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Abstract

The Rasch model as the model with the strongest model assumptions from Item Re-

sponse Theory stands for the meaningful characteristics like unidimensionality of the

trait, local independency and parallel item characteristic curves.

To test the fit of the Rasch model to simulated input scenarios like Rasch conform data

and data from different forms of Rasch model violations is the main part of this work.

Three selected goodness–of–fit tests are analysed on their performance to these scena-

rios.

The Andersen likelihood ratio test performs well in connection with Rasch conform data

and is able to detect violations from intersecting item characteristic curves, additional

guessing and parts of multidimensional traits, but not local dependency.

Whereas the Bootstrap test holds the given α–level for Rasch conform data, the test

fails to detect any of the simulated Rasch model violations. These bad results can be

interpreted by the chosen χ2 test statistic for the parametric Bootstrap.

The mixed–Rasch model test is detailed analysed about the methodological test proce-

dure and supposed wrong distribution–assumptions.

Applying results to practical applications the nine subtests from the Intelligence–Structure–

Test (IST) 2000 R are investigated to fit the Rasch model. The different outcoming

results from the selected goodness–of–fit tests are elaborately discussed.

In the appendix the simulation routine, written with the statistical software R, is dis-

played and explained.
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Chapter 1

Introduction

Psychological testing is one of the main issues in applied psychology. The desired mea-

surements, i.e. individual´s properties like intelligence, arithmetic ability or neuroticism,

are mostly not directly observable; thus they are called latent traits. Therefore the indi-

vidual´s responses to well–chosen items ought to measure the extent to a certain latent

trait of the individual. Items are in the context of psychological measurement questions

or exercises, which can have outcomes like wrong/false or yes/no in the dichotomous

case. This indirect measurement allows the prediction of an individual´s behavior to

other items from the same trait.

The theoretical basis for psychological measurement followed the Classical Test Theory

(CTT) over decades. Such a theory assumes that the person´s total test score depends

on the sum of the true score of the trait and a corresponding error score.

In the 1950s the first Item Response Theory (IRT) models were implemented. Since

some of the assumptions from CTT are not appropriate or revisable for real data, the

Item Response Theory has become a new paradigm in psychological testing. IRT has

stronger assumptions than CTT and therefore obtains stronger results. It is based on

the probability of a person´s answer to a certain item, which links the person´s score to

the latent trait. A short review of the history and mainly used IRT models will be given

in chapter 2.

For the early application of IRT to psychological testing, nowadays it can be regarded

as the psychometric method of choice for testing. Thus it is not only limited to psy-

chological subjects. Alagumalai, Curtis and Hungi (2005) as well as Bezruczko (2005)

stated, that IRT can also be adopted to applications in e.g. linguistic, economics or

health science.

One of the main features in IRT and one of the main topics of this work is the one pa-

rameter logistic IRT model, namely the Rasch model. It was proposed by Rasch in 1960.

7



Chapter 1. Introduction

The (0/1)–response from a person to a certain item is represented by a logistic function

which depends on the parameters for the person´s ability and the item difficulty. The

Rasch model has exceeding characteristics like specific objectivity, unidimensionality of

the trait or local independency. These properties as well as the main assumptions of the

Rasch Model including parameter estimation will be described in chapter 3.

An essential question in IRT and in Rasch modeling is the comparison between the em-

pirical data and the Rasch model. If the model fits the data in an appropriate manner,

the data can be expressed by the model and its parameters. Chapter 4 provides an

outline about mostly used goodness–of–fit tests for the Rasch model.

Three of these goodness–of–fit tests, namely the Andersen test, the parametric Boot-

strap test and the mixed–Rasch model test are analyzed in chapter 5. In a comprehensive

simulation study the performance of these three tests is investigated under Rasch model

conformity and different forms of Rasch model violations.

To relate to experiences in practical work, the nine subtests of the Intelligence–Structure–

Test (IST) 2000 R are tested in chapter 6 for goodness–of–fit to the Rasch model. The

IST 2000 R measures the extent to deductive reasoning and is one of the most applied

intelligence tests in Germany (Steck, 1997; Schorr, 1995).

Finally, a meaningful summary will be given in chapter 7 and some outlooks for further

studies are provided.

The simulation study written with the statistical software R is displayed in the appendix.

8



Chapter 2

Item Response Theory Models

Item Response Theory is an expansion and an improvement in psychological measure-

ment. In comparison with the former prevalent Classical Test Theory (CTT), this app-

roach improves and devises the features in modeling existing tests, constructing new

ones, applying tests to non–standard settings and interpreting the results of measure-

ments (Molenaar, 1995a).

The main idea behind IRT is the probability, that a person answers a certain item cor-

rectly. This probability can be expressed by means of the person´s position on the latent

trait, i.e. the ability of a person, plus one or two parameters defining the particular item.

The probability of a specific answer as a function of the latent trait is given by the Item

Characteristic Curve (ICC, van den Wollenberg, 1982) or also called Item Response

Function (IRF) and plays a major role in detecting and defining the properties of the

IRT model.

A short outline of the initial provided IRT models is given below. For an elaborate

overview as for a review of the transition from CTT to IRT refer to Fischer (1974),

Hambleton & Swaminathan (1985) and Baker (1992).

In this work it will only be related to dichotomous IRT Models. For information about

extensions to the dichotomous Rasch model refer to Fischer & Molenaar (1995).

2.1. The Initial IRT Models

The first IRT models were developed in the 1950s and are nowadays of little use, since

more sophisticated models have been developed. Nevertheless these models play an im-

portant role in the development of IRT models.

To outline the varieties of the following models, the Item Characteristic Curve, denoted

by ICC, will give an outstanding impression of the main model properties. The para-
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Chapter 2. Item Response Theory Models

meter for the latent dimension θ is displayed on the abscissa and the solving probability

according to the corresponding latent parameter P (θ) is indicated on the ordinate, re-

spectively.

The first IRT model was implemented by Guttman (1950) and is called perfect scale

model. As shown in figure (2.1), the ICC is a deterministic step curve, which is given

Figure 2.1.: ICC for Guttman´s perfect scale model

by the indicator function

P (θ) =

1 θ > θc

0 θ ≤ θc .
(2.1)

θc is the critical value on the latent scale from which a person answers a certain item

correctly.

It is obvious, that this model does not satisfy the user´s pretensions. A meaningful

conclusion can only be stated, if a person has θc as parameter value, otherwise no mean-

ingful statement about the latent trait position of the person can be made.

Thus a more stochastic model, namely the latent distance model, was provided by

Lazarsfeld in 1950. This model, displayed in figure (2.2), expands the deterministic

10



Chapter 2. Item Response Theory Models

ICC from Guttman to a stochastic ICC. Also here θc is the critical ability value for

Figure 2.2.: ICC for Lazarsfeld´s latent distance model

solving an item. However the possibility to solve a particular item with even low ability

parameter values is here defined by a probability Pl. On the other hand persons with

high ability parameter values can even fail to solve a certain item. This boundary is

given with the upper probability Ph.

Hence the indicator function for the latent distance model is denoted by

P (θ) =

Ph θ > θc

Pl θ ≤ θc .
(2.2)

However this easy indicator function is not useful for real data. The connection between

the person´s ability parameter and the solving probability is implausible to be described

by the latent distance model curve.

Due to these findings, Lazarsfeld (1959) stated, that the ICC can be seen as a linear

function.

The probability to solve an item is in that case proportional to the person´s position on

the latent trait. Therefore the corresponding ICCs are given by

P (θ) = P (Positive Response|θ) = c+ aθ . (2.3)

As it can be seen in figure (2.3) the resulting probabilities can possibly be beyond the

11



Chapter 2. Item Response Theory Models

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

latent dimension

so
lv

in
g 

pr
ob

ab
ili

ty

y=0.1+0.2*x
y=0.2+0.5*x

Figure 2.3.: ICCs for Lazarsfeld´s linear model

permitted domain for probabilities, i.e. negative probabilities or probabilities greater

than unity. The appearance of these inaccurate probabilities leads to the impracticality

of this model.

2.2. The Rasch Model

From a theoretical point of view, as well as from empirical studies (Rost, 2004), the only

reasonable curve to link the latent dimension to the solving probability is the logistic

function. The solving probability changes only insignificantly when items are very easy

or very difficult, whereas it increases almost linearly in conjunction with moderately

heavy items. The curve converges on the left hand side to 0 and on the right hand side

to 1.

For further comprehension some notations must be announced:

Xvi response of person v to item i

θv position on the latent trait for person v

βi item difficulty for item i

αi discrimination for item i

γi lower asymptote (guessing) for item i

12



Chapter 2. Item Response Theory Models

The simplest model with such a logistic ICC is the 1–parameter logistic model, namely

the Rasch model. The probability of solving an item is, as before, not only dependent on

the ability parameter θ, but also on the item difficulty parameter β. The dichotomous

response to an item is 0 by answering the item falsely and 1 for a correct answer. Thus

the basic equation for the Rasch model is given by

P (Xvi = 1|θv, βi) =
exp(θv − βi)

1 + exp(θv − βi)
. (2.4)

Figure (2.4) shows three typical curves for Rasch model data. The item difficulty pa-
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Figure 2.4.: ICCs for the Rasch model

rameter βi is displayed on the same scale as the person´s ability parameter θv, but is

not explicitly written down. The scale of θ and β is defined to have an interval scale

level. The ICCs can be shifted only horizontally due to differences in item difficulty,

i.e. an ICC shifted to the right stands for a heavier item. All items have the same

discrimination, which means the items differentiate equal between persons with variable

abilities.

A characteristic feature of the Rasch model is its parallel ICCs. Parallelism in this

context means non intersecting curves, whereas total parallelism is only reached in the

middle slope of the ICC. This feature is related to the Rasch model´s exceeding proper-

ties like specific objectivity, local independency or unidimensionality of the trait. Since

the Rasch model is one main part of this work, all assumptions as well as model prop-
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Chapter 2. Item Response Theory Models

erties are described in chapter 3, elaborately.

2.3. The 2–Parameter Logistic Model

By taking another parameter α into account the basic mathematical statement for the

2–parameter logistic model (2–PL model), implemented by Birnbaum (1968), is denoted

by

P (Xvi = 1|θv, βi, αi) =
exp(αi(θv − βi))

1 + exp(αi(θv − βi))
, (2.5)

where αi is the discrimination parameter for item differences. It is the slope of the

Item Characteristic Curves. As it can be seen from figure (2.5), the slope of the curves

increases with rising αi. That means, if an item discriminates quite good the slope of

the ICC is steeper, while a less discriminating item has a ICC which is flatter. One
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Figure 2.5.: ICCs for the 2–parameter logistic model

of the main properties of the Rasch model, i.e. that the ICCs are parallel, commonly

are not valid anymore. This can cause interpretation problems, when a person with a

higher ability fails to solve an item, whereas a person with a lower ability solves this

item. In this case the ICCs overlap. Hence the 2–PL model violates the assumptions for

the Rasch model and is therefore analysed in the simulation study in chapter 5.
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Chapter 2. Item Response Theory Models

2.4. The 3–Parameter Logistic Model

Birnbaum (1968) also implemented the 3–parameter logistic model (3–PL model) where,

similar to Lazarsfeld´s latent distance model, a probability is given for persons with lower

ability to solve an item. This effect is realized by the new defined lower asymptotic

parameter γ and is also called the guessing parameter. γ moves the logistic curve up to

the parameter value. Thus the model equation is given by

P (Xvi = 1|θv, βi, αi, γi) = γi + (1− γi)
exp(αi(θv − βi))

1 + exp(αi(θv − βi))
. (2.6)

Three typical ICCs for the 3–PL model are depicted in figure (2.6). Like the 2–PL model
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Figure 2.6.: ICCs for the 3–parameter logistic model

also the 3–PL model does not have parallel ICCs. Interpretation problems can arise here,

too. Thus the 3–PL model is also analysed in the simulation study in chapter 5 as a

Rasch model violation.

The Rasch model, the 2–PL and the 3–PL model are the most popular and most used

IRT models in practise. But there are still many possible variations of IRT models. For

further study refer e.g. to Embretson & Rice (2000) and Hullin et al. (1983).
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Chapter 3

Rasch Models

The Rasch model, as it is introduced in chapter 2, is the simplest Item Response The-

ory model, but has the strongest assumptions and properties of all the models. The

probability Xvi for solving an item is dependent on the ability parameter θv of a person

and the item difficulty parameter βi. The ability parameter θv stands for the position

of person v on the latent trait and the difficulty parameter βi denotes the difficulty of

item i. The outcomes Xvi of the responses to the items are in the dichotomous case 1

for a correct answer and 0 for a false one.

3.1. The Dichotomous Rasch Model

The connection between the person and the item parameter to the solving probability is

given in the dichotomous Rasch model by the logistic function. The basic equation for

the Rasch model is, as mentioned before, denoted by

P (Xvi = 1|θv, βi) =
exp(θv − βi)

1 + exp(θv − βi)
, (3.1)

or expressed differently by

P (Xvi|θv, βi) =
exp(xvi(θv − βi))
1 + exp(θv − βi)

. (3.2)

3.1.1. Rasch Model Assumptions

The Rasch model provides the strongest model assumptions of all IRT models, thus it is

a very powerful model for measurement. In the following the main model assumptions

will be described.
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Chapter 3. Rasch Models

Hambleton, Swaminathan & Rogers (1991) stated that there are three main assumptions

for IRT models. Below, these statements will be specialized to the Rasch model.

1. The items on a test are statistically independent of each other after taking a fixed

position of the latent trait into account

⇒ Local Independency.

2. A single latent trait is assumed to influence the item performance

⇒ Unidimensionality Of The Trait.

3. A mathematical function exists, that relates the probability of a person´s item–

answer to the latent trait measured by the item

⇒ (Parallel) ICCs.

1. Local Independency

One main assumption for the Rasch model is the local independency. Statistically

this is given by

P (X = (Xv1 = xv1, ..., Xvk = xvk)|θv) =
k∏
i=1

Pi(Xvi = xvi|θv) , (3.3)

where X is the vector of k responses Xvi for a given person v with ability para-

meter θv. Responses from different items are under the restriction of the person´s

fixed position on the latent trait independent from each other, thus the local in-

dependency is also called conditional independency for a fixed ability. If there are

correlations between responses, only variations in the latent trait will be the cause

of this correlation.

If equation (3.3) can be applied, then the items are indicators for the latent vari-

able.

It should be noted, that items can correlate in general, but local independency

implies that items are uncorrelated in subpopulations with similar abilities.

2. Unidimensionality Of The Trait

It is obvious in the context of the Rasch model that selected items measuring more

than one latent trait are senseless since a person´s answer to a certain item cannot

be linked to one latent trait.

Formally unidimensionality of the trait is stated by

P (Xvi = xvi|θv, y1, ..., yw) = P (Xvi = xvi|θv) , (3.4)

17



Chapter 3. Rasch Models

where y1, ..., yw are further variables which are not associated with xvi and θv.

Equation (3.4) declares that the variables y1, ..., yw provide no more information

to the probability for person v to solve item i. All knowledge is already given by

the dependence on the one latent trait.

Of course, in practise items often refer to more than one latent trait. However it

can be demonstrated, that the Rasch model can be applied in the case of sufficient

unidimensionality.

This assumption of dimensionality must be provided a priori, which can be achieved

e.g. with the help of a factor analysis. If the latter defined local independency is

given unidimensionality of the trait can be directly concluded. This coherence can

be applied also vice versa.

Both statements can be proved with the adoption of the Rasch model.

3. Parallel ICCs

The solving probability can be seen as a function of the item difficulty parameter

and the person´s ability parameter. As initiated in chapter 2, this connection is

displayed with the Item Characteristic Curve. In the case of the Rasch model this

context is provided by the logistic function.

Referring to figure (2.4), the solving probabilities increase with rising ability. Items,

which only differ in difficulty, can be recognized by the horizontal shifted curves.

All items have the same discrimination, therefore the ICCs are parallel and do not

cross. This graphical advice is a main assumption of the Rasch model.

Furthermore the point of inflection for every Rasch model ICC is given at the 0.5-

probability to solve an item. Hence this point can be treated as a threshold level

for item difficulty.

The latter described assumptions can also be seen as model properties, therefore the

Rasch model assumptions and the Rasch model properties merge.

3.1.2. Rasch Model Properties

Two further properties will expand the already explained postulates in respect to the

Rasch model.
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1. The Raw Score As A Sufficient Statistic

The unweighted raw score

rv =
k∑
i=1

xvi (3.5)

serves as a sufficient statistic for the ability parameter θv in the Rasch model. Not

the single ”0/1” entries need to be regarded but the raw score rv implies all infor-

mation about the ability parameter θv, thus it is not necessary to know which items

were solved from a certain person with ability θv. This aspect is the key point in

the conditional maximum likelihood parameter estimation, where the ability para-

meter is eliminated by conditioning due to this sufficiency (refer here to chapter

3.1.3).

2. Specific Objectivity

As mentioned in chapter 2.2, the person´s ability as well as the item difficulty

parameter lies on the same scale. This scale is defined to have an interval scale level.

Hence parameter values from the ability and difficulty are directly comparable. In

addition both, the person parameter values are comparable among each other and

the difficulty parameter values are comparable among each other, respectively.

This leads to the property of the specific objectivity (Rasch, 1960). Traub and Wolfe

(1981) declared, that the comparison of two items does not depend on which sample

of individuals is used to evaluate them, and the comparison of two individuals is

not dependent on which item set is used to test them. Statements about items can

be made without respecting the taken sample. On the other hand the person´s

ability can be expressed without regarding the reviewed items. Due to specific

objectivity, person and item parameters can also be estimated independently.

The raw score as a sufficient statistic–property as well as the specific objectivity–property

in the present case only refer to the Rasch model and not to any other IRT models. Thus

Fischer (1995) stated that the Rasch model plays a singular role within IRT and due to

its extraordinary properties is a popular model in applied psychological measurement.

3.1.3. Parameter Estimation

As mentioned in chapter 2.2 and chapter 3 there are two parameters denoting the Rasch

model, i.e. the person´s ability parameter θ and the item difficulty parameter β. For
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the application of the Rasch model these parameters must be estimated.

Parameter estimation in the Rasch model can be based on two different structures. The

first structure depends on the person parameter estimation, namely if they are

� estimated jointly with the item parameters

� eliminated by conditioning due to the raw score as a sufficient statistic

� integrated out by marginalization.

The other structural aspect depending on parameter estimation is the type of estimation

algorithm, which is used:

� maximum likelihood

� some other (heuristic) methods.

This work only refers to the conditional maximum likelihood (CML) method where the

ability parameter is eliminated by conditioning due to the sufficiency of the raw score.

In the following the CML approach is described elaborately. However a short explana-

tion about joint maximum likelihood (JML), marginal maximum likelihood (MML) and

other methods for item parameter estimation is provided.

1. Conditional Maximum Likelihood

Parameter estimation by conditional maximum likelihood (CML) was developed

by Andersen (1972,1973a). Based on specific objectivity, the ability parameter is

eliminated by conditioning, because the raw score rv, explained in section (3.1.2),

serves as a sufficient statistic for the ability parameter θv.

According to Molenaar (1995) some substitutions must be made. (Since the pa-

rameter ε, which is used in Molenaar (1995), stands in most statistical relations

for an error expression, a different substitution parameter φ is chosen.)

With the equations ξv = exp(θv) and φi = exp(−βi) follows

P (Xvi|θv, βi) =
exp(xvi(θv − βi))
1 + exp(θv − βi)

⇒ P (Xvi|ξv, φi) =
(ξvφi)

xvi

1 + ξvφi
. (3.6)

Hence the likelihood equation is given by the products over all persons and items

L(ξ, φ) =
N∏
v=1

k∏
i=1

P (Xvi) =
N∏
v=1

k∏
i=1

(ξvφi)
xvi

1 + ξvφi
. (3.7)
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With some transformations this equation changes to the conditional likelihood

Lc(φ|rv) =

(
N∏
v=1

γrv

)−1 k∏
i=1

φx.i
i , (3.8)

where x.i are the item raw scores and γrv the elementary symmetric function.

The elementary symmetric function γrv is related to the sum of all products of the

response patterns with raw score rv

γrv(φ) =
∑

x1,...,xk|rv

k∏
i=1

φxi
i . (3.9)

To illustrate equation (3.9) some results are given by

γ0 = 1 , (3.10)

γ1 = φ1 + φ2 + φ3 + ...+ φk ,

γ2 = φ1φ2 + φ1φ3 + ...+ φk−1φk ,

...

γk = φ1φ2...φk .

As it can be seen in equation (3.8) the conditional likelihood is no longer dependent

on the ability parameter θ or its substitution ξ.

In order to maximize the conditional likelihood Lc, the logarithmic version thereof

as a monotonous transformation is used, because derivations are calculated easier,

but the results remain the same. By evaluating all derivations with respect to φi

and setting them equal to 0, the maximum likelihood estimator, which maximizes

Lc is computed. The derivations of the symmetric function are calculated by

∂γrv(φ)

∂φi
= γ(i)

rv−1
, (3.11)

where γrv−1 is the elementary symmetric function of row sum rv−1 with φ/φi.

With some algebraic transformations the following equation emerges from the

maximization step

x.i −
N∑
v=1

φiγ
(i)
rv−1

γrv
= 0 , (3.12)
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for i = 1, ..., k. The second order derivation of Lc with γ
(i,j)
rv−2 proves the statement

about the maximum.

Equation (3.12) must be solved iteratively. Thereby two problems can arise:

a) the evaluation of the elementary symmetric function

b) a slow convergence rate.

In this work the elementary functions are calculated by an algorithm described by

Fischer (1974). It is based on the two following equations

γrv = φiγ
(i)
rv−1

+ γ(i)
rv (3.13)

rvγrv =
k∑
i=1

φiγ
(i)
rv−1

. (3.14)

The elementary symmetric functions can easily be computed recursively. For other

appropriate solving methods refer e.g. to Formann (1986), Fischer and Ponocny

(1994) and Liou (1994).

Molenaar (1995) stated that nowadays the second problem with a slow convergence

rate appears only with complex data sets like very long tests, complicated patterns

with incomplete observations and very uncommon parameter configurations.

It should be noted that extreme response patterns like only 0–answers and only

1–answers do not contain any information for the CML estimation and therefore

are excluded.

CML estimates are asymptotically consistent for n→∞ (Pfanzagl, 1994).

2. Joint Maximum Likelihood

The joint maximum likelihood (JML) parameter estimation method refers to the

statement, that marginals are sufficient statistics for the model parameters, i.e.

the item raw score, denoted as x.i, is a sufficient statistic for the item difficulty

parameter βi and the person raw score, denoted as rv, is a sufficient statistic for

the person´s ability parameter θv. Under these constraints the likelihood from

equation (3.7) changes to

L(θ, β) =

(∏N
v=1 exp(rvθv)

)(∏k
i=1 exp(−x.iβi)

)
∏N

v=1

∏k
i=1(1 + exp(θv − βi))

. (3.15)

With the likelihood formula (3.15) the person parameter θ and the item parameter
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β can be estimated concurrently.

The JML estimation procedure provides inconsistent estimates (Andersen, 1971

and 1973a; Haberman, 1977) and are therefore adaptive only for a large number

of items.

3. Marginal Maximum Likelihood

Under the marginal maximum likelihood (MML) estimation procedure (Glas, 1989)

the person parameter θ is integrated out. Thus the likelihood for MML estimation

is given by

L(G, β) =
N∏
v=1

(∫ ∞
−∞

k∏
i=1

exp(xvi(θv − βi))
1 + exp(θv − βi)

dG(θv)

)
, (3.16)

where G(θv) is the cumulative distribution function of the person parameter θv.

Thus the person parameters from the observed individuals are a random sample

from G(θv) (Molenaar, 1995). MML requires a postulation of the distribution for

the latent trait. If this postulate is wrong, the resulting MML estimates can be

inconsistent.

Also with MML persons with perfect score and zero–scores can be included in the

estimation procedure. Although these persons do not have any information for the

estimation of the item parameters, they contribute to find the right distribution

G(θv).

4. Other Heuristic Methods

There are some heuristic methods for estimating the Rasch model parameters that

do not depend on maximum likelihood. These methods do not provide an asymp-

totic standard error, but mostly they are much easier to compute.

Methods like Logistic Regression With Iteratively Reweighed Least Squares (Ver-

helst and Molenaar, 1988), Explicit Method, Symmetrizing and Minchi (Fischer,

1974) should be mentioned here.

In the following, a short survey about person parameter estimation is provided. Accord-

ing to Hoijtink and Boomsma (1995) four different types of estimation exist: maximum

likelihood estimation (MLE), Bayes modal estimation (BME), weighted likelihood esti-

mation (WLE) and Bayes expected a posteriori estimation (EAP). All methods despite

the maximum likelihood estimation are related to the probably unknown and therefore
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only assumed distribution of the person parameter θ. Thus just this estimation is ex-

plained in the following (for the rest refer to Hoijtink and Boomsma, 1995).

Assuming the item parameter to be known, e.g. estimated by the CML approach, then

the maximum likelihood estimator of θ is calculated by

∂log
(∏N

v=1

∏k
i=1

exp(xvi(θv−βi))
1+exp(θv−βi)

)
∂θ

= 0 . (3.17)

In equation (3.17) the logarithmised likelihood equation from (3.7) is differentiated with

respect to θ and the resulting term is set equal to 0. After some transformations the

proximate equation holds

rv =
k∑
i=1

exp(θv − βi)
1 + exp(θv − βi)

. (3.18)

With the aid of expression (3.18), the person parameter will be estimated iteratively

(Fischer, 1974).

To conclude this section about parameter estimation, the CML method for item param-

eter estimation is recommended. Since JML provides inconsistent estimates, MML must

find the right distribution for θ and other methods do not establish a standard error, the

CML estimation yield for asymptotic efficient item parameter estimates in an acceptable

computational time.

For person parameter estimation the maximum likelihood method is suggested for the

same reasons.

3.2. The Dichotomous Mixed–Rasch Model

The mixed–Rasch model, provided by Rost (1988), is a remarkable possibility of com-

bining Rasch and latent class analysis models. It stated that the Rasch model holds

within subgroups but not for the entire population. Statements about differences within

subgroups have a quantitative character, whereas statements between classes only have

qualitative features.

Testing the fit of the ordinary Rasch model by the usage of the mixed–Rasch model could

become one of its main applications. Therefore in the simulation study in chapter 5 the

goodness–of–fit for the Rasch model is also tested with the help of the mixed–Rasch

model (for theory refer to chapter 4.6). Since for this test the parameter estimations

for the mixed–Rasch model parameters are needed, a short overview is given in section
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(3.2.2).

3.2.1. Mixed–Rasch Model Properties

In mixture distribution models the probability function for an observed variable X is

described by a number of conditional probability distribution functions. The condition,

which the functions are referred to, is a mixing variable. In the context of mixed–

Rasch models the mixing variable is the latent trait, expressed by the continuous person

parameter θ. Hence the probability function of X is denoted by

P (X = x) =
C∑
c=1

πcP (X = x|c) , (3.19)

where πc is the class size parameter and P (X = x|c) is given by

P (X = x|c) =

∫ ∞
−∞

k∏
i=1

exp(xi(θc + βic))

1 + exp(θc + βic)
dFc(θc) . (3.20)

Like in the CML procedure (for CML estimation refer to section (3.1.3)), the latent trait

parameters θc are eliminated by conditioning due to the sufficient statistic r for each

class c. With the introduction of the elementary function (explained in section (3.1.3))

γrc for class c and the conditional score probability P (r|c) = πr|c, the equation (3.20)

changes to

P (X = x|c) = πr|c
exp(

∑k
i=1 xiβic)

γrc(exp(βc))
. (3.21)

This function is called the mixed–Rasch model with its three parameters, in particular

the class size πc, the latent score probabilities πr|c and the item parameters βic for each

class. For parameter normalization conditions refer to Rost and von Davier (1995).

By multiplying over all outcomes of X the likelihood is described as

L(πc, πr|c, βic) =
∏
x

(∑
c

πcπr|c
exp(

∑k
i=1 xiβic)

γrc(exp(βc))

)n(x)

, (3.22)

where n(x) denotes the observed number of response patterns x.

It should be noted that the number of classes is not a model parameter but it has to

be provided a priori. By comparing the fit of different class sizes the right number of
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classes can be estimated.

3.2.2. Parameter Estimation

The mixed–Rasch model parameters πc, πr|c and βic can not be estimated directly.

Dempster, Laird and Rubin (1977) provided an EM–algorithm to estimate such model

structures. With this background Rost (1990) implemented an EM–algorithm especially

for the mixed–Rasch model.

Within this procedure there are two steps, the Estimation–step (E–step) and the Maxi-

mization–step (M–step). The Estimation–step calculates expected pattern frequencies

for each latent class c referring to preliminary estimates (in the first iteration starting

values) of the model parameters

n̂(x, c) = n(x)
πcP (x|c)∑C
c=1 πcP (x|c)

, (3.23)

where n(x) is the number of expected frequencies of vector X = x and n̂(x, c) is an

estimate out of it for class c. P (x|c) is given by equation (3.21).

The Maximization–step is done by conditional maximum likelihood estimation of the

item parameter based on the expected pattern frequencies demonstrated in equation

(3.23) within each class. This is done in order to obtain better estimates of πc, πr|c and

βic.

The ML–estimates are calculated by maximizing the log–likelihood for each latent class

c

lnLc =
∑
x

n̂(x, c)

[
lnπr|c +

k∑
i=1

xiβic − ln[γr(exp(βc))]

]
. (3.24)

Setting the first derivations of equation (3.24) with respect to βic to 0, the ML-estimator

results for class c

β̂ic = ln
nic∑k

r=0mrcγ
(i)
r−1/γr

. (3.25)

nic stands for preliminary estimates for the number of persons with response 1 on item i

in class c. mrc is the estimate for the number of persons with score r in class c. The two

parameters were both computed with n̂(x, c), provided by the E–step. The elementary
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symmetric function with score r − 1 and without item i is denoted by γ
(i)
r−1.

The score probability πr|c and the class size parameter πc can then be estimated by

π̂r|c =
mrc

nc
(3.26)

π̂c =
nc
N

, (3.27)

where nc is the number of persons in class c, also calculated with n̂(x, c), given by the

E–step.

The latent trait parameter for each class θc can then, if required, be estimated analo-

gously to the person parameter θ in the Rasch model in section (3.1.3).

As with CML estimation perfect and zero responses are also excluded, since they can not

be assigned to a certain class and do not contain any information about the class–specific

item parameters.
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Chapter 4

Goodness–Of–Fit Tests For The Rasch Model

Since the development of the Rasch model (Rasch, 1960) many goodness–of–fit proce-

dures have been designed to test the fit of the data with the Rasch model.

The null hypothesis in each test is the assumed application of the estimated Rasch

model, whereas the alternative hypothesis is the rejection of the Rasch model to a level

of significance at 5%, respectively.

H0 : Adoption of the Rasch model H1 : Rejection of the Rasch model (4.1)

It should be noted, that the effect of rejecting the Rasch model is severer than reject-

ing a classical statistic model (Mair, 2006). More precisely when rejecting a statistical

model, a more general model with more parameters can be chosen. By refusing the

Rasch model, the principal assumptions of the Rasch model, e.g. specific objectivity, do

not hold anymore. Hence the application of the Rasch model is no longer acceptable.

Of course, a more parametric model such as the 2–PL Birnbaum model can be applied,

but the main properties of the Rasch model are lost. Therefore the Rasch model is still

a model with high scientific claims.

There are different approaches to arrange a taxonomy of tests for model fit (Glas &

Verhelst, 1995). One taxonomy refers to the assumptions and properties of the model

to be tested. Dissimilar forms of model violations, like non–parallel item characteristic

curves, no unidimensionality or no local independency can be detected with these tests.

There is no possibility to separate these assumptions to detect the corresponding viola-

tions. Hence the tests often have power for violations of more than one assumption.

The second taxonomy relates to the mathematical sophistication of the procedure, par-

ticularly to the knowledge of the distribution of the test statistic. From this point of

view the tests can be divided into two classes. In the first class the distribution of the
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test statistic is (asymptotic) known, whereas in the other class the distribution must be

approximated.

The third taxonomy relies on the type of statistic which is used. This grouping form

relates to the same classification as in discrete statistical models. The main focus here

is the type of family, which the test statistic belongs to. This taxonomy is chosen in this

work, because it follows the typical statistical partitioning scheme. The main global test

procedures for model fit will be presented in the following sections.

4.1. Pearson-Type Tests

All these tests follow the formula

χ2 =
∑ (o− e)2

e
, (4.2)

where o represents the observed frequencies and e the expected frequencies. This test

statistic is asymptotically χ2–distributed. Since often the expected frequencies are very

low, the asymptotic to a χ2–distribution can be doubted (for further considerations refer

to section (4.5)).

4.1.1. Martin–Löf Test

The Martin–Löf test is sensitive to the violation of strictly monotonically increasing and

parallel ICCs.

Let nir be the observed frequency of correct answers to item i for those persons who have

r correct answers. With the background of CML estimation the conditional probability

that a person answers item i with raw score r correctly is

βiγ
(i)
r−1

γr
, (4.3)

where β = (β1, ..., βk) is the vector of item parameters. γr represents the elementary

symmetric function according to the raw score r and γ
(i)
r−1 the first derivative of the

symmetric function to the raw score r with respect to each item without item i (for

more detailed information about the CML estimation refer to chapter 3.1.3). Therefore,

if the model fits the data the following equation holds

nir ≈ nr
βiγ

(i)
r−1

γr
, (4.4)
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where nr denotes the number of persons with r correct answers.

From this approximation a χ2–sum is generated with the deviations of observed and

predicted frequencies.

Let qTr = (n1r, n2r, ..., nkr) be the corresponding vector of observed frequencies over all k

items and tTr = (nr
β1γ

(1)
r−1

γr
, nr

β2γ
(2)
r−1

γr
, ..., nr

βkγ
(k)
r−1

γr
) be the vector of the expected frequencies.

Then the χ2 test statistic is

T =
k−1∑
r=1

(qr − tr)TV −1
r (qr − tr) , (4.5)

where Vr is a k × k variance–covariance matrix with the following elements:

nr
βiγ

(i)
r−1

γr
, for i = j

nr
βiβjγ

(ij)
r−2

γr
, for i 6= j .

T is asymptotically χ2–distributed with (k − 1)(k − 2) degrees of freedom. The null

hypothesis, i.e. that the Rasch model holds, has to be rejected to a level of significance

for 5% when T > χ2
1−α with df = (k − 1)(k − 2). The parameter α stands for the level

of significance.

Glas (1981 (not in Bibliography, because in Dutch language), 1988) designed the R1c–

test and showed that the Martin–Löf test is equivalent to it (Glas, 1981). For this reason

T was transformed to R1c, because the R1c–test fits into the framework of generalized

Pearson statistics. This leads to a variety of applications in which the test can be used.

In section (4.1.3) this R1c–test will be explained.

4.1.2. Q1–Test

TheQ1–test was developed by van den Wollenberg (1979). It is also sensitive to violations

of strictly monotonically increasing and parallel ICCs.

For this test, as well as for the three following tests, a stochastic variable M1gi is defined

with its realization m1gi. This realization is the count of persons belonging to score g

and giving a right response to item i. Given k items, there are k − 1 score groups.

Let E(M1gi|ω̂, β̂) be the CML expected value of this variable. This is the expected value

given the frequency distribution of the persons sum scores ω̂ and the CML estimates of

the item parameters β̂.
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The test is based on the first–order frequencies, namely the deviation of the observed

and expected frequencies.

d∗1gi = m1gi − E(M1gi|ω̂, β̂) (4.6)

To obtain the test statistic of the Q1–test these differences are divided by their estimated

standard deviation and become a standardized binomial variable z1gi. Therefore the test

statistic is given by

Q1 =
k − 1

k

k∑
i=1

G∑
g=1

z2
1gi , (4.7)

for item i. This statistic is asymptotically χ2–distributed with (G− 1)(k− 1) degrees of

freedom. The null hypothesis will be rejected if Q1 > χ2
1−α with df = (G− 1)(k − 1).

4.1.3. R1–Test

The R1–test is also based on first–order frequencies, but additionally takes the covariance

of the deviations into account. As with the latter tests, this test is sensitive to non-

parallel ICCs (Glas, 1988).

Depending on the type of parameter estimation two tests have been proposed. The R1c–

test relates to CML estimation and the R1m–test is based on MML estimation. Because

this work only relies on CML estimation refer to Glas and Verhelst (1995) for full details

of the R1m–test.

If the single deviations in (4.6) are dependent over all items i, the χ2–distribution can

be doubted. Therefore Glas (1988) developed this test and included the covariance

structure into the test statistic.

Let d1g be the vector of elements d1gi = d∗1gi/
√
n, where n equals the sample size.

Further let W1g be the corresponding estimated variance–covariance matrix. Then the

test statistic is denoted by

R1c =
G∑
g=1

dT
1gW

−
1gd1g . (4.8)

The regularity of W is not always guaranteed, so it is proposed to use the generalized

inverse W− (Glas and Verhelst, 1995).

The R1c–test statistic is asymptotically χ2–distributed with (G − 1)(k − 1) degrees of
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freedom and again, the null hypothesis is rejected if R1c > χ2
1−α with df = (G−1)(k−1).

4.1.4. Item-Oriented Tests Ui, Si

The tests presented here are based on the same differences as the tests before, but ex-

plicitly focus on specific items. As mentioned in section (4.1.2) the variable z1gi is a

standardized binomial variable. These scaled differences can be used as a diagnostic tool

for analysing variations in item discrimination.

Molenaar (1983) developed a statistic where the outcome signals whether the discrim-

ination of the item is too high or too low. Let c1 and c2 denote cut-off points which

divide the score into a low, middle and high area. These boundaries are usually chosen

in such a way, that each summation over them includes 25% of the persons sampled, i.e.

the low as well as the high area contains 25 % of the individuals.

Then the test statistic is given by

Ui =

∑c1
g=1 z1gi −

∑k−1
g=c2

z1gi

(c1 + k − c2)1/2
. (4.9)

Ui is approximately standard normal distributed and the null hypothesis, namely that

the item is Rasch conform, is rejected if Ui > z1−α. Ui is only approximately normal

distributed because the values of z1gi rely on parameter estimates and are therefore not

independent.

This test has also been transformed into the framework of generalized Pearson tests

(Verhelst and Eggen, 1989 (not in Bibliography because of Dutch language); Verhelst,

Glas and Verstralen, 1994). The differences d1gi are squared and scaled by a variance–

covariance matrix. This results in a statistic with a χ2–distribution with 1 degree of

freedom.

The last test statistic based on a specific item is Si (Verhelst and Eggen, 1989; Verhelst,

Glas and Vestralen, 1994, Glas and Verhelst, 1995). It relies on the same deviations

between observed and expected responses in homogeneous score groups as the R1c-test,

but operates on item level. The test has like the Ui statistic power for differences in item

discrimination.

Denote di as the vector of the elements d1gi. Thus the test statistic is given by parti-

tioning every score level into equivalent classes and computing the difference between

the observed and expected number of correct responses to an item i.

Si = dT
i W

−
i di (4.10)
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Si is asymptotically χ2–distributed with (G − 1) degrees of freedom. Again the null

hypothesis is rejected if Si > χ2
1−α with df = (G− 1).

4.1.5. Q2–Test

The Q2–test as well as the previously described R2–test (section (4.1.6)) are sensitive to

violations of unidimensionality and stochastic independence assumption. Under unidi-

mensionality and fix conditions of one person´s position on one latent trait the associa-

tion between the items must disappear. If this is not the case a second dimension can

play a role in the questionnaire. Therefore tests for unidimensionality must rely on the

association between items. The Q2–test as well as the R2–test are therefore based on

second–order statistics.

Again a stochastic variable M2gij is defined. Its realization m2gij is the number of correct

answers to items i and j in the subsample g. The CML expected value is denoted by

E(M2gij|ω̂, β̂). Thus

d2gij = m2gij − E(M2gij|ω̂, β̂) . (4.11)

The standardized variable z2gij is computed by dividing the latter differences by their

standard deviations. The test statistic is denoted by

Q2 =
k − 3

k − 1

k−1∑
i=1

k∑
j=i+1

G∑
g=1

z2
2gij . (4.12)

Estimating the item parameter in each subgroup yields to a good approximation of a

χ2–distribution. In this cases van den Wollenberg (1982) showed, that Q2 approximates

a χ2–distribution with df = Gk(k − 3)/2 degrees of freedom. If Q2 > χ2
1−α with df =

Gk(k − 3)/2, the null hypothesis must be rejected.

4.1.6. R2–Test

As mentioned before the R2–test is also sensitive for violations of unidimensionality and

stochastic independence.

Also the R2–test can be constructed under different forms of parameter estimation. The

R2c–test belonging to CML parameter estimation will be explained in the following. For

the R2m–test related to MML estimation refer again to Glas and Verhelst (1995).

Based on second-order statistics this test belongs not to a partition of the sample into
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subsamples but to the covariance between the following differences

d∗2ij = m2ij − E(M2ij|ω̂, β̂) . (4.13)

m2ij denotes the number of persons who answered both items i and j correct. Further

let d2 be the vector of elements d2ij = d∗2ij/
√
n and W−1

2 be the inverse of the estimated

covariance matrix from the differences of all pairs of items. Then the test statistic is

given by

R2c = dT
2W

−1
2 d2 + dT

1W
−1
1 d1 . (4.14)

To simplify the derivation of the distribution of this statistic the quadratic form of

persons getting only one item correct, namely dT
1W

−1
1 d1, is also taken into account.

R2c is asymptotically χ2–distributed with k(k − 1)/2 degrees of freedom. The null

hypothesis will be rejected if R2c > χ2
1−α with df = k(k − 1)/2.

4.2. Likelihood Ratio Tests

The principle of the likelihood ratio test, denoted by LR, is to analyse the ratio between

a full model and a reduced model.

LR =
L(β̂0; y)

L(β̂1; y)
(4.15)

β̂0 implies the ML estimator of the full model, whereas β̂1 is the ML estimator of the

reduced model. The corresponding values of the likelihood function are represented by

L(β̂0; y) and L(β̂1; y), respectively.

As in chapter 3.8 with the CML estimation also here, the logarithmic version as a

monotonous transformation of LR is used normally. Then the ratio becomes a deviation

and the asymptotic distribution of the LR statistic is a χ2–distribution, while all other

properties of the LR term remain the same.

In the following, the Andersen LR test and the Martin Löf LR test will be explained.

Both tests belong to the CML context.
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4.2.1. Andersen LR Test

The Andersen likelihood ratio test is based on the main property of the Rasch model,

the specific objectivity. Statements about persons and items can be made independently

from the drawn sample. This test is the most commonly used test and is available in

most Rasch softwares.

The data is divided into subgroups. The splitting criterion can be formed on the basis

of score levels or on the basis of external criteria.

The conditional likelihood for each subgroup and for the whole data is generated. Ac-

cording to specific objectivity, the ML estimator for the subgroups must not differ (apart

from some random deviances) from the ML estimator for the whole data, i.e. the esti-

mated item parameter β̂ for the whole sample X remains constant in the estimated item

parameter β̂g for the subsamples Xg

β̂ = β̂1 = β̂2 = ... = β̂G . (4.16)

Andersen (1973b) proposed a splitting criterion according to raw scores into two sub-

groups. Thus the one subgroup contains persons with higher scores and the other sub-

group consists of lower capable individuals. But on that account different splitting

criterions like gender or the division after the mixed–Rasch model (section (4.6)) can be

used as well.

Thus the test statistic is given by

LR = 2

(
G∑
g=1

lnLc(β̂g;Xg)− lnLc(β̂;X)

)
, (4.17)

LR is asymptotically χ2–distributed. The degrees of freedom are equal to the number

of parameters estimated in the subgroups minus the number of parameters estimated in

the Rasch model, i.e. df = G(k−1)− (k−1) = (G−1)(k−1). Thus the null hypothesis

will be rejected if LR > χ2
1−α–distribution with df = (G− 1)(k − 1).

Andersen (1973b) stated that this test is sensitive to violations of the property from

parameter invariance and of the property from parallel ICCs. A simulation study from

van den Wollenberg (1979) confirms this statement. Mead (1976) and Gustaffson (1977)

analysed the sample size, besides Gustaffson (1980) showed that the LR-test has power

for violations based on the 2–PL and the 3–PL models.

With the simulation study in chapter 5 of this work, the Andersen LR test will be
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analysed in detail.

4.2.2. Martin Löf LR Test

Although Martin Löf´s LR test (1973, not in Bibliography, because in Swedish language)

was constructed to test whether two sets of items form a Rasch scale, it can also be seen

as a test for the assumption of unidimensionality.

The items are split into two subsets of k1 and k2 items, where k1 + k2 = k.

r = (r1, r2)
′ with r1 = 0, ..., k1 and r2 = 0, ..., k2 denotes the score patterns of the

two subsets and nr the number of persons obtaining score pattern r. r stands for the

total sum score of a person´s response pattern, thus r = r1 + r2. In comparison to

the other already mentioned χ2 tests, the division into subgroups under the alternative

hypothesis does not follow only one but two latent dimensions, i.e. one persons total

score r represents a subscore r1 on the one latent variable and a subscore r2 on the other

latent variable. Hence, this test is also sensitive to the violation of unidimensionality

but only as far as it is dependent on the chosen item grouping.

The test statistic for the Martin Löf LR test is given by

LR = 2

(∑
r

nrln
(nr
N

)
−
∑
r

nrln
(nr
N

)
− lnLc + lnL(1)

c + lnL(2)
c

)
. (4.18)

Lc, L
(1)
c and L

(2)
c are the likelihood functions calculated by using CML estimates in

the complete case, the first subgroup, and the second subgroup, accordingly. Equation

(4.18) is under the null hypothesis, i.e. the items construct a Rasch scale, asymptotically

χ2–distributed with k1k2 − 1 degrees of freedom.

The first two sums in equation (4.18) are needed because Lc is conditioned on the

frequency distribution of scores on the complete test, while L
(1)
c and L

(2)
c are only con-

ditioned on the frequency distribution of the scores on the subtests.

The null hypothesis will be rejected if LR > χ2
1−α with df = k1k2 − 1.

4.3. Wald–Type Tests

Wald–type tests have a lot in common with the Likelihood Ratio tests explained in sec-

tion (4.2). With defining a general model it is tested whether a certain restriction holds.

This means in the context of Rasch models that parameter estimates of two meaningful

sample subgroups are compared. This section will only refer to two subgroups, but the
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generalization to more subgroups is straightforward.

Like the Likelihood Ratio tests also Wald–type tests are sensitive to violations of the

property of invariance of parameters and the property of parallel ICCs.

Let βg = (βg1, ..., βgm)T , g = 1, 2, be the model parameters for the g–th subgroup and m

the number of free parameters. In the context of CML estimation m = k− 1. Note that

the parameter for the k–th item is set to zero and the parameters βg1, ..., βg,k−1 are the

difficulty parameters of the items 1 to (k − 1) in subgroup g, respectively.

Let βT = (βT1 , β
T
2 ). Thus the null hypothesis, i.e. that the Rasch Model holds, can be

stated as

hj(β) = β1j − β2j = 0, j = 1, ...q . (4.19)

Therefore, the whole restriction vector is denoted by h(β)T = (h1(β), ..., hq(β)). Let

Σg, g = 1, 2, be the corresponding variance–covariance matrix of the ML estimator of βg.

If the responses between the two subgroups are independent, the variance–covariance

matrix will be given by

Σ =

(
Σ1 0

0 Σ2

)
. (4.20)

Let T (β) be the 2m×q matrix [tgi] of the partial derivations of hj(β) regarding βg. More

precisely tgi is given by

tgi =
∂hj(β)

∂βg
. (4.21)

Then the Wald test statistic is denoted by the quadratic form

W = hT (β̂)[T T (β̂)ΣT (β̂)]−1h(β̂) . (4.22)

The test statistic is asymptotically χ2–distributed with q degrees of freedom. In the

Rasch context with CML estimation and two subgroups the degrees of freedom are

df = k − 1.

Glas and Verhelst (1995) stated that one should be careful with interpreting the differ-

ences between groups of item parameter estimates. The origin and unit which are chosen

for the scale in the two subgroups must be equal, otherwise an interpretation is sense-

less. Hence it is necessary to implement some restrictions, which are, unlike in equation
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(4.19) independent from the chosen normalization in both subgroups. One possibility to

achieve this is, that the restrictions are functions of the differences between a particular

item parameter estimate and the estimates of the other item parameters, e.g.

h1i =
∑
j 6=i

(
β̂1i − β̂1j

)
−
∑
j 6=i

(
β̂2i − β̂2j

)
= 0 , (i = 1, ..., k) . (4.23)

Because these sums can be both positive and negative and therefore some terms might

be canceled, a further restriction is needed:

h2i =
∑
j 6=i

(
β̂1i − β̂1j

)2

−
∑
j 6=i

(
β̂2i − β̂2j

)2

= 0 , (i = 1, ..., k) . (4.24)

If the scale is chosen that the sum of the parameters is zero, the terms (4.23) and (4.24)

will be reduced to

h1i = 2(β̂1i − β̂2i) = 0 , (4.25)

and

h2i =

(
kβ̂2

1i +
∑
j

β̂2
1j

)
−

(
kβ̂2

2i +
∑
j

β̂2
2j

)
= 0 , (4.26)

for i = 1, ..., k, respectively. Relating to these results, one can see that the test will

be sensitive to differences in the variance to item parameter estimates as well as to the

square thereof. To adjust equation (4.25) in the general framework of Wald type tests,

the test statistic W1i is denoted by

W1i =
(β̂1i − β̂2i)

2

σ2
1i + σ2

2i

, (4.27)

where σ1i and σ2i represent the i–th diagonal element of the variance–covariance matrix of

a solution normalized to a zero sum in both groups. W1i is asymptotically χ2–distributed

with 1 degree of freedom.

According to equation (4.27) also the second term, stated in (4.26), can be transformed

into the general expression for the Wald statistic. Thus W2i is then given by

W2i =
h2

2i

tT1 Σ1t1 + tT2 Σ2t2
, (4.28)
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where tg, g=1,2 is the k–dimensional vector with

tgi = 2(1 + δijk)βgj , (4.29)

and δij stands for the Kronecker symbol.

4.4. Nonparametric Tests

Almost all of the available goodness–of–fit tests are based on parameter estimation and

asymptotic distribution assumptions, mostly the χ2–distribution. These tests need large

calibration samples for the parameter estimation. To avoid this, some exact nonpara-

metric tests were implemented which do not refer to any asymptotics or parameter

estimation.

The first nonparametric approach was presented by Rasch (1960). It is based on the

same statement as the CML estimation, namely that the marginal sums from a data

matrix X, i.e. the row and column sums, are sufficient statistics of X. This means the

probability of X does not depend on the single 0/1 elements from X, but only on their

given marginals.

If the Rasch model holds, all data matrices X with the same marginals as the observed

one are equally likely. Formally, the conditional distribution of X given the marginal

sums is uniform:

P (X = x|Xi+ = xi+, X+j = x+j for i, j = 1, ..., g) =
1

N((xi+), (x+j))
, (4.30)

where xi+ are the row sums, x+j are the column sums and N((xi+), (x+j)) is the number

of all data matrices X with the same marginals. Sampling from this conditional distri-

bution one can approximate the distribution of the null hypothesis of any unknown test

statistic from the data matrix X and thus construct a nonparametric test of the Rasch

model (Besag & Clifford, 1989).

Unfortunately, in respect to computational efficiency no algorithm has been found so far

to create all possible data matrices with the same marginals. However some procedures

for sampling from the sample space in a nonuniform way have been implemented and

algorithms for correcting the distribution from the deviance to uniformity have been

presented.

These procedures can be divided into two classes. The one class samples matrices

independent from a nonuniform distribution with the help of ”importance sampling”
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(Snijders, 1991; Chen et al., 2005; Chen & Small, 2005).

Snijders (1991) suggested to generate data matrices from a proposal distribution differing

from the desired uniform distribution and then load these matrices with an importance

weight. Any test statistic under the uniform distribution can then be generated with this

weighted average. Since it is not easy to find an appropriate proposal distribution, espe-

cially for high-dimensional problems such as sampling 0/1 matrices with given marginals,

Snijder (1991) and Chen & Small (2005) use ”sequential importance sampling”, in which

the generation of the data matrices are made column by column. Proposal distributions

for every column can then be found without emerging problems.

Chen & Small (2005) improved this algorithm to make it faster and to achieve the Monte

Carlo standard error in such a way that the user can choose the number of simulations.

The other class is based on Markov Chain Monte Carlo (MCMC) applications, in which

the data matrices in the sample space are regarded as states. The transition probabilities

from one state to another are given by the sampling scheme. Under specific conditions

the distribution of various states converges to a stationary distribution. To get close to

this stationary distribution a burn–in phase is needed, i.e. a series of sampled matrices,

which are dropped before the point when the stationary distribution is reached. However

the sampled matrices are not independent.

These methods have been studied by Connor and Simberloff (1979), Besag and Clifford

(1989), Roberts and Stone (1990), Rao et al. (1996), Ponocny (2001) and recently by

Verhelst (2008).

Ponocny (2001) uses a variation of the MCMC algorithm. According to the Markov

Chain he generated 0/1 matrices, but the stationary distribution is not uniform. By

taking a weighted average of the samples from the Markov chain he achieves a consis-

tent estimate of the p–value of any test statistic. But the generation of these weights

takes a long time.

Recently, Verhelst (2008) proposed an MCMC algorithm, which is much faster than the

existing ones and can be used for larger matrices. Also in this case the stationary dis-

tribution is not uniform. Like in Ponocny´s method (2001) the importance sampling

algorithm is used, where the stationary distribution gets nearly uniform. In addition a

Metropolis–Hastings algorithm is used to get the stationary distribution uniform.
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4.5. The Parametric Bootstrap

Most of the goodness–of–fit test statistics for the Rasch model are based on a asymptotic

χ2–distribution. But some assumptions must suite to confirm the use of this distribu-

tion.

The number of items as well as the number of response categories, in the dichotomous

Rasch model i.e. two categories, define the number of all possible response patterns in a

model for categorical data. Even if there are large sample sizes, the number of possible

response patterns will easily exceed the number of observed response patterns. Thus

most of the observed frequencies in the contingency table will be zero. The table is

denoted to be sparse (Agresti & Yang, 1986).

To support this statement the rule of thumb of a minimum expected frequency is denoted

by MINx(E(x)) ≥ 5. Even simplified practice rules of thumb (Read & Cressie, 1988)

like MINx(E(x)) ≥ 1 are far too high for the sparse data. Since many of the possible

response patterns are not observed and therefore also the expected frequencies are very

small, the asymptotic for a χ2–distribution is not given, thus the distribution of the test

statistic under the null hypothesis is unknown.

4.5.1. The Bootstrap Draft

A good solution to this problem is to use the parametric Bootstrap (Efron, 1979 & 1982)

for goodness–of–fit testing (Bollen & Stine 1993; Langeheine et al., 1996; von Davier,

1997; Tollenaar & Mooijaart, 2003). This method provides an empirical distribution

that represents the distribution of the test statistic under the null hypothesis.

Von Davier (1997) stated, that parametric IRT models as well as Latent Class Analysis

can be tested with the parametric Bootstrap goodness–of–fit, as they provide a proba-

bility for each response in the observed data matrix. Thus the dichotomous Rasch model

can be tested by the use of the parametric Bootstrap goodness–of–fit.

The parametric Bootstrap test can be based on any goodness–of–fit statistic. Mostly

applied are members of the so called power–divergence family CR(λ) (Cressie & Read,

1984), which is denoted by

CR(λ) =
mk∑
i=1

1

λ(λ+ 1)
O(xi)

[(
O(xi)

λ

E(xi)

)
− 1

]
, (4.31)
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where O(xi) is the observed frequency of response pattern xi and E(xi) the related

expected frequency. Also the Pearson χ2 statistic, as well as the likelihood ratio statistic

are members of this family (critical results from simulation studies to these statistics are

given in chapter 5.2.7.

The procedure for the parametric Bootstrap is given by:

1. The observed test statistic, denoted by Tobs, is computed with the given data.

2. Item as well as person parameters from the observed data are estimated.

3. With these parameters a new data set is simulated (refer here to Section (4.5.2)).

4. For these simulated data the test statistic T is calculated.

5. Steps (3) and (4) are repeated B times to define the empirical distribution for the

test statistic under the null hypothesis.

If the observed test statistic is larger than the (1 − α)B–th percentile of the ordered

Bootstrap statistics, then the model must be rejected to a level of significance for 5%.

Thus the p–value of the observed test statistic is then estimated by

1 +
∑B

i=1 I(Ti > Tobs)

(B + 1)
, (4.32)

where I(Ti > Tobs) is the indicator function for the number of Ti > Tobs.

The number B of Bootstrap replications must be chosen with respect to the aim of the

Bootstrap (Efron & Tibshirani, 1993). If the Bootstrap is used to estimate the distri-

bution of a test statistic or to estimate confidence intervals, B has to be very high. If

the aim of the Bootstrap is to estimate a standard error, the number of the replications

can be quite small. Most of the simulation studies for testing the goodness–of–fit in the

Rasch model uses a B of 1000 (e.g. von Davier, 1997; Tollenaar & Mooijaart, 2003).

Also in this work B is set to 1000 replications.

The duration of a Bootstrap goodness–of–fit test is very long and highly computer inten-

sive. Not only the simulation of new data sets, but mainly the estimation of parameters

for calculating the test statistic in each set boosts the computational time (Langeheine

et al., 1996; von Davier, 1997).

4.5.2. Simulation Data Matrices With Given Marginals

In mostly used Bootstrap goodness–of–fit tests for the Rasch model the simulation of new

data sets with estimated parameters is done without respecting the given marginals of
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the data. But in the context of CML estimation the main issue on parameter estimation

refers to the person scores as a sufficient statistic for the single 0/1 entries of the data

matrix. Clemens Draxler came up with the idea to include this aspect in the Boostrap

routine. Thus a new simulation algorithm is implemented in this work, which generates

the new data matrices with respect to the given marginals, i.e. the person scores.

As pointed out in section (3.1) the solving probability for a certain item i and person v

within the Rasch context is

P (Xvi = 1|θv, βi) =
exp(θv − βi)

1 + exp(θv − βi)
, (4.33)

which below is stated as pi for one person v.

The following equations refer only to one person from the sample, i.e. one row in the

data matrix. According to that, the whole data matrix can be built up row-wise.

The solving probabilities given the marginals can therefore be seen as a function of the

person score and the unconditional solving probabilities from equation (4.33).

The unconditional probability for the person´s score (here denoted as c) is given by

P (S = c) =
∑

(x1,...,xk)|
∑
xi=c

k∏
i=1

pxi
i (1− pi)(1−xi) , (4.34)

where pi is the probability from equation (4.33) and xi is out of (0,1). P (S = c) will be

denoted as SFK in the following:

P (S = c) = SFK(p1, ..., pk, c) . (4.35)

More precisely, imagine a response pattern like ”1100”. The corresponding SFK will then

be calculated by

SFK(p1, p2, p3, p4, 2) =p1p2(1− p3)(1− p4) + p1(1− p2)p3(1− p4)+ (4.36)

p1(1− p2)(1− p3)p4 + (1− p1)p2p3(1− p4)+

...+ (1− p1)(1− p2)p3p4 .

With the common probability to solve e.g. the first item and the given person score, the

conditional probability to solve this item conditional on the person score follows

P (X1 = 1|S = c) =
P (X1 = 1 ∧ S = c)

P (S = c)
=
p1 · SFK(p2, ..., pk, (c− 1))

SFK(p1, ..., pk, c)
. (4.37)
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Using these probabilities the algorithm for sampling with given marginals can be con-

structed as follows:

� Sample X1 from P (X1 = 1|S = c) and then successively

� X2 from P (X2 = 1|S = c,X1 = x1)

� X3 from P (X3 = 1|S = c,X1 = x1, X2 = x2)

� ...

� Xi from P (Xi = 1|S = c,X1 = x1, X2 = x2, ..., Xi−1 = xi−1).

The general recursive algorithm is thus given by

P

(
Xi = 1|S = c,

i−1∑
j=1

Xj = d

)
=
pi · SFK(pi+1, ..., pk, (c− d− 1))

SFK(pi, ..., pk, (c− d))
. (4.38)

Adopting this algorithm to every person of the sample, i.e. to every row of the data

matrix, a simulated data matrix with the same person scores as the observed matrix

results. The 0/1 entries of the response matrix are generated by the decision rule

Xvi =

1 pvi = P
(
Xvi = 1|Sv = c,

∑i−1
j=1Xvj = d

)
≥ p∗vi

0 pvi = P
(
Xvi = 1|Sv = c,

∑i−1
j=1Xvj = d

)
< p∗vi ,

(4.39)

where p∗vi are the entries of a n × k matrix P ∗ generated by random deviates of the

standard uniform distribution.

In this work the parametric Bootstrap goodness–of–fit test is used in the simulation

study in chapter 5 with the latter defined method to reproduce data matrices with given

marginals. As test statistic the Pearson χ2 statistic is used based on the observed pattern

frequencies O(x) and the expected pattern frequencies E(x)

χ2 =
mk∑
i=1

(O(xi)− E(xi))
2

E(xi)
. (4.40)
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4.6. Mixed–Rasch Model Test

In this work the concept of the mixed–Rasch model is used to determine the fit of data

to the Rasch model.

Analogically to the likelihood–ratio test in section (4.2.1), the mixed–Rasch model test

is also based on the main assumption of the Rasch model, namely specific objectivity.

Within the subsamples the item parameter estimates must not differ, except from a

sampling error, over these groups.

The main challenge here is to find the best fitting partition with given heterogeneity of

the individuals. This division can be found with the help of the mixed-Rasch model.

The latent classes of individuals represent those latent subpopulations that maximize

the person´s homogeneity within classes, and heterogeneity between classes. As a result,

classes of individuals are obtained where the item parameter estimates maximally differ

between the classes (Rost & von Davier, 1995).

Hence the mixed–Rasch model test in the present case, which compares the one class

with the two class solution, must be at least as powerful as the likelihood ratio test by

Andersen with any other obvious two–class division of the sample.

Thus the test statistic is given by

LRMR = 2

(
G∑
g=1

lnLc(β̂g;Xg)− lnLc(β̂;X)

)
, (4.41)

where the splitting criterion is not due to raw scores, but to the class size parameters

provided by the mixed–Rasch model.

This test statistic is assumed not to be asymptotically χ2–distributed. Since one class

size parameter must be set to 0 to obtain the Rasch model as a nested model of the

mixed–Rasch model, the parameter space is not open and therefore the asymptotic to

a χ2–distribution is, unlike in the Andersen LR–test, not given anymore. Thus the

distribution of the test statistic under the null hypothesis should be seen as unknown.

In the simulation study in chapter 5 of this work this mixed–Rasch model test will be

taken up again.
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Simulation Studies

Three different goodness–of–fit tests will be investigated for performance in this chapter,

namely the Andersen likelihood ratio test (for theory information see chapter 4.2.1), the

Bootstrap–test (for theory information see chapter 4.5) and the mixed–Rasch model test

(for theory information see chapter 4.6).

The simulation studies are based on the Monte Carlo simulation technique. Results are

obtained by repeated random sampling from different inputs.

Here results from the Monte Carlo simulation are the type–one error rates for the Rasch

conform data and the power for the Rasch violated data. Rasch conform and Rasch

violated data matrices serve as inputs for the simulation. Variations in sample sizes and

number of items as well as variations within different forms of model violations generate

divers scenarios, in order to analyse the performance of the chosen tests. For each test

scenario 100 replications, i.e. 100 varying simulated data matrices, are constructed to

assign the corresponding type–one error rate or the corresponding power, respectively.

The following section provides an informative overview about the simulation design.

5.1. Simulation Design

The simulation design is based on two different aspects. The first aspect is to investigate

the performance of the tests under the constraint of simulated Rasch conform data. Thus

the type–one error rate is computed. The second aspect is analysed under the constraint

of Rasch violated data of different violation strength. Hence the power of the test can

be calculated.

For each aspect the null hypothesis of the certain tests is that the Rasch model holds.

The corresponding model of the violated data is interpreted as the alternative hypothesis
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for the certain test. Therefore the test hypotheses are given by

H0 : Rasch model H1 : model of violation (5.1)

For each scenario, i.e. Rasch conform data and Rasch violated data, the solving prob-

ability pvi = P (Xvi = 1) of a person v to an item i is generated due to the scenario´s

model. The resulting n× k solving matrix is denoted by P . The scenario´s models, the

constitution of the model´s parameters as well as the calculation of the solving matrix

P will be described in section (5.1.1) for Rasch conform data and in section (5.1.2) for

Rasch violated data.

With these solving probabilities the final dichotomous response matrix can then be com-

puted with the following decision rule

Xvi =

1 pvi ≥ p∗vi

0 pvi < p∗vi ,
(5.2)

where p∗vi are the entries of a n × k matrix P ∗ which contains random deviates of the

standard uniform distribution.

With the resulting response matrix the CML estimates for the Rasch model parameters

θ̂ and β̂ and subsequent the specific test statistic can be calculated. The outcome of

the corresponding p–value indicates the rejection or adoption of the model assumption

to a level of significance at 5%. If the p–value is less than an α–level of 0.05 the null

hypothesis of the researched test, i.e. that the Rasch model holds, must be rejected.

On the other hand if the p–value of the test is larger or equal to this α–level the null

hypothesis can be accepted.

After 100 replications of this computation the type–one error rate for Rasch data or the

power for Rasch violated data can be generated based on counting rejections of the null

hypothesis.

5.1.1. Rasch Data

For the simulation of a single Rasch conform data matrix, the person´s ability parameter

θ and the item difficulty parameter β are drawn form a standard normal distribution.

Mair (2006) stated that a N(0, 1)–distribution is appropriate because most of the persons

are at an average ability and only a few persons do have high or low ability values. The

same holds for the consideration concerning items.
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With the formal equation of the Rasch model

pvi = P (Xvi = 1|θv, βi) =
exp(θv − βi)

1 + exp(θv − βi)
, (5.3)

the n× k solving probability matrix P with its entries [pvi] can then be provided. The

resulting matrix is thus given by

P =


p11 · · · p1k

...
. . .

...

pn1 · · · pnk

 . (5.4)

In order to obtain the final dichotomous 0/1–matrix X, the decision rule from equation

(5.2) is applied.

Different scenarios are computed due to variations in sample sizes and in the number of

items. Here the sample sizes are 100, 250, 500 and 1000. For each chosen sample size

the number of items is set to 10, 20 or 30, respectively.

For each scenario 100 replications are obtained. By estimating the Rasch parameters for

each replication and applying the selected test the type–one error rate can be generated.

Knowing from the simulation assumptions that the data are Rasch data, because they

are constructed from the Rasch model theorems, the type–one error rate is then be

enumerated by counting the rejections of the null hypothesis (i.e. that the Rasch model

holds) from the data with the help of obtained p–values.

5.1.2. Rasch Violated Data

Four types of Rasch model violations are simulated. The corresponding models of viola-

tions are interpreted as the alternative hypothesis in testing situations. The four types

are

1. Non–Parallel Item Characteristic Curves

2. Guessing

3. No Local Independency

4. No Unidimensionality.

The person´s ability parameter θ and the item difficulty parameter β are like with the

Rasch conform data drawn from a N(0, 1)–distribution. Also variations in sample sizes

and variations in the number of items form different test scenarios. Samples sizes are in

comparison to the Rasch data 100, 250, 500 and 1000, while the numbers of items vary
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from 10, 20 to 30.

However each violation has specific additional parameters to itemize model properties or

rather in this study–context to define model violation characteristics. According to the

latter defined variations in sample sizes and item numbers also the degree of violation is

varied in order to obtain different test scenarios.

1. Non–parallel Item Characteristic Curves

For this violation the 2–parameter logistic model by Birnbaum (1968), introduced

in chapter 2.3, is simulated. In addition to the parameters θ and β a discrimination

parameter α for the item differences is provided. This parameter is decisive for

intersecting ICCs. If an item discriminates quite good the ICC must be steeper,

while a less discriminating item has a ICC which is flatter. Additionally, the

discrimination parameter must not become negative. Based on these assumptions

the parameter α is drawn from a logarithmic normal distribution with logN(0, σ2).

The variations of the corresponding standard deviation σ for the test scenarios are

� σ = 0.12 for a weak violation,

� σ = 0.25 for a medium violation and

� σ = 0.50 for a strong violation of the Rasch model.

With the latter drawn parameters the solving probabilities for the 2–PL model are

simulated through

pvi = P (Xvi = 1|θv, βi, αi) =
exp(αi(θv − βi))

1 + exp(αi(θv − βi))
. (5.5)

Applying the decision rule from equation (5.2) the dichotomous response matrix

X results.

For each combination of persons, items and discriminations, 100 replications of

generated response matrices are made. With estimating the Rasch parameters

and applying the chosen test for each replicated data matrix the power of the

specific test is computed.

The test hypotheses are provided by

H0 : Rasch model H1 : 2–PL model . (5.6)

The power is calculated by counting the number of rejections of the Rasch model.

From the simulation design it is a fact that the data are not Rasch conform, hence

the power increases if the test rejects the Rasch model.
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2. Guessing

An additional guessing parameter to the 2–PL model is introduced by Birnbaum

(1968) which leads to his 3–parameter logistic model. This model is already pre-

sented in chapter 2.4. The Person parameter θ and the item parameter β are drawn

again from a N(0, 1)–distribution. The discrimination parameter α is analog to

the 2–PL model drawn from the logN(0, σ2)–distribution. The standard deviation

of the log normal–distribution is also set to 0.12, 0.25 and 0.50 for a weak, medium

and strong violation, respectively.

The value of the guessing parameter is the lower asymptote of the characteristic

item curve. From a logical point of view it can be stated, that the probabilities for

solving an item due to guessing lies in the range of [0; 0.3], e.g. 1 out of 5 items

can be solved realistically due to guessing.

Such a asymmetric probability domain can be simulated with the help of the

Beta–distribution. Glas and Meijer (2003) use a Beta(5, 17)–distribution to gen-

erate simulated guessing values, because the mean value of this distribution is 0.2,

which is often used as an guideline for guessing. In this work the guessing param-

eter is drawn from a Beta(2, number of items)–distribution to take the changing

number of items, i.e. 10, 20 and 30 items, into account.

Hence the solving probability matrix P with its entries pvi can be simulated by

pvi = P (Xvi = 1|θv, βi, αi, γi) = γi + (1− γi)
exp(αi(θv − βi))

1 + exp(αi(θv − βi))
. (5.7)

The response matrix X results from the decision rule (5.2).

Again for each combination of parameter values 100 replications are obtained.

With the Rasch parameter estimates for each replication the power of the goodness–

of–fit tests can be calculated.

For this violation the test hypotheses will be given by

H0 : Rasch model H1 : 3–PL model . (5.8)

The power is, as in the 2–PL model, computed by counting the number of rejec-

tions of the Rasch model.
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3. No Local Independency

One of the main assumptions of the Rasch model is the local independency. Fixing

the ability parameter of a person, the responses to certain items must not correlate.

To violate this characteristic, 5 items are chosen to be dependent in each simulation

scenario. The additional parameter δij indicates the degree of dependence between

item i and item j.

This violation, i.e. the correlation of the two items, is set in this work to

� 0.25 for a weak violation,

� 0.50 for a medium violation and

� 0.75 for a strong violation of the Rasch model.

Kelderman (1984), Jannarone (1986) and Kelderman & Rijkes (1994) proposed the

following model equation for the solving probabilities given a dependency between

certain items

P (Xvi = 1|Xvj; θv, βi, δij) =
exp(θv − βi + xvjδij)

1 + exp(θv − βi + xvjδij)
, (5.9)

where Xvi is the response of person v to item i and Xvj the response of person v

to item j.

The resulting response matrix X is again calculated by applying the decision rule

from equation (5.2). For each scenario 100 replications are made and the CML

estimates for the Rasch model are provided.

The power of the considered tests is generated by applying the specific test to each

replicated data matrix and its corresponding estimates. The alternative hypothesis

is a local dependence model, thus the test hypotheses are

H0 : Rasch model H1 : local dependent model . (5.10)

Counting the number of rejections serves as an indicator for the power.

4. No Unidimensionality

The violation of unidimensionality can be achieved by the multidimensional Rasch

model from Glas (1989, 1992). The model relates in its original form to polyto-

mous items (multiple categories), but dichotomous items can be seen as a special

case. Applying this special case, the multidimensional dichotomous Rasch model
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is denoted by

P (Xvi = 1|θv, βi) =
exp

(∑D
d=1(θvd − βid)

)
1 + exp

(∑D
d=1(θvd − βid)

) , (5.11)

where d = 1, ..., D is the dimension of the model.

The multidimensional model in this work is applied to 2 dimensions, i.e. 2 latent

traits, but it can be disposed to even more dimensions in general.

The parameters for this model are, as applied from Suárez-Falcón and Glas (2003),

the correlation parameter rθ1θ2 for latent trait θ1 and latent trait θ2 and again the

person and item parameter. rθ1θ2 indicates the correlation between the 2 dimen-

sions. To vary the strength of violation rθ1θ2 is set to

� 0.75 for a weak violation,

� 0.50 for a medium violation and

� 0.25 for a strong violation of the Rasch model.

Unlike the other explained data generation methods the person parameter θ is

drawn from a multivariate normal distribution N(0,Σ) where Σ is given by

Σ =

(
1 rθ1θ2

rθ1θ2 1

)
. (5.12)

The item parameter still is drawn form the standard normal distribution.

Also the number of items which reference to the 2 dimensions is varied. They are

either constructed so that the loading–proportion is 50 : 50, which means that 50%

of the items load on dimension θ1 and 50% load on dimension θ2, or so that the

ratio is set to 80 : 20.

With the decision rule from equation (5.2) the corresponding response matrix X

can be generated. With 100 replications for each test scenario the estimated Rasch

parameters and the resultant researched test statistic serves for the power of the

tests computed by the counts of rejections to the Rasch model.

The test hypotheses are

H0 : Rasch model H1 : 2–dimensional Rasch model . (5.13)

Except for the 3–PL data, all these data simulation methods are realised in the pro-

gramming routine by the R package eRm. The code as well as informative explanations
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can be found in the appendix.

5.2. Results

All results will be demonstrated graphically.

The first type of figures is related to type–one error rates. The number of items are

outlined on the abscissa and the corresponding error rates on the ordinate. For each

sample size there is a sub–graph given in the figure.

The second type of figures displays the power of the certain test on the ordinate and the

degree of violation on the abscissa. Each combination of number of items and sample

sizes are provided in a sub–graph of the image.

It should be mentioned that the time factor for the Bootstrap test is immense. On the

authors laptop (CPU: Intel Pentium Dual–Core Processor, 1,73 GHz, main memory:

2GB/Go DDR2 SDRAM) each of the different test scenarios would last about 1 to 20

days. Thus acceleration methods must have been found in order to obtain results in

time.

First the R–Code for the Bootstrap–routine was parallelised from the usually used 1

CPU to 32 CPUs. Then the whole Bootstrap program was run on the Linux Cluster

Server at the Leibniz–Rechenzentrum in Munich. These two acts served as a huge time

improvement, thus the results were obtained within a reasonable time scale.

5.2.1. The Mixed–Rasch Model Test

As mentioned in chapter 4.6, the distribution of the mixed–Rasch model test under the

null hypothesis should be taken as unknown. This is the key point of the simulation

study from the mixed–Rasch model test.

The first approach of this part of the work is to assume a χ2–distribution with

(G(k − 1) + (G− 1) +G(k − 2) + 2)− (k − 1) degrees of freedom for the test statistic.

From the principles of the LQ–test it is known, that the degrees of freedom are calculated

from the difference between the number of free parameters in the restricted model and

the number of free parameters in the full model. The free parameters in the mixed–

Rasch model are given by (G(k − 1) + (G − 1) + G(k − 2) + 2). The first summand

relates to the item parameters within each class g, the second summand to the class

size parameters and the third summand to the class–specific score probabilities. Since

extreme responses can not be allocated to a certain class, the last summand takes these

two facets into account.

53



Chapter 5. Simulation Studies

It is observed in the corresponding simulation study, that in almost all results of test

scenarios the Rasch model is rejected to a given α–level of 5%.

Analyzing these results it comes out, that the Rasch model as a nested model of the

mixed–Rasch model is only obtained by setting one class size parameter to zero. But

this violates one main assumption of the approximation of a χ2–distribution, namely

that the parameter space must be open. This means the class size parameter must be

arranged in the open space between ]0;1[. By setting one class size parameter to zero,

a χ2–distribution of the test statistic under the null hypothesis can not be assumed any

more, therefore the distribution should be seen as unknown.

Due to time limits in the diploma thesis the approach to generate the distribution under

the null hypothesis with the help of Bootstrapping–methods or to compare the Rasch

model and the mixed–Rasch model with the help of information criterions like AIC

(Akaike Information Criterion) or BIC (Bayesian Information Criterion), has not been

realised. These procedures are only stated in the outlook for further studies (refer to

chapter 7).

Because the achieved results from the mixed–Rasch model test with approximated χ2–

distribution are assumed to be incorrect, they are not demonstrated in this work.

5.2.2. Type–One Error Rates

For the calculation of the type–one error rates the rejections of the Rasch model are

counted due to the restriction, that Rasch conform data have been simulated (this simu-

lation design is explained in section (5.1.1)). A nominal α–level of 0.05 is assumed. The

number of rejections of the specific test must be small in order to hold this level.

Figure (5.1) demonstrates the type–one error rates for the Andersen test. The x-

coordinates are given by the number of items and the y-coordinates denote the cor-

responding type–one error rate. For each sample size a sub–graph is displayed. The

nominal α–level is marked by the red dotted line.

Neither variations in the number of items nor variations in sample sizes strongly affect

the outcome of the type–one error rate. Each scenario holds approximately the nominal

α–level.

The simulation study from Suárez-Falcón and Glas (2003) confirms this statement. In-

deed they vary the scenarios differently. The number of items are 15, 50 and 75, whereas

sample sizes change from 100, 250, 500, 1000 to 4000.

The type–one error rates for the Bootstrap test are displayed in figure (5.2). Except

for two type–one error rates of 0.06 all rates are equal or less than the nominal α–level.
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Figure 5.1.: Type–one error rates of the Andersen test
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Figure 5.2.: Type–one error rates of the Bootstrap test

Thus this test holds the α–level quite well.

The sample size do not affect the outcome of the simulation. However a tendency of

lower error rates with rising numbers of items can be stated.

Comparing the Andersen test and the parametric Bootstrap test, the parametric Boot-

strap test performs better than the Andersen test. Considering only type–one errors the
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Bootstrap test must be recommended.

However really checking a test on performance, also the power under different forms of

Rasch model violations must be regarded. Such scenarios will be investigated in the

following sections.

5.2.3. Non–Parallel Item Characteristic Curves

As introduced in chapter 5.1.2, different forms of model violations form different test

scenarios. With these scenarios the functionality of the certain tests will be analysed.

Counting the number of rejections serves as an indicator for the power of the test, since

the simulated input data are Rasch model violated. As with the type–one error rates

the given α–level is assumed to be 0.05.

The first scenarios are referred to the non–parallel ICCs violation.

In figure (5.3) the degree of violation is displayed on the abscissa and the corresponding
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Figure 5.3.: Power of the Andersen test – non–parallel ICCs
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power on the ordinate. The parameter σ on the abscissa denotes the standard deviation

of the log(N(0, σ2))–distribution, from which the discrimination parameter α is drawn

in the 2–PL model (for the corresponding simulation design refer to section (5.1.2)). For

each combination of the number of items and the sample sizes a sub–graph is shown.

As Gustaffson (1980) stated the Andersen test has power for violations based on the 2–

PL model. Both, a rising number of items as well as an increasing sample size improve

the power of the tests. Also the strength of the violations is detected right. Besides

power values for light violation almost all remaining powers lie above 50%. Summing up

it can be stated that the Andersen test performs well in connection with the violation

by using the 2–PL model.

Power values for the Bootstrap test are displayed in figure (5.4).
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Figure 5.4.: Power of the Bootstrap test – non–parallel ICCs

Besides the combination of 1000 persons, 10 items and a strong violation, all powers are

at an unacceptable low level. Neither the degree of violation, nor the number of items or
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the size of the samples influence the extent of the power. Except from one power value

all powers are less or equal to the value of 0.1. Therefore this parametric Bootstrap test

fails to perform admissible for detecting violations in parallelism.

For an elaborate analysis of bad power results refer to section (5.2.7).

In comparison the Andersen test performs by far better than the Bootstrap test and is

therefore preferable.

5.2.4. Guessing

The second violation scenario results in the 3–PL model, where additional to the 2–PL

model a lower asymptote is introduced to constitute guessing (refer to section (5.1.2)).

Figure (5.5) provides the power values for the Andersen test. Analogously to the 2–PL
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Figure 5.5.: Power of the Andersen test – Guessing

model the 3–PL model is well distinguished by the Andersen test (Gustaffson, 1980).

With rising number of items and persons the counts of rejections increases and therefore
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the power gets better. Only for weak violations (σ = 0.12) is the performance of the

test poor. Hence the Andersen test performs for a noticeable violation quite good.

The power values for the Bootstrap test according to violations due to the 3–PL model
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Figure 5.6.: Power of the Bootstrap test – Guessing

are demonstrated in figure (5.6).

As with the 2–PL model only the combination of 1000 persons and 10 items leads to a

almost acceptable result. Again neither the degree of violation, nor the number of items,

nor the sample sizes influence the outcome of the power. Also with violations coming

from the 3–PL model the Bootstrap test fails to perform well.

Because of these unexpected bad results an extensive analysis is given in section (5.2.7).

By comparing the Andersen test and the Bootstrap test due to intersecting ICCs and a

lower asymptote, the Andersen test is recommended.
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5.2.5. No Local Independency

For the third violation 5 items in different violation strengths are correlated and thus

the assumptions local independency of the Rasch model is violated (explanations to this

simulation design are provided in section (5.1.2)).

The power values for the Andersen test are given in figure (5.7). It can be concluded
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Figure 5.7.: Power of the Andersen test – No local independency

that the Andersen test fails to detect correlations between certain items. None of the

power values achieve even the 25% border. Although no influence from the number of

items and the sample size is observable, the power raises slightly with the rising degree

of violation. Summing up the Andersen test does not perform well in distinguishing

local dependency.

For explanation, the Andersen LR–test is based on first–oder frequencies. From the for-
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mal representation in equation (4.17) only comparisons between subgroups can be made.

The test is not constructed to detect violations referring to second–order frequencies be-

tween two items and therefore has not the ability to detect such violations.

In comparison to the Andersen test the Bootstrap test performs just as bad as the
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Figure 5.8.: Power of the Bootstrap test – No local independency

Andersen test. In figure (5.8), the power values for this test can be regarded. Again

only in the case of 1000 persons and 10 items a comprehensible mechanism is observable

despite the power of the test in this case is nevertheless worse. In this scenario the test

identifies more of these violations with rising degree of violation.

Also the explanation of the Andersen test could be the reason for bad results. In the

Bootstrap routine the used Pearson χ2–statistic is also related to first–oder observations

(see equation (4.40)). On the other hand the reasons explained in section (5.2.7) may

serve for bad power rates as well.

For detecting correlations between items, neither the Andersen test nor the Bootstrap
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test is recommended. For such detections a test based on second–order frequencies like

the Q2–test or the R2–test should be preferred.

5.2.6. No Unidimensionality

The analysis of unidimensionality is based on two aspects. The first aspect belongs to

the correlation between the considered dimensions. In this work two dimensions are cho-

sen. The second aspect refers to the loading proportion of the items to the dimensions

(this simulation design is also described in detail in chapter 5.1.2).

First the Andersen results will be discussed. In Figure (5.9) the power values can be

regarded.

The loading proportion of the items is here 50:50, that means 50% of the items load on
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Figure 5.9.: Power of the Andersen test – No unidimensionality – Items loading 50:50

the first dimension θ1 and 50% on the second dimension θ2.

From the bad results one can assume that the Andersen test is not able to detect viola-

62



Chapter 5. Simulation Studies

tions in the question of unidimensionality. The number of items, the sample sizes and

the rising form of correlation between dimensions do not affect the power of the test.

Surprisingly by regarding the figure (5.10) the Andersen test performs well in detecting

violations due to a two–dimensional model, where the loading proportion is set to 80:20.

Note that a correlation of rθ1θ2 = 0.25 indicates a strong model violation and rθ1θ2 = 0.75
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Figure 5.10.: Power of the Andersen test – No unidimensionality – Items loading 80:20

a light violation, because with rθ1θ2 = 0.75 the dimensions are strongly correlated and

are basically the same. Therefore the typical curve, i.e. the power gets better with rising

number of items, sample sizes and model violations, is here upside down.

The only suggestive reason for the phenomena of different results due to item loadings

can be based on the subgroups which are generated in the context of the Andersen

LR–test. Maybe in the case of 80:20 loadings the subgroup consisting of more capable

persons refers more to one of the dimensions, that means these persons answer e.g. the

items measuring the extent to the first dimension θ1 more often correctly than the items
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based on the second dimension θ2. Thereby the test becomes responsive for the violation

of unidimensionality.

Otherwise when 50% of the items load on dimension θ1 and the remaining items refer

to dimension θ2, the subgroup with the more capable persons will answer mostly items

correctly on both dimensions. Thus the test will not be able to detect multidimension-

ality.

Hence it can be stated that the LR–test from Andersen is able to detect multidimen-

sionality only in the case of unequal partitioning of item loading.

According to Andersen´s LR–test Bootstrap test results for the violation of unidimen-

sionality are displayed in figure (5.11) and figure (5.12). Figure (5.11) relates to a loading

relation of 50:50 and figure (5.12) is based on a proportion of 80:20.

Both results only detect model violation in the case of 1000 persons, 10 items and a small
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Figure 5.11.: Power of the Bootstrap test – No unidimensionality – Items loading 50:50
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Figure 5.12.: Power of the Bootstrap test – No unidimensionality – Items loading 80:20

correlation between the dimensions. In all other compositions the findings are as bad as

the latter obtained results from the parametric Bootstrap test. The power response to

none of the variable inputs, i.e. violation strength, the number of items and the sample

sizes. A comprehensive analysis of these bad results will be investigated in the following

section.

5.2.7. Analysis Of Bad Bootstrap Power

Because of bad Bootstrap test results a comprehensive analysis is performed since para-

metric Bootstrap techniques usually serve for acceptable test results.

First the impact of the chosen test statistic is investigated. Since the Pearson χ2 statistic

refers to all possible response patterns, the number of such frequencies becomes huge for

already 10 items. According to this finding the values of required expected frequencies

become tiny. Statements relating to such tiny outcomes must be taken with care and
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regarded doubtfully. Since these expected frequencies are based on the null hypothe-

sis, i.e. the Rasch model assumption, they can barely be distinguished from expected

frequencies based on the alternative hypothesis. Hence the Rasch model is accepted in

almost all cases.

Thus the Bootstrap test is performed with only five items in order to check the perfor-

mance of the test with a small number of items. Here the number of possible response

patterns constrained to convenient 25 = 32 cases. Results for the type–one error rates

and the violation of parallel item characteristic curves are demonstrated in figure (5.13)

and figure (5.14), respectively.

It can be seen in figure (5.13) that, expectedly with only five items the Bootstrap test

● ●

●

●

200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

sample size

ty
pe

−
on

e 
er

ro
r

Figure 5.13.: Type–one error rates of the Bootstrap test with five items

also holds the nominal α–level of 5%.

The power of the test for the violation of intersecting item characteristic curves becomes

better due to the enormous reduction of all possible response patterns, although the

power achieves only acceptable results in the cases of 500 and 1000 persons and a strong

model violation (see figure (5.14)).

Another approach to explain the bad Bootstrap results is created by choosing another

test statistic which does not relate to all possible frequencies but only to the observed

single responses. Such a test statistic is Rφ. This statistic is based on the maximum

range of inter–item correlation.

Also for this scenario, results of type–one error rates and the violation of parallel item
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Figure 5.14.: Power of the Bootstrap test with five items – non–parallel ICCs

characteristic curves are calculated and thus displayed in figure (5.15) and (5.16).

Except for one outlier in the case 500 persons and 30 items, all test scenarios for the
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Figure 5.15.: Type–one error rates of the Bootstrap test with test statistic Rφ

Bootstrap test with the Rφ test statistic hold approximately the nominal given α–level

of 0.05 (see figure (5.15)).

67



Chapter 5. Simulation Studies

●
●

●

0.2 0.4

0.
0

0.
4

0.
8

100−10

σσ

po
w

er

● ●

●

0.2 0.4

0.
0

0.
4

0.
8

100−20

σσ

po
w

er

● ●

●

0.2 0.4

0.
0

0.
4

0.
8

100−30

σσ

po
w

er

●

●

●

0.2 0.4

0.
0

0.
4

0.
8

250−10

σσ

po
w

er

●

●

●

0.2 0.4

0.
0

0.
4

0.
8

250−20

σσ

po
w

er

●

●

●

0.2 0.4

0.
0

0.
4

0.
8

250−30

σσ

po
w

er

●

●

●

0.2 0.4

0.
0

0.
4

0.
8

500−10

σσ

po
w

er

●

●

●

0.2 0.4

0.
0

0.
4

0.
8

500−20

σσ

po
w

er

●

●

●

0.2 0.4

0.
0

0.
4

0.
8

500−30

σσ

po
w

er

●

●

●

0.2 0.4

0.
0

0.
4

0.
8

1000−10

σσ

po
w

er

●

●

●

0.2 0.4

0.
0

0.
4

0.
8

1000−20

σσ

po
w

er

●

●
●

0.2 0.4

0.
0

0.
4

0.
8

1000−30

σσ

po
w

er

Figure 5.16.: Power of the Bootstrap test with test statistic Rφ – non–parallel ICCs

Demonstrated in figure (5.16), the power values of the different simulated scenarios are

as desired. With rising number of items, sample sizes and violation strength, the power

increases to an admissible level. Hence it can be stated that the Bootstrap test performs

well in conjunction with test statistics based on the single responses.

A third analysis is the inspection of the distribution of the obtained p–values. From sta-

tistical theory it is known that the distribution of the p–values under the null hypothesis

should follow a uniform distribution (see Lehmann & Romano, 2005). This aspect can

be seen in figure (5.17) on the left hand side. The red line denotes the reference uniform

distribution function.

Interestingly by regarding the distribution of the p–values under the alternative hypoth-

esis, which means under the hypothesis of Rasch violated data, an approximate uniform

distribution function follows (refer here to figure (5.17) right hand side). Normally a

different, mostly unknown, distribution function must appear.
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Figure 5.17.: Comparison of distribution functions of obtained p–values

This concludes that the distribution function of the null hypothesis and the distribution

function of the alternative hypothesis are almost the same and therefore nearly no dif-

ference can be detected. Out of it the Rasch model will not be rejected.

This third analysis also confirms the assumption of doubted usage of test statistics which

relate to all possible response patterns for a number of items equal or larger than 10

cases. Therefore the parametric Bootstrap test should be recommended to be used in

conjunction with test statistics based on the single response outcomes by exercising with

equal or more than 10 items.
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Chapter 6

Practical Analysis: I–S–T 2000 R

The Intelligence–Structure–Test (IST) 2000 R is a test based on the structural model

of intelligence. It is one of the most applied intelligence tests in Germany (Steck, 1997;

Schorr, 1995). There exist three different forms of the representation of the I–S–T 2000

R:

1. Basic module short–form which contains nine subtests for deductive reasoning

2. Basic module short–form with additional two retentivity tests

3. Extension module with nine knowledge tests.

In addition to this enumeration there are two different sequences of items. These are

denoted by form A and B.

This work refers to the already taken sample from Bühner, Ziegler, Krumm and Schmidt-

Atzert (2006), which refers to the Basic module short–form A with nine subtests. These

tests measure the extend to verbal, numerical and figural intelligence, respectively. Thus

these subtests are given by

� Sentence Completion

� Verbal Analogies

� Similarities

� Numerical Calculations

� Number Series

� Numerical Signs

� Figure Selection

� Cubes

� Matrices.

For these nine subtests it is interesting to test the fit of the Rasch model. Due to the

fact that the tests are time limited the question arises, if the subtests measure only the
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latter stated traits and not additional speed.

The sample of 273 individuals was taken from students mostly of the following fields of

study: psychology, business administration, medicine, pedagogy and law. There were

176 female and 97 male participants. The students were from 18 to 39 years old (av-

erage: 22,9 and standard deviation: 3,3) and have studied between 1 and 21 semesters

(average: 4,5 and standard deviation: 3,9).

Bühner, Ziegler, Krumm and Schmidt-Atzert (2006) tested the fit to the Rasch model

with the common Bootstrap test applied in the software WINMIRA (see von Davier,

1997). There the parametric Bootstrap test refers to the Pearson χ2 test statistic and

to the Cressie–Read test statistic, but Bootstrap replications are not sampled from ma-

trices with constant row sums.

To compare the results obtained from Bühner, Ziegler, Krumm and Schmidt-Atzert

(2006), these values will be taken up again next to the results from the here discussed

Andersen LR–test and the Bootstrap test with given marginals.

All calculated p-values are displayed in table (6.1),

B (χ2) B (CR) B wgm.(χ2) B wgm.(Rφ) LR
Sentence Completion 0.26 0.31 0.44 0.12 0.00

Verbal Analogies 0.21 0.32 0.79 0.21 0.00
Similarities 0.04 0.06 0.06 0.03 0.01

Numerical Calculations 0.32 0.38 0.90 0.00 0.00
Number Series 0.13 0.15 0.95 0.00 0.00

Numerical Signs 0.02 0.03 0.21 0.00 0.00
Figure Selection 0.00 0.01 0.01 0.00 0.00

Cubes 0.00 0.00 0.01 0.00 0.00
Matrices 0.40 0.63 0.59 0.01 0.59

Table 6.1.: Results for Rasch model fit of I–S–T 2000 R

where B denotes the abbreviation of Bootstrap, B wgm. the abbreviation for Bootstrap

with given marginals and LR stands for likelihood ratio. If the p–value is less than the

nominal stated α–level of 0.05, the null hypothesis of the researched test, i.e. that the

Rasch model holds, must be rejected. On the other hand if the p–value of the test is

larger or equal to this α–level, the null hypothesis can be accepted.

It can be seen that results from the Bootstrap versions used in Bühner, Ziegler, Krumm

and Schmidt-Atzert (2006) (table (6.1) columns: B (χ2), B (CR)) and results obtained

from the Bootstrap version used in this work based on constant row sums (table (6.1)
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column: B wgm.(χ2)) achieve almost similar results. Sentence Completion, Verbal Analo-

gies, Numerical Calculations, Number Series and Matrices can be assumed to be unidi-

mensional with the Bootstrap test versions. For the subtests of Similarities and Numer-

ical Signs different results emerge. The fit to the Rasch model for the subtests Figure

Selection and Cubes must be rejected to a level of significance for 5%.

According to findings from simulation study in chapter 5.2.7 the Bootstrap test based on

test statistics referring to expected frequencies of response patterns might not be useful.

Since all possible response patterns must be taken into account already up from 10 items

the number of possible response patterns becomes huge and therefore the extent of the

expected frequencies tiny, so statements based on these outcomes must be doubted.

The Andersen LR–test (table (6.1) column: LR) rejects the null hypothesis for all but one

subtest. Bühner, Ziegler, Krumm and Schmidt-Atzert (2006) stated that the asymptotic

χ2–distribution for the Andersen LR–test must be doubted because the rule to approxi-

mate this distribution is normally violated. This rule contains that expected frequencies

of each possible response pattern must be equal or larger than 1. Since the number of

possible response patterns for each subtest is 220 ∼ 1 ∗ 106 the expected frequencies are

in most cases by far less than 1. From this point of view the usefulness of the LR–test

results might be doubtful.

However relating to obtained results from simulation studies in chapter 5, the Andersen

LR–test provides a good evaluation for data fit to the Rasch model. From this perspec-

tive, results from the Andersen LR–test should also be considered.

Out of interest, the Bootstrap test with constant row sums is yet analysed with an-

other test statistic (see also chapter 5.2.7). The statistic Rφ is based on the maximal

inter–item correlation, thus only on observed values and not on all possible response

patterns. Results from this routine can be found in the next to last column in table 6.1

(B wgm.(Rφ)). This version of a parametric Bootstrap test rejects the null hypothesis

more often than the other three Bootstrap test versions. Only the subtests Sentence

Completion and Verbal Analogies can be assumed to fit the Rasch model and therefore

to be unidimensional.

Which of these results users should believe in, remains unsolved. Thus further studies

must be taken to solve this problem (refer also to chapter 7).
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Chapter 7

Summary and Outlook

Item Response Theory (IRT) has become a main fragment in psychological testing. Un-

like the previous preferred Classical Test Theory, the IRT is based on solving probabilities

which link the person´s ability to a latent trait like intelligence.

The Rasch model stands out of the range of IRT models. With its exceeding properties

like unidimensionality of the trait, local independency and parallel item characteristic

curves the Rasch model is a widely used and popular model for testing.

The main attention of this work is based on testing the fit of the Rasch model. Therefore

three different tests are selected from the variety of Rasch model tests to analyse their

performance, namely the Andersen test, the Bootstrap test and the mixed–Rasch model

test.

In a diverse simulation study the type–one error rates for simulated Rasch conform data

and the power for different forms of simulated Rasch model violations are investigated.

Results from the Andersen test showed that the test is sensitive for distinguishing in-

tersecting item characteristic curves and an additional lower asymptote. The test fails

to detect violations of local independency. In the case of multidimensionality the test

performs well only if the loading proportion of the items to the dimensions is unequal.

This means a great deal of the items relate to one dimension and only a small part of

the items refer to the other dimension. Besides from power results the type–one error

rates retain approximately the nominal α–level of 0.05.

Also the Bootstrap test holds this nominal α–level. However the test fails to detect any

of the chosen violations, i.e. intersecting item characteristic curves, a lower asymptote,

no local independency and multidimensionality. Despite very few exceptions all power

values do not exceed the 10% boundary.

The reason for the bad Bootstrap results can be found in the used Pearson χ2 test statis-

tic. For its calculation all possible response patterns must be taken into account, thus
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the number of all possible response patterns for even 10 items becomes huge and there-

fore the outcomes of expected frequencies becomes tiny. Hence statements about such

tiny expected frequencies can be doubtful. Further studies with a different test statistic

Rφ based on the maximal range of inter–item correlation affirm this assumption. Also

studies with only five items confirm the underlying statements of bad Bootstrap power.

Results from the mixed–Rasch model test are not demonstrated in this work since they

are based on adopted wrong distribution assumptions of the null hypothesis. Analysing

the obtained results, it came out that the distribution of the null hypothesis must be

assumed to be unknown.

Applying results to practical applications the nine subtests from the Intelligence–Structure–

Test (IST) 2000 R are investigated to fit the Rasch model. Whereas the Andersen LR–

test (table (6.1) column: LR) rejects the application to the Rasch model for all except

one subtest, the Bootstrap test (table (6.1) column: B wgm.(χ2)) rejects none except

two subtests. Reasons for these different outcomes are thought to be due to the doubtful

χ2–distribution assumption from the LR–test and the huge number of small expected

response patterns. Obtained results are compared to already taken studies from Bühner,

Ziegler, Krumm and Schmidt-Atzert (2006).

The simulation study is written with the statistical software R. The structure of the

study as well as the R–code is demonstrated in the appendix.

Since the Andersen LR–test has already been studied by a range of scientists, further

studies for the Bootstrap and the mixed–Rasch model test could be considered.

As the Bootstrap–test performs very poorly in association with the Pearson χ2 test

statistic, it would be interesting to compare the performance of the Bootstrap test with

different test statistics. These test statistics should contain statistics based on expected

frequencies, which means based on all possible frequencies, and statistics referring to

only observed values, i.e. single response values. Thus the impact from the huge number

of possible response patterns can be researched.

To achieve a distribution of the null hypothesis for the mixed–Rasch model test a Boot-

strap routine can be applied and thus type–one error rates and power values of the

mixed–Rasch model test can be analysed.
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R Code

In the following the main parts of the programming code from the simulation study are

demonstrated. After each mapped code a short summary about this part of the code is

provided.

Explanatory notes within the code are characterised by the sign ”#”.

A.1. Simulation Rasch Data

sim_rasch <- function(replication=100,persons=100,items=10,
seed=NULL,cutpoint="randomized")
{

#predefining list
X_list <- list()

for (i in 1:replication)
{

#simulating rasch data for each element of list
X_list[[i]] <- sim.rasch(persons=persons,items=items,seed=seed,
cutpoint=cutpoint)

#removing extreme values in persons and items
sum_r <- apply(X_list[[i]],1,sum)
ind0_r <- (1:length(sum_r))[sum_r==0]
ind1_r <- (1:length(sum_r))[sum_r==dim(X_list[[i]])[2]]
ind_r <- c(ind0_r, ind1_r)

sum_c <- apply(X_list[[i]],2,sum)
ind0_c <- (1:length(sum_c))[sum_c==0]
ind1_c <- (1:length(sum_c))[sum_c==dim(X_list[[i]])[1]]
ind_c <- c(ind0_c, ind1_c)

if(length(ind_c)>0)
X_list[[i]]<-X_list[[i]][,-ind_c]
if (length(ind_r)>0)
X_list[[i]]<-X_list[[i]][-ind_r,]

}#end for i

return(X_list)
}#end function
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The function sim rasch generates replication–times Rasch data sets. The actual data

simulation is performed with the help of the R–package eRm. There the function

sim.rasch creates a dichotomous Rasch model data matrix due to instruction from the

sample size (persons), the number of items (items), the possibility to chose a seed for

random number generation (seed) and the performance of the transformation from the

probability matrix into the resulting 0/1 matrix (cutpoint).

Because of used CML estimation all extreme response patterns, i.e. response patterns

with only 0 or only 1 entries, will be removed from calculations.

A.2. Simulation Rasch Violated Data

###################
#Non-parallel ICCs#
###################

sim_violation_non_parallel_ICC <- function(replication=100,persons=100,
items=10,discrim=0.25,seed=NULL,cutpoint="randomized")
{

#predefining list
X_list <- list()

for (i in 1:replication)
{

#simulating rasch violated data for each element of list
X_list[[i]] <- sim.2pl(persons=persons,items=items,discrim=discrim,
seed=seed,cutpoint=cutpoint)

#removing extreme values in persons and items
sum_r <- apply(X_list[[i]],1,sum)
ind0_r <- (1:length(sum_r))[sum_r==0]
ind1_r <- (1:length(sum_r))[sum_r==dim(X_list[[i]])[2]]
ind_r <- c(ind0_r, ind1_r)

sum_c <- apply(X_list[[i]],2,sum)
ind0_c <- (1:length(sum_c))[sum_c==0]
ind1_c <- (1:length(sum_c))[sum_c==dim(X_list[[i]])[1]]
ind_c <- c(ind0_c, ind1_c)

if(length(ind_c)>0)
X_list[[i]]<-X_list[[i]][,-ind_c]

if (length(ind_r)>0)
X_list[[i]]<-X_list[[i]][-ind_r,]

}#end for i

return(X_list)
}#end function

The violation non parallel ICCs is implemented with the simulation of the 2–PL model.

The function sim violation non parallel ICC generates 2–PL model data matrices as
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often as the given instruction in replication. With the help of the function sim.2pl from

the R–package eRm such matrices can be provided. The instructions from the variables

persons, items, seed and cutpoint are the same as for the simulation of Rasch conform

data in section (A.1). Additionally, the standard deviation of the log normal–distribution

is to specify (discrim). Hence from this logN(0, σ2)–distribution the discrimination

parameter α of the 2–PL model is drawn.

Again extreme response patterns are removed.

#######################
#No local independency#
#######################

sim_violation_no_local_indep <- function(replication=100,persons=100,
items=10,it.cor,seed=NULL,cutpoint="randomized")
{

#predefining list
X_list <- list()

for (i in 1:replication)
{

#simulating rasch violated data for each element of list
X_list[[i]] <- sim.locdep(persons=persons,items=items,it.cor=it.cor,
seed=seed,cutpoint=cutpoint)

#removing extreme values in persons and items
sum_r <- apply(X_list[[i]],1,sum)
ind0_r <- (1:length(sum_r))[sum_r==0]
ind1_r <- (1:length(sum_r))[sum_r==dim(X_list[[i]])[2]]
ind_r <- c(ind0_r, ind1_r)

sum_c <- apply(X_list[[i]],2,sum)
ind0_c <- (1:length(sum_c))[sum_c==0]
ind1_c <- (1:length(sum_c))[sum_c==dim(X_list[[i]])[1]]
ind_c <- c(ind0_c, ind1_c)

if(length(ind_c)>0)
X_list[[i]]<-X_list[[i]][,-ind_c]

if (length(ind_r)>0)
X_list[[i]]<-X_list[[i]][-ind_r,]

}#end for i

return(X_list)
}#end function

The correlation between 5 arbitrarily selected items serves for the violation of local

independency. The function sim violation no local indep constitutes data matrices with

correlations between items according to the specification in replication. The variables
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persons, items, seed and cutpoint indicate the same statements as in the latter defined

data simulations (e.g. in section (A.1)). it.cor denotes the correlation matrix, where

entries for 5 items are filled with the corresponding violation degree.

Again extreme outcomes of individuals and items are taken out of the matrices.

######################
#No unidimensionality#
######################

sim_violation_no_unidim <- function(replication=100,persons=100,
items=10,Sigma,weightmat,seed=NULL,cutpoint="randomized")
{

#predefining list
X_list <- list()

for (i in 1:replication)
{

#simulating rasch violated data for each element of list
X_list[[i]] <- sim.xdim(persons=persons,items=items,Sigma,weightmat,
seed=seed,cutpoint=cutpoint)

#removing extreme values in persons and items
sum_r <- apply(X_list[[i]],1,sum)
ind0_r <- (1:length(sum_r))[sum_r==0]
ind1_r <- (1:length(sum_r))[sum_r==dim(X_list[[i]])[2]]
ind_r <- c(ind0_r, ind1_r)

sum_c <- apply(X_list[[i]],2,sum)
ind0_c <- (1:length(sum_c))[sum_c==0]
ind1_c <- (1:length(sum_c))[sum_c==dim(X_list[[i]])[1]]
ind_c <- c(ind0_c, ind1_c)

if(length(ind_c)>0)
X_list[[i]]<-X_list[[i]][,-ind_c]

if (length(ind_r)>0)
X_list[[i]]<-X_list[[i]][-ind_r,]

}#end for i

return(X_list)
}#end function

Apart from the already known expressions for replication, persons, items, seed and

cutpoint the simulation of the unidimensionality violation is based on two further state-

ments. Sigma denotes the correlation matrix of the two dimensions, whereas the loading

proportion of the items to the dimensions is given in the substitution parameter weight-

mat.

Since extreme response patterns are unutilised in CML estimation, they are removed.
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###############################################################
#3-PL model - Model with discrimination and guessing parameter#
###############################################################
sim_violation_3PL <- function(replication=100,persons=100,
items=10,discrim=0.25,seed=NULL,cutpoint="randomized")
{

#predefining list
X_list <- list()
for (i in 1:replication)
{

#predefining within loop
psolve <- matrix(0,persons,items)

#drawing parameters
if (!is.null(seed)) set.seed(seed)
capable <- rnorm(persons)

if (!is.null(seed)) set.seed(seed)
difficult <- rnorm(items)

if (!is.null(seed)) set.seed(seed)
alpha <- rlnorm(items,0,sdlog=discrim)

if (!is.null(seed)) set.seed(seed)
gamma <- rbeta(items,2,items)

#Generating probabilities
for (j in 1:persons)
{

for (k in 1:items)
{

psolve[j,k]<-gamma[k]+(1-gamma[k])*(exp(alpha[k]*
(capable[j]-difficult[k]))/(1+exp(alpha[k]*(capable[j]-difficult[k]))))

}#end for k
}#end for j

#Generating (0,1) matrix with latter probabilities
if (cutpoint == "randomized")
{

if (!is.null(seed)) set.seed(seed)
X_list[[i]] <-(matrix(runif(items*persons),persons,items) < psolve)*1

}#end if
else
{

X_list[[i]] <- (cutpoint < psolve)*1
}#end else

#removing extreme values in persons and items
sum_r <- apply(X_list[[i]],1,sum)
ind0_r <- (1:length(sum_r))[sum_r==0]
ind1_r <- (1:length(sum_r))[sum_r==dim(X_list[[i]])[2]]
ind_r <- c(ind0_r, ind1_r)

sum_c <- apply(X_list[[i]],2,sum)
ind0_c <- (1:length(sum_c))[sum_c==0]
ind1_c <- (1:length(sum_c))[sum_c==dim(X_list[[i]])[1]]
ind_c <- c(ind0_c, ind1_c)

if(length(ind_c)>0)
X_list[[i]]<-X_list[[i]][,-ind_c]
if (length(ind_r)>0)
X_list[[i]]<-X_list[[i]][-ind_r,]

}#end for i

return(X_list)
}#end function
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Besides the already explained simulated data matrices, the simulation of the 3–PL model

is not generated with the help of the R-package eRm, but build up analogously to their

structure.

The replacement character replication, persons, items, seed and cutpoint have the same

features as described in section (A.1). More precisely, the person and the item parameter

are drawn from a standard normal distribution and the discrimination parameter from a

log normal distribution with zero mean and a standard deviation specified in the appeal

of the function. The guessing parameter is drawn from a Beta(2, items) distribution,

where items indicates the number of items.

The solving probabilities are generated according to the 3–PL model equation (refer

to chapter 2.4). The transformation to the resulting dichotomous response matrix is

realised with random standard uniform deviates.

Also here extreme response patterns are excluded.

A.3. Andersen Test

source("myandersen.r")

########################################################
#Function type I error rates for Rasch homogeneous data#
########################################################

andersen_typeI_error_rate <- function(X_list, replication=100)
{

#inits
reject <- 0

#creating n pvalues
pvalues <- list()
pvalues <- lapply(X_list,myandersen)
pvalues <- unlist(pvalues)

#Count type I error
reject <- sum(pvalues < 0.05)

type_I_error <- reject/replication

#return vector of pvalues and type-I error rate
return(list(andersen_pvalues=pvalues, andersen_type_I_error=type_I_error))

}#end function
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########################################
#Function power for Rasch violated data#
########################################

andersen_power <- function(X_list, replication=100)
{

#inits
failure <- 0

#creating n pvalues
pvalues <- list()
pvalues <- lapply(X_list,myandersen)
pvalues <- unlist(pvalues)

#Type II error rates
failure <- sum(pvalues > 0.05)

#calculating power
power <- 1-(failure/replication)

#return vector of pvalues and power
return(list(andersen_pvalues=pvalues, andersen_power=power))

}#end function

The Andersen test routine contains two functions. The function andersen typeI error rate

calculates the type–one error rates for the Rasch conform data sets, generated in section

(A.1). And the other function andersen power calculates the power for the Rasch vio-

lated data (section (A.2)). X list denotes the outcome of the data simulation routines,

i.e. replication–times data matrices.

The real Andersen LR–test is executed by the function myandersen, explained in the

following.

The number of rejections for Rasch data and Rasch violated data indicates the type–one

error rate and the power, respectively.

myandersen <- function(z)
{

#estimating Rasch data and performing LRtest
rm <- RM(z)
lr_mean <- LRtest(rm, splitcr="mean")
pvalue <- lr_mean$pvalue

return(pvalue)

}#end function

With the help of the R–package eRm the LR–test from Andersen is realised. First the

parameter estimates of the item parameter for the whole data are provided through the

function RM from eRm. With these estimates the LR–test with two subgroups based on

raw score splitting is performed. The resulting pvalue serves for an indicator of model

rejection or model adoption for a level of significance for 5%.

Operating the function andersen typeI error rate for all variations in Rasch conform
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data matrices and the function andersen power for all variations in Rasch violations

follow the resulting figures from chapter 5.

A.4. Bootstrap Test

The R–routine for the Bootstrap test is based on a network of functions. Which function

relates to which routine is demonstrated with the command source, that means functions

that are called within a procedure must be included in this routine.

source("bootstrap_function.r")

########################################################
#Function Type I error rates for Rasch homogeneous data#
########################################################

bootstrap_typeI_error_rates <- function(X_list, replication=100, B=1000)
{

#inits
pvalues <- rep(0,replication)
reject <- 0
#creating n pvalues
for(i in 1:replication)
{

#Bootstrapping with constant row sum sampling
pvalues[i] <- bootstrap_suff(B=B,X=X_list[[i]])

#Count rejections
if(pvalues[i] < 0.05)
{
reject <- reject+1

}#end if
}#end for i

#Count type I error
type_I_error <- reject/replication
#return vector of pvalues and type I error rates
return(list(bootstrap_pvalues=pvalues, bootstrap_type_I_error=type_I_error))

}#end function
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########################################
#Function power for Rasch violated data#
########################################

bootstrap_power <- function(X_list, replication=100, B=1000)
{

#inits
pvalues <- rep(0,replication)
failure <-0
#creating n pvalues
for(i in 1:replication)
{

#Bootstrap with constant row sum sampling
pvalues[i] <- bootstrap_suff(B=B,X=X_list[[i]])

#Count failures
if(pvalues[i] > 0.05)
{
failure <- failure+1

}#end if
}#end for i

#calculating power
power <- 1-(failure/replication)
#return vector of pvalues and power
return(list(bootstrap_pvalues=pvalues, bootstrap_power=power))

}#end function

The main functions for the Bootstrap test are the bootstrap typeI error rates function

for Rasch conform data and the bootstrap power function for Rasch violated data. These

operations return the type–one error rate and the power value according to the achieved

p–values from the test, respectively. The parameter B in the header of the function

indicates the number of Bootstrap replications, which must no be confused with the

replications for generating error rates and power values.

The function bootstrap suff is included in the routine and will be explained next.
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library(multicore)

source("const_rowsum_function.r")
source("sampling_function.r")
source("pearson_chi.r")
source("myb.r")

bootstrap_suff <- function(B=1000,X)
{

#estimating data
rm <- RM(X)
sigma <- -(rm$betapar)
p.rm <- person.parameter(rm)
prob_X <- pmat(p.rm)

#predefinings
p_indicator <- 0
pvalue <- 0

#Test statistic on observed values
Tobs <- pearson.chi(X,sigma)

#probability matrix with constant row sum
SFK <- const_rowsum(X=X, prob_X=prob_X)

#Bootstrap-repetitions
Tstat <- list()
Tstat <- mclapply(1:B,function (i){

b <- sampling(X,prob_X,SFK)
myb(b)},mc.set.seed=TRUE,mc.cores=32)

#counting Tstat > T_obs
p_indicator <- sum(Tstat > Tobs)

#calculating the p-value with the formula [1+sum_{i_1}^{B}I(T_i>T_obs)/(B+1)]
pvalue <- (1+p_indicator)/(B+1)

return(pvalue)
}#end function

This function can be seen as the core of the whole Bootstrap routine. All main actions

occur here.

First the estimates of the item parameters as well as the estimates of the person param-

eters are computed and the resulting solving probability matrix is generated. With the

subsequent explained function pearson.chi, the Pearson χ2 test statistic for the observed

data is calculated.

To sample matrices with given marginals the function const rowsum returns a list with

solving probabilities under the constraint of given row sums. With these probabilities

response matrices, containing the same row sums as the original data matrices, are pro-

vided and for each of the sampled matrix the pearson χ2 test statistic is calculated.

With the upper defined formula, the p–values can be computed and can be included to

the function bootstrap typeI error rates and bootstrap power, respectively.

The command library(multicore) includes further instructions which are not already

implemented in the R–basis source and expand the range of commands. The appeal
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mclapply parallelises the R program to the indicated number of CPUs, i.e. here 32

CPU´s.

In the following, included functions from the routine bootstrap suff will be explained.

const_rowsum <- function(X, prob_X)
{

#inits before loops
prob_X_const <- matrix(nrow=nrow(X), ncol=ncol(X))
SFK <- list()
#generating start of recursive algorithm
#attend: position [1] is sum 0!
SFK[[1]] <- matrix(0,nrow=nrow(prob_X),ncol=ncol(prob_X)+1)
SFK[[1]][,1] <- 1-prob_X[,ncol(prob_X)]
SFK[[1]][,2] <- prob_X[,ncol(prob_X)]

#for different starting points
for (k in 2:ncol(prob_X))
{

#inits
SFK[[k]] <- matrix(0,nrow=nrow(prob_X),ncol=ncol(prob_X)+1)
# for each row of data matrix
for (i in 1:nrow(prob_X))
{

#if sum=0
SFK[[k]][i,1] <- (1-prob_X[i,ncol(prob_X)-(k-1)])*SFK[[k-1]][i,1]

#if 0<sum<number of items
for (j in 2:k)
{

SFK[[k]][i,j] <- prob_X[i,ncol(prob_X)-(k-1)]*
SFK[[k-1]][i,j-1]+(1-prob_X[i,ncol(prob_X)-(k-1)])*SFK[[k-1]][i,j]

}# end for j

#if sum= number of items
SFK[[k]][i,k+1] <- prob_X[i,ncol(prob_X)-(k-1)]*SFK[[k-1]][i,k]

}#end for i
}#end for k

#-------------------------------------------------------------------------------
#for better using of SFK´s: removing of unuseful columns
for (k in 1:ncol(prob_X))
{

if (k < ncol(prob_X))
{

weg <- ((ncol(prob_X)+1)-((ncol(prob_X)+1)-(k+1))):ncol(prob_X)+1
SFK[[k]] <- SFK[[k]][,-weg]

}#end if
}#end for
return(SFK)

}#end function

The function const rowsum generates, as already mentioned, a list containing the solving

probabilities under the constraint of given marginals, i.e. given row sums. The algorithm

used in this routine can be elaborately found in chapter 4.5.2.
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sampling <- function(X,prob_X,SFK)
{

#inits before loop
X_const_sample <- matrix(0,nrow=nrow(prob_X), ncol=ncol(prob_X))
prob_X_const <- matrix(0,nrow=nrow(prob_X), ncol=ncol(prob_X))
#iterative sampling algorithm for each element of matrix
for (i in 1: nrow(prob_X))
{

#getting row sum of matrix to be sampled
summe_ganz <- sum(X[i,])

for (j in 1: ncol(prob_X))
{

#getting row sum of each position in row i
summe <- sum(X_const_sample[i,0:(j-1)])
#difference
diff <- summe_ganz-summe
#extra assignment for j=number of items -> in else arm
if (j != ncol(prob_X))
{

#extra assignment for difference=0
if(diff==0)
{

prob_X_const[i,j] <- 0
}#end if
else
{

#attend: position [summe+1], because position [1] is sum=0
prob_X_const[i,j] <- prob_X[i,j]*
SFK[[ncol(prob_X)-j]][i,(diff)]/SFK[[ncol(prob_X)-j+1]][i,diff+1]

}#end else
}#end if
else
{

#special assignment for last element of row
if(diff==1)
prob_X_const[i,j] <- 1
else
prob_X_const[i,j] <- 0

}#end else

#sampling each element of matrix with latter probabilities
X_const_sample[i,j] <- (runif(1)<prob_X_const[i,j])*1

}#end for j
}#end for i
return(X_const_sample)

}#end function

With the algorithm described in chapter 4.5.2 the function sampling samples data ma-

trices with the latter provided solving probabilities with given marginals and returns

them into the function bootstrap suff for further calculations.
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myb <- function(z) {

Tstat <- 0

X_const_sample <- z

#removing extreme values in items
#there can not be extreme values in persons because of constant row sums
sum_c <- colSums(X_const_sample)
ind0_c <- (1:length(sum_c))[sum_c==0]
ind1_c <- (1:length(sum_c))[sum_c==dim(X_const_sample)[1]]
ind_c <- c(ind0_c, ind1_c)

if(length(ind_c)>0)
X_const_sample<-X_const_sample[,-ind_c]

#estimating data
rm_sample <- RM(X_const_sample)
sigma_sample <- -(rm_sample$betapar)

#calculating test statistic with constant row sum sampled matrix
Tstat <- pearson.chi(X_const_sample, sigma_sample)

return(Tstat)

}#end function

Function myb removes extreme values in items from the committed data matrix of

bootstrap suff. Extreme response patterns for persons can not occur here due to retained

row sums from sampling algorithm. Subsequently, item parameter estimates for the

sampled matrices are computed and the corresponding χ2 test statistic is calculated.

These values can then be returned to function bootstrap suff for the generation of the

p–value.
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source("symmetric_function.r")

pearson.chi <- function(X, sigma) {

#preparing data
X_count <- apply(X, 1, paste, collapse = "/")

#inits
Obs <- rep(0,length(X_count))
Exp <- rep(0,length(X_count))
SF <- rep(0,ncol(X))
p_pattern <-rep(0,length(X_count))

#generating symmetric functions
SF <- symmetric_function(X,sigma)

#generating count of unique persons scores
person.scores <- rowSums(X)
Freq_r <- as.vector(table(factor(person.scores, levels = 1:ncol(X))))
#adding score 0
Freq_r <- c(nrow(X)-sum(Freq_r)[1],Freq_r)

#observed frequencies
match <- match(X_count, X_count)
match <- factor(match, levels = unique(match))
Obs = as.vector(table(match))

#expected frequencies
positions <- rowSums(unique(X))
summe <- as.matrix(unique(X))\%*\%sigma
zw <- as.vector(summe[,1])
p_pattern <- exp(-zw)/SF[positions+1]
Exp <- p_pattern*Freq_r[positions+1]

#eliminating complete 0 or 1 response patterns
Obs <- Obs[-(c(1,nrow(X)))]
Exp <- Exp[-(c(1,nrow(X)))]

#respecting Exp==0
if (any(ind <- Exp == 0))
Exp[ind] <- 0.001

#generating Test statistic
Tstatistic <- sum(((Obs-Exp)^2)/Exp)+sum(Obs)-sum(Exp)

return(Tstatistic)
}#end function

Finally the R–code from the function pearson.chi is shown.

The elementary symmetric functions must be generated in order to obtain expected fre-

quencies. Additionally, with the counts of unique person scores the expected frequencies

can be calculated.

Observed frequencies are obtained from single enumeration of given frequencies.

After some computational transformations, the Pearson χ2 test statistic is computed for

each sampled matrix with given row sum.

The function symmetric function is illustrated in the following.
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symmetric_function <- function(X, sigma){

#inits before loops
SF <- rep(0,ncol(X)+1)
g <- matrix(nrow=ncol(X)+1,ncol=ncol(X))
gsumme <-0

#vector with element wise exp(-sigma)
term <- exp(-sigma)

#restriction
g[1,] <- 1

#symmetric function with score sum =0
SF[1] <- 1

#generating symmetric function with recursive algorithm from Fischer (1974)
for (i in 1:ncol(X))
{

gsumme <- sum(g[i,]*term)
gsumme <- gsumme/i
SF[i+1] <- gsumme

for (j in 1:ncol(X))
{

g[i+1,j] <- gsumme-term[j]*g[i,j]
}#end forj

}#end fori

return(SF)
}#end function

As stated before, the function symmetric function generates the elementary symmetric

function of a data matrix and their item parameter estimates. The algorithm used here

is from Fischer (1974) and is explained in chapter 3.1.3.

By applying the Bootstrap–routine to each combination of scenarios based on the number

of items, sample sizes and different forms of model violations or Rasch model conformity,

the results displayed and explained in chapter 5 emerge.
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Gustaffson, J.E. (1980). Testing and obtaining the fit of data to the Rasch Model.
British Journal of Mathematical and Statistical Psychology, 33, 205-233.

Guttman, L. (1950). Chapter 2, 3, 6, 8, and 9. In Stouffer, S.A., Measurement and
Prediction. Princeton, NJ: Princeton University Press.

92



Bibliography

Haberman, J.S. (1977). Maximum likelihood estimates in exponential response models.
The Annals of Statistics, 5, 815-841.

Hambleton, R.K. & Swaminathan, H. (1985). Item response theory: Principles and
applications. Boston: Kluwer-Nijhoff.

Hambleton, R.K. & Swaminathan, H. & Rogers, H.J. (1991). Fundamentals of item
response theory. Newbury Park, Calif.: Sage Publications.

Hoijtink, H. & Boomsma, A. (1995). On person parameter estimation in the dichoto-
mous Rasch Model. In Fischer, G.H. & Molenaar, I.W., Rasch Models: Foundations,
Recent Developments, and Applications, 53-68. New York: Springer.

Holland, P.W. & Wainer, H. (1993). Differential item functioning. Hillsdale, NJ:
Lawrence Erlbaum.

Hullin, C.L. & Drasgow, F. & Parsons, C.K. (1983). Item Response Theory: Application
to Psychological Measurement. Homewood, IL: Dow Jones-Irwin.

Jannarone, R.J. (1986). Conjunctive item response theory kernels. Psychometrika, 51,
357-373.

Kelderman, H. (1984). Loglinear Rasch Model tests. Psychometrika, 49, 223-245.

Kelderman, H. & Rijkes, C.P.M. (1994). Loglinear multidimensional IRT models for
polytomously scored items. Psychometrika, 59, 149-176.

Klauer, K.C. (1995). The assessment of person fit. In Fischer, G.H. & Molenaar I.W.,
Rasch Models: Foundations, Recent Developments, and Applications, 97-110. New
York: Springer.

Langeheine, R. & Pannekoek, J. & van de Pol, F. (1996). Bootstrapping Goodness-
of-Fit measures in categorical data analysis. Sociological Methods and Research, 24,
492-516.

Lazarsfeld, P.F. (1950). The logical and mathematical foundations of latent structure
analysis. In Stouffer, S.A. & Guttmann, L. & Suchman, E.A. & Lazarsfeld, P.F. & Star,
S.A. & Clausen, J.A., Studies in World War II, Vol. IV: Measurement and Prediction,
362-412. Princeton, NJ: Princeton University Press.

Lazarsfeld, P.F. (1959). Latent structure analysis. In Koch, S., Psychology: A study of
a science, 476-542. New York: McGraw-Hill.

Lehmann, E.L. & Romano, J.P. (2005). Testing statistical hypotheses. New York:
Springer.

Leisch F. (2004). FlexMix: A general framework for finite mixture models and latent
class regression in R. Journal of Statistical Software, 11, 1-18.

93



Bibliography

Liou, M. (1994). More on the computation of higher-order derivates of the elementary
symmetric functions in the Rasch Model. Applied Psychological Measurement, 18, 53-
62.

Liu, J.S. (2001). Monte Carlo Strategies in Scientific Computing. New York: Springer
Verlag.

Mair, P. (2006). Simulation studies for goodness-of-fit statistics in item response theory.
University of Vienna: Unpublished Master Thesis.

Mair, P. & Hatzinger, R. (2007a). CML based estimation of extended Rasch Models
with the eRm package in R. Psychology Science, 49, 26-43.

Mair, P. & Hatzinger, R. (2007b). Extended Rasch Modeling: The eRm Package for
the Application of IRT Models in R. Journal of Statistical Software, 20, 1-20.
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