn. This corresponds to a leave-one-out
cross-validation of the model. Yet other choices may make sense, e.g. leave out whole
months in turn if the time resolution is one day. Also, the prediction of the remaining
times in 7 := {t + 1,t + 2,...,n} can be of interest. If ¢ < n — 1, this would correspond
to a multiple-steps-ahead prediction because |7| > 1, in contrast to the one-step-ahead
prediction being assessed in section B3l

Again we want to base the predictive assessment on samples y% from the predictive

density f(ys |y N\T)- So how can we efficiently generate such samples?

Exact sampling

For exact sampling from f(yz |y~ 7), we will use the conditional independence of the

observations given the parameters and change points. This leads to

fur lysng) = / / F(ur |€.0)1(£,0 | ynzr) dE d6.

meaning that sampling from the posterior density f(&,6 |y 7) based on the learning
set, followed by sampling from the likelihood f(y |€,8), produces the required samples

*

Yr-
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3.3 Exact and approximate predictive assessment

The sampling from the learning set posterior is easy after the discussion of missing data
handling in section BZZH If the original data comprised the indicator vector o, we just
mark each time in the test set 7 as missing to form the learning set A/ \ 7. So we let
our sampler run with indicator variables o; := o; - (1 — Iz (¢)). This careful handling is
necessary because if the observation y; was missing in the original data (o, = 0), it is of

course also missing in the learning set. Finally, we get samples from f(&, 6 |y 7)-

Approximate sampling

The exact sampling from the cross-validation density f(ys |y N\T) requires much compu-
tational effort, because for every test set 7, a new forward step is necessary to be able to
draw from f(6|yxn7) in the backward step. This is relevant because usually the number
of test sets increases at the order O(n), where n is the number of time points. As the
effort for a forward step is O(n3), the cross-validation effort is usually O(n?).

An approximate version does only once sample from f(6|y) and thus requires just one
forward step for all cross-validation iterations. Given the change points 6, this “Marshall-
Spiegelhalter version” proceeds with sampling £ |0,y a7 from the correct conditional
posterior distributions, as was sketched at the end of section B2ZH The final generation of
the predictive samples y% by sampling from the likelihood f(y+ | £, @) remains unchanged.

That means, we make the approximation

fwr lysng) = / / f(ur |€.0)[(£.0|ynr) dE d
- / / F(yr|€.0)£(€10,yp 1)1 (8| yprr) dE dO
~ / / f(ur 1€ 0)1(€]0.yp )/ (8 y) dE d6

= f(yr |y 1)-

Analytical logarithmic scores

The proposed conjugate change point model allows the analytical computation of the

leave-one-out logarithmic scores

—log f(y1 [yanq1y), =108 f(y2 | Yang2y)s - =108 f (Un | Ynr\(n})-

because all marginal likelihoods f(yan (), t = 1,...,n can be calculated from (BZT0)
and are a by-product of the reduced exact posterior sampling given the data y A\{t}-
Having finished the exact leave-one-out validation loop, we can compute the logarithmic

scores as

—log f(yt |lyn\gey) =108 fYanqey) —log f(y), t=1,....n,

33



3 Conjugate change point models

using the full data marginal likelihood f(y) from the full data forward step. Analogously,
more general cross-validation logarithmic scores of the form —log f(y; |y N\T) could be
calculated.

Again we can use the Monte Carlo estimated logarithmic scores to assess the Monte
Carlo error of the exact sampling results. We have compared the analytical with the exact
sampling log-scores for all examined models in the case studies. We found that the max-
imum absolute differences for the three sections were 0.017, 0.026 and 0.03, respectively,
while the mean absolute differences were 0.002, 0.002 and 0.002. These Monte Carlo errors
are very small compared to the approximate sampling errors, with maximum deviances
1.987, 1.007 and 1.357, and mean deviances 0.062, 0.062 and 0.054, respectively in the
three sections when all models are pooled. For illustration we show comparison plots for
three selected models in Figure In all three panels, no clear deviations of points from
the identity line can be reported. This is not surprising because the maximum and mean
deviances are even lower here than for the one-step-ahead log-scores (cf. page BIl), where

already almost no large errors were visible in the comparison plots.

Figure 3.3 — Comparison of analytical leave-one-out log-scores (x-axis) and corresponding exact
sampling log-scores (y-axis), for three models from sections B 4.2 and 362

) 3.5 — ) °
5 — 3.0 — d 9 —
- & ¢
4 — 25 & o@
2.0 — & 8
3 & 2 o
1.5 — 4 - 00"
9 | —
/ 1.0 —
1 = ¢ 0.5 — 6 —
[ I D [ N N B | | | |
1 2 3 4 5 0.5 1.5 2.5 3.5 6 7 8 9
(a) Coal-mining data model 1 (b) Tokyo rainfall data model 2 (c) Nile discharge data model 3

3.3.3 Goodness-of-fit assessment
Obtaining samples y* from the posterior-predictive distribution

fy*y) = / / Fy"1€,0)1(£.0|y) d db

is easy because f(y*|&,0) = [[,cn f(yi | &:): In each iteration of the posterior sampling
scheme from section B.Z4] which produces a sample for &;, draw y; from the likelihood
f(ye | &), for all times t € M. The asterisk marks the random quantity y* as a hypothet-

ical replicated data vector, replicated from the original observed data vector y: Generally
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3.3 Exact and approximate predictive assessment

this means that the replication y* comes from the same model as the observed data v,
particularly that potential covariates x; for the observation y; are identical for the replica-
tion y;. However, the posterior-predictive distribution conditions on the observed data vy,
and therefore issues a probabilistic forecast for a new independent replicate data set, based
on the information in the observed data.

Afterwards, the estimated distribution f(y; | y) can be compared to the observed count y;.
Note that y; influences its predictive distribution directly. So these posterior-predictive
checks are goodness-of-fit checks of our model rather than predictive checks. The cor-
responding question is how well our model can fit the known data, rather than how well
our model can predict new data. The question could also be phrased “Is the model con-
sistent with the data?”, as |Gelman, Carlin, Stern, and Rubin (2003 p. 159) call their
posterior-predictive checking section.

If PIT histograms are produced from posterior-predictive samples, they usually show
pictures typical for an overdispersed forecast. This is then a sign for a good fit of the
probability model to the given data: if y, is fitted well by the model, the density f(y; |y)
will be centered around the known y;, thus producing a PIT value near 0.5. Very low
or very high PIT values would point out badly fitted counts, which could be outliers in
the data set. So for a well-fitting model we expect to see a hump-shaped histogram as in
panel on page [0

Analogously, if we look at mean scores produced from posterior-predictive samples, they
show us the goodness-of-fit of the considered model rather than the predictive performance
for new data. In fact, there are even estimation approaches based on minimizing the mean
score with respect to the model parameters (Gneiting and Raftery 2007, p. 374). Since
we do not use the scores for estimating the model, we can use them for the goodness-of-fit
assessment after the Bayesian model estimation, with smaller mean scores corresponding
to a better fit of the model. Relatively large score values for single data points can point

out badly fitted counts, analogously to extreme posterior-predictive PIT values.

3.3.4 Summary

The five different predictive sampling schemes are illustrated in Figure B:4l The graphic
emphasizes the difference between the two predictive assessments that we have introduced
in this section: While the leave-one-out cross-validation assessment is a symmetric pro-
cedure which does not require the time series structure of the data, the one-step-ahead
assessment is asymmetric and is only sensible because we know the ordering of the data
points. The term “asymmetric” summarizes the fact that for each predicted observa-
tion, a different number of observed previous data points is utilized. If we reversed the

time series, the result of the following one-step-ahead assessment could differ from those
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3 Conjugate change point models

obtained from the original time series, except for the mean log-score and the marginal
likelihood. Yet, we would get the same leave-one-out assessment result as before, also for
the (continuous) ranked probability score. The approximate versions are distinguished
from the corresponding exact assessment strategies by the fact that data points are now
partially observed which were treated as unobserved by the exact versions. Finally, the
posterior-predictive sampling differs from the leave-one-out sampling schemes in the pre-

dicted (replicate) observation being fully observed.

Exact one-step-ahead: ‘

©,
O
O

E

Approximate one-step-ahead: ‘

Exact leave-one-out: ‘ @ ‘ ‘
Approximate leave-one-out: ‘ @ ‘ ‘
Posterior-predictive: ‘ e ‘ ‘

Figure 3.4 — Summary graphic of the five sampling schemes, for an example of n = 6 nodes where
the observation at t = 4 is predicted, which is symbolized by the question marks (7).
The circles represent observed data (e), partially observed data (®) and unobserved
data (o). While observed data is used for both the change points sampling and
the parameter levels sampling, partially observed data is only used for the change

points sampling. Unobserved data is not used for the posterior sampling.

We were able to assess the Monte Carlo error inherent to the logarithmic score estima-
tion based on samples (cf. page [[4]). We have observed that using a sample size of 10000
is well sufficient to very accurately calculate both one-step-ahead and leave-one-out logar-
ithmic scores by exact sampling, without needing the marginal likelihood formula ([B210).
The results are encouraging, because although we do have the marginal likelihood formula
for the conjugate change point model, in more complex models it is usually not available,
particularly if MCMC methods need to be employed to produce posterior samples. For
example, Chapter ll examines Bayesian normal random effects models which are fitted by
Gibbs sampling. We can hope that the small Monte Carlo errors translate to that model
family. Yet, also for the predictive assessment of the conjugate change point models the
results are encouraging, because the (continuous) ranked probability scores really need to

be estimated using samples, and now we can be more confident about their precision.
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3.4 Poisson-Gamma model

3.4 Poisson-Gamma model

The Poisson-Gamma change point model is described in section B-ATl which is a special
case of the general framework from section The proposed methodology from sec-
tion is applied in a case study using a data set on coal mining previously analyzed in

the literature in section B.4.2

3.4.1 The special change point model
Data

The data form to which the Poisson-Gamma change point model may be applied is a
time series y of counts y; € Ny. For example, y; could be the infectious disease count in
year t in a certain region. In parallel, positive offsets ey, es, ..., e, are recorded. So the
covariates are here x; = e;. For the infectious disease count ¥, the number of susceptible

persons in year t could be relevant and be chosen to be the offset e;.

Model

We assume independent Poisson distributions for the counts y; with rates A; relative to

the offsets e;:
Y | Ae, e (S Po(et\), teN.
So the parameters are scalar for this model (§, = \;) and the response density is f(y; | &;, @) =

Po(y | etAs).

Prior

As described on page I, we need to select a conjugate parameters prior. Since we have
specified a Poisson likelihood for the observed counts, the gamma distribution must be
the prior for the rate parameters. So for the £+ 1 rate levels independent identical gamma
priors with hyperparameters «, 5 > 0 are specified,

AD Y G, ), j=1,....k+1

The hyperparameter ¢ has elements «, § here, and f(é(j) | ) = G\ |, B).
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For the block marginal likelihood [BZH) we have

Jotock(Ys) = /HPo(ytyet)\(j)) . G()\(j) |, B) d\)

R, (€S
() )yt A o , , A

= /H mexp(_mm). B (AL exp(=A0) ) dA)

B, €S ui! I'(a)

+

O[S wta ) )

=157t (A0))2tes exp [ =AW | e+ 8| | dA

tes Yt Ry tes

e’ B (> ies e+ a)
ies vt T(@) (Cpeger + B)Eresvite)

While this is not exactly a Poisson-Gamma density (because different counts y; share the
same rate )\(j)), the derivation of this block density is analogue to the derivation of a

Poisson-Gamma density.

Posterior

In order to sample the rate parameters given the change points, we need the block posterior
density (BZ7). Its form can be derived from the product of the block Poisson likelihood

and the Gamma, prior for the rate level:
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teS
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3.4.2 Case study

We use the data set on coal-mining disasters in Great Britain which has been introduced by
Maguire, Pearson, and Wynn (1952) and has been extended the last time by Raftery and
Akman (1986). In its present form, the data set gives the time interval in days between
explosions in British coal mines involving 10 or more fatalities, from the beginning of
1851 until the end of 1962. This data has been used frequently in the literature, e.g.
by [Denison, Holmes, Mallick, and Smith (2002, p. 179). We will examine the number of
disasters per year; the total number is 191. The time series of length n = 112 is plotted
in Figure B3
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Figure 3.5 — Coal-mining disasters data: Number of disasters (with at least 10 fatalities) per

year.

Model fitting

The assumption of Poisson distributions for the yearly disaster counts y; is sensible, be-
cause we have aggregated events in fixed length time intervals. Unfortunately we do not
have the time series of the number of working coal mines in Great Britain, so we can not
use them as offsets. Instead we set e; = 1 for all times ¢. This means that e. g. higher rates
could possibly be due to more working coal mines with comparable risks of explosions,
and need not be evidence for higher risks in the same coal mines.

The first model we will fit to the data uses the flat number prior for the change points,
and hyperparameters o = 1.7054,3 = 1 for the rates prior, such that the prior mean
and variance equal the average disasters count 1.7054. This model was also considered by
Hofmann (2007, p. 26).

The second model we want to assess also uses the flat number prior for the change
points, but with hyperparameters o = 0.017054, 5 = 0.01 for the rates prior. So the prior
mean of the rates still equals 1.7054, but the variance is now 170.54, leading to a vaguer

prior.
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3 Conjugate change point models

The last model we consider uses the binomial number prior with probability 7 = 0.2 for
a change point between any two years of the time series. The rates prior hyperparameters
are chosen as for the first model (o = 1.7054, 5 = 1).

Figure 3.6 — Posterior rates trends for the three change point models. Pointwise HPD (dashed
lines) as well as simultaneous (dotted lines) 95% credible intervals, which were
estimated by simulating 10000 samples, for the rates trend are given. The change

point locations in the respective MAP models are marked with vertical lines.
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We have produced 10 000 samples each from the posterior distributions. The estimated
rates trends and the change point locations in the MAP model are shown in Figure B0
The simultaneous credible bands for the rates trends were computed with the quantile
method of Besag, Green, Higdon, and Mengersen (1995, p. 30).

The differences between the model fits are interesting: Both model 1 in panel and
model 2 in panel have their MAP model change points at t = 41, which corresponds
to the year 1891. The posterior probabilities for these configurations are 5.28 - 1073 and
1.72 - 107!, respectively. Yet, the posterior rates trend averaged over the change point
configurations is much more variable for model 1 than for model 2. This is in fact an
example where a vaguer hyperprior leads to a more parsimonious model, a phenomenon
known as Lindley’s paradox (Lindley 1957). On the other hand, model 3 in panel
exhibits an even more wiggly rates trend, and its MAP model with probability 1.29-10~!!
contains 8 change points after the years 1878, 1893, 1914, 1929, 1932, 1942, 1946 and 1947.
This model obviously overfits the data.

Note that the posterior probability mass of the respective change points distribution
f(@]y) is much more spread out to different change points configurations for model 3
than for model 1, and also more for model 1 than for model 2: this can be seen from
the MAP model probabilities of the best configurations found in the respective samples

011, - -, 0110000 A consequence is that the exploration of the posterior should be easiest
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3.4 Poisson-Gamma model

for model 2, and hardest for model 3. For the latter, model averaging is extremely
important in order not to trust a questionable best change points configuration — running
the sampler again could lead to a totally different MAP model configuration.

The log marginal likelihood values log f(y) of the three change point models are —177.487,
—187.21 and —177.986, respectively. So if we should decide on the basis of the log marginal
likelihood, model 1 would be our best choice. Yet, we want to examine the calibration

and predictive capabilities of the three models before making a final decision.

One-step-ahead predictive assessment

For practical purposes, good one-step-ahead prediction is especially important. We want
to check that for the three models in question using the sampling tools from section B3],
and the PIT and scores from chapter

First, we generate 10000 rates samples, both from the exact and the approximate
one-step-ahead predictive distributions, for all three models. That is, for each model,
and for all last times t = 0,1,...,n — 1 = 111, we sample 10000 variates exactly from
f(At+1]ypy) and again 10000 variates from the approximation FOin |Yp1,q)- For the
one-step-ahead sampling of the next rate given a change point configuration, we use the
sequential approach: First the change point occurrence before the next time is sampled,
and then the rate is either drawn from the prior or set to the last rate in the observed
time series. Altogether, this takes 119, 62, 155 seconds for the exact sampling and 75, 16,
107 seconds for the approximate sampling, for the three different models, respectively.

Second, we plug each rate sample A; into the Poisson likelihood and keep one Pois-
son variate y; ~ Po()\;) as a sample from the (approximated) one-step-ahead predictive
distribution F} for time ¢ given all prior times.

Then, we estimate the PIT values F;(y;) and the “pre-PIT” values Fi(y; — 1), for t =
1,2,...,n, using the empirical distributions F}, of the one-step-ahead predictive samples
and the true observations g;. This is done for both sampling approaches and for all three
models, and results in the PIT histograms shown in FigureB7l Overall, all the models look
well calibrated. Only for model 3 in panel[(c)} a tendency towards too few PIT probability
in the last bin [0.9,1.0] is observed. So the fraction of true observations falling into the
upper 10% prediction intervals is smaller than 10%, which is the fraction we expected for
perfectly calibrated predictive distributions. Therefore, the upper 10% prediction intervals
are too large. This is an argument for a slight overdispersion of model 3. This tendency is
still visible in panel Kﬂ] under the approximate sampling scheme, as the whole histogram
looks very similar to its exact counterpart. For model 1 and model 2 the histograms also
match quite well, even if the approximate panel speaks for a bit better calibration of
model 1 than the exact panel
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3 Conjugate change point models

Figure 3.7 — PIT histograms for calibration assessment of the one-step-ahead prediction in the

three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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The estimated mid-PIT values 0.5(Fy(y; — 1) + Fy(y)), t = 1,2,...,n, which were
introduced in section 221l are compared between the exact and the approximate sampling
schemes in Figure For model 1, most departures of the approximate PIT values from
their exact counterparts occur around the probable change point 1891 in this model, see
panel For model 2 in panel there are more and greater differences: one might
suspect that some are related to the second step around 1950 which is visible in the model-
averaged fit in panel @ of Figure B8 It is interesting that for the overfitting model 3 in

panel only for a single year a relevant deviation of the approximation is observed.

Now we turn to proper scoring rules. We estimated the ranked probability scores
RPS(Fy,y,) fort =1,2,...,n. Moreover, we estimated the logarithmic scores LogS(Fy, yt).

For the prediction time ¢, we used the rate samples A; ;1,7 = 1,...,m = 10000 for the
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3.4 Poisson-Gamma model

Figure 3.8 — Comparison of exact (x-axis) and approximate (y-axis) mid-PIT values for calibra-
tion assessment of the one-step-ahead prediction in the three change point models.
At most 5 time points where the absolute difference between the two values ex-
ceeds 0.1 are labelled.
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The exact and approximate scores of both proper scoring rules are compared in Fig-
ureB.0l For model 1, only for a few years at the beginning of the time series there are larger
discrepancies. For the log-scores in panel the overall picture is similar to the RPS in
panel @ The same can be said about model 3 in panels and while the absolute
deviations of the approximate score values are even smaller. Yet, for model 2 in panels
and @ there are more larger deviations than in model 1, and the approximations do not
seem to work very well.

The differences of the approximate and exact mid-PIT values, ranked probability and
logarithmic scores are plotted against the time in Figure B IOl Here we see more clearly
where in time large approximation errors occur: especially at the beginning of the time
series, when the difference between the exact and the approximate scheme is largest, and
around the big step in the rates trend before the turn of the century. It is difficult to
approximate the values from model 2, and easier for model 3. We expect the differences
to get smaller at the end of the time series, because then the exact and the approximate
sampling scheme share more common data. The RPS differences meet our expectations,
but there are some big mid-PIT and log-score differences near the last times.

The mean scores for the proper scoring rules assessment of the one-step-ahead pre-
diction are summarized in Table Bl Looking at both RPS rows in the table, it is not
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3 Conjugate change point models

Figure 3.9 — Comparison of exact (x-axis) and approximate (y-axis) scores for one-step-ahead
prediction in the three change point models (columns). The panels in the upper
row compare the RPS values, while the panels in the lower row compare the log-
scores. Time points with the 5 largest absolute differences between the exact and

approximate score values exceeding 0.25 (RPS) or 0.5 (log-score) are labelled.
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surprising that the paired permutation test comparing the RPS values from the exact and
approximate approaches gives estimated p-values 2-10~* for model 1, 9-10~* for model 2
and 1-10~* for model 3. That is, in almost all of the 10000 sampled permutations of
the value pairs, the resulting mean score differences were smaller than the observed differ-
ences. This suggests that the approximate assessment is conservative and underestimates
the RPS which is a generalized prediction error. If we had the exact sampling results
for the RPS, we would choose model 1 or model 3. If we had the approximate sampling
results, we would prefer model 1. If we directly compare the exact and approximate log-
scores of each model, we get p-values 4 - 10~* for model 1, 1.8 - 10~ for model 2 and
1-10=* for model 3 of the paired permutation test. So also for this proper scoring rule,

the approximate sampling significantly underestimates the exact sampling mean scores.
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3.4 Poisson-Gamma model

Figure 3.10 — Differences of the approximate and exact mid-PIT values, ranked probability and
logarithmic scores for the one-step-ahead prediction, for model 1 (—_), model 2

(--_) and model 3 (......).
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3 Conjugate change point models

For this example if we use the logarithmic score, both the exact and the approximate
method assign model 1 the best scores — the ranking is the same under the approximate
method.

Table 3.1 — Mean ranked probability and logarithmic scores for the one-step-ahead prediction of

the three models, under the exact and approximate sampling schemes.

Scoring Rule Scheme Model 1  Model 2 Model 3
exact 0.74 0.80 0.74
RPS )
approximate 0.68 0.71 0.70
exact 1.58 1.67 1.59
log-score )
approximate 1.52 1.56 1.55

Leave-one-out predictive assessment

Next, we will do a cross-validation assessment where we leave one observation out in each
iteration, which is the leave-one-out strategy. How good are the models at predicting the
missing observation? And how close are the exact and approximate model assessment
results?

First, we generate 10000 rates samples, both from the exact and the approximate
leave-one-out distributions, for all three models. That is for each model, and for each
time t = 1,2,...,n = 112, we sample 10 000 variates exactly from f (¢ |yy\ () and again
10000 variates from the approximation f(A: | Yy (). Altogether, this takes 258, 146, 269
seconds for the exact sampling and 124, 23, 131 seconds for the approximate sampling,
for the three different models, respectively.

Second, we plug each rate sample )\; into the Poisson likelihood and keep one Pois-
son variate y; ~ Po()\;) as a sample from the (approximated) leave-one-out predictive
distribution F} for time t given all other times.

The PIT histograms are shown in Figure B.T1. Model 1 and model 2 look well calibrated
if we judge them by panel and panel respectively. The approximate results in
panels @ and are similar to their exact counterparts. For model 3 in panel
we see again a tendency towards overdispersion, which is even more pronounced in the
approximate panel [(T)]

The mid-PIT values 0.5(Ft(yt —-1)+ Ft(yt)), t =1,...,n, are compared between the
exact and approximate sampling schemes in Figure For model 1 and model 3, no
large deviation of an approximate PIT value from the exact PIT value is noticeable in
panels and respectively. For model 2 in panel @, only two cross-validation PIT
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3.4 Poisson-Gamma model

Figure 3.11 — PIT histograms for calibration assessment of the leave-one-out prediction in the
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values can not be well approximated: these are again around the two steps from panel
in Figure

The exact and approximate scores of both proper scoring rules are compared in Fig-
ure The RPS plots in the upper row look very similar to the log-score plots in the
lower row. Altogether, the exact RPS values are well approximated, except for the year
1947, which is labelled in all but one plot.

The mean scores for the proper scoring rules assessment of the leave-one-out prediction
are summarized in Table on page For the RPS values, the paired permutation
test still clearly rejects the hypotheses of same location parameters for approximate and
exact scores. However, the absolute differences between approximate and exact means are
smaller than for the one-step-ahead predictive assessment. If we had the exact sampling

results, we would choose model 1, and if we had the approximate sampling results, we
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3 Conjugate change point models

Figure 3.12 — Comparison of exact (x-axis) and approximate (y-axis) mid-PIT values for calib-
ration assessment of the leave-one-out prediction in the three change point models.
At most 5 time points where the absolute difference between the two values ex-
ceeds 0.1 are labelled.
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would choose model 3. However, the differences are quite small, and the mean model 1
scores are close to the mean model 3 scores under both sampling schemes. The differences
between exact and approximate mean log-scores are significant in the paired permutation
test for all models. If we look at the logarithmic score ranking of the models, we are again
undecided about whether model 1 or model 3 has the best predictive performance. This

result is the same under exact and approximate assessment.

Posterior-predictive checking

For comparison with the one-step-ahead and leave-one-out predictive assessments, we will
look at the results of posterior-predictive model checking.

As was described in section B33, we just plug in the posterior rate samples \; into the
Poisson likelihood to obtain samples y; ~ Po(\;) from the posterior-predictive distribution
F;, for times t = 1,2,...,n. So a big advantage of these checks is that they do not require
the costly one-step-ahead- or leave-one-out-sampling of the rates, only sampling from the
likelihood is necessary in addition to the model fitting.

The PIT histograms are shown in Figure BT4L Only model 2 in panel @ shows a
“good” PIT histogram, while model 1 in panel and especially model 3 in panel
show overdispersion. This result has been expected from the rates trends in Figure B.Gk
While model 2 has a smooth fit to the given data, its rates trend does not follow every
extreme observed count. Model 1 follows the given data more closely, and model 3 already

overfits the given data. Therefore we have expected that model 3 fits the given data “best”
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3.4 Poisson-Gamma model

in the sense of “closest”, so that its posterior-predictive PIT histogram will have the most

hump-shaped form of all three models.

The mid-PIT values from the exact leave-one-out and the posterior-predictive sampling
schemes are compared in Figure B-T3 The panels look similar to those in Figure B.I2, but
there is a curvature in the point clouds which reveals the conservativeness of the posterior-
predictive PIT values: those times where the exact PIT values are smaller than 0.5, the
posterior-predictive PIT values are too large; and vice versa they are too small, where
the exact PIT values are greater than 0.5. This shrinkage is strongest for the overfitting
model 3, and weakest for the rather underfitting model 2. Note that the curvature is much

less visible for the approximate PIT values in Figure B12

The exact leave-one-out scores are compared with the posterior-predictive scores in
Figure BT0. For model 1 and model 2 in panels @, and , @, the differences to
the respective plots in Figure are not very large. This bias of the posterior-predictive
scores is more pronounced for model 3. This observation can also be explained by the
fact that model 3 fits the given data most closely among all three models, so that its
posterior-predictive distributions differ more from the corresponding exact leave-one-out

distributions than for the other models.

The mean scores are summarized and compared to the leave-one-out scores in Table B2
Using the posterior-predictive model scores, model 3, the model with the most variable fit,
appears to have the best fit to the data. Note that the absolute values are much smaller
than in the leave-one-out assessment. Also based on the log-scores, model 3 scores best
among the three models, in the posterior-predictive check. The absolute values are lower
than for the exact and also for the approximate leave-one-out assessment. Following the
concept from section B33 this means that the goodness-of-fit is best for model 3, and

worst for model 2. Again, this ranking could have been expected from Figure B8

Table 3.2 — Mean ranked probability and logarithmic scores for the three models, under the exact

and approximate leave-one-out and the posterior predictive sampling schemes.

Scoring Rule Scheme Model 1 Model 2 Model 3
exact leave-one-out 0.67 0.68 0.68

RPS approximate leave-one-out 0.63 0.66 0.62
posterior-predictive 0.59 0.64 0.54
exact leave-one-out 1.53 1.54 1.53

log-score approximate leave-one-out 1.46 1.51 1.45
posterior-predictive 1.41 1.49 1.35
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3 Conjugate change point models

Results

Overall, model 1 and model 3 are close in their predictive performances and log-marginal
likelihoods. Model 3 can fit the data more closely, and is thus favored by the posterior-
predictive checks, which means that its goodness-of-fit is best among all three considered
models. Model 1 has better calibration and wins if the log-scores are used. Model 2 has
a more parsimonious fit, but misses the rise in disasters between 1930 and 1940, and so
shows worse mean scores in all five applied sampling schemes.

The approximate predictive assessment showed very similar results compared to the
exact assessment, with only slight tendency to favoring the most complex model 3. In
particular we have seen that the approximate results are much closer to the exact results
than the posterior-predictive results. So the conservativeness of the posterior-predictive
checks could be remedied to large extent by applying the approximate sampling scheme,

while still saving much computational effort.
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3.4 Poisson-Gamma model

Figure 3.13 — Comparison of exact (x-axis) and approximate (y-axis) scores for leave-one-out
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Figure 3.14 — PIT histograms for posterior-predictive checking of the three change point models.
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Figure 3.15 — Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) mid-
PIT values in the three change point models. Time points where the absolute

difference between the two values exceeds 0.1 are labelled.
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Figure 3.16 — Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) scores

in the three change point models (columns). The panels in the upper row compare

the RPS values, while the panels in the lower row compare the log-scores. At most

5 time points where the absolute difference between the exact leave-one-out and

posterior-predictive score values exceeds 0.25 (RPS) or 0.5 (log-score) are labelled.
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3 Conjugate change point models

3.5 Binomial-Beta model

Another special case of the general conjugate change point model from section B2 is
the combination of the binomial likelihood and the beta prior, which is presented in
section BE5.Jl The case study in section B2 assesses three different Binomial-Beta change
point models for the Tokyo rainfall data, using the five different predictive sampling

schemes from section

3.5.1 The special change point model
Data

The Binomial-Beta model is also suitable for count data y := (y1,%2,...,yn) like the
Poisson-Gamma model, but here the maximum counts ni,no,...,n; which could have
been observed must be available. So y; € {0,1,...,n;} is observed. For example, y; could
be the number of pupils passing the Abitur in year ¢ in a certain school. Then n; is the
number of pupils writing the Abitur in year ¢ in this school. The covariates are here the

maximum counts, or sample sizes, Ty = ny.

Model

We assume independent binomial distributions with probabilities 7; for the independent

ng trials:
Ye | e, (S Bin(ng,m), teN.
The model parameters are thus scalar for this model (¢, = ;) and the response density

is f(ye| & xe) = Bin(ye | ng, m).

Prior

The beta distribution is conjugate to the binomial likelihood, which we have chosen. So
in order to get a conjugate change point model, we specify independent identical beta
priors with hyperparameters «, 5 > 0 for the k + 1 probability levels,

7D % Be(a, B), j=1,....k+1.

The hyperparameter ¢ has elements «, 8 here, and f(é(j) | ) = Be(n9) |, B).
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3.5 Binomial-Beta model

For the block marginal likelihood BZH) we have

1
forock(Ys) = /H Bin(y; | ne, 79)) - Be(xW) | o, B) dn')
0 teS

(“t) (@) (1 — @) y—ve ﬁ(w@)a—lu @)1 g )

teS tesS

The derivation of this block density is analogue to the derivation of a binomial-beta

density.

Posterior

In order to sample the probability parameters given the change points, we need the block
posterior density ([B2Z7):

Foioce(™9) | ys, o, B) x f(ys|ys: s €S, share the same parameter 7)) f (77 | a, 3)

= [ Bin(y: [ e, 79) - Be(z?) | o, 8)
teS
o (W(J‘))Z yteera*l(l _ ﬂ-(j))ztes(nt*ytHﬁ*l

x Be (w(j)| Zyt +0z,Z(nt —Yt) +ﬁ> .

tesS teS

3.5.2 Case study

We use the data set on rainfall in Tokyo for the years 1983 and 1984, which has been
introduced by [Kitagawa (1987, p. 1039) as an example of a nonstationary binary process.
The data set gives information for all n = 366 days if it rained neither in 1983 nor 1984
on this day in Tokyo, in only one of both years, or in both years. All calendar days were
passed twice, except day number 60, which is the 29th February of the leap year 1984 and
was thus only was passed once (there was no rain). The time series of the relative rain

frequencies is plotted in Figure B 11
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Figure 3.17 — Tokyo rainfall data: Relative frequency of rain in Tokyo per calendar day, over the
years 1983 and 1984.

Model fitting

We make the assumption that the probability m; of rainfall is constant over the years for
each calendar day t = 1,2,...,366. Moreover, we assume that the binary rainfall events
are independent conditional on the probabilities. Thus we arrive at the Binomial model,
where the number of Bernoulli trials is ny = 2 for ¢ # 60 and ngg = 1, and the response
y; is the count of rainy calendar days ¢ during 1983 and 1984.

The first model we will fit to the data uses the flat number prior for the change points,
and hyperparameters @ = 1,3 = 1 for the probabilities prior. This corresponds to a

uniform distribution with prior mean and variance

« 1

E(r@)) = =
(%) a+p3 2

Var(7)) = E(x0)) .

b ~ 1 003
(a+B)(a+p+1) 12 7

The second model we want to assess also uses the flat number prior for the change

points, but with hyperparameters o = 0.1, 8 = 0.1 for the probabilities prior. So the prior
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3.5 Binomial-Beta model

mean of the probabilities still equals 1/2, but the variance is now larger at 5/24 = 0.208,
leading to a vaguer prior.

The last model we consider uses the binomial number prior with probability 7 = 0.2
for a change point between any two years of the time series. The probabilities prior

hyperparameters are chosen as for the first model.

Figure 3.18 — Posterior probabilities trends for the three change point models. Pointwise HPD
(dashed lines) as well as simultaneous (dotted lines) 95% credible intervals, which
were estimated by simulating 10000 samples, for the probabilities trend are given.
The change point locations in the respective MAP models are marked with vertical

lines. (Intervals and MAP change point locations have been omitted for clarity for

model 3.)
1.0
0.8
0.6
(S
0.4
0.2
0.0
0 200 0 200 0 200
Day Day Day
(a) Model 1 (b) Model 2 (c) Model 3 mean trend with original
data

We have produced 10000 samples each from the posterior distributions. The estim-
ated probabilities trends and the change point locations in the MAP model are shown
in Figure The two models with the flat change points prior are similar: Both
model 1 in panel [(a)] and model 2 in panel [b)] have their MAP model change points at
days t = 69,297. The posterior probabilities for these configurations are 9.49 - 1076 and
4.88 - 1073, respectively. Analogously to the Poisson-Gamma models in section BZ2 the
posterior probabilities trend averaged over the change point configurations is much more
variable for model 1 than for model 2. Yet, model 3 in panel exhibits a very rough
probabilities trend: the MAP model has probability 5.45 - 10~%® and contains 42 change
points. Model 3 thus shows symptoms of overfitting.

The log marginal likelihood values log f(y) of the three change point models are —325.259,
—335.244 and —331.619, respectively. So if we should decide on the basis of the log mar-
ginal likelihood, model 1 would be our best choice. In the following, we make a more

thorough predictive assessment of the three models.
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3 Conjugate change point models

One-step-ahead predictive assessment

Good one-step-ahead prediction for rainy days is very important, and the weather forecasts
use a huge amount of meteorological data to arrive at good predictions. In the context of
our example, it is rather the climatological perspective in which we are interested, because
we are averaging the two observed years.

First, we generate 10 000 probabilities samples, both from the exact and the approxim-
ate one-step-ahead predictive distributions, for all three models. That is for each model,
and for all last times t = 0,1,...,n — 1 = 365, we sample 10000 variates exactly from
f(mes1|ypyg) and again 10000 variates from the approximation f(mesn |Ypg)-  Alto-
gether, this takes 2547, 2391, 2511 seconds for the exact sampling and 378, 218, 454
seconds for the approximate sampling, for the three different models, respectively. Note
that the computational effort is much higher here than for the shorter time series on
page HIl, and that the approximate sampling saves relatively more time.

Second, we plug each probability sample 7; into the Binomial likelihood and keep one
Binomial variate y; ~ Bin(m,n;) as a sample from the (approximated) one-step-ahead
predictive distribution F; for time ¢ given all prior times.

The estimated PIT histograms are shown in Figure Only model 2 looks well
calibrated, both in the exact histogram @ and the approximate histogram @ Model 1
shows a tendency to overestimate the rain probabilities, because the upper histogram
bins in panel have too low coverage, while the lower bins have too high coverage.
For model 3 in panel this tendency is even more pronounced. The corresponding
approximate histograms and essentially match their exact counterparts.

The mid-PIT values are compared between the exact and approximate sampling schemes
in Figure On the one hand, for the variable model 3 in panel only for a single
day a relevant deviation of the approximation is observed. On the other hand, for model 1
in panel and model 2 in panel @ there are more large differences.

Now we turn to proper scoring rules. The exact and approximate scores of both the
ranked probability and the logarithmic scoring rules are compared in Figure B21l For
model 1, only for a few days at the beginning of the time series there are larger discrepan-
cies. For the log-scores in panel the overall picture is similar to the RPS in panel .
The same can be said about model 3 in panels and m while the absolute deviations
of the approximate score values are even smaller (no score approximation is more than
0.5 away from the exact score). Yet, for model 2 in panels and @, there are more
larger deviations than in model 1, and especially the approximations of the logarithmic
scores do not work well.

We plot the differences of the approximate and exact mid-PIT values, ranked probabil-
ity and logarithmic scores versus the day of year in Figure The overfitting model 3
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3.5 Binomial-Beta model

Figure 3.19 — PIT histograms for calibration assessment of the one-step-ahead prediction in the
three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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shows smaller differences than both other models, as we have already seen in the previous
comparison plots. The parsimonious model 2 features the largest differences, quite sur-
prisingly not only around the estimated probability trend steps from Figure BI9H, but
also between day 250 and 300 and at the end of the time series. The curves for the more

variable model 1 mostly follow the model 2 curves with smaller amplitudes.

The mean scores for the proper scoring rules assessment of the one-step-ahead prediction
are summarized in Table Looking at both RPS rows in the table, it is not surprising
that the paired permutation test clearly rejects the hypotheses of same means in the exact
and approximate RPS values (p-values 1-10~* for model 1, 2-10~* for model 2 and 1-10~*
for model 3). Also if we directly compare the exact and approximate log-scores of each
model, the formal test shows the conservativeness of the approximate log-scores. However,

model 1 scores highest both under the exact and the approximate sampling scheme, both
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3 Conjugate change point models

Figure 3.20 — Comparison of exact (x-axis) and approximate (y-axis) mid-PIT values for cal-
ibration assessment of the one-step-ahead prediction in the three change point
models. At most 5 time points where the absolute difference between the two

values exceeds 0.1 are labelled.
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considering the RPS and the log-score. Therefore, the model choice using one of these
two scoring rules for one-step-ahead predictive assessment would not be changed when

the lightweight sampling scheme is used.

Table 3.3 — Mean ranked probability and logarithmic scores for the one-step-ahead prediction of

the three models, under the exact and approximate sampling schemes.

Scoring Rule Scheme Model 1  Model 2 Model 3
exact 0.31 0.32 0.32
RPS
approximate 0.29 0.30 0.30
exact 0.89 0.92 0.91
log-score .
approximate 0.84 0.85 0.87

Leave-one-out predictive assessment

Next, we will leave out the data from each day in turn, and try predicting it from the
remaining data.

First, we generate 10000 probabilities samples, both from the exact and the approx-
imate leave-one-out distributions, for all three models. Altogether, this takes 8477, 8402,
7904 seconds for the exact sampling and 466, 420, 444 seconds for the approximate
sampling, for the three different models, respectively. So the approximate sampling saves

more than an order of magnitude of computing time.
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3.5 Binomial-Beta model

Figure 3.21 — Comparison of exact (x-axis) and approximate (y-axis) scores for one-step-ahead
prediction in the three change point models (columns). The panels in the upper
row compare the RPS values, while the panels in the lower row compare the log-
scores. At most 5 time points where the absolute difference between the exact and

approximate score values exceeds 0.25 (RPS) or 0.5 (log-score) are labelled.
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Second, we plug each probability sample 7; into the Binomial likelihood and keep one
Binomial variate y; ~ Bin(m,n¢) as a sample from the (approximated) leave-one-out
predictive distribution F; for time ¢ given all other times.

The PIT histograms are shown in Figure Model 1 and model 2 look well calib-
rated if we judge them by panel @ and panel , respectively. The approximate results
in panels @ and are quite similar to their exact counterparts, with a slight tend-
ency to signalling overdispersion for model 1. For model 3 in panel we see again an
overestimation picture, which is even more pronounced in the approximate panel @

The mid-PIT values are compared between the exact and approximate sampling schemes
in Figure B24l For model 1 in panel[(a) no large deviation of an approximate PIT value

from the exact PIT value is noticeable. For model 3 and model 2, only one and two days
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3 Conjugate change point models

Figure 3.22 — Differences of the approximate and exact mid-PIT values, ranked probability and
), model 2
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3.5 Binomial-Beta model

Figure 3.23 — PIT histograms for calibration assessment of the leave-one-out prediction in the

three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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around high jumps in the model-averaged probabilities trend show larger discrepancies

between the sampling schemes in panels and @, respectively.

The exact and approximate scores of both proper scoring rules are compared in Fig-

ure The approximation is not as good as for the Poisson-Gamma models, cf. Fig-
ure on page Bl Particularly, it is interesting that here the overfitting model 3 shows
more large score discrepancies than in the one-step-ahead assessment and the overfitting

Poisson-Gamma model.

The mean scores for the proper scoring rules assessment of the leave-one-out prediction
are summarized in Table B4l on page These aggregated results are more encouraging
than the pairwise comparison of the scores: both for the RPS and the log-score, the
ranking of the models (model 3 is best, then model 1 and model 2) is unaltered when we

use the approximate scores instead of the exact scores.
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3 Conjugate change point models

Figure 3.24 — Comparison of exact (x-axis) and approximate (y-axis) mid-PIT values for calib-
ration assessment of the leave-one-out prediction in the three change point models.
Time points where the absolute difference between the two values exceeds 0.1 are
labelled.

10 - 10 - 1.0
g i
0.8 — % 0.8 — & 0.8 — #
y - e
06 — 06 — & 06 — f
04 — 04 — 04 —
/ 13%
0.2 0.2 0.2 P

— - & _
& &
0.0 — 0.0 — 0.0 —
1T 1T 1T 1T 1 1T 1T 1T 1T 1 T 1T 1T 1T 1
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
(a) Model 1 (b) Model 2 (c) Model 3

Posterior-predictive checking

Now we will look at the results of posterior-predictive model checking.

The posterior-predictive PIT histograms are shown in Figure While for model 2,
panel still shows a good calibration for the leave-one-out prediction, the other two
models would be judged differently compared to the exact or approximate leave-one-out
assessment. panel @ argues for a slight overdispersion of model 1, and panel shows
an extreme overdispersion of model 3, which is neither apparent in the exact panel
nor the approximate panel of Figure with the leave-one-out results.

The mid-PIT values are compared between the exact leave-one-out and the posterior-
predictive sampling schemes in Figure Again, substantial shrinkage of the mid-PIT
values towards 0.5 can be seen in the panels, which is strongest for model 3 in panel
This explains the stronger overdispersion pictures in Figure

The exact leave-one-out scores are compared with the posterior-predictive scores in
Figure For model 1 and model 2 in panels —[(e)l the differences to the respective
plots comparing the exact with the approximate leave-one-out scores in Figure are
not very large. Yet, panels and for model 3 show a much worse approximation
than the counterparts in Figure

The mean scores are summarized and compared to the leave-one-out scores in Table B4l
The heavy bias of individual model 3 posterior-predictive scores which we observed in
Figure is mirrored in the corresponding mean RPS and log-scores: if we only looked

at the mean posterior-predictive model scores, model 3, the overfitting model with the
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3.5 Binomial-Beta model

Figure 3.25 — Comparison of exact (x-axis) and approximate (y-axis) scores for leave-one-out
prediction in the three change point models (columns). The panels in the upper
row compare the RPS values, while the panels in the lower row compare the log-
scores. At most 5 time points where the absolute difference between the exact and

approximate score values exceeds 0.25 (RPS) or 0.5 (log-score) are labelled.
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most variable fit, appears to be much better than the other two models. Yet, using the
exact and also the approximate mean scores, the difference between model 3 and model 1

is not very large.

Results

Starting with the exact results, model 1 looks best in the one-step-ahead scores, with an
acceptable calibration in the corresponding PIT histogram. In the leave-one-out scores,
model 3 gets ahead of model 1, but its PIT histogram is slightly overdispersed. Compared
to the marginal likelihood rating, where model 1 was clearly preferred, the leave-one-out

assessment might tend to preferring overfitting models.
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Figure 3.26 — PIT histograms for posterior-predictive checking the three change point models.
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Figure 3.27 — Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) mid-
PIT values in the three change point models. Time points where the absolute

difference between the two values exceeds 0.1 are labelled.
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Table 3.4 — Mean ranked probability and logarithmic scores for the three models, under the exact

and approximate leave-one-out and the posterior predictive sampling schemes.

Scoring Rule Scheme Model 1 Model 2 Model 3
exact leave-one-out 0.30 0.31 0.29

RPS approximate leave-one-out 0.27 0.29 0.25
posterior-predictive 0.25 0.28 0.21
exact leave-one-out 0.85 0.87 0.84

log-score approximate leave-one-out 0.79 0.82 0.76
posterior-predictive 0.75 0.81 0.67
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3.5 Binomial-Beta model

Figure 3.28 — Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) scores

2.0

15

1.0

0.5

0.0

in the three change point models (columns). The panels in the upper row compare

the RPS values, while the panels in the lower row compare the log-scores. At most

5 time points where the absolute difference between the exact leave-one-out and

posterior-predictive score values exceeds 0.25 (RPS) or 0.5 (log-score) are labelled.
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Continuing with the performance of the proposed approximate sampling, it is encour-

aging that the exact one-step-ahead scores ranking could be replicated as well as the cor-

responding PIT histograms. The same can be said about the leave-one-out assessment.

Especially for this long time series, the gain is computational efficiency is worthwhile.

The posterior-predictive scores signal that model 3 fits the given data best, and produce

the same model ranking as the leave-one-out scores. However, the posterior-predictive PIT

histograms cannot be used as an approximation to the exact leave-one-out PIT histograms.

67



3 Conjugate change point models

3.6 Normal-Normal-Gamma model

The specializations of the general framework from section which are necessary for
the Normal-Normal-Gamma change point model are described in section BGIl Three
instances of this model class are fitted to the Nile discharge data and are then subject of

predictive assessment in a case study in section

3.6.1 The special change point model
Data

The Normal-Normal-Gamma change point model will be suited to modelling of time series
y := (Y1,%2,...,yn) of real-valued observations y; € R. Even if the observations are
actually restricted to a subset of R, the model can be used if a normal approximation is
sensible. For example, in the case study we will model positive-valued discharge levels,
but the range of the observations is far enough away from zero to justify the use of the
proposed model for real-valued observations.

For this model no covariates x; are considered. However, an extension to integrate

covariates via the conjugate Bayesian linear model would be straightforward.

Model

We assume independent normal distributions with means p; and precisions k; for the
observations:
ind
Y | ey ke '~ N(ug, 1/ke),  t€N.

The parametrization with the precision instead of the variance is chosen for notational
convenience.

So the parameters have two elements for this model, &, = (p, k). The response density
is f(ye &) = N(ye | piz, 1/5e).
Prior

The normal-gamma distribution is conjugate to the normal likelihood when both mean
and precision are unknown. So for the k£ + 1 parameter levels independent identical

normal-gamma priors with hyperparameters v, A\, o, 6 > 0 are specified,
1D kN E NG, 8), j=1,....k+1 (3.6.1)
The normal-gamma distribution means that if (u, k) ~ NG(v, \, a, 3), then

plr~ N, (Ar) ™)
and kK~ G(a, ).
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3.6 Normal-Normal-Gamma model

The hyperparameter ¢ has thus four elements v, A\, o, 8 here, and the parameter level prior

density is f(€7§) = NG(uD), w0 |1, A, a, B).

Plugging in the block posterior u), kU) | ys ~ NG(vs, As, as, fs) from BB, we have
from (BZH) that the block marginal likelihood is

_ Tlies fwe €)1 (€Y | ¢)
fotock(Ys) oot (€9 | ys. &)

_ Les N | 19,1/ NG(uD, 5D | v, A, @, )
NG (p, ”ll/s,)\s,ozs,ﬁs)

k)
— (2m)~F (x)F exp ( S - )

teS
(2m) 72 (AR % exp(— 252 (ulD) — v)2) 22

,1

o (KD exp (=<0 5)

(21)~ 2 (Ask )3 exp(— 252 (46) — pg)2 )(5() 7 (k0))es—Lexp(—klD)Gs)
- (%) wope ey e
“(eterm) e
X { sis + :fA (1hs —v) +2B}(n;+a),

where ng := |S| denotes the number of time points in the set S, while Mg := % Y oies Yt
and 0g := % > oies(ye — ms)? abbreviate the empirical mean and variance, respectively,

in the observations ygs.

Posterior

In order to sample the model parameters given the change points, we need the block
posterior density ([B2Z7):
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3 Conjugate change point models

fblock(ﬂ(j), Ii(j) ‘ ys)
o [T £ |19, 69) f (), 6190)

teS
= [ N | 19, 1/69) NG (D, 59 |1, X, o, B)
teS
ng | ng k) ]
= (2m) " F () F exp | == D (e — u))?
2 tesS

1 N1 @ o , ,
x (2m) 72 (Ael)) 2 exp <—A”; <M<J>—u>2> P (k)2 exp(—xD )

Now the term in square brackets can be rewritten as a quadratic form in p(9), which gives

2
tes

us the normal-gamma shape:

fblock(ﬂ(j)7 H(j) \ yg)

x (,{(J))"52+1+a71
~ 2
_p) |Psy o L Ans L e ns+X ([ ) nsis+ v

xexp{ ) [2?}8+2ns+A(mS G ns + A
RO & as+N) () nstis +Av

( )QGXp{ 2 H ns+ A

() +a-1 Gy |ns, |1 Ans )

x (kVY))2 exp 4 —K 7US+§nS+)\(mS_V) +0

x NG (M(j)ﬂf(j) !VS,A&Oés,ﬁs) ; (3.6.2)

where the posterior parameters are

e nsms + \v
I W
As :=ns + A,

n
0452278—{—04

1 ns
2ns + A

(s — v)* + 5.

and (s := 712_8{)8 +

3.6.2 Case study

We illustrate the predictive assessment with the Nile data from (Cobb (1978, p. 248).

The data set comprises a total of n = 100 contiguous yearly discharge measurements of
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3.6 Normal-Normal-Gamma model

the Nile at Aswan, from 1871 to 1970. The time series is plotted in Figure Cobb
(1978) assumed the values to be normally distributed conditional on the means, and used
conditional inference techniques to search for a single change point in the means after
fixing two possible mean values and the variance. We will allow an arbitrary number
of change points in the parameters, and assume the mean and variance of the normal

distributions in the blocks as unknown.

1400 —

1200 —

1000 —

800 —

Discharge [108 m?]

600 —

I I I I I
1880 1900 1920 1940 1960

Year

Figure 3.29 — Nile discharge data: yearly discharge levels in 108 m3 measured at Aswan from
1871 to 1970.

Model fitting

We make the assumption that the mean u; and precision x; of Nile discharge y; are
piecewise constant, and fit change point models with the parameter &, = (u, k). For
the prior normal-gamma distribution BGI) of &,, we center the prior distribution of p
around the data mean by setting v = 919.35. The precision factor A is varied between the
models. Following |Cobb (1978), who fixed the standard deviation at o = 125, we choose
such gamma distribution parameters for x; that the prior mean for the variance o7 =

1/ky is 1252 = 15625. Since o7 is a priori inverse gamma distributed with expectation

71



3 Conjugate change point models

E(c?) = 3/(a — 1), a and 3 can be chosen appropriately.

The first model we will fit to the data uses the flat number prior for the change points,
and hyperparameters A = 0.1, = 100 + 1, 5 = 15625 - 100 for the parameters prior.

The second model we want to assess also uses the flat number prior for the change points,
but with hyperparameters A = 0.001,« = 10+ 1, 3 = 15625 - 10 for the parameters prior.
So the prior expectations of the mean and variance levels are unaltered, but the prior
variances are enlarged. For example, we now have Var(c?) = E(0?)?/(a — 2) = 125%/9,
compared to 125%/99 in the model 1 setting.

The last model we consider uses the binomial number prior with probability = = 0.2
for a change point between any two years of the time series. The parameters prior hyper-
parameters are chosen as for the first model.

We have produced 10000 samples each from the posterior distributions. The estim-
ated parameters trends and the change point locations in the MAP model are shown in
Figure

The two models with the flat change points prior are similar: Both model 1 in panel
and model 2 in panel have one MAP model change point after the year 1898. The
posterior probabilities for these configurations are 4.65- 10! and 7.46- 10!, respectively.
While the simultaneous credible band shows a higher variability of the model 1 means
in panel the model averaged mean trend is almost indiscernible from the model 2
trend in panel : both trends show a clear step downwards around their change points,
and are constant elsewhere. The corresponding averaged precision seems to step upwards,
more for model 2 than for model 1. Model 3 with the binomial change points prior in
panel exhibits a more variable mean trend, which looks overfitted to the data. The
MAP model here has probability 3.22-107° and contains an additional change point after
the year 1967.

The log marginal likelihood values log f(y) of the three change point models are —640.72,
—646.668 and —647.005, respectively. So if we should decide on the basis of the marginal
likelihood, model 1 would be our best choice. Whether this choice is supported by a

predictive model assessment will be examined in the following.

One-step-ahead predictive assessment

First, we will do a one-step-ahead predictive assessment of the three models, and compare
the approximate results with the exact results.

First, we generate 10 000 parameters samples, both from the exact and the approximate
one-step-ahead predictive distributions, for all three models. That is for each model,
and for all last times ¢t = 0,1,...,n — 1 = 99, we sample 10000 variates exactly from

f(&41 1Yp,g) and again 10 000 variates from the approximation f(étﬂ | yp1,)- Altogether,
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3.6 Normal-Normal-Gamma model

Figure 3.30 — Posterior parameters trends for the three change point models. Pointwise HPD
(dashed lines) as well as simultaneous (dotted lines) 95% credible intervals, which
were estimated by simulating 10000 samples, for both the mean (left panels) and
the precision trends (right panels) are given. The change point locations in the

respective MAP models are marked with vertical lines.
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3 Conjugate change point models

this takes 84, 55, 160 seconds for the exact sampling and 26, 16, 119 seconds for the
approximate sampling, for the three different models, respectively. So for model 3, the
relative gain in computing time of the approximate sampling approach is rather small.
This is probably due to the fact that the computational effort for this short time series
lies mainly in the parameter levels sampling, and not in the change points sampling. For
the wiggly model 3, more parameter levels need to be sampled than for the other two

smooth models.

Second, we plug each parameter sample &, = (u¢, k¢) into the normal likelihood and
keep one Gaussian variate y; ~ N(ug, 1/k¢) as a sample from the (approximated) one-

step-ahead predictive distribution F; for time ¢ given all prior times.

The estimated PIT histograms are shown in Figure B3Il All exact PIT histograms do
not look very good, but the reason could be the relatively small sample size (n = 100).
The histogram in panel@ for model 2 signals an acceptable calibration. The approximate
histogram in panel does not look as good, but is similar. Also the exact histogram
for model 1 in panel shows some differences between nominal and observed prediction
intervals coverages, which are still present in the approximate histogram in panel@ One
might diagnose an overdispersion of model 3 from the exact panel and also from the
approximate panel [(T)]

The PIT values are compared between the exact and approximate sampling schemes in
Figure On the one hand, for the variable model 3, only for a single year a deviation
of the approximation larger than 0.1 is observed in panel For model 2 in panel
a few years after the MAP change point have larger deviations. On the other hand, for
model 1 in panel @ there are more differences, which are mostly after the change point

year.

Now we turn to proper scoring rules. The exact and approximate scores of both the con-
tinuous ranked probability and the logarithmic scoring rules are compared in Figure
Overall, the approximate sampling works well for this example. The most large differences
are observed for model 1, both for the CRPS in panel and for the log-score in panel
However, it is promising that the points in the figures are distributed quite evenly around
the identity line, and do not always lie in the lower-right triangular, which would mean
that the approximate score values underestimate the exact score values systematically.
There are fewer differences for model 2, where both for the CRPS in panel @ and for
the log-score in @ the score values for the three years immediately after the MAP model
change point 1899 (the three years in the new MAP block) are heavily underestimated
by the approximate sampling scheme. For model 3, some larger differences occur for the
CRPS in panel while the differences for the log-score in panel [EZ] are minor.

We plot the time series of differences of the approximate and exact PIT values, con-
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3.6 Normal-Normal-Gamma model

Figure 3.31 — PIT histograms for calibration assessment of the one-step-ahead prediction in the

three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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(d) Model 1, approximate sampling (€) Model 2, approximate sampling (f) Model 3, approximate sampling

tinuous ranked probability and logarithmic scores in Figure B34 Model 1 and model 2
are too optimistic about their forecast performance around the turn of the century, with
too low score values in panels and The exact one-step-ahead sampling predicts
still high discharge levels, while the observations materialize on a lower level, leading to
small PIT values. The approximate sampling knows about the step, and thus produces
too large PIT values around 1900, as panel @ shows. Larger approximation errors are
also observed between 1910 and 1920, when the discharge levels fluctuate more (cf. Fig-
ure B29). Overall the differences seem to diminish in the late years, which is expected
because more of the data used by the approximate sampling scheme is also used by the

exact sampling scheme.

The mean scores for the proper scoring rules assessment of the one-step-ahead prediction

are summarized in Table B Looking at both CRPS rows in the table, it is not surprising
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3 Conjugate change point models

Figure 3.32 — Comparison of exact (x-axis) and approximate (y-axis) PIT values for calibration
assessment of the one-step-ahead prediction in the three change point models. At

most 5 time points where the absolute difference between the two values exceeds 0.1

are labelled.
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that the paired permutation test clearly rejects the hypotheses of same location parameters
in the exact and approximate CRPS values on a 5% significance level (p-values 2.67 - 1072
for model 1, 2.9 - 1073 for model 2 and 1-10~* for model 3). Also if directly compare the
exact and approximate log-scores of each model, the formal test shows the conservativeness
of the approximate log-scores. So the impression from Figure was apparently slightly
misleading. However, the ranking of the models is unchanged in the approximate mean
scores: both in the exact and the approximate results, the CRPS ranks model 1 best,
followed by model 3 and model 2. The exact log-score ranks model 2 almost equal to
model 3: Since the mean one-step-ahead log-score is equivalent to the marginal likelihood,
we see from the values given on page that model 2 is ranked slightly better by the
exact log-score. The approximate log-score slightly favours model 3, but model 1 is still
ranked highest. Therefore, the model choice using one of these two scoring rules for one-
step-ahead predictive assessment would not be changed when the lightweight sampling

scheme is used.

Leave-one-out predictive assessment

We will examine the performance of the approximate leave-one-out strategy for this ex-
ample of a Normal-Normal-Gamma change point model.

First, we generate 10 000 parameters samples, both from the exact and the approximate
leave-one-out distributions, for all three models. Altogether, this takes 149, 119, 275
seconds for the exact sampling and 44, 16, 163 seconds for the approximate sampling, for

the three different models, respectively.
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3.6 Normal-Normal-Gamma model

Figure 3.33 — Comparison of exact (x-axis) and approximate (y-axis) scores for one-step-ahead
prediction in the three change point models (columns). The panels in the upper
row compare the CRPS values, while the panels in the lower row compare the
log-scores. At most 5 time points where the absolute difference between the exact

and approximate score values exceeds 25 (CRPS) or 0.5 (log-score) are labelled.
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Table 3.5 — Mean continuous ranked probability and logarithmic scores for the one-step-ahead

prediction of the three models, under the exact and approximate sampling schemes.

Scoring Rule Scheme Model 1 Model 2 Model 3
exact 80.85 94.33 82.96
CRPS )
approximate 76.65 90.25 77.66
exact 6.41 6.47 6.47
log-score .
approximate 6.35 6.42 6.41
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3 Conjugate change point models

Figure 3.34 — Differences of the approximate and exact PIT values, continuous ranked probab-
ility and logarithmic scores for the one-step-ahead prediction, for model 1 (—_),
model 2 (___) and model 3 (.......).
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3.6 Normal-Normal-Gamma model

Second, for each parameter sample &,, we generate a normal variate from the corres-
ponding Gaussian distribution. It is a sample from the (approximated) leave-one-out

predictive distribution F; for time ¢ given all other times.

The PIT histograms are presented in Figure B39 and do not show perfectly calibrated
forecasters. Similarly to the one-step-ahead assessment, model 3 in panel shows a
tendency towards overdispersion. This impression is preserved by the approximate histo-
gram in panel [T)} For model 1 in panel[(a)l and model 2 in panel [(b}} the histograms could
be described as left-skewed with the second bins [0.1,0.2] as outliers. The approximate
results in panels and @ share this characteristic.

Figure 3.35 — PIT histograms for calibration assessment of the leave-one-out prediction in the
three change point models (columns). The predictive distributions were estimated

with the exact (upper row) and the approximate (lower row) sampling schemes.
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(d) Model 1, approximate sampling (e) Model 2, approximate sampling (f) Model 3, approximate sampling

The PIT values from the exact and approximate sampling schemes are compared in
Figure The approximations work very well, for all models. Only two greater devi-
ations are visible for model 1 in panel and for model 2 in panel For model 3 in
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panel few differences greater than the labelling threshold 0.1 are observed.

Figure 3.36 — Comparison of exact (x-axis) and approximate (y-axis) PIT values for calibration
assessment of the leave-one-out prediction in the three change point models. At

most 5 time points where the absolute difference between the two values exceeds 0.1

are labelled.
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The exact and approximate scores of both proper scoring rules are compared in Fig-
ure B37 The approximations are very good for model 1 and model 2 scores: only the two
years 1898 and 1899 before the new MAP model block are underestimated in panels @,
and , , while the scores for the other years match the exact scores well. The
picture is different for model 3 in panels and Here especially years with large
exact scores (meaning bad prediction of the corresponding discharge values) yield too low
approximate scores.

The mean scores for the proper scoring rules assessment of the leave-one-out prediction
are summarized in Table on page The underestimation of large score values in
model 3 leads to underestimated mean scores for this model. Therefore, the approximate
approach ranks model 3 best for the leave-one-out prediction, while the exact sampling

ranks model 3 worst and favours the other models.

Posterior-predictive checking

For comparison, we will look at the results of posterior-predictive model checking.

The PIT histograms are shown in Figure While for model 1 and model 2, panels@
and pretty much agree with the exact and approximate leave-one-out PIT histograms
from Figure B30 model 3 in panel is being diagnosed a severe overdispersion by the
posterior-predictive approach. This is in accordance with the closer fit to the given data.

If we compare the individual PIT values between the exact leave-one-out and the
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Figure 3.37 — Comparison of exact (x-axis) and approximate (y-axis) scores for leave-one-out
prediction in the three change point models (columns). The panels in the upper
row compare the CRPS values, while the panels in the lower row compare the
log-scores. At most 5 time points where the absolute difference between the exact

and approximate score values exceeds 25 (CRPS) or 0.5 (log-score) are labelled.
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posterior-predictive sampling schemes in Figure B39, substantial shrinkage of the PIT
values towards 0.5 can be seen for the model 3 PIT values in panel For model 1 in
panel @ and model 2 in panel the approximation by the posterior-predictive PIT
values is surprisingly good.

The exact leave-one-out scores are compared with the posterior-predictive scores in
Figure B40 For model 1 and model 2 in panels @, and @ we see that the
posterior-predictive scores approximate small leave-one-out score values well. However,
for large score values, the posterior-predictive scores are considerably below the exact
scores. For model 3 in panels and the bias is already visible for small score values.

The mean scores are summarized and compared to the leave-one-out scores in Table B0l

The heavy bias of individual model 3 posterior-predictive scores which we observed in
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Figure 3.38 — PIT histograms for posterior-predictive checking the three change point models.
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Figure is mirrored in the corresponding mean CRPS and log-scores: if we only looked
at the mean posterior-predictive model scores, model 3, the model with the most variable
fit, appears to be much better than the other two models. Yet, using the exact and also

the approximate mean scores, the difference between model 3 and model 1 is smaller.

Table 3.6 — Mean continuous ranked probability and logarithmic scores for the three models,

under the exact and approximate leave-one-out and the posterior predictive sampling

schemes.
Scoring Rule Scheme Model 1 Model 2 Model 3
exact leave-one-out 73.98 73.88 75.15
CRPS approximate leave-one-out 72.02 72.55 65.57
posterior-predictive 69.97 70.90 58.13
exact leave-one-out 6.30 6.31 6.33
log-score approximate leave-one-out 6.28 6.30 6.21
posterior-predictive 6.24 6.26 6.11

Results

While model 1 is clearly preferred by the marginal likelihood and the one-step-ahead
predictive assessment, model 2 shows a similar performance in the leave-one-out predictive
assessment. Model 3 is not preferred by any of these exact model choice criteria.

The situation is slightly different for the approximate results: Only for the one-step-
ahead assessment, model 1 is still preferred, while the approximate leave-one-out scores

favour model 3. However, the approximate PIT histograms for model 3 still hinted at a
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Figure 3.39 — Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) PIT
values in the three change point models. At most 5 time points where the absolute

difference between the two values exceeds 0.1 are labelled.
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possible overdispersion of model 3.

When we interpret the posterior-predictive results correctly as goodness-of-fit measures,
the scores seems reasonable: model 3 has the best fit, because it follows the data-points
more tightly than the other models. Also the posterior-predictive PIT histogram shows
that only few of the p-values fall into the outer bins [0, 0.1] and [0.9, 1]. Such p-values would
signal that the materialized observations were extreme compared to the fitted posterior-
predictive distribution at the respective time points. So the absence of many extreme
p-values suggests a good fit of model 3, to the known data. Yet, the results must not
be interpreted as approximations to the exact leave-one-out results, which measure the

“goodness-of-prediction” for new data.
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3 Conjugate change point models

Figure 3.40 — Comparison of exact leave-one-out (x-axis) and posterior-predictive (y-axis) scores
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3.7 Genetic data application

3.7 Genetic data application

We will analyze the GC composition data introduced by [Fearnhead and Vasileiou (2009,
p. 133), which comprises the proportion of DNA bases that are Guanine (G) or Cytosine
(C) as opposed to Adenine or Thymine in 3 kb windows of the human chromosome 1 from
position 6 Mb to position 12 Mb. We computed the data from Build 35 of the finished
human genome assembly (hgl7, May 2004) by the International Human Genome Project
for chromosome 1ll, and show the time series of length n = 2000 in Figure 411

We compare our models with the “IsoFinder model”, which is defined through the
change points inferred by the IsoFinder program (Oliver, Carpena, Hackenberg, and
Bernaola-Galvan 2004). Its precomputed results have been obtained from the Internetﬁ.
As IsoFinder reports single bases as change points, we have to round the values. For ex-
ample, if IsoFinder defines 6 355231 as a change point base (meaning that starting from
base 6355232 a new isochore begins), we convert it to the change point index 118, be-
cause this means that we start a new block from the 119th data point, which has been
aggregated from bases 6354001 — 635700. We arrive at 115 change points, which are
included in Figure B4l

3.7.1 Model fitting

Unlike [Fearnhead and Vasileiou (2009, p. 135), who used (finite mixtures of) normal
distributions for modelling the GC content, we could use the binomial model with n; =
3000 samples and y; being the number of bases G or C in window ¢ = 1,...,n = 2000.
This would have several advantages: First, this likelihood is better fitted to the data
generating process, and we can be sure that predicted GC percentages will always lie
in the interval (0,1). Second, we would need to specify fewer hyperparameters for the
beta prior than for the normal-gamma prior. However, the large sample sizes n; turned
out as being problematic for this segmentation task, because the data was interpolated
by the probabilities trend. This is due to the high information contained in the data
points, which overwhelms even binomial change points priors with very small parameter 7.
Another possibility would be to go back to the original DNA sequence and analyze the
corresponding binary time series. Yet, this is unfeasible because of the sheer length of
6000000 bases (6 Mb).

Therefore we stick to the normal approximation used by [Fearnhead and Vasileiou (2009)).
We will compare models with prior settings similar to those in section B.G2l where we

fix the hyperparameter v = 0.487 at the marginal mean of the time series. Moreover, we

thttp://hgdownload.cse.ucsc.edu/goldenPath/hgl7/chromosomes/chrl. fa.gz
Uhttp://bioinfo2.ugr.es/isochores/GB/hgl7/iso_chrl.html
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Figure 3.41 — GC composition data: Proportion of G and C bases in 3 kb windows. The ticks
at the bottom symbolize the change points of the IsoFinder model.

keep the expectation of the variances at 0.003 throughout the different models, which is
slightly lower than the marginal variance 0.0039.

The first model we will fit to the data uses the flat number prior for the change points,
and hyperparameters A = 0.1, = 100 + 1, 3 = 0.003 - 100 for the parameters prior. The
second model we want to assess also uses the flat number prior for the change points, but
with hyperparameters A = 0.001,a = 10+ 1,5 = 0.003 - 10 for the parameters prior. The
last model we consider uses the binomial number prior with probability 7 = 0.05 for a
change point between any two GC windows of the time series, and the same parameters

prior hyperparameters as for the first model.

We have produced 5000 samples each from the posterior distributions. Probably due
to the great length of the time series, compared to the previous smaller examples, it was
necessary to store the conditional densities (BZZ9) from page 23 as long double (96 bits)
floating point numbers instead of double (64 bits). This was easy because we do the
change points sampling in C++, but would have been more difficult in R. The memory

requirements mentioned on page B8 have to be increased, but the threshold of n = 400 is
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Figure 3.42 — Posterior parameters trends for the three change point models: Both the mean

ot

e

e

0.60

0.55

0.50

0.45

0.40

0.60

0.55

0.50

0.45

0.40

0.60

0.55

0.50

0.45

0.40

(left panels) and the precision trends (right panels) are given. The change point

locations in the respective MAP models are marked with ticks above the x axis.

Credible intervals have been omitted for clarity.

] 1000

=] 800

-] ¢ 600

-] 400

1 WULIL L IL 1) 1 Lyl 200
I I I I I

6 7 8 9 10 12

Start position of block [Mb]

(a) Model 1

=] 1000

-] 800

600

-] 400

200

Start position of block [Mb]

(b) Model 2

=] 1000

-] 800

600

-] 400

Il 200

6 7 8 9 10 12

Start position of block [Mb]

(c) Model 3

Sy NS

6 7 8 9 10 12

Start position of block [Mb]

6 7 8 9 10 12

Start position of block [Mb]

W

6 7 8 9 10 12

Start position of block [Mb]



3 Conjugate change point models

retained.

The estimated parameters trends and the change point locations in the MAP model are
shown in Figure The two models with the flat change points prior are similar: Both
model 1 in panels @ and model 2 in panel have 27 MAP model change points, at
similar positions in the sequence. The posterior probabilities for these MAP configurations
are 2.06-1072° and 1.37-10717, respectively. The model averaged mean trend for model 1
is slightly more variable than the model 2 mean trend. Model 3 with the binomial change
points prior in panel exhibits a more variable mean trend. The MAP model here has
probability 2.9 - 1078 and contains a total of 40 change points.

In Figure B43, the pointwise change point probabilities of the three models are com-
pared to the IsoFinder change points. Overall, there is visible agreement between the two
algorithms. Yet, the posterior probabilities are much more informative than the IsoFinder
result, which produces more change points for regions where the conjugate change point
model gives only few positions high probabilities for change points (e. g. the block between
8 Mb and 9 Mb).

The log marginal likelihood values log f(y) of the three change point models are 3256.799,
3272.511 and 3240.577, respectively. So if we should decide on the basis of the marginal
likelihood, model 2 would be our best choice. However, we want to do a predictive model
assessment, and are especially interested in the leave-one-out predictive assessment. Un-
fortunately, the exact procedure would be practically infeasible, because the change points
sampling alone took 2973, 2726 and 2478 seconds for the model fitting of the three pro-
posals, respectively. If we did an exact leave-one-out assessment, we would therefore have
to wait 69, 63 and 57 days for the result!

3.7.2 Leave-one-out predictive assessment

Thus, we will do only the approximate leave-one-out assessment for this real-world ap-
plication.

Sampling from the approximate leave-one-out parameters distributions takes 4591, 4442
and 4386 seconds for the three different models, respectively. Unfortunately, numerical
difficulties occurred for model 1, where some sampled mean parameters u; were abnormally
large, even resulting in some missing values. Therefore, we set all NAs and mean values
lower than the 0.0001 or the 0.9999 quantile to the mean of the other samples for the same
time. However, this had only to be done for 1596 out of 10000000 values, and should
thus have no relevant effect on the results. Afterwards, Gaussian random variables are
produced to obtain samples from the approximate leave-one-out predictive distributions.

The resulting PIT histograms are shown in Figure B44l All three models show obvious

overdispersion in the approximate leave-one-out predictive distributions. The degree of
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3.7 Genetic data application

Figure 3.43 — Comparison of the change point probabilities in the three models and the IsoFinder

change point locations (ticks at the x-axis).
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3 Conjugate change point models

overdispersion is greater for model 3 in panel than for model 1 in panel and greater
for model 1 than for model 2 in panel So model 2 seems to have the best calibration

among the three models.

Figure 3.44 — PIT histograms for approximate calibration assessment of the leave-one-out pre-

diction in the three change point models.
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The mean scores for the proper scoring rules assessment of the approximate leave-one-
out prediction are summarized in Table B on page @0 While the CRPS is lowest for
model 3, the log-score points to model 2 as the as the best leave-one-out predicting model.

As the three examined models are all badly calibrated, we tried to change the prior
parameters towards are better calibrated model. The PIT histograms in Figure B4
give valuable hints at what might be wrong with our current prior choice: they all show
overdispersed forecast distributions. Model 2 shows a lower degree of overdispersion. If we
combine this with the precision trends in Figure B.-42], where model 2 reaches levels above
800, while both other models stay below 500, we get the impression that the assumed
variance mean value 0.003 is too high. As model 2 shows the most parsimonious mean
trend, we might also want to specify an even sparser change points prior. The new prior
choice is then v = 0487, A\ =1-10"%, a = 11, # = 0.001 - 10 for the parameters prior and

7 = (0.008 for the binomial change points prior.

Table 3.7 — Mean continuous ranked probability and logarithmic scores for the approximate leave-
one-out prediction of the four models which have been fitted to the GC composition
data.

Scoring Rule Model 1 Model 2 Model 3 Model 4

CRPS 0.0235 0.0226 0.0221 0.0223
log-score —1.7016 —1.7824 —1.7489 —1.8108
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3.7 Genetic data application

The MAP change points configuration in the new model has probability 6.11-10713 and
contains a total of 28 change points. The resulting estimated parameters trends and the
change point locations in the MAP model are shown in Figure B 46l While the mean trend
is very similar to that from the model 2, the precision trend exhibits a greater variability
and reaches now precisions over 1400. For comparison with Figure B3] the change point
probabilities in the new model are shown in Figure B:40. The picture is different to the
model 2 panelof Figure B43], but the model is more sure of the change points locations:
the change points probabilities are higher for some and lower for other locations. This is
especially helpful at 7.4 and 11 Mb, where IsoFinder and the three previous models were

very unclear about the best change points.

Figure 3.45 — Comparison of the change point probabilities in the new model and the IsoFinder

change point locations (ticks at the x-axis).
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The approximate PIT histogram is shown in Figure B47 shows the benefits of the
higher precisions: the calibration is better than for model 2. The log-marginal likelihood
is 3281.996, the mean approximate leave-one-out CRPS is 0.0223 and the mean log-score
is —1.8108. So all model assessment tools rank the new model highest, except the CRPS
which gives model 3 a minimally better score (cf. Table B1).

3.7.3 Results

The marginal likelihood, which is equivalent to the mean one-step-ahead log-score, ranks
the new model 4 highest, followed by models 2, 1 and 3. The approximate leave-one-out
log-score gives a very similar ranking, only the positions of the worst two models are
exchanged. However, the approximate leave-one-out CRPS ranks model 3 best, followed
by models 4, 2 and 1.

One possibility to somehow check the accuracy of the approximations for this concrete
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3 Conjugate change point models

Figure 3.46 — Posterior parameters trends for the new change point model.
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Figure 3.47 — PIT histogram for approximate calibration assessment of the leave-one-out predic-

tion in the new change point model.
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large data example would be to select a small window of 200 observations, say. For this
subset, the exact results could be computed and compared with the approximate scores,
similarly as we have done it in the three case studies in this chapter. Yet, even without
doing this subset accuracy check, it is worth considering the ranking of the marginal
likelihood values: Because they also rank the new model best, the similar result of the

approximate leave-one-out log-scores is supported.

This real-world example is instructive, because the approximate leave-one-out PIT his-
tograms could guide us from the three badly calibrated models to a better calibrated new
model. This is a very important aspect of the PIT histogram, because it provides a model
criticism tool — we do not only see that some model is ranked higher than the other model

(using the proper scoring rules), but we do also get information about what may be wrong
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with the bad models, and what could remedy the deficiencies.

3.8 Summary

In this chapter we have investigated the performance of Marshall-Spiegelhalter type ap-
proximations to the exact one-step-ahead and leave-one-out assessment results for conjug-
ate change point models. For three different distribution families, the case studies showed
that these approximations are good and can be obtained with less computational effort,
and should be used instead of the posterior-predictive results when the out-of-sample
predictions of the models matter. While for the small problems in the case studies the
exact computations were still feasible, the approximations were vital for predictive model
assessment in the large genetic data example. For the conjugate change point models, the
marginal likelihood can be computed, which also allows the computation of Bayes factors
between competing models. Model choice for more general change point models could
be based on the one-step-ahead and leave-one-out assessments alone, when the marginal
likelihood cannot be estimated reliably. Nevertheless, |(Chib (1998) proposes the MCMC
estimation of marginal likelihoods for comparing models with fixed numbers of change
points. [Fearnhead and Vasileiou (2009) avoid the MCMC convergence issues and can
calculate the marginal likelihood exactly. The work in this thesis is a first step towards a
more thorough predictive assessment of change point models, which is asked for by Held,
Hofmann, Hohle, and Schmid (2006, p. 435) for a more complex infectious disease counts

model.

Comparing the exact one-step-ahead with the exact leave-one-out model scores from
the case studies, we notice that both assessment types yield the same ranking for the
Poisson-Gamma example (section BZ2) but slightly different rankings for the binomial-
beta example (section B02): while the one-step-ahead scores favour model 1 over model 3,
the order is reversed by the leave-one-out scores. For the normal normal-gamma example
(section B.6.2) the CRPS and log-score rankings are equal for the one-step-ahead assess-
ment (models 1, 3, 2), but the exact leave-one-out rankings differ (2, 1, 3 and 1, 2, 3,
respectively).

The mean scores tables exhibit a common pattern, across all three examined distribu-
tion families. First, within each table (see e.g. Table on page @9), the exact scores
are always highest, followed by the approximate scores and then (for the leave-one-out
prediction) the posterior-predictive scores. So the approximate scores are a bit too optim-
istic for the examined models, but the posterior-predictive scores are no good substitutes
for the exact scores at all. Second, if we compare the scores between the one-step-ahead
and the leave-one-out tables (compare e.g. Table Bl on page B with Table B2), we no-

93



3 Conjugate change point models

tice that the one-step-ahead scores are always higher than the respective leave-one-out
scores. This means that the one-step-ahead prediction is more difficult than the leave-
one-out prediction, whether it is exact or approximate. Both findings can be explained
by Figure B4l First, the posterior-predictive sampling scheme uses the full data set,
while the approximate leave-one-out scheme only partially uses the information for the
predicted time, and the exact leave-one-out scheme only uses the information from all
other times. Analogously for the one-step-ahead prediction, the exact approach must do
without the partial ahead information used by the approximate scheme. The more data
is available, the easier is the prediction, which corresponds to lower mean scores. Second,
the exact one-step-ahead prediction does not use the data after the next time, unlike
the exact leave-one-out prediction (except for the prediction of the last time, when both
tasks coincide). For the approximate versions, the later times are used partially by the
one-step-ahead but fully by the exact scheme. Therefore here also more data is available
to the leave-one-out predictions, making it easier and thus producing lower mean scores

than the one-step-ahead predictions.

In the PIT comparison plots, we have recognized a shrinkage of the posterior-predictive
(mid-)PIT values towards 0.5 relative to the exact leave-one-out PIT values. This can
easily be explained by the conservativeness of the posterior-predictive results: The cor-
responding predictive distributions are shrunk towards to the observation which was not
known to the leave-one-out predictive distribution. Thus, the observation is less extreme
relative to the forecaster, and the PIT value is shrunk towards 0.5. The shrinkage is much
weaker for the approximate PIT values, because the information from the observation is
only partially used to sample the change points. For example in the approximate compar-
ison plot in panel of Figure (p. B4) the characteristic S-form can be noted. But

the S-form is much clearer in the corresponding posterior-predictive comparison plot in

panel [(¢c)] of Figure (p. BA).

The PIT shrinkage explained above was strongest for overfitting models. This is nat-
ural, because the posterior-predictive distribution is more different from the leave-one-out
forecast when the model adapts more strongly to the known data. Interestingly, the com-
parison of the posterior-predictive with the corresponding leave-one-out distribution was
proposed for assessing the influence (or “leverage” in classic regression) of the individual
on its own fit by the model (Gilks, Richardson, and Spiegelhalter 1998, p. 151). This
question is closely related to the influence measures typically used in linear regression, for
example the Cook’s distance (Cook and Weisberg 1980). Furthermore, the case studies
have exemplified that the models with the best fit are not necessarily the models with
the best predictive performance. For example, the normal normal-gamma model 3 in
section fits the given data best (based on the posterior-predictive scores), but has
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the worst leave-one-out predictions (based on the exact leave-one-out scores).
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4 Random effects models for longitudinal
data

In section Bl longitudinal data models are motivated. The random effects modelling
framework is detailed and specialized to the linear mixed model in section Similarly
in section EE3 the predictive assessment schemes are first presented for general random
effects models before being implemented for the linear mixed model. Section EE4l compares
the assessment results of the correct model and three wrong models in a small-scale
simulation study. Real data are analyzed in sections and L& First the performances
of the approximate assessment scheme are evaluated for a subset, before being applied to

the full data sets. Section L7 summarizes the results of this chapter.

4.1 Introduction

In its most general definition, longitudinal data is a collection of multiple time series. By
contrast, in chapter Bl we examined a model class suited to the analysis of single time
series. Typically and also in our real data examples in this chapter, each time series
is produced by measuring repeatedly the outcome for a single individual. In parallel,
other variables are recorded which could be associated with the outcome trajectories.
Longitudinal data models allow a statistical analysis which accounts for the correlation
within the time series, which could be an age effect, for example. Moreover, cohort effects
can be estimated, which could be responsible for different baseline levels of the time series.
If the individuals enter the study over a long time, also calendar-time effects could be of
interest, for example if health care has improved and is relevant for the outcome.

A book-length overview of different methods in longitudinal data analysis is given by
Diggle, Heagerty, Liang, and Zeger (2002). They also present a CD4 data example from
the same data pool as our CD4 example in section EEJ. In this thesis we concentrate on
random effects models for longitudinal data: these account for unobserved heterogeneity
between individuals by declaring the differences (the random effects) to be distributed
to (typically) a normal distribution. This assumption reflects that effects which cannot
be explained by observed covariates have (approximately) a normal distribution in the

population. Note that the word “random” is in fact superfluous in our setting because
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in the proposed Bayesian inference all effects are assumed to be random, mirroring the
uncertainty about them. Yet, in the frequentist inferential framework the randomness of
the parameters is a striking element, so the models were coined “random effects models”.
In particular, the implementation will focus on the linear mixed effects models, which
assume that given the population effects and random effects (thus “mixed” effects) and

the covariates, a single observation has a normal distribution.

4.2 Modelling framework

Section EEZT] describes the data to which the general random effects model from sec-
tion can be applied. The details for the normal linear mixed effects model are given
in section

4.2.1 Data

We assume that we intend to analyze a longitudinal data set comprising n individuals
i =1,...,n with time series of scalar outcomes. For individual ¢, n; scalar outcomes ;;
indexed by j = 1,...,n; are recorded. That is, the multiple time series y; = (yi1,- - -, Yin;)
i € N, do not need to have the same lengths. Moreover, non-equidistant measurement
times ?;; for the observations are allowed. The whole longitudinal data set is denoted
as ). Usually covariates are recorded in parallel to the outcomes. The notation for the

resulting design matrices is detailed in section

4.2.2 Model

The general model assumes independence of the time series y; conditional on the para-
meter vector £ and the individual random effects ;. So the likelihood for the observations
is

Yi Z’Q‘df(yz“&ai)a ieN.
Covariates (especially times t;;) may also enter the data generating distribution, but are
suppressed in the notation for clarity. Then the independence is understood conditional
on the covariates, too.

The distribution of the random effects «; is parametrized by 9:
a; % f(e|8), i€N.

Usually, this distribution will be a (multivariate) normal distribution. The prior for the

non-individual parameters in £ has a hyperparameter 7:

§~ f&]7)
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Finally, a joint hyperprior can be included for the prior parameters:
6,7~ f(6,7).

The structure of the general model framework is summarized in Figure L1l Note that
this structure also applies to cluster data, where the index i then identifies cluster ¢ instead
of individual i. Only the chosen likelihood with its covariates specializes the framework

to longitudinal data.

Figure 4.1 — Graphical model of the proposed random effects model framework.

4.2.3 Special case linear mixed model

We consider the normal linear mixed model of [Laird and Ware (1982) as a special case of
the random effects model from section

For the real-valued vectors y; € R™, i € N, the non-individual parameter is & = (3, 02)
where B € RP? is the fixed effects vector and o2 is the regression variance. a; € RY is the
individual random effects vector for individual . The data generating distribution for

individual 7 is then specified as

f(yi | £, ai) = Nni(yi | “’i’O-QIm)’

where p; := X ;8 + Z;o; is the assumed mean vector for the independent observations
with common variance 2. X; € R™*P collects the covariate vectors x;; for observation 1,
i.e. it is the design matrix

X, = (i |Tiz| - |@in,)'

for the fixed effects 8. Analogously, Z; € R"*? is the design matrix for the random
effects «;.
The distribution of the random effects a; depends on a vector-valued hyperparameter,

namely the variances § = (62, ... ,62)’ of the individual random effects distributions:

f(ei|8) = Ny(e; | 0, diag 5).
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This assumption implies that usually the individual design matrix Z; will be composed of
some columns already present in the population design matrix X;, which are indexed by
Z, say. Then the resulting individual vector entering the ¢-th predictor u,; is Z;n,, where
the individual effect n, = Bz + a; sums up the population effect 3z for these covariates
and the individual deviation ;. In this notation we have p; = X,;8z + Z;n; where Z
collects the indexes of fixed effects without corresponding random effects. Of course it
can be sensible to have random effects without directly corresponding population effects
in the model. This is the case, for example, in model 6 in section

The prior for the non-individual parameters is composed of an improper flat prior on
the fixed effects 3 and an inverse-gamma distribution on the regression variance o2 with

fixed hyperparameters a,b € Ry:
f(€&|T) xIG(c?]|a,b).

Here 7 = (a,b)’ can be formally included in the model by assigning it a point-mass
hyperprior at the fixed hyperparameter values. The flat prior on B ensures that the model
can freely center these population effects at the appropriate scale, without influence of
e.g. a shrinkage prior. Yet, for the random effects «; the normal shrinkage prior is
necessary because otherwise the posterior would not exist: the population effects could
not be distinguished from the individual effects.

The random prior parameters in § are assigned a non-degenerate hyperprior, namely the
product of identical inverse gamma distributions with fixed hyperparameters c¢,d € R.

So the common prior for § and T is

q

H (0 e, d) Tg(apyy (),

where I¢(qy}(7) denotes the density of the Dirac point measure (4 in (a,b) for 7.

We will focus on models of this normal linear mixed effects model type. Specifically, the
open source program Bayesxﬂ implements the methodology with MCMC based posterior
inference. Bayesian MCMC inference with Gibbs sampling is described in the BayesX
methodology manual (Belitz, Brezger, Kneib, and Lang 20094l section 6.1.1, p. 21). See
the reference manual by [Belitz, Brezger, Kneib, and Lang (2009b)) on pp. 67 and 70 for
the specification of random intercept and random slope terms, respectively. BayesX uses
“hierarchical centring” reparametrisations which often improve convergence of the MCMC
samples (Gelfand, Sahu, and Carlin 1995)). Essentially this means that in the sampling
scheme, B = (B, B/Z) and m; (i =1,...,n) are sampled instead of 3 and «;. The term

stems from the fact that the individual effect 1, is centered around the population effect

"http://www.stat.uni-muenchen.de/ bayesx/bayesxdownload.html
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4.3 Exact and approximate predictive assessment

Bz. Of course, the original random effect samples can be recovered using the identity

Q; = 1), - Bz.

4.3 Exact and approximate predictive assessment

This section introduces the three different predictive assessment schemes: the exact and
approximate cross-validation assessment schemes are presented in section EE3Il  Sec-
tion contrasts this with the posterior-predictive assessment, which can only be used
for goodness-of-fit assessment. The implementation of the three different schemes for the
linear mixed model is detailed in section

4.3.1 Cross-validation assessment

The leave-one-out cross-validation for random effects models is computationally demand-
ing, because each individual 7 is left out in turn. The model must then be fitted to the
reduced longitudinal data set of size n — 1 to obtain a prediction (in the form of samples
from the predictive distribution) for the left out time series y,;. The fitting process of-
ten and also for the linear mixed model is based on an MCMC sampling scheme, which
requires much computing time. Therefore we will propose an approximate leave-one-out
sampling scheme, which should produce results close to those of the exact leave-one-out
sampling scheme, while easing the computational burden. Note that we leave out whole
time series but not individual scalar observations in the cross-validation.

We have presented the cross-validation procedure as a leave-one-out procedure with
respect to the n vector-valued observations. However, one could also interpret it as an
n-fold cross-validation of the Y " ; n; individual scalar observations, where the test sets
are identical to the clusters. In this view, we can in principle apply scalar checking tools,
e. g. compute PIT values for the individual observations. This could be valuable, because
there is no direct generalization of the PIT for vector-valued observations. The resulting

PIT histograms can then be compared to the BOT histograms.

Exact sampling

The exact leave-one-out predictive density, for the prediction of y; from the remaining

observations Yan (), is given by

FWi I Vny) = //// f(W;,0, 7,8 ;| Yan(iy) dd dT d€ dex
= [[[] 116010678 01 D) d dr g den
- //// J(yil & ei) [ 0) (0,7, €[ Y\ (iy) dO dr d€ dex;
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4 Random effects models for longitudinal data

The last equation follows because

flei 6, 7,8, Vqiy) = fleai|6),

which can be read off the graphical model in Figure Each node in the graph is
conditionally independent of all non-descendant nodes, given all parent nodes. Since § is

the only parent of a;, and 7, § and Yy ;) are non-descendants, the statement follows.

Figure 4.2 — Graphical model of the leave-one-out setting.

Thus, sampling from the exact leave-one-out predictive density f(y;|Yani)) proceeds

as follows:

1. Draw 6,7,£& from the reduced posterior obtained from the reduced input data

Yan\giy-

2. Draw the random effect «; from the random effects distribution with parameter &

being the sample from above.

3. Draw the prediction sample y; from the data generating distribution with the

sampled parameters £, «;.

Approximate sampling

The exact leave-one-out cross-validation will be infeasible for normally sized data sets,

when the reduced posterior sampling is computationally demanding. The approximate
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4.3 Exact and approximate predictive assessment

leave-one-out predictive density thus replaces the reduced posterior f(d,7,& |V (53) with
the full posterior f(d,7,&|)):

Flus | V) = / / / / F(u; 1€, 00) f0i | 8)f(6, 7.6 | V) d dr dE des.  (4.3.1)

Sampling from f(y, | Yan\(i}) proceeds as follows:
1. Draw &, 7, € from the full posterior obtained from the full input data ).

2. Identical to the exact sampling: Draw the random effect a; from the random effects

distribution with parameter § being the sample from above.

3. Identical to the exact sampling: Draw the prediction sample y; from the data

generating distribution with the sampled parameters &, a;.

Thus, only one MCMC run is necessary for a leave-one-out cross-validation, where in turn
each observation is left out from the input data, and predicted from the remaining data:
Just run a single MCMC chain, save the samples of § and & and do steps 2 and 3 for each
of the samples.

Note that the notation in this chapter is deliberately close to the notation in the mixed
predictive checking section in [Fahrmeir and Kneib (2010, ca. p. 178). This chapter is
actually a first step to “assessing the quality of full-data mixed predictive checking” asked
for by the authors.

4.3.2 Goodness-of-fit assessment

Analogous to the argumentation in section for conjugate change point models, we
can use posterior-predictive samples to check the goodness-of-fit of random effects models.

Obtaining these samples V* from
10719 = [[ T i 1€ a6 | ) de da
i=1

is easy: For each posterior sample (&, ), draw the replicate y; from the likelihood for all
individuals i =1,...,n.

The fundamental difference to the approximate leave-one-out sampling scheme de-
scribed in section FE30]is that the random effects a; are not drawn from the prior f(a; | 9)
conditional on the posterior sample §, but directly the posterior sample «; is imputed
into the likelihood.

Then custom scalar quantities can be computed, and p-values which compare the fit-
ted posterior-predictive distributions with the actual realizations, as has already been

described in section B4l If the test statistics are separate for each individual, a histogram
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4 Random effects models for longitudinal data

of the resulting p-values can be drawn. Good fit is then signalled by a hump-shaped
histogram. The p-values could be used for outlier detection, i.e. individuals where some
aspects are not fitted well by the model should have striking p-values. If the test stat-
istic summarized all individuals, only one p-value could be reported for the whole model.
However, in this chapter we will only use BOT values and score values for outlier detec-
tion, because these “test statistics” have a general scope and it is not easy to manufacture

summary statistics without knowing the data very well.

4.3.3 Special case linear mixed model

In this section the implementation for the normal linear mixed model from section
is detailed.

Posterior-predictive samples

The linear mixed model assumes that the observations ¥;1, ..., ¥in, from one individual ¢
are conditionally independent given the modelled mean vector p; (which is a function of

B or &, and ;) and the variance o

fyi| & o) = HNym\um, 2).

This is convenient, because BayesX can provide us not only posterior samples of o2, but
also posterior samples of ,uUE Therefore the generation of posterior-predictive samples
from f(y; | €, o) for the goodness-of-fit checks (where £ and o are samples from the full
posterior) is reduced to the generation of scalar normal random variates y, ... S TH
particular, we do not need to compute the mean vectors pu; resulting from the samples of
the fixed effects B and the random effects a; by ourselves. This can be complicated and
error-prone if the fixed effects comprise e.g. basis coefficients of nonlinear spline terms,
for which the adequate design matrix would have to be constructed in order to obtain the

corresponding contribution to the mean vector.

Approximate leave-one-out samples

For the generation of approximate leave-one-out samples, the posterior-predictive sampling
approach must be slightly modified. The reason is that the posterior mean samples
n;, = X8+ Z;o; produced by BayesX were computed with random effects samples

«; from the full conditional distribution f(e;|d,vy;) in the Gibbs sampler. However, for

iThis can be configured with the regress method options predict and predictmu, cf. Belitz, Brezger,
Kneib, and Lang (2009b, p. 85).
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4.3 Exact and approximate predictive assessment

the approximate leave-one-out cross-validation scheme described on page [00, we need
mean samples pu; deriving from of ~ f(a;|d). These “prior-predictive” (Marshall and
Spiegelhalter 2007, p. 413) random effects samples can be easily produced from normal
distributions with variances being the MCMC samples of § = (67,. .. ,52). Afterwards,

we correct the original mean samples u,; as follows:

pi = XiB+ Z;aj
=XiB+ Zioy — Ziovi + Ziaf
= pi + Zi(og — ).

Since BayesX allows random intercept and random slope terms, but does not support
more complicated random effects terms, the construction of the corresponding design
matrices Z; is straightforward. Finally, the samples y;; from the data generating normal

2

distributions with means ,u;-kj and variance o° are the approximate leave-one-out samples.

Exact leave-one-out samples

In order to draw exact leave-one-out samples, the BayesX sampler must be run n times.
If we want to get samples y; for the prediction of the i-th individual, given the remaining
data Ypn (i3, first we need parameter samples from f(p;, 02 | Yangi3) — the second step
is then again sampling from the normal likelihood. The generation of the parameter
samples from the reduced posterior can be achieved by including a weight variable in
the data frame, which is 0 if the observation belongs to individual ¢ and 1 else Thus,
the observations from individual ¢ have no influence on the Bayesian estimation, but the
output includes mean samples p; and (of course) regression variance samples 0. Note
that here each individual has its own set of o2 samples, while in the approximate sampling
scheme all observations share the same variance sample per iteration. This is due to the
fact that o2 is part of the non-individual parameter &, which is only sampled from the
full posterior in the approximate sampling scheme.

One potential difficulty is due to the utilized MCMC methods: for valid judgements we
need to be sure that the Markov chains have (practically) converged to their stationary
distributions, before we use the samples for further computations. Unfortunately, there
are no automatic gold-standard checks for MCMC convergence, which could be built
into the leave-one-out cross-validation loop. Therefore detailed checks using the original
samples from BayesX are only straightforward for the posterior-predictive and approxim-
ate cross-validation procedures, because they are based on merely a single Markov chain.

For the exact cross-validation procedure, the checks can nonetheless be done for the res-

ligee [Belitz, Brezger, Kneib, and Lang (20090 p. 63) for the specification of weights in BayesX.

105



4 Random effects models for longitudinal data

ulting parameter samples, which need to be saved in order to later produce the predictive

samples.

Logarithmic scores and BOT values estimation

For the use of the logarithmic score comparing the i-th forecaster F; (having density f;)

with the materialized observation y;,

LogS(F;,y;) = —log fi(y,),

the density ordinate f;(y;) must be estimated. The general Monte Carlo estimation ap-
proach was already described for general models in section 2233 For the model framework
described in section EEZZZ, the materialized observation is a time series y; from an indi-
vidual 4. Sampling from the predictive density for this vector proceeds hierarchically, as
was already detailed above for the three different sampling schemes: First, parameters
01, - -0 are drawn from the full or reduced posterior, where 8; comprises (p;,02).
Second, the samples Y,y - ., Y;[n) Will be drawn from the m resulting conditional dens-
ities fi(y; [€iy), - -, fi(yi | Oipmy)-

While the marginal density ordinate f;(y;) is unknown, the conditional density ordinate
fi(y, | 0;) is known for all 6;:

fi(yi16:) HNyU’:U'U? )

Thus, given the model parameter samples 6;(;], we can again use the Monte Carlo estim-
ate (Z34) which is fi(y;) = LS fy 0;(x)), and impute it into the logarithmic score
formula. So the full estimate for the logarithmic score comparing the i-th forecaster F;

with the materialized observation y; is

LogS(F;,y;) = —log fi(y;) = log(m) — log Z Fiys | 0im)-
k=1
The estimates — log fl(yl), ...,—log fn(yn) can then be averaged to obtain the mean log

score of the model. Note that this mean log score is not identical to the average of the

log scores of the individual scalar observations y;;, since

m  n;

_Zlogfz yl Zlog_znf yz]‘ﬂzg[ka z[k)
k= 1] 1
ZlogH Zf yz]’:“’zgk]? zk] Zzlogfz] Yij)-
=1k (i
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4.4 Simulation study

In order to compute the BOT estimates B/O\T(fz, y;) (i=1,...,n) from ZZ3), we do
not only need the density ordinates z,, = fl(yl) of the materialized observations y,; under
the respective forecast densities f;, but we also need the density ordinates z;; = fi(yi[l})
of the forecast samples Yy, L =1,...,m. These forecast samples are available anyway as
they are necessary for the estimation of the energy score. We again use the straightforward

Monte Carlo estimates

R 1 &
filyiy) = — > Ffilyay 10iw) (4.3.2)
k=1
which are computed for all forecast samples. The BOT estimate is then the fraction of

estimated forecast ordinates being smaller than the estimated observation ordinate:

m

—_— 1
BOT(fZ7 yz) = E ZH[Zi[l],-i-OO)(zyi)'
=1

4.4 Simulation study

In order to test the proposed predictive sampling schemes in a situation where the true
linear mixed model underlying the data is known, we do a small simulation study in this
section. The model which generates the test data set is described in the following.

The data set comprises n = 40 individuals with one binary covariate (e.g. sex), which
is z; = 0 (male) for the first half and z; = 1 (female) for the second half. The number
of observations, n;, is drawn from the discrete uniform distribution U{3,...,10}, iid for
all individuals ¢ = 1,...,n. The observation times t;; are then generated iid from the
continuous uniform distribution U(0,10), j = 1,...,n;. The response values are generated

from normal distributions with mean
pij = B+ Batij + B3z + iy + it (4.4.1)

for time j of individual i, where 8 = (01,02, 03) collects the fixed population effects
(intercept, slope, baseline difference for females) and a; = (1, 42)" collects the random

effects for individual ¢ (baseline and slope differences). So we have p =3, ¢ = 2,
Zi = (1nl |tz) and X@ = (Zz | Zi]-ni),

where t; = (i1, ..., tin;)

We set 3 = (2,7,10) as the fixed effects, and 02 = 4 as the noise variance. The random
effects are independent Gaussian draws with variance 62 = 65 = 9. The resulting data set
is graphed in Figure
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100 —

90

Figure 4.3 — Simulated longitudinal data set.

4.4.1 Performance of the correct model

First we want to check how the correct model performs. We choose the (default) hyper-
parameters @ = b = ¢ = d = 0.001 for the prior of the variance parameters o and é.

For generating 200000 iterations from which every 20-th sample was saved, BayesX
needed only 64 seconds. From the traceplot of the saturated deviance (cf. appendix [A2)
in Figure 24l we can assume that after 40 000 iterations the Markov chain has practically
converged to its stationary posterior distribution. We will thus discard the previous saved
samples as the burn-in phase, and work with the resulting 8000 thinned-out samples.

While the generation of the approximate cross-validation model parameter samples
is done in 2 seconds, the generation of the exact equivalents takes 54 minutes — so the
approximate approach is 1791 times faster! This is because we have to run BayesX 40 times
again (with the same MCMC parameters as for the full data run) to get the exact results,
but can use the already existing samples obtained from the full data to get the approximate
results. We checked the convergence of the reduced data Markov chains in the exact cross-
validation procedure by looking at traceplots of some means and variance samples. A burn-

in of 2000 for the thinned-out samples appeared adequate here too. The production of the
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Figure 4.4 — Traceplot of the saturated deviance.

resulting forecast samples worked then the same way for all three procedures (posterior-
predictive, approximate and exact cross-validation), conditional on the respective model

parameter samples (cf. section EE33).

The estimation of the BOT values raised computational questions, which already emerged
with the estimation of the posterior-predictive BOT values: As described on page [[08 we
first used all m = 8000 model parameter samples. This led to a required computing time
of 2430 seconds or 40 minutes, even after a 5-fold acceleration of the slower original R-code
using highly optimized C++-code. The problem is that the complexity of the algorithm is
O(r-m - 371 ng), if r is the number of used model parameter samples {8;()};—, and m
is the number of used predictive samples {y;; };2;. Since the effort was inconvenient for
regular practical use, we tried to use r < m parameter samples. Fortunately we found
that a subset of » = 200 randomly chosen samples yields very good approximations to
the BOT values obtained from all m = 8000 samples, while requiring proportionally less
computing time — only 56 seconds in our example. The results are also stable with regard
to the choice of subset. The full sample BOT values are compared with two approxima-
tions in Figure LA Given these promising results, we will always use r = 200 randomly

chosen model parameter samples for the BOT values estimation from now on.
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4 Random effects models for longitudinal data

Figure 4.5 — Comparison of full samples BOT estimates (8000 samples) with two approximations,
resulting from different subsets of size 200. Obviously the differences between full
and approximate values are negligible, with the maximum deviances being 0.023
and 0.018, and the mean deviances being 0.006 and 0.005 for the two subsets,

respectively.
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The resulting BOT and scalar-PIT histograms of the posterior-predictive, exact and
approximate cross-validation predictions are shown in Figure EE0l The clearest picture

The PIT histogram
in panel has the typical hump-shaped form, meaning that the posterior-predictive

is given by the histograms for the posterior-predictive forecasts.

forecasts are overdispersed compared to the original data. The corresponding BOT histo-
gram in panel @ is heavily left-skewed, which fits the picture of overdispersed predictive
samples. Of course, this overdispersion is in fact desirable here, because it means that
the posterior-predictive distributions are centered around the original observations. The
BOT histogram for the exact leave-one-out forecasts in panel fulfills the expectations
quite well — no large deviation from uniformity is visible. The corresponding PIT his-
togram in panel @ obtained from the n-fold cross-validation of the individual scalar
observations, is more difficult to interpret. At least no clear over- or underdispersion
can be diagnosed. The approximate counterpart PIT histogram in panel @ is very sim-
ilar. The BOT histogram in panel @ shows only slightly worse calibration. Overall, the
approximate histograms are good surrogates for the exact histograms.

The approximation of the exact cross-validation logarithmic scores, energy scores and
BOT values with either the posterior-predictive or the proposed approximate sampling
scheme is visualized in Figure EE71 Both the exact logarithmic scores in panel @ and

the energy scores in panel @ are very well approximated by the proposed sampling
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scheme. This is in contrast to the posterior-predictive scores, which are systematically
much lower than the exact scores. While at least a linear correlation between the exact
leave-one-out and posterior-predictive logarithmic scores is seen in paumelli@il7 the posterior-
predictive energy scores are heavily shrunk towards 0 in panel The approximation of
individual BOT values with the proposed fast sampling scheme seems to be more difficult.
In panel much larger differences than e.g. in Figure LY are reported. This explains
that the resulting BOT histograms in Figure B8 are noticeably different. Panel shows
that the posterior-predictive BOT values are almost always larger than the exact BOT
values in this example.

In Table BTl the mean scores are presented. A small amount of conservativeness of the
approximate mean scores can be seen, as they are lower than the respective exact mean
scores. However, the differences are rather small and the order of magnitude is preserved.
By contrast, the posterior-predictive mean scores are much lower than the exact mean
scores, with the posterior-predictive energy score being almost an order of magnitude

below the exact energy score.

Table 4.1 — Mean energy and logarithmic scores under the exact and approximate leave-one-out

and posterior-predictive sampling schemes.

Scoring rule exact approximate posterior-predictive

ES 23.96 23.27 3.03
log-score 17.81 17.65 13.73

4.4.2 Comparison with other models

Now we want to see how sensitive the model assessment is to the omission of important
features of the true model. We consider three (partially) wrong models.

For the first model, we omit the binary covariate (the term 5z; in formula [EZ41])), while
for the second model we omit the random slope (c2t;;) in the specification of the linear
predictor. Both the covariate and the random slope are omitted for model 3. So model 1
misses a fixed effect, model 2 misses a random effect and model 3 misses both a fixed and
a random effect of the true model. This time we discard the burn-in of 40000 iterations
directly in BayesX and keep the other MCMC parameters from the correct model sampling
in section EZT]l The required computing takes 73, 58 and 56 seconds for the three models,
respectively.

In order to compare the goodness-of-fit of all four models (the correct model plus the
three wrong models), we look at the mean deviance and posterior-predictive energy and
log-scores in Table It is instructive that the wrong model 1 has the best bit of all
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models, with respect to all three fit criteria, although the correct model is only slightly
worse. This is due to the random intercept term in model 1, which absorbs the difference
between male and female baseline levels. If we had omitted a time-varying covariate,
this would not have worked, but the binary covariate was time-constant in the example.
Model 2 has clearly a worse fit to the data, with the deviance difference being much smaller
than the scores differences. Model 3 is slightly better than model 2, but the gap between
the two models is not large, for the same reason that the correct model and model 1 are
very close. For both model pairs, the model without the fixed binary covariate effect has

a better fit.

Table 4.2 — Posterior-predictive mean energy and logarithmic scores as well as the posterior ex-

pected saturated deviances of the correct and the three wrong models.

Fit criterion Correct model Model 1 Model 2 Model 3

ES 3.03 2.98 13.49 13.48
log-score 13.73 13.69 23.67 23.64
Deviance 265.88 265.69 266.02 265.98

The posterior-predictive BOT and PIT histograms are shown in Figure Here the
goodness-of-fit ranking is more difficult. The model 1 BOT histogram in panel @ is
very similar to the correct model’s histogram in panel on page If we compare
the model 2 and model 3 BOT histograms in panels @ and we rather come to the
conclusion that they are fitting the data better than the correct model, because they
show a larger frequency of high BOT values than the correct model’s BOT histogram.
The model 1 PIT histogram in panel@ is similar and slightly more heavily hump-shaped
than the original model’s PIT histogram in panel [[d)]on page Ordering the goodness-
of-fit of model 2 and model 3 and the fit of the correct model using the PIT histograms
in panels panels and is very difficult.

For the three wrong models, we also produced cross-validation parameter samples using
the exact leave-one-out sampling scheme, which required 2676, 2929 and 2532 seconds.
Again the approximate sampling was much faster with only 1 additional second being
required for each of the three models.

The exact cross-validation BOT and PIT histograms are shown in Figure The
model 1 BOT histogram in panel is almost as close to a uniform histogram as the
correct model’s counterpart in panel on page The difference of the two other
models is obvious in their cross-validation BOT histograms in panels @ and they
are much more distinct from uniform histograms. The scalar PIT histograms do not give

a comparably clear picture, with all histograms differing from each other and from the

112



4.4 Simulation study

correct model’s PIT histogram in panel Kﬂ on page So the BOT histograms seem to
be more useful here.

The mean cross-validation scores and DIC values for all four models are presented in
Table (see appendix for the DIC definition). The exact energy and logarithmic
scores agree that the correct model has the best predictive performance, followed by
models 1, 2 and 3. This ranking is perfectly preserved by the approximate logarithmic
scores. The approximate energy scores rank model 2 better than model 1. By contrast,
the DIC ranks model 2 and model 3 best, and sends the correct model down to the third
place with a large difference of the DIC value.

Table 4.3 — Mean energy and logarithmic scores for the cross-validated prediction of the simu-
lated data for the correct model and the three wrong models, under the exact and
approximate sampling schemes. The DIC values based on the saturated deviance

samples reported by BayesX are also shown.

Model criterion Scheme Correct model Model 1 Model 2 Model 3
ES exact 23.96 25.95 26.29 27.45
approximate 23.27 25.20 25.05 26.61
exact 17.81 18.60 25.83 25.96
log-score .
approximate 17.65 18.29 25.18 25.34
DIC 337.10 344.06 306.61 306.78
4.4.3 Results

The experiments with the simulated data set have emphasized that the posterior-predictive
results are only useful for a goodness-of-fit assessment of the models in question. In doing
so, the posterior-predictive scores should be preferred over PIT and BOT histograms,
due to their easier interpretability. The distinction of goodness-of-fit assessment on the
one hand and predictive assessment on the other hand is a very important point because
an equally good fit does not imply equally good prediction of new data. For example,
the wrong model 1 fitted the data equally well as the correct model, but was of course
outperformed by the correct model in the prediction of the left-out data.

The deviance and DIC measures appear to be less useful than proper scoring rules:
The deviance showed only small differences in the goodness-of-fit assessment, and the
DIC yielded a wrong model ranking (the correct model was not the best model) in the
predictive performance assessment.

The approximate sampling scheme worked very well for the log-scores in this example.
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The approximations worked also well for energy scores. Only the approximation of the
BOT values and corresponding histograms seems to be more difficult. Overall, the trade-
off between computational efficiency and good approximation of the leave-one-out results
seems to be fine.

However, these results cannot be generalized to larger applications, because we have
only conducted a very small simulation study here, both with respect to the number
of individuals/observations and the use of only one simulated data set. A more serious

simulation study would need to be done in large scale with replications of data sets.
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Figure 4.6 — Multivariate BOT (upper row) and scalar PIT (lower row) histograms for calibration
assessment of the leave-one-out prediction in the correct random effects model. The
predictive distributions were estimated with the posterior-predictive (left column),
approximate (middle column) and exact (right column) cross-validation sampling
schemes. Only 5 bins were used for the BOT histograms because of the small sample
size of n = 40. On the other hand, 10 bins were used for the PIT histograms, where
the sample sizes are larger (3., n; = 266 ).
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Figure 4.7 — Comparison of the approximation of the exact cross-validation logarithmic scores
(left column), energy scores (middle column) and BOT values (right column) with
either the posterior-predictive (upper row) or the proposed approximate sampling
scheme (lower row). The exact values are the x-axis coordinates, while the approx-

imate values are the y-axis coordinates.
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4.4 Simulation study

Figure 4.8 — Posterior-predictive multivariate BOT (upper row) and scalar PIT (lower row) his-
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4 Random effects models for longitudinal data

Figure 4.9 — Exact cross-validation BOT (upper row) and PIT (lower row) histograms for leave-
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4.5 CD4 data

4.5 CD4 data

The CD4 data set has been compiled by Andreas Bayerstadler from the Multicenter AIDS
cohort study (MACS) Public Data Set Release P17, which can be ordered via the Inter-
nettl. The MACS study is a long-term prospective cohort study of homosexual men
recruited at four study centers in the US, which started in April 1984. The cut-off date
for the used release P17 is 1st October 2004. Biannually, the participants were tested
for human immunodeficiency virus (HIV) positivity, to estimate the date of HIV serocon-
version. Moreover, detailed questionnaires, physical examinations and other laboratory
tests were carried out. A detailed description of the MACS study can be found elsewhere
(Kaslow _ef_al. T987).

Our data set comprises n = 574 patients who appeared for the biannual interviews
between minn; = 1 and maxn; = 41 times, which leads to a total of > n; = 10606
individual observations. The (quasi-)continuous response variable is the number of the
T helper cells expressing the surface protein CD4 in a fixed blood volume. These special
white blood cell are therefore called CD4 positive cells, or Leu-3 cells, which is why
the variable is named LEU3N. See Janeway et al. (1988) for an early review. Low CD4
lymphocyte counts are associated with increased risk of progression to AIDS in HIV
infected persons (Lee et al. 1991)). Therefore we are interested in modelling the individual
CD4 counts trajectories, conditional on the covariates listed in Table B4l

Typical trajectories are graphed for a random subset of 18 patients in Figure EET0L We
see that while many seroconverters suffer from a decline in the number of CD4 cells, there
is even a patient (ID 5829) with steadily increasing CD4 counts after his HIV infection.
This might also be due to the availability of more and more anti-HIV active ingredients in
the mid-1990s. Patient ID 9963 supports this hypothesis, with a surge in CD4 counts after
calendar time 14, which corresponds to the year 1998, when already 13 active ingredients
were internationally approvedl| Large inter-patient variability is observed, both regarding
the absolute level of the trajectories and the shape of the time series. It is clear that the
covariates from Table EE4l will not be able to explain most of this variability, but that
there are contributing unobserved covariates. We will thus use random effect models to
adjust for these influences.

In section EERT] we will first do a complete case analysis of the data. This allows an
exact leave-one-out cross-validation assessment of three different models. The results are
compared to those from the proposed approximate cross-validation scheme. Section

fits six different models to the whole CD4 data set, with the form of the time effect being

YMACS Web Site: http://www.statepi.jhsph.edu
VSee e.g. http://wuw.vfa.de/de/forschung/txt/aids-medikamente-klassen.html for an overview of

active ingredients classes.
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4 Random effects models for longitudinal data

Covariate Description

DATE Estimated date of seroconversion (in years after 1984-01-01)

TIME Time of the visit in years after estimated seroconversion

PSScO Psychological score (quasi-continuous)

PACKS Number of cigarette packs smoked per day (none, up to half, one,
two or more packs per day)

SMOKE Number of cigarette packs smoked per day when smoked most
(none, up to half, one, two or more packs per day)

NSEX Number of sexual partners in the last six months (none, one or
more)

DRUGS Injection of recreational drugs (binary)

Table 4.4 — Description of CD4 data set covariates. The sum of DATE and TIME recovers the
calendar time of the visit (in years after 1984-01-01). The psychological score is an
average of 20 individual answers coding the frequency of rare (1), some (2), occasional
(3), or frequent (4) negative feelings (e.g. how often one felt lonely during the last
half year).

varied. Finally, in section we include the significant covariates from section EEL]

into the best model from the approximate cross-validation in section

4.5.1 Complete case analysis

First we want to include all covariates in the model selection. We therefore discard all
observations where any covariate value is missing, and obtain a complete data set with a
total of 1040 data points from 111 individuals (1 < n; < 31). The smaller dimensions will
give us the possibility to compare exact and approximate cross-validation results, which

would not be possible with the original n = 574.

Model fitting

The first model includes the three categorical covariates NSEX, DRUGS, PACKS (using appro-
priate binary dummy variables) and the continuous score PSSCO. In addition, a “hockey-
stick” assumption is made for the effect of time since seroconversion, where the change
of slope can appear at the seroconversion (the origin of the variable TIME). In order to
include our hypothesis of better medical treatment in the mid-1990s into the analysis, we
also allow a change at the beginning of the year 1995 or later if the seroconversion had
not taken place yet. These time effects and the intercept are specified as random effects,

to adjust for “random” heterogeneity between the individuals. The BayesX model formula
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Figure 4.10 — CD4 cell counts trajectories for a random subset of 18 participants, whose IDs
are in the headings of the panels. The estimated dates of seroconversion (variable

DATE) are marked by vertical lines.

has then the following form:

LEU3N = PSSCO + NSEXone + NSEXmore + DRUGSyes +
PACKShalf + PACKSone + PACKStwo 4+ PACKSmore +
CASEID(random) + TIME x CASEID(random) +

TIMEpos * CASEID(random) + TIMEposLate * CASEID(random),

where we have defined the covariates TIMEpos as the positive part of TIME. The design

variable encoding the possible second change is

TIMEposLate := (TIME — max{0, 11 — DATE}),,

because 1995 is 11 years after 1984 which is the origin of the variable DATE.

The second model only includes a random intercept to adjust for different baseline CD4
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4 Random effects models for longitudinal data

levels, and uses fixed time effects as in the first model. The other covariates are inherited:

LEU3N = PSSCO + NSEXone + NSEXmore + DRUGSyes +
PACKShalf + PACKSone + PACKStwo + PACKSmore +
TIME + TIMEpos + TIMEposLate + CASEID(random).

The third model is more parsimonious with restriction to the time-constant covariates

SMOKE and DRUGS, a random intercept and a random slope for the time since seroconversion:

LEU3N = DRUGSyes + SMOKEhalf + SMOKEone + SMOKEtwo + SMOKEmore-+
CASEID(random) + TIME % CASEID(random).

Figure 4.11 — Cumulative saturated deviance quantile plots (median, lower and upper 2.5%

quantiles) for the three models.
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We produced Markov chains of length 200 000 and saved every 20-th iteration for the
three models, which required 268, 229 and 201 seconds, respectively. The cumulative
quantile plots for the saturated deviance in Figure EETTl suggest that a burn-in of 20000
for the raw samples, or 1000 for the saved samples, is sufficient. The DIC values (which
are estimated from the saturated deviance samples) are 1209.04, 1138.57 and 1179.04,
respectively. So model 2 would be preferred by DIC, followed by model 3 and model 1.
Note that the DIC values were computed from the whole saved samples chain, including
the burn-in which we have discarded later.

In Figure the estimated posterior means from the three models are plotted for the
patients from Figure ET0 which are still present in the data set with complete observations.
Note that e. g. for patient ID 4186 there is only one observation left from the original 34.
Also for ID 8889, the last observations from the original data set are missing, and perhaps

this leads to model 1 and model 2 fits without the suspected late upward trend. For
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4.5 CD4 data

ID 9963, we see a late upward trend in the model 1 fit. Nevertheless, the posterior mean
fixed effect part of change of slope after 1995 (TIMEposLate) is positive for both models
(69.06 and 57.27).
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Figure 4.12 — Model fits (estimated posterior means) for the patients from Figure 3 which are
still present in the data set with complete observations. The three models are

discerned by line (or point) type: model 1 (—__, o), model 2 (_ _ _, ») and model 3

(..., +). The original data is plotted in gray.

Goodness-of-fit assessment

Overall the three model fits do not differ much. In order to assess the goodness-of-fits,
we look at posterior-predictive BOT and PIT histograms in Figure Model 1 and
model 3 seem to have a better fit to the given data than model 2: Their BOT histograms
in panels @ and are more left-skewed than the Model 2 BOT histogram in panel
Also the PIT histogram for the individual scalar observations in panel @ shows that
model 2 generates more PIT values above 0.8 than both other models. Model 1 looks best
here.

Outlying individuals can be characterized by a small BOT value, because that means
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4 Random effects models for longitudinal data

Figure 4.13 — Multivariate BOT (upper row) and scalar PIT (lower row) histograms for goodness-

of-fit assessment of the three random effects models (columns).
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that the probability of observing a smaller posterior-predictive density ordinate is small.
Thus, the materialized (multivariate) observation is in a low-density region of the posterior-
predictive distribution. As we expect the posterior-predictive distributions to center
around the known observations and to assign high density to their neighborhood, that
is indeed an argument for an outlying observation. We show the 7 observations having a
BOT value smaller than 0.05 in at least one of the three models in Figure EET4

For ID 5587, the fit from model 1 is obviously better than from both other models. This
is nicely reflected by the large BOT value (0.409) while the both other models have BOT
values below 0.1. IDs 3635, 4437, 5419 are not fitted well by all models: For the latter
two IDs, an individual outlying first observation at the beginning of the time series (with
corresponding scalar PIT value 1 for all models) is probably the reason for the relatively
small posterior-predictive density ordinates. For ID 3635, some points are distant from

the mean fits, but the cause for the low BOT values is not so obvious from the plot. Note
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4.5 CD4 data

however that we have only visualized the means of the posterior-predictive distributions
for the time points, but not quantiles or the full forms of the respective densities. The
BOT assessment takes account of the full distribution, and not only the mean. So a small
BOT value could also be due to an underdispersed predictive distribution, although the

recorded observation lies close to the predictive mean.
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Figure 4.14 — Model fits (estimated posterior means) for the patients with small posterior-
predictive BOT values, which are noted in the top-right corners of the panels.
The three models are discerned by line type: model 1 (—), model 2 (- __), and

model 3 (......).

Another way to diagnose extreme observations is to look at the contributions of the
observations to the mean posterior-predictive proper score of the model. For example,
one could diagnose a multivariate trajectory as outlying if its score is outlying in the
univariate sample of scores. Here, we instead examine the 6 observations with the highest
scores in the three models, which correspond to the 5% worst scores each. Both for
model 1 and for model 3, the 6 observations with the worst energy scores are IDs 3635,
4437, 5419, 5587, 8985 and 9963. For model 2, ID 8985 is replaced with ID 7146. These
findings are similar to the BOT outliers: in model 1 and model 2, the IDs 3635, 4437 and
5419 were among those with BOT values less than 0.05. The 6 highest logarithmic scores
are assigned to IDs 2376, 4437, 5587, 7288, 8418 and 8985 for model 2 and model 3. For
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4 Random effects models for longitudinal data

model 1, ID 5587 is replaced with ID 7288.

We plot the trajectories of those IDs with high scores, which were not already plotted in
Figure T4, in Figure LTl Strikingly all new “log-score outliers” are long time series (n; =
30, 23,29, 25,26, 27), but their model fits do not look very strange. This shows that high
log-scores alone are not indicative of outlying observations, because the absolute posterior-
predictive density level is not indicative. Especially for our data set with observations of
different dimensions n;, the log-scores are not appropriate, because longer time series
have a tendency to smaller density ordinates corresponding to higher log-scores. It is
rather the relative density level of the materialized observation compared with the possible
posterior-predictive density levels for the same individual, which is indicative of outliers
— and this is exactly what the BOT values are. The posterior-predictive energy scores
as generalized mean euclidean prediction errors are more appropriate than the log-scores.
Their advantage over the BOT values is the easier Monte Carlo estimation and thus more

general applicability, because they do not need known conditional densities.

7300 8418 8985
= - 2000
i - 1500
= - 1000
s - 500
= 7146 7288
2000 - -
1500 u
1000 -
500 -

calendar time

Figure 4.15 — Model fits (estimated posterior means) for the patients with high posterior-
predictive energy and logarithmic scores, which are not already plotted in Fig-
ure The three models are discerned by line type: model 1 (—), model 2
(--_), and model 3 (......).
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Cross-validation assessment

Next we want to check the leave-one-out predictive capabilities of the models. In order to
check the performance of the approximate cross-validation scheme, we have also run the
exact cross-validation scheme, and have saved every 20-th iteration out of chains of length
100000 after a burn-in phase of 20 000 iterations. The approximate evaluations took 5, 2
and 3 seconds. The exact evaluations took much longer, with saved timings 14 643, 11447
and 10954 seconds for the three models. So the approximate sampling saves three orders
of magnitude of computing time! However, it should be noted that a significant part of
the required computing time for the exact cross-validation could be spared if the program
would be integrated into BayesX, because the import overhead into R is memory-intensive.
The situation is even worse on machines with small working memory when swap actions of
the operating system are necessary. Nevertheless, the exact scheme will always be at least
n times slower than the approximate scheme, because the number of necessary Markov
chains is n instead of 1 (and this single chain is only necessary if the full model has not

been sampled yet!).

In Figure the BOT histograms from the exact and approximate sampling ap-
proaches are compared. All histograms show too large bars in the last bin [0.9,1.0],
which means that the predictions for the left-out individuals are rather over- than un-
derdispersed. Judging from the exact BOT histogram in panel model 3 has the best
calibration among the three models. The approximate counterpart in panel @ is very
similar. The exact BOT histograms for model 1 and model 2 in panels @ and @ are
more left-skewed. This impression is even stronger in the approximate panels and .

In Figure EETA we compare the energy and logarithmic scores resulting from the exact
and approximate sampling schemes. It is surprising that the approximate logarithmic
scores are almost perfectly matching the exact counterparts. For all three models, there
is no noticeable departure from the identity line. The approximation of the energy scores
seems to be slightly more difficult: especially for higher true scores and for model 3 in

panel the conservatism of the estimates is visible.

In Table EH the mean scores are compared. Judging from the exact scores, model 2 is
preferred over model 3 and model 1 by the mean energy score, while model 1 is preferred
over model 3 and model 2 by the logarithmic scoring rule. These two rankings are re-
produced by the approximate scores. The conservatism of the faster sampling scheme is
conveyed by the absolute numbers: they are always smaller than the exact ones, with the
relative error being larger for the energy scores. This behaviour is expected from the too

optimistic nature of the approximate sampling strategy.
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4 Random effects models for longitudinal data

Figure 4.16 — BOT histograms for calibration assessment of the leave-one-out prediction in the
three random effects models. The predictive distributions were estimated with the
exact (upper row, 4000 samples) and the approximate (lower row, 9000 samples)

sampling schemes.
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Table 4.5 — Mean energy and logarithmic scores for the cross-validated prediction of the three

models, under the exact and approximate sampling schemes.

Scoring Rule Scheme Model 1  Model 2 Model 3

exact 758.76 733.65 748.41
approximate 740.36 717.03 728.95

ES

exact 67.26 67.79 67.62

log-score .
approximate 67.04 67.58 67.52
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4.5 CD4 data

Figure 4.17 — Comparison of exact and approximate scores for leave-one-out prediction in the
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While the goodness-of-fit histograms did not favour model 2, its DIC and mean energy

score are the best of all three models. The calibration of the leave-one-out predictions

also appeared acceptable. This is another example for the well-known fact that the best-

fitting model for the known data is not necessarily the best-predicting model for new data.

However, the decision is not totally straightforward here because the mean logarithmic

score actually ranks model 2 worst. For a description of the known data, model 1 might
be better suited, because it has a better fit to the known data than model 2 and the best

leave-one-out log-score.

We show the posterior summaries for the fixed effects from model 2 in Table E@. The
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psychological score (PSSC0) has a significant association with the CD4 cell counts accord-
ing to the table, with a higher score representing negative feelings being associated with a
lower cell count. Cigarette smoking during the last six months before the interview does
not seem to have an equally intuitive association with the response, as the Bayesian point
estimates of the dummy variable coefficients (PACKS. . .) are positive (which could theor-
etically result from a causal “smoking increases CD4 counts” relation) but the posterior
distributions are centered around zero. The number of sexual partners (NSEX) seems to
have a strong positive association with the dependent variable, while the modelled effect
of recreational drugs usage (DRUGSyes) is not statistically significant, because a positive

and negative sign for the coefficient are almost equally probable a posteriori (59% vs.

41%).

Coeflicient Mean Median SD lower  upper Positive
TIME —21.19 -21.16 4.25 —29.35 —12.72 0.00
TIMEpos —45.80 —45.86 6.80 —58.61 —31.99 0.00
TIMEposLate 57.27 57.32  10.24 37.86 7.7 1.00
PSSCO —83.72 —84.12 25.10 —132.14 —34.41 0.00
PACKShalf 40.73 40.47 167.72 —287.23  366.97 0.60
PACKSone 37.41 38.71 166.28 —295.03 351.14 0.59
PACKStwo 97.97 97.79 165.77 —226.94 418.15 0.72
PACKSmore 44.05 44.44 170.18 —290.89 375.77 0.60
NSEXone 67.62 68.12 60.13 —53.16 181.85 0.87
NSEXmore 105.26 105.36 59.34 —13.24  219.12 0.96
DRUGSyes 30.62 31.21 13094 —215.93 295.68 0.59

Table 4.6 — Posterior summaries for fixed effects coefficients in model 2: In addition to the pos-
terior mean, median and standard deviation of the coefficient, the lower and upper
bound of the 95% HPD-interval and the posterior probability that the coefficient is

positive are shown.

The proposed approximate sampling scheme yielded very good results in this data ex-
ample: the logarithmic scores were approximated very well, and the energy scores approx-
imations were only slightly worse. The leave-one-out BOT histograms were more difficult
to approximate, but the general calibration picture was retained under the parsimonious

sampling scheme.
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4.5.2 Analysis for all patients with covariate time

Given the promising results on the performance of the approximate cross-validation scheme
from the last section, we now want to analyze the data from all patients with respect to

the association of the fully available covariate time with the CD4 cells counts.

Model fitting

We will sample from the posterior distribution in six selected models, which are listed in
Table E71 Model 2 differs from model 1 in that it assumes a linear time effect only after
the seroconversion date. The idea is that the CD4 counts are constant before the HIV
infection. This assumption is also coded into model 3 and model 4, which both feature a
second basis function taking effect in seroconverters from 1995 on. The variables TIMEpos2
and TIMEposLate2 are just the squares of the linear bases TIMEpos and TIMEposLate.
The resulting time trends for model 4 are continuous. More flexible fixed time trends
are allowed in model 5 and model 6, where P-splines (Brezger and Lang 2006 are used.
Model 6 adds linear random effects as in model 4. Note that the option nofixed is used
to disable the incorporation of analogous fixed effects. We do not want them because we
already have the flexible P-spline modelling the fixed time effect, and adding another base

could lead to Markov chain convergence difficulties due to weakly identified parameters.

No. BayesX predictor formula

1 CASEID(random
2 CASEID(random
3 CASEID(

4 CASEID(random

+ TIME % CASEID(random)

+ TIMEpos % CASEID(random)

+TIMEpos*CASEID(random)-+TIMEposLatexCASEID(random)
+ TIMEpos2 * CASEID(random) + TIMEposLate2 =

random

~— — ~— —

CASEID(random)
5  TIME(psplinerw2,nrknots = 5) + CASEID(random)
TIME(psplinerw2, nrknots = 8) + CASEID(random) + TIMEpos

CASEID(random,nofixed) + TIMEposLate * CASEID(random, nofized)

Table 4.7 — Overview of the six BayesX models for the response variable LEU3N.

We produced Markov chains of length 200 000 and saved every 20-th iteration for all six
models, but only after the burn-in phase of 100 000 iterations. We discarded the burn-in
directly in BayesX to reduce the memory allocation load for the import into R, which is
quite high due to the large number (3 ;" n; = 10606) of data points. Traceplots and
cumulative quantile plots were checked to ensure that the used burn-in was large enough.

We plot the estimated time trends in Figure Note that the pointwise and simul-
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taneous credible intervals are almost identical here. The P-splines in panel @ for model 5
and in panel [( )| for model 6 feature the typical curve form with an inflexion point around
2.5 years after seroconversion, and curved to the right and left before and after serocon-
version, respectively. This form is mimicked in panel by the TP spline with knots
at seroconversion and 1995, and constant level before seroconversion. However, the fixed
effect is invariant to the calendar time in model 5 and model 6, so strictly the trends are
not directly comparable to the trend in model 3. Model 4 in panel shows a problem
of the model, as it fits negative time effects near the end of the exemplary time scale. As
there are no other covariates (but random time effects) in the models, this corresponds
to negative mean CD4 counts. An alternative would thus be to logarithmize the CD4
counts and model them instead of the original counts, which is discussed in section E1
The trends in model 1 and model 2 shown in panels @ and are rather too simple

compared with the P-spline trends.

Goodness-of-fit assessment

In order to assess the goodness-of-fits, we look at posterior-predictive PIT histograms in
Figure In all plots, the last bar for the bin (0.95, 1] is remarkably larger than the bars
to its left. This indicates that some individual observations are clearly underestimated by
the models. Model 3 in panel and model 6 in panel have more PIT values near 0.5
than the other models. However the differences between the histograms are small.

In Table the posterior-predictive mean scores are listed. The scores support the
PIT histograms, because model 6 has the lowest scores and is thus ranked as the model
with the best fit by the posterior-predictive scores. The second-best fit is provided by
model 3. It is interesting that for this data, the energy and the logarithmic score agree

on the goodness-of-fit ranking of all models.

Table 4.8 — Posterior-predictive mean energy and logarithmic scores for the goodness-of-fit as-

sessment of the six models.

Fit criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ES 587.26 604.48 541.33 629.37 673.29 531.91
Log-score 125.90 126.45 124.22 126.91 128.18 123.84

We show the 15 observations having a posterior-predictive BOT value of zero in all
of the six models in Figure Only two IDs (4437 and 5419) were already included
in the outlier Figure EET4] from the complete data analysis, where other covariates were
considered. Individual time series with large jumps in the CD4 counts, and long time

series with clear non-linearity are obviously most difficult to fit, for all six considered
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4.5 CD4 data

Figure 4.18 — Estimated fixed effects time trends in the six models: Means (.

(- - - ), and simultaneous (

), pointwise HPD

) credible intervals at the 0.95 level are plotted. The

vertical lines mark the seroconversion date (mid-1989) and the year 1995 for the

virtual average patient (random effects are not included) having entered the study

in mid-1984.
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Cross-validation assessment

f(TIME)

f(TIME)

1000 —
800
600
400
200
O —
2200 —
[ [ [
5 0 5 10
TIME
(c) Model 3
1000 —F=
800 ——\\
600 —f \\\
400 —
200 B
O —
2200 —
[ [ [
5 0 5 10
TIME
(f) Model 6

An exact leave-one-out cross-validation assessment for each of the six models is infeasible:

For example, because already the model fit of model 1 took 1253 seconds, the iterative

fit of all 574 reduced models with the model 1 predictor form would take approxim-

ately 719 140 seconds or 200 hours. Instead, we trust the approximate sampling strategy,

and generate according samples for the six models in merely 8.1, 7.1, 8.5, 8.5, 5.8 and

8.6 seconds, respectively.

We check the calibration with the BOT histograms in Figure E2Tl All six histograms are
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4 Random effects models for longitudinal data

Figure 4.19 — Scalar PIT histograms for goodness-of-fit assessment of the six random effects

models
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far away from an optimal uniform distribution of the BOT values. Only large fractions
for the lowest bin [0,0.1] indicate that the histograms do not show the distribution of

posterior-predictive, but leave-one-out BOT values.

Marshall and Spiegelhalter (2007, p. 429) recommend to also check for outliers using
the approximate leave-one-out samples, which they call “mixed predictive samples”, if
one is concerned with the random effects prior distribution. They use the posterior-
predictive samples to check the likelihood assumptions, which comprises the form of the
linear predictor or equivalently the model in our application. (Of course also the identity
link and the normal distribution assumption are part of the likelihood assumptions.) If
we look for individuals having a cross-validation BOT value of 0, we find that the IDs are
2545, 2755, 3861, 7398, 8269, 8854 and 9888. This means that 6 of the 7 individuals were

already included in the posterior-predictive BOT outliers.

Turning to the model choice, BayesX reports DIC values. We are interested if the
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Figure 4.20 — Model fits (estimated posterior means) for the patients with posterior-predictive

),
model 2 (___), model 3 (.......), model 4 (._._), model 5 (—___), and model 6 (_._).

BOT values of zero. The six models are discerned by line type: model 1 (.

approximate leave-one-out proper scoring rules yield the same result. In Table B9 the
mean energy and logarithmic scores of the models in question as well as the DIC values
are shown. Model 5 is preferred by the DIC (followed by models 2, 1, 4, 6, 3), and also by
the energy score (followed by models 6, 1, 3, 2, 4). By contrast, the logarithmic scoring
rule ranks model 6 best (followed by models 3, 1, 2, 5, 4). This is a large difference to the
DIC ranking, e.g. model 6 is up from the last-but-one place and model 5 is down from
the first place to the last-but-one place. Yet, all three criteria agree that a P-spline model

should be chosen.

135



4 Random effects models for longitudinal data

Figure 4.21 — Approximate BOT histograms for calibration checking of the leave-one-out predic-

tions in the six models.
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Table 4.9 — Approximate mean energy and logarithmic scores for the cross-validated prediction of
the six models, as well as the DIC based on the saturated deviance samples reported

by BayesX.
Model criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ES 1067.11  1133.65 1108.70  1539.25 904.44  1015.88
Log-score 128.87 129.41 127.82 130.34 129.65 127.25
DIC 11555.5 11531.8 11694.0 11621.1 11137.0 11669.2
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4.5 CD4 data

Results

The best fit to the known data is provided by model 6. As this model does also perform
well in the approximate leave-one-out cross-validation (under both proper scoring rules),
we would probably choose model 6 for the description of the known data. Model 5 does
not have an equally good fit, but could be an alternative, because the DIC and the energy

score prefer it over model 6.

4.5.3 Final model

The final model for the CD4 data is a synthesis of model 6 from section and model 2
from section LRIl we include the significant covariates PSSCO and NSEX (cf. Table ELG)
into the P-spline model. We omit the covariates PACKS and DRUGS to keep the resulting

data set as large as possible. This final model thus has the BayesX formula

LEU3N = PSSCO + NSEXone + NSEXmore + CASEID(random)-+
TIME(psplinerw2, nrknots = 8) + TIMEpos * CASEID(random, nofized)+
TIMEposLate x CASEID(random,nofized).

The reduced data set comprises all n = 574 participants, but only Y n; = 6478 data
points (minimum 1, maximum 36 observations per participant). We produced a total of
5000 parameter samples for this model specification by thinning out a Markov chain of
length 200 000 and discarding a burn-in of 100 000 iterations, within 1125 seconds.

The posterior summaries of the fixed effects are tabulated in Table Compared
with Table £l on page for the fixed effects in model 2 from the previous section,
the direction of the estimated associations is unaltered: Worse psychological scores are
significantly associated with decreasing CD4 cell counts, and the number of sexual partners
in the last six months is positively correlated with the CD4 cell counts. Note that the
posterior means of the coefficients are different because the covariates PACKS and DRUGS
as well as the fixed parametric effects for TIME have been omitted, and instead a fixed
P-spline effect has entered the model.

The fixed effect time trend estimate from that P-spline is graphed in Figure The
trend is very similar to the model 6 trend in panel on page 3, but the credible
intervals are wider. This is comprehensible, because the time-varying covariates PSSCO
and NSEX have entered the model, and more model parameters lead to larger uncertainty
about the covariates’ associations.

Next we want to check the goodness-of-fit of the new model. The posterior-predictive
BOT and PIT histograms are shown in Figure If we compare the PIT histogram in
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4 Random effects models for longitudinal data

Table 4.10 — Posterior summaries for fixed effects coefficients in the final model: In addition
to the posterior mean, median and standard deviation of the coefficient, the lower
and upper bound of the 95% HPD-interval and the posterior probability that the

coefficient is positive are shown.

Coefficient Mean Median SD lower  upper Positive

PSSCO —46.37 —46.30 9.01 -63.01 -—-27.91 0.00
NSEXone 22.40 2234 1737 —11.05 55.33 0.90
NSEXmore 34.21 34.42  17.40 0.04 67.87 0.97

Figure 4.22 — Estimated fixed effects time trend in the final model: Means (—_), pointwise HPD
(- - - ), and simultaneous (......) credible intervals at the 0.95 level are plotted. The
vertical lines mark the seroconversion date (mid-1989) and the year 1995 for the

virtual patient (random effects are not included) having entered the study in mid-

1984, who has constant covariate values NSEX == none and PSSC0 == 1.
1000 473
800 _\":
g 600 — ‘2‘,:,\
£ 400 7 AESE
< 200 — S
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panel with the model 6 PIT histogram in panel on page [[32 we do not observe
large differences. The BOT histogram in panel @ shows a high frequency of large BOT
values, and thus also shows a good fit of the new model to the given data.

In order to check the leave-one-out calibration of the final model, we plot the approxim-
ate cross-validation BOT and PIT histograms in Figure .24] as the exact cross-validation
would have required ca. 179 hours. The BOT histogram in panel @ shows a better calib-
ration than the BOT histogram in panel|(f)lon page [34 for the model with covariate time
only. Note however that while we have all individuals in the data set here, there are fewer
data points attached to the individuals. So the sample leading to the BOT histogram has
the same size, but it is smaller for the PIT histogram in panel It shows a relatively
good calibration for the scalar predictive distributions, which do seem to have too heavy
lower tails compared to the materialized observations. This is indicated by the small bars

for the lower bins: too few observations materialize in the lower tails.
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4.5 CD4 data

Figure 4.23 — Posterior-predictive BOT and PIT histograms for goodness-of-fit assessment of the

final model.
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Figure 4.24 — Approximate BOT and PIT histograms for leave-one-out predictive calibration

assessment of the final model.
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4 Random effects models for longitudinal data

4.6 BMI data

The BMI data set is a subset of the LISAB study data, a recent German birth cohort
study originally designed to examine influence factors for the development of the immune
system and allergies in children (Jacob ef al. 1999). We follow Fenske, Fahrmeir, Rzehak,
and Hohle (2008) and instead investigate the n = 2043 children’s body mass index (BMI)
dependence on risk factors already discussed in the literature. The corresponding covari-
ates are listed in Table ETT] and are time-constant, except for the time variable age. There
are between minn; = 2 and maxn; = 9 individual observations for each child, between
its birth and an age of maxt;; = 6.31 years. This gives the total number of data points
> n; = 17316. More details on the data set are given by Fenske, Fahrmeir, Rzehak, and
Hohle (2008, p. 3).

Covariate Description

age Age in years

wgain2y Weight gain until the age of 2 years

tvpc Hours spent watching TV and playing computer at the age of 4
years (4 classes)

outdoor Hours spent outdoor per day at the age of 4 years

mEdu Maternal highest level of education (5 classes)

mBMI Maternal BMI at pregnancy begin

mDiffBMT Maternal BMI gain during pregnancy

mSmoke Did the mother smoke during pregnancy?

breast Bottle-feed and/or breastfeeding, or breastfeeding only?

area Rural or urban study centre?

Table 4.11 — Description of BMI data set covariates.

In Figure E2H we show the trajectories of 18 randomly selected children. Typically the
BMI levels rise until the age of around 1 year and decline slowly afterwards. However,
there are also children whose BMI is highest at the end of the study time, e.g. IDs
92182314 and 95084041. Note that the absolute calendar time is not relevant for this data
set, because the neonates were recruited within in the short time of 15 months, and can

thus be treated as a time-homogeneous cohort.

VILISA is the abbreviation of “Influences of Life-style factors on the development of the Immune System

and Allergies in East and West Germany”
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Figure 4.25 — BMI trajectories for a random subset of 18 children, whose IDs are in the headings
of the panels.

4.6.1 Approximate sampling performance case study

First, we will check the performance of the approximate sampling scheme. To this end,
we take the first 100 children from the complete data set. The number of observations
per child ranges between minn; = 4 and maxn; = 9, giving a total of > n; = 829 data
points in the subsample. The restriction to this subsample is necessary to do the exact
leave-one-out cross-validation in a manageable amount of time. See section for an

analysis of the whole data set.

Model fitting

For all three candidate models, we include dummy variables for the binary covariates sex
and mSmoke. Moreover, we include a binary variable mEduHigh which is 1 if the mother
has Abitur or Fachabitur and is 0 else, that is we collate the two highest education levels
and contrast them with the lower three levels of mEdu. The variable tvpcMoreThanl
analogously collates the highest three levels of the ordinal variable tvpc. The continuous

variables mBMI and outdoor are included as well. These covariate choices are of course
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4 Random effects models for longitudinal data

quite arbitrary, but are made to simplify the case study. All available covariates will later

be used in section

The three models feature a random intercept, and differ in the modelling f(age) of the
time variable age: For the first model, we assume a hockey-stick form f(t) := a-t+ (-
(t — 1)4 with the breakpoint at the age of one year (t = 1). Both basis functions (which
are called age and ageAfterl) get fixed and random effects (parameters «, § and oy, 3,
i=1,...,n, say), to adjust for unexplained heterogeneity between the children. For the
second model, a more sophisticated parametric form f(age) for the age variable is used,

which is inspired by the typical trajectories we have already seen in Figure

log(t +1)

f@)=a-t+4- t+1)2

(4.6.1)

Together with the intercept, say -y, this function can approximate many typical features,
as Figure shows. Both coefficients o and § are included as fixed and random effects.
The third model uses a P-spline with 8 knots to model the fixed time effect. In addition,

a random slope is included in the model.

For each of the three models, we ran BayesX with a burn-in phase of 100000 iterations,
after which every 20-th sample of the next 200000 iterations was saved. The overall
convergence was successfully checked with deviance traceplots. For model 1, strong auto-
correlations between the fixed effect samples of the age and ageAfter1 covariates could be
diagnosed. Since we intend to make posterior inference only for the whole time predictor

function, but not for these single coefficients, this should not concern us unduly.

We plot the estimated time trends in Figure The P-spline fit from model 3 in
panel looks too wiggly, compared with the two other parametric fits. The trend could
be smoothed stronger, if we specified other hyperparameters for the P-spline variance
prior: We used the default parameters a = b = 0.001 for the inverse-gamma prior, giving
a prior mode of b/(a + 1) ~ 0.001. For example, setting these values to a = b = 0.0001
decreases the mode to 0.0001, leading to a stronger penalization of second-order differences
of the B-spline basis functions coefficients. Alternatively, the number of knots could be
set lower than 8. The parametric fit from model 2 in panel is similar to the P-spline
fit for the age under one year. Afterwards, it is much smoother, which is of course implied
by the strong parametric assumptions of the form ([GII). The linear TP-spline fit from
model 1 in panel @ is even more simple than the fit from model 2, but is still better
interpretable than the model 3 fit: sharp increase of BMI until the age of one year, and

slow decrease afterwards.
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Figure 4.26 — Possible parametric functions of the form Gl in model 2, when the intercept

is included.
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It is interesting what the different time trends can contribute to fitting the given data.

The goodness-of-fit for the individual scalar observations and the whole vector-valued

time series can be assessed with the posterior-predictive PIT and BOT histograms in Fig-
ure The model 2 PIT histogram in panel [(e)|looks best among the three models: For

model 3 in panel @ more posterior-predictive PIT values below 0.2 have been observed,

and for model 1 in panel @, we have rather a uniform than a hump-shaped histogram.

The BOT histograms convey the same statement. The model 2 histogram in panel [[b]]
is stronger left-skewed than the model 3 and model 1 histograms in panels and @,
respectively. So model 2 fits the given data best, followed by model 3 and model 1, if

we measure the goodness-of-fit with the scalar observations (PIT) or on the predictive

multivariate density scale (BOT).

In Table the posterior-predictive mean scores are listed. The numbers match the
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Figure 4.27 — Estimated fixed effects time trends (including the intercept) in the three models:
Means (.

the 0.95 level are plotted. The positions of the x-coordinates are included in the

), pointwise HPD (- _ _), and simultaneous ( .......) credible intervals at

form of x-axis ticks.
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impression from the PIT and BOT histograms: the goodness-of-fit is best for model 2,
followed by model 3 and then model 1.

Table 4.12 — Posterior-predictive mean energy and logarithmic scores for the goodness-of-fit as-

sessment of the three models for the BMI subsample data.
Fit criterion Model 1 Model 2 Model 3

ES 2.75 1.72 1.86
Log-score 14.81 11.23 11.75

Cross-validation assessment

We produced both approximate and exact leave-one-out model parameter samples for a
predictive assessment of the three models. While the exact cross-validation sampling was
very computer-intensive (9281, 9296 and 9759 seconds), the approximate sampling based
on the samples from the model fitting was quickly done (4, 3 and 3 seconds). For the
exact sampling, for each left out child, we used BayesX to produce chains of length 100 000,
which were thinned out with parameter 20 after a burn-in phase of 20000 iterations. No
convergence problems were found in randomly selected traceplots of the resulting means
and precisions samples.

The BOT histograms from both sampling schemes are compared in Figure The

exact BOT histograms show that all three models are quite well calibrated. The differences
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Figure 4.28 — Multivariate BOT (upper row) and scalar PIT (lower row) histograms for goodness-
of-fit assessment of the three random effects models (columns) for the BMI sub-

sample data.
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are rather small, with the histograms for model 1 in panel @ and model 2 in panel @
looking slightly better than the histogram for model 3 in panel For model 1 and
model 2, the approximate histograms in panels @ and are very near to the exact
counterparts. The model 3 approximate BOT histogram in panel is even a bit more
left-skewed than the exact histogram in panel , so the model calibration ranking would
be the same if we only had available the approximate BOT histograms.

In Figure we compare the energy and logarithmic scores resulting from the ex-
act and approximate sampling schemes. The logarithmic scores approximation works,
although the (relative) deviances from the identity lines are larger than in Figure ELT7
for the CD4 data example. The logarithmic scores are approximated best in model 1,
as panel shows. The comparison plots for the energy scores are also slightly worse
than the plots in Figure ET4. Note that the plots actually only graph the absolute errors,

because the distances h of the points to the identity line are proportional to the the dis-
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Figure 4.29 — BOT histograms for calibration assessment of the leave-one-out prediction in the
three random effects models for the BMI subsample data. The predictive distribu-
tions were estimated with the exact (upper row) and the approximate (lower row)

sampling schemes.
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tances of the x- and y-coordinates: h = |z — y| /v/2. The mean relative errors are 0.019,
0.026 and 0.03. So also for the energy scores, the approximation works better in model 1
than in model 2 and model 3.

In Table the mean scores are compared, and contrasted with the DIC values. The
energy scoring rule ranks model 2 and model 3 equal and model 1 worst. If we approximate
the scores, we get lower mean energy scores, with model 2 and model 3 being ranked almost
equal. Model 1 is still the worst of the three models. The logarithmic scoring rule prefers
model 2 over model 3, but the difference is small between these two models. Model 1
is clearly worse. These conclusions are replicated in the approximate mean scores. It is
interesting that the DIC gives model 1 the lowest value, which corresponds to the best
model. The ranking of the proper scoring rules is actually reversed, because model 2 is
ranked worst by the DIC.
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Table 4.13 — Mean energy and logarithmic scores for the cross-validated leave-one-out prediction
of the BMI subsample data for the three models, under the exact and approximate
sampling schemes, as well as the DIC based on the saturated deviance samples

reported by BayesX.

Model criterion Scheme Model 1 Model 2 Model 3
BS exact 3.27 2.67 2.67
approximate 3.20 2.60 2.58
exact 15.71 13.35 13.39
log-score )
approximate 15.59 13.13 13.19
DIC 916.67 1002.77 965.21
Results

The BMI subsample data was fitted best by the parametric non-linear model 2. As this
model also had an acceptable calibration in the BOT histogram and was ranked best in
the exact leave-one-out predictive assessment by the energy and logarithmic scoring rules,
we should choose model 2 based on these subsample results. The DIC again reversed the
model ranking from the scoring rules.

The approximate cross-validation scheme worked well in this example, too: The bias
of the absolute scores was small and the exact scheme’s model rankings were preserved.

Also the approximate BOT histograms were close to the exact BOT histograms.

4.6.2 Data analysis

Now we include all n = 2043 children in our analysis, and also try to use all covariate
information. After fitting six models to the BMI data (p. [dHd), we first assess their
goodness-of-fit and examine outlying individuals (p. [4d), before doing an approximate
cross-validation (p. [45).

Model fitting

The first three models are retained from section LGl For the second half of the six
candidate models we try to improve model 2 and model 3 and include the additional cov-
ariates wgain2y, mDiffBMI, breast and area: In model 4, the design variables mDif fBMI
and breastbreastFeed are added as ordinary fixed effects to the model 2 configuration,
modifying the baseline level of the child’s BMI. The variables wgain2y and areaurban
are added as interaction terms with age. For example, a statistically significantly positive

coeflicient for the latter interaction would then be interpreted as a larger increase of BMI
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over the first six years of life for children living in an urban area, compared with children
living in rural areas. In model 5, the same fixed effect terms are added, this time to the
model 3 configuration. In order to smooth the employed P-spline more strongly, we now
specify lower hyperparameters a = b = 0.0001 for the corresponding variance parameter,
as we suggested earlier. In model 6, we extend model 4 by using all three and four dummy
variables from the covariates tvpc and mEdu, respectively, instead of just the two binary
variables tvpcMoreThanl and mEduHigh.

For each of the models, we let BayesX Gibbs sample Markov chains of length 200 000.
In order to keep the memory load at a manageable size, we saved only every 40-th sample
after a burn-in of 100000 iterations. The result is a sample size of 2500, which should
still be large enough to keep the Monte Carlo errors low. This required computing times
of 2160, 2117, 2148, 2563, 2568 and 2770 seconds for the six models, respectively. As
already observed in the Markov chains for the case study in section EE6.1] we see high
auto-correlations between coefficients samples for the fixed effect of age. In the last three
models we also note strong negative correlations between age and wgain2yAge, and to
a lower extent between age and areaurbanAge. This is comprehensible, as the linear

predictor part with age is

(aage,i + ﬁage + ﬂwgain2yAgeWgain2y@' + Bareaurba.nAge H(areai == urban)) tage;;

for observation j from child i. Since the weight gain until 2 years (covariate wgain2y) is
always positive, a larger fixed effect Bage can be balanced to a certain degree by a smaller
interaction effect Bugainayage to retain a similar level of the coefficients sum. If one wor-
ried about these posterior correlations, one could try centering the covariate wgain2y to
“decorrelate” the coefficients. Here we are not interested in the single coefficients samples,
but only in the whole age trend, and so do not have problems with the correlations.

The estimated fixed effects of age according to the six different models are depicted
in Figure 31 For the last three models, we set the continuous variables wgain2y and
mDiffBMI to the data point means 8.91 and 5.12, and also the (originally binary) design
variables breastbreastFeed and areaurban to the means 0.6 and 0.79, respectively. This
shall ensure that the plots are comparable with the plots from the first three models, which
do not include the four covariates wgain2y, mDiffBMI, breast and area. The forms of
the trends from model 1 in panel and from model 2 in panel are similar to the
subsample results in Figure E2Z7l Due to the increased number of observations, the credible
intervals are much narrower here. This is also the case for model 3 in panel with the
mean curve now being smoother than for the subsample.The bump between age 2 and
4 can probably be explained by the local fitting of the B-spline bases, because there are
almost no observations around the age of 3 years in the data set. It is instructive that the
model 5 fit in panel @ is indiscernible from the model 3 fit: This means that the different
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4.6 BMI data

P-spline variance prior is outweighed by the large number of data points, so that we do
not see a clear difference between both trends. Probably only a decreased flexibility of
the spline with a lower number of knot locations would have a visible effect on the age
trend. Panel with the model 4 fit is indiscernible from panel This is actually the
check that the adjustment with the means of the four additional covariates works. The
mean trend is also very similar to the model 6 trend in panel Because in model 6, the
effects of the time-constant covariates mEdu and tvpc are modelled as 7 dummy variables
instead of only 2, the posterior uncertainty about the baseline level for the time trend is

larger which is reflected by the wider credible intervals.

Goodness-of-fit assessment

We plot the posterior-predictive BOT histograms in Figure Model 1 provides the
worst fit to the data, as the histogram in panel is less left-skewed than the other
histograms. Both P-spline models are able to fit the data more closely, if we judge the
goodness-of-fit by their histograms in panels and . Models 2, 4 and 6 with the
nonlinear parametric time trends have the most left-skewed BOT histograms in panels @,
@ and It is not clear which one of the three fits best.

Analogously to defining outlying individuals as individuals with a high posterior-predictive
energy score (cf. page [[23)), we can look at the posterior-predictive mean energy scores
of the models to get numbers for the overall model fits. We also include the mean logar-
ithmic scores in Table ET4l Both scoring rules assign model 2 the best fit, followed by the
other two parametric models 6 and 4, the P-spline models 3 and 5 and finally the simple
model 1. The table also shows the posterior expected saturated deviance for the models,
which is a traditional goodness-of-fit criterion, see e.g. Spiegelhalter, Best, Carlin, and
van der Linde (2002, p. 601). Model 2 has the lowest mean deviance, so that it fits best
also according to this measure. It is followed by models 1, 6, 3, 5 and 4. It is interesting

that the simple model 1 is ranked second by the deviance, but last by the scoring rules.

Table 4.14 — Posterior-predictive mean energy and logarithmic scores of the six models, as well

as the posterior expected saturated deviance.

Fit criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ES 2.59 1.54 1.84 1.56 1.87 1.55
Log-score 14.50 10.42 11.77 10.46 11.84 10.45
Deviance 17312.25 17310.30 17316.27 17319.09 17319.07 17314.14

We show the 8 observations having a posterior-predictive BOT value of less than 0.01
in all of the six models in Figure The children with IDs 91083394, 94089313 and
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94182011 feature untypical BMI jumps at the ages of one and two years. These could
be described as truly outlying trajectories. It would be interesting to remove the three
children from the statistical analysis, to check if the results are strongly influenced by
them. The remaining five children seem to have more normal BMI time series, which are
too complicated to be acknowledged by the six models. IDs 91080697, 92082611, 92185191
and 95086051 have a very sharp BMI rise in the first life months, which is not followed
adequately by the models. For ID 91982761, the BMI rise occurs too late with regard
to the model, so that the third measurement is far below the fitted means, and leads to

small posterior-predictive density ordinates and BOT values.

Cross-validation assessment

The approximate leave-one-out BOT histograms for the six BMI models are shown in
Figure 341 Since the histograms summarize n = 2043 observations here instead of
n = 100 in Figure 29, the appearances are more regular. However, the “calibration
message” of the histograms is similar: All models are quite well calibrated, with model 3
in panel and model 5 in panel perhaps being calibrated slightly worse than the
other models.

Again in this data example, we observe the pattern of approximate leave-one-out BOT
histograms with the first bar for the bin [0, 0.1] being larger, and the rest being left-skewed
with the last bar for the bin (0.9, 1] being largest. The pattern is much less pronounced
here than in Figure E21] for the CD4 data, but it is recognizable.

If we are concerned about the model calibration at the individual observations level,
we can inspect the approximate scalar-PIT histograms for the six BMI models. They are
shown in Figure For all models, there are too few small scalar-PIT values below 0.1
compared to uniform histograms. This means that the lower tails of the scalar predictive
distributions are rather too heavy, because too few observations materialize in the lowest
parts of the distributions. The model 1 histogram in panel @ looks worst. The model 3
and model 5 histograms in panels and @ are better, but still have too large bars for
the bin (0.95,1]. This is removed in the remaining panels for the nonlinear parametric
time trends models, who still suffer from the too heavily left tailed predictions.

We are interested if the approximate leave-one-out proper scoring rules yield the same
result as the DIC. In Table the mean energy and logarithmic scores of the models
in question as well as the DIC values are shown. Starting with the logarithmic scoring
rule, model 6 is ranked as the best model, closely followed by model 4, then models 2,
5, 3 and finally model 1. So the log-scores prefer the nonlinear parametric models, from
which the most complex is ranked highest. The energy scoring rule also ranks model 6

best, together with the P-spline model 5. Model 4 is only slightly worse, models 2 and 3
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are ranked equally and model 1 is again at the last place. Thus the proper scoring rules
agree that the simple model 1 with the linear TP-spline time trend is the worst of all
six models. By contrast, the DIC is lowest for model 1, so the DIC ranks model 1 as
the best of all six models. The P-spline models 5 and 3 get the second and third places,
respectively. The nonlinear parametric models 6, 4 and 2 share the last places. This
result is analogous to the result for the subsample data, where Table showed that the
DIC preferred the simple over the P-spline and the nonlinear parametric model, while the

ranking was reverse for the proper scoring rules.

Table 4.15 — Approximate mean energy and logarithmic scores for the cross-validated prediction
of the six models, as well as the DIC based on the saturated deviance samples

reported by BayesX.
Model criterion Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ES 3.11 2.62 2.62 2.53 2.52 2.52

Log-score 15.38 13.01 13.35 12.87 13.21 12.85

DIC 18963.6  21392.1 19963.2 21164.4 19643.6 21160.4
Results

From the total six models fitted to the whole BMI data set, models 2, 4 and 6 provided
the best fit to the data. This was stated both by the posterior-predictive BOT histograms
and the posterior-predictive scoring rules. By contrast, the posterior expected deviance
also favoured the simple parametric model 1, besides model 2.

The leave-one-out calibration was better for model 2, 4 and 6 than for the other three
models, if we judge this by means of the approximate leave-one-out BOT histograms.
The approximate mean scores, which also consider the sharpness of the leave-one-out
predictions, rank model 6 best, followed by model 4 and model 2 in the logarithmic
scoring rule and model 5 and model 4 in the energy scoring rule. Thus, we would choose

model 6 from all models, ignoring that the DIC ranks the oversimplistic model 1 best.

4.6.3 Final model

It is interesting if the P-spline can be combined with the nonlinear parametric func-
tion (6] into a single model. We examine a model which is based on model 5 from
section with a P-spline for the fixed effect of age. It features not only a random
slope, but also the nonlinear part from function (G to include the whole parametric

function f(age) as random effect. This form of individual departure from the population
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trend could be useful to better fit some outliers from Figure Furthermore we take

only 7 instead of 8 knots for the P-spline, to smooth the population trend slightly stronger.

We produced a total of 2500 parameter samples for this model specification by thinning
out a Markov chain of length 200 000 and discarding a burn-in of 100 000 iterations, within
2898 seconds. The posterior summaries of the fixed effects are tabulated in Table ELT6
We see significant positive associations of male sex, mother’s BMI at pregnancy begin,
mother’s BMI gain during pregnancy and breast feeding with the BMI level. Also the
more hours spent outdoors at the age of 4 years, the higher is the BMI level of the child,
according to the model. The posterior mean estimate for wgain2y can be interpreted as
if the child gained one kilogram more weight until the age of 2 years, than the BMI would
rise additional 0.09 points per year. By contrast, the association of an urban study center
with the BMI is slightly negative. The 95% HPD interval ends near zero for areaurbanAge
and for mEduHigh, so these correlations are only borderline significant. It is even more

uncertain if maternal smoking or TV /computer usage is associated with the child’s BMI

trajectory.
Coeflicient Mean Median SD lower wupper Positive
sexmale 0.11 0.11 0.04 0.02 0.19 0.99
mBMI 0.05 0.05 0.01 0.04 0.06 1.00
mDiffBMI 0.11 0.11 0.01 0.09 0.14 1.00
mSmokeyes —0.07 —0.07 0.06 -0.19 0.06 0.15
mEduHigh —0.08 —0.08 0.05 —-0.18 0.00 0.03
tvpcMoreThanl 0.04 0.04 0.05 —0.06 0.14 0.77
outdoor 0.05 0.05 0.02 0.01 0.08 1.00
breastbreastFeed 0.17 0.17 0.05 0.08 0.26 1.00
wgain2yAge 0.09 0.09 0.00 0.08 0.10 1.00
areaurbanAge —0.03 —-0.03 0.01 -0.05 0.00 0.03

Table 4.16 — Posterior summaries for fixed effects coefficients in the final model: In addition
to the posterior mean, median and standard deviation of the coefficient, the lower
and upper bound of the 95% HPD-interval and the posterior probability that the

coefficient is positive are shown.

The fixed effect age trend estimate is graphed in Figure The trend is noticeably
smoother than in panel @ on page [[A3 This is supposedly due to the use of 7 instead of
8 knot locations. Yet, the overall picture has not changed much, only after 6 years (where
few data points are observed and the uncertainty is large) the mean curve differs from the

original model 5 curve.

152



4.6 BMI data

The mean deviance is 17321.7, the mean posterior-predictive log-score and energy score
are 10.6 and 1.59, respectively. While this is the worst mean deviance of all models, the
scores are almost as good as for the models 2, 4 and 6 with fixed nonparametric age trend
(cf. Table ETA on page[[d7). The posterior-predictive BOT and PIT histograms are shown
in Figure 371 The BOT histogram in panel attests the new model a better fit than
the old model 5, with panel @ on page [[B4. The PIT histogram in panel reinforces
this conclusion.

In order to check the leave-one-out calibration of the final model, we plot the approxim-
ate cross-validation BOT and PIT histograms in Figure 38 as the exact cross-validation
would have required ca. 1645 hours. The predictive calibration looks very good in the
BOT histogram in panel compared with the histograms in Figure EL34] on page
The PIT histogram in panel is good too, but has similar defects to the other models’
PIT histograms in Figure on page [[54

The DIC is 21103.7, and the approximate cross-validation log-score and energy score
are 12.95 and 2.54, respectively. That ranks the new model between the old P-spline
models and the nonlinear parametric models with respect to the DIC and the log-score.

The energy score is the fourth best of all seven models which have been examined.
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4 Random effects models for longitudinal data

Figure 4.30 — Comparison of exact and approximate scores for leave-one-out prediction in the

three random effects models (columns) for the BMI subsample data. The panels

in the upper row compare the energy scores (ES), while the panels in the lower

row compare the log-scores. Individuals where the absolute difference between

the exact and approximate score values exceeds 0.5 (ES) or 1.5 (log-scores) are

labelled.
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Figure 4.31 — Estimated fixed effects time trends (including the intercept) in the six models:
Means (.

the 0.95 level are plotted. For models 4-6, the time trends samples which were

), pointwise HPD (___), and simultaneous (......) credible intervals at

averaged include the sampled effects of the covariates wgain2y, mDiffBMI, breast

and area at their data point means.
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Figure 4.32 — Posterior-predictive BOT histograms for goodness-of-fit assessment of the six mod-

els.
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Figure 4.33 — Model fits (estimated posterior means) for the children with posterior-predictive
BOT values less than 0.01 in all of the six models, which are discerned by line type:
model 1 (), model 2 (___ ), model 3 (......), model 4 (._._), model 5 (—___), and
model 6 (_._).
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Figure 4.34 — Approximate BOT histograms for calibration assessment of the leave-one-out pre-

dictive distributions implied by the six models.
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Figure 4.35 — Approximate scalar-PIT histograms for cross-validated calibration assessment of

the scalar predictive distributions in the six models.
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Figure 4.37 — Posterior-predictive BOT and PIT histograms for goodness-of-fit assessment of the

final model.
4 J—
_ 2.0
3 p—
1.5 —
2 —
1.0 —

o 2

0 0.0 —
T 1 T 1 1T 1T 1T T 1

0.0 0.4 0.8 0.0 0.4 0.8

(a) BOT histogram (b) PIT histogram

Figure 4.38 — Approximate BOT and PIT histograms for leave-one-out predictive calibration

assessment of the final model.
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4.7 Summary

In this chapter, we have applied the Marshall-Spiegelhalter approach to Bayesian random
effects models, which have been estimated with the MCMC implementation of BayesX.
The cross-validation assessment for the longitudinal data was understood as a leave-one-
out loop on the level of the individuals, as opposed to the level of single observations.
For a simulated data set and two real data examples, we have compared the exact cross-
validation results with the Marshall-Spiegelhalter approximations, and found that the
results were very close to each other: the ranking of the models by means of the scoring
rules was mostly preserved by the approximate scheme, and the bias of the absolute scores
was small, especially for the logarithmic scoring rule. Also the calibration results were
essentially retained under the approximate scheme, although the approximation of single
BOT values and resulting BOT histograms was more difficult than the score approxima-
tion.

Moreover, we have experienced that the goodness-of-fit assessment of the longitudinal
models can be based on the posterior-predictive model scores. This usage of posterior-
predictive samples should be favoured over the production of BOT or PIT histograms,
due to the easier and objective interpretability and ranking of the models’ results. A
related topic is the detection of outlying individuals, which we understood as individuals
which cannot be fitted well by the model. For this task, the BOT values can be utilized,
with smaller BOT values indicating a worse fit. While the energy score values can also
be used, the single posterior-predictive logarithmic scores should be interpreted carefully,
especially when the dimensions n; of the time series vary.

In comparison with the current default model criteria printed by BayesX, namely the
posterior expected deviance and the DIC, the approximate model scores were competitive:
for the simulated data, the DIC could not identify the correct model as the best model,
in contrast to the approximate scores. Also for the BMI data set, the DIC preferred a too
simple model, judging both from the goodness-of-fit of this model and its approximate
leave-one-out scores. The posterior expected deviance, too, seems to have a tendency to
prefer (too) simple models, as the BMI data analysis suggests. These findings motivate an
integration of the approximate leave-one-out cross-validation scheme into BayesX, so that
the users would also be provided with the posterior-predictive and approximate leave-one-
out energy and logarithmic scores of the fitted model as an interesting supplement to the

current output.
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5 Summary and Discussion

In this thesis, we have implemented exact and approximate predictive assessment for two
Bayesian hierarchical model classes: While the conjugate change point models are applic-
able to single time series data, the random effects models are used to analyze longitudinal
data. For the time series, two natural assessment schemes were used, which assess either
the quality of one-step-ahead or leave-one-out predictions. For the longitudinal data, only
the leave-one-out scheme is sensible on the level of individuals. However, for data sets
with equally long time series, one could also imagine a one-step-ahead scheme which works
on the level of individual observations. The predictions and the materialized observations
were compared with PIT/BOT transformations and proper scoring rules to address both
the calibration and the sharpness of the predictions. These evaluations of the predictive
distributions were fully based on samples (either directly from the forecasters or from
their underlying distributions), and can thus be applied to a wide range of situations.

For both model classes, the implemented approximations of the Marshall-Spiegelhalter
type worked well: Although always an optimistic bias of the approximate scores and PIT
values could be observed, the conveyed statement of the exact results was often retained by
the approximate results. The advantage of the approximations is entirely computational,
but this advantage can be vital for large data sets. The approximate predictive assessment
schemes should thus be utilized when the exact assessment is not feasible any longer, as
was the case for the genetic data in section B or the full CD4 and BMI data sets in
sections and L8 respectively. For the latter two data examples, we selected a small
subset of the data to be able to compare with the approximate with the exact results,
at least for a smaller part of the data. This strategy could be generalized in statistical
practice: test the approximate scheme on a small subsample of the data, and if it yields
satisfactory approximations to the exact scheme, apply the approximate scheme to the
whole data set, where the exact scheme is infeasible.

An important point of this thesis is the contrasting of the exact and approximate
predictive assessment results with the analogous posterior-predictive results. We have
shown that the easily accessible posterior-predictive results are suitable for, and only for,
the goodness-of-fit assessment of the considered models. This comprises the detection of
poorly fitted observations, by comparing the posterior-predictive distributions with the

corresponding known observations. However, in general the posterior-predictive results

163



5 Summary and Discussion

are far away from the corresponding exact and approximate predictive assessment results:
the sampling scheme is just much too optimistic about the forecasting capabilities of the
models. The scores are thus shrunk to 0, the PIT values are shrunk to 0.5 and the BOT
values are shrunk to 1. Moreover, it is crucial to remember that a model which fits the
known data well is not guaranteed to be a good forecaster for yet unknown data. This
was shown very clearly in the simulated data analysis with the random effects model in
section 4l That is the fundamental problem of overfitting models, and many examples

were given in the case studies in sections B 4H3.0l
To conclude, we propose two possible extensions of topics covered in this thesis.

First, note that due to the definition of our change point model in section BZ2X2, there
is a shortcoming of the modelling approach. It is relevant for the Tokyo rainfall data
case study in section and was neither avoided by Kitagawa (1987), who introduced
the data set into the literature: There is no implemented connection between the rain
probabilities on 31st December and 1st January. However, since the data is a “cyclic”
time series, it would be better to somehow penalize probability trend differences between
these two adjacent days. To remedy this shortcoming, our change point model could be
extended to cyclic time series. Essentially the blocks ypy g, before the first change point
and Yy, n) after the last change point would have to share the same model parameter
5(1) = E(k‘H). Yet, note that two change points are necessary in this cyclic time series
model to distinguish two seasons in the year: if £ = 1, then the “first” and the “last” block
would still share the same parameter. In order to allow a change point between the last
observation ¥, and the first observation y;, an optional change point at time n could be
introduced. From the other perspective, the normal time series structure is a special case
of the cyclic time series, where there is a fixed change point between the end and the
start of the time series. Moreover, the cyclic time series framework could be extended
to seasonal time series, which cannot be summarized into a single cyclic time series as it
was the case for the Tokyo rainfall data. For example, instead of the rainy days we could
have recorded temperature measurements. Then the model parameters for the seasonal
trend could still form a cyclic time series, and each observation would be assigned the

appropriate parameter via the calendar day.

Second, the sampling based evaluation of the predictive distributions offers a very easy
possibility to consider transformations of the independent variable. We will illustrate
that point with the CD4 data from section EEH, where the direct modelling of the un-
transformed counts with a normal linear mixed model posed problems — the calibration
of the considered models was unsatisfactory. A conventional transformation of the CD4
counts is the square root transformation, which is the variance-stabilizing transforma-

tion for Poisson-distributed count data. So we could transform the counts, and consider
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models for the root-counts. These would produce predictive samples for the square root
of the CD4 counts. In order to compare these new models with the old models on the
original scale, we could then just square the root-count predictive samples to map them
onto the original count scale. The squared samples would then produce BOT, PIT, and
proper scoring rule values which could be compared directly with the old models’ results.
Analogously, we could try to fit the natural logarithm of the CD4 counts, to avoid the
problem that the normal likelihood includes impossible negative counts in the inference.
These models could be compared directly with the other models on the original counts
scale, too, by exponentiating the predictive log-counts samples of the log-CD4 models.
To mention an example for the conjugate change point models, in section B we could
try to model the logit transformed GC proportions instead of the original proportions,
which could lead to a better normal approximation of the observations conditional on the

means.
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A Appendix

A.1 CRPS formula

We will show that for v € R and Y, Y™ % G with finite expectation E(Y) = [ydG(y) the
identity

BIY —al = 5EIY =¥ = [{60) ~ Ly @)} dy (A1)

holds. The integration in ([AIT]) and hereafter extends over the entire real line.
The proof follows lemmas 2.1 and 2.2 of Baringhaus and Franz (2004, p. 192), which
start with two independent random variables X ~ F and Y ~ G with finite expectations.

First note the basic identity

v—y= [l y(u)du ifz>y
|z —y|l =
y—x= [Ty, (u)du ifz<y

— [ By (1) + L () s

which is true because [z,y) = @ and thus Ij, ,y(u) = 0 if > y (and analogously for

x < y). Therefore the expected distance between X and Y can be rewritten as

E|X—Y|=E / Ly, (1) + Tix .y (0) ds
_ / Elyx)(0) + El iy y) () du
:/P(Y§u<X)+]P’(X§u<Y)du
—/P(Ygu)P(u<X)+P(X < w)P(u < V) du

= /G(u)(l — F(u) + F(u)(1 — G(u)) du, (A.1.2)

where we have used Fubini’s theorem for the change of integration and expectation order,
and the stochastic independence of X and Y.
Now introduce two independent copies of X and Y, namely X* ~ F and Y* ~ G.
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From (A2 it follows that

MX—W—%EW—Xﬂ—%MY—W\
~ G- Fw) + F@)( - Gw) - 5
)

= /G(u) — F(u)G(u) + F(u) — F(u)G(u) — F(u) + F(u)* — G(u) + G(u)? du

= /F(u)2 — 2F (u)G(u) + G(u)* du
= /(F(u) — G(u))* du. (A.1.3)
If we choose the cdf F(u) := I, 4o)(u), we arrive at the point-mass-in-z distributed

X, X* ud dz. Therefore we can substitute z for X, X* in identity (AI3), giving

1 *
Elo— Y| = BV = V' = [ (o0 (0) = Glw)? duy

because E|X — X*| = E |x — 2| = 0. This completes the proof of identity ((ATTI).

A.2 Saturated Deviance and DIC

The saturated deviance in the model framework from section is defined as

 9lop d SW10?)
D& a) =21 g{ﬂym,a)}'

It compares the likelihood f(y|€&, @) = [T, Ny, (y; | s, 021,,;) of the parameters to the
data density where the means p, are replaced by the actual observations y;, g(y|o?) =
[T%; No, (y; | ys,021,,), by means of the well-known likelihood ratio statistic.

The Deviance Information Criterion (DIC) was proposed by Spiegelhalter, Best, Carlin,
and van der Linde (2002) and is based on the (saturated) deviance. Let

PpD = E[D(&,a) ‘y] - D(E?‘j)

be the difference between the posterior expected deviance and the deviance at the posterior
expected parameter values € := E(£|y), & := E(a|y). pp is the effective number of

parameters in the Bayesian model. The DIC is then defined in analogy to the AIC as
DIC := D(¢, &) + 2pp.

It is oriented as the proper scoring rules, i. e. lower DIC values correspond to better models.
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A.3 Paired permutation test for difference of mean scores

A.3 Paired permutation test for difference of mean scores

Suppose we have computed two scores r; and s; for the prediction of each observation y;,
i =1,...,n. In our applications, the score r; is usually obtained from some model, say
M, predicting the observation y; from (a subset of) the remaining observations y A\{i}>
while s; is obtained from the prediction prescribed by M,. The proper scoring rule which
compares the forecasters F;.; and F;; with the materialized observation y; is of course the
same for both models, e.g. the CRPS and r; = CRPS(F,;,y;), si = CRPS(Fy,y;).

We want to compare the mean scores 7 and § with a formal significance test, in order to
examine if their difference d = 7 — 5 is statistically significant on a certain level (usually
0.01 or 0.05). Then the paired permutation test provides a convenient solution, because
unlike e. g. the paired Student t-test, it does not require distribution assumptions or trust

in asymptotic behaviour.

The null hypothesis is that the mean scores u, and us in the population are equal,
= pr = ps. The alternative hypothesis is the contrary, u, # us. We have estimated
the population parameters u, and pgs by 7 and 5 from a paired sample of size n. The
idea of the permutation test is that under the null hypothesis, the values of r; and s;
could be exchanged without changing the expected means in the two score sets. These
would still be E(R) = E(S) = u. Exchanging the values of the i-th pair is equivalent to
changing the sign of the difference d; = r; — s;. So a permuted test statistic is simulated
as d[b] LS 1 di - (1) where 2 p) is drawn from a Bernoulli distribution with
probability 0.5 for all observations ¢ = 1,...,n. The randomized permutation is done for
b=1,...,B=10000, say. Then the two-sided p-value

= P(|D*| > |d|) = P(|D| > |d| | Ho is true)

can be approximated by the Monte Carlo estimate
B
p= Z (Idyy| > dl).
b:

If n is small enough, all 2" permutations can be considered. [Baker and Tilbury (1993)
have devised a fast algorithm for the approximation of the resulting “exact” p-value with
fixed accuracy in polynomial time. See Jolliffe (2007, p. 646) for permutation tests applied

to the inference of verification measures in meteorology.
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A.4 Normal-normal mixture

Let x| ~ N(p,1) and g ~ N(0,1). Then we have from [Held (2008, p. 148) that the

posterior of y is again a normal distribution, namely

1 1
mle (296’2)

Thus we have from Bayes’ theorem that the marginal density of z is

_G1mi
1@ ==

_ v {—sle —w?} - Grew {—gu)
ﬁexp{—%'Q(M_ %m)Q}

Ver
1 Lr o 2 2 2 1 1,2 }
= expy —= |27 —2ux + p° +p” = 2(p° — spuT + 37
TG p{ 2[ e e ( it + a”)]
1 { 1 2}
= — X ——X
Va2 P22
= N(z]0,2).
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B Nomenclature

AIC
BIC
BOT
(C)RPS
cdf
DIC
DIC

ES

iid
MCMC
pdf
PIT

[s,t], (s,1]

Ys

(B[C)

Akaike’s Information Criterion
Bayesian Information Criterion
Box Ordinate Transform
(Continuous) ranked probability score
cumulative distribution function
Deviance Information Criterion
Deviance Information Criterion
Energy score

independent identically distributed
M arkov chain Monte Carlo
probability density function
Probability Integral Transform

For integers s < t, we abbreviate [s,t] :== {s,s + 1,...,t} If s > ¢, [s,t] := 0.
Similarly, for integers s < t, define (s,t] :=={s+1,s4+2,...,t} and for s > ¢

we have (s,t] := 0.

For S C N, yg := {y: |t € S}. Therefore, if S =10, yg = 0.
The set of all indexes is N := {1,2,...,n}.

The number of observations (individuals) is denoted as n.

If B = (bj;) € R¥™ and C = (¢;;) € R¥™ are matrices with the same
number of rows (k), then A = (B|C) denotes the matrix which is concat-

enated from the columns of B and the columns of C. That is, A = (a;;)
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B Nomenclature

1,
I

diag x

172

with elements

al-j =
Ci j—m ifm+1<j<m+n.
The one-vector of dimension k € N is 15 := (1,1,...,1)".

The identity matrix of dimension k € N is I}, := diag 1.

For € R*, diagz is the diagonal matrix with the elements of = arranged
on the diagonal:
il 0

2
diagx :=

The Dirac point measure in z is denoted as 9.

The indicator function for the set A is 4 and returns 1 if the argument is

an element of A and 0 else.

the Euclidean norm (Zle 2]2)1/ Zof z e R¥

The cdf of the standard normal distribution is denoted as ®.

The notation O(h(m)) describes an algorithm with complexity h(m) in the
variable m. More formally, if g(m) > 0 is the exact computational run-time
given m (e.g. the number of samples), then g(m) = O(h(m)) means that
lg(m)| < M |h(m)| for some M > 0 and sufficiently large m. For example, if
h = id then the algorithm has linear complexity O(m).

We denote the b-th sample of some parameter 8 using a parenthesized index

as O for better distinction from the other indexes.

The replication of y is denoted as y* — this notation is needed for the
posterior-predictive distributions (this is only used for replications with the

letter y).
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