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Abstract 

The Global Stocktake (GST), implemented by the Paris Agreement, requires rapid developments in the capabilities 
to quantify annual greenhouse gas (GHG) emissions and removals consistently from the global to the national scale 
and improvements to national GHG inventories. In particular, new capabilities are needed for accurate attribution of 
sources and sinks and their trends to natural and anthropogenic processes. On the one hand, this is still a major chal-
lenge as national GHG inventories follow globally harmonized methodologies based on the guidelines established by 
the Intergovernmental Panel on Climate Change, but these can be implemented differently for individual countries. 
Moreover, in many countries the capability to systematically produce detailed and annually updated GHG inven-
tories is still lacking. On the other hand, spatially-explicit datasets quantifying sources and sinks of carbon dioxide, 
methane and nitrous oxide emissions from Earth Observations (EO) are still limited by many sources of uncertainty. 
While national GHG inventories follow diverse methodologies depending on the availability of activity data in the 
different countries, the proposed comparison with EO-based estimates can help improve our understanding of the 
comparability of the estimates published by the different countries. Indeed, EO networks and satellite platforms have 
seen a massive expansion in the past decade, now covering a wide range of essential climate variables and offering 
high potential to improve the quantification of global and regional GHG budgets and advance process understand-
ing. Yet, there is no EO data that quantifies greenhouse gas fluxes directly, rather there are observations of variables 
or proxies that can be transformed into fluxes using models. Here, we report results and lessons from the ESA-CCI 
RECCAP2 project, whose goal was to engage with National Inventory Agencies to improve understanding about the 
methods used by each community to estimate sources and sinks of GHGs and to evaluate the potential for satellite 
and in-situ EO to improve national GHG estimates. Based on this dialogue and recent studies, we discuss the potential 
of EO approaches to provide estimates of GHG budgets that can be compared with those of national GHG invento-
ries. We outline a roadmap for implementation of an EO carbon-monitoring program that can contribute to the Paris 
Agreement.
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Background
In order to meet the Paris Agreement overarching goal of 
limiting global warming to less than two degrees by the 
end of the century, the United Nations implemented the 
Global Stocktake Process (GST), regular assessments of 
the world’s collective progress “…to reach global peaking 
of greenhouse gas emissions as soon as possible … and 
to undertake rapid reductions thereafter in accordance 
with best available science…to achieve a balance between 
anthropogenic emissions by sources and removals by 
sinks of greenhouse gases in the second half of this cen-
tury”. The GST aims to regularly track collective progress 
to provide indication on the update of national targets 
in line with the Paris Agreement goals. The first GST 
started in 2021 and will be completed by 2023, followed 
by an update of Nationally Determined Contributions 
(NDC) after two years (2025), with the whole process 
repeated every 5 years.

Such effort requires swift developments in capabilities 
to quantify greenhouse gas (GHG) emissions and remov-
als (i.e., budgets) and their trends consistently linking the 
global to the national scales, as well as accurate attribu-
tion of sources and sinks to anthropogenic and natural 
processes beyond the scope of national GHG inventories. 
Improved capabilities are needed for national inventory 
makers, as all countries (with some flexibility for least 
developed country Parties and small island developing 
States) will need to report their greenhouse gas emis-
sions and removals every other year, under the Enhanced 
Transparency Framework of the Paris Agreement, using 
the 2006 IPCC Guidelines [51], and any subsequent ver-
sion or refinement of the IPCC guidelines agreed upon 
by the Conference of the Parties serving as the meeting 
of the Parties to the Paris Agreement. A common report-
ing format has been agreed to (UNFCCC [97]) and will 
include the same level of details than current national 
inventories reported by so called Annex-1 countries (the 
countries that engaged on the Kyoto Protocol, that is all 
OECD countries, Russia and Kazakhstan).

The Enhanced Transparency Framework represents 
a major challenge for developing countries that repre-
sent altogether 70% of anthropogenic emissions. These 
have provided hitherto sparse and simplified reports in 
the form of National Communications and/or Biennial 
Update Reports to the UNFCCC [ 19, 94, 96] and will be 
granted some flexibility by decision 18/CMA.1 (UNF-
CCC, [95]). Many developing countries do not have an 
infrastructure to systematically collect and analyze data 
on energy use, agriculture and the Land Use, Land Use 

Change and Forest sector (LULUCF). For the LULUCF 
sector, official inventories use a managed land proxy: this 
means all emissions and removals on managed lands are 
considered as anthropogenic due to the encountered dif-
ficulties to find a better method to separate anthropo-
genic emissions from non-anthropogenic emissions. This 
is based on a country specific definition of managed land 
areas, which can include Indigenous Territories and Pro-
tected Areas with mostly undisturbed ecosystems (e.g. 
for Brazil). Finally, some countries have chosen to remove 
inter-annual variability of their GHG emissions from nat-
ural disturbances such as fires from their estimates [59]. 
This adds another source of inconsistency and uncer-
tainty across GHGIs, since separating fluxes from natu-
ral disturbances from those driven by human activities 
is challenging. Excluding natural disturbance emissions 
from inventories it requires that both associated emis-
sions (e.g., fire emissions) and subsequent removals (e.g. 
post-fire vegetation regrowth) are excluded (IPCC [52]).

Three different approaches can be used to moni-
tor GHG budgets: (i) top-down estimates from 
atmospheric inversions based on atmospheric GHG 
measurements from in-situ monitoring networks or sat-
ellites with atmospheric transport models, (ii) bottom-
up approaches based on process-based or bookkeeping 
models for natural and human fluxes, and (iii) bottom-up 
approaches used by national GHG inventories (NGHGI) 
using activity statistics combined with emission factors 
(generally not spatially explicit), or empirical or pro-
cess-based modelling. The first two approaches are used 
in global GHG budgets by the Global Carbon Project, 
while most NGHGIs follow the third type of bottom-up 
approach, with different level of details based on different 
Tiers defined by IPCC Guidelines (IPCC [50, 51). Scaling 
up NGHGI approaches to the global scale in a way that 
is consistent with the global growth rates of atmospheric 
 CO2,  CH4 (and  N2O, not discussed here) is not straight-
forward because of the NGHGI focus on anthropogenic 
fluxes, different methodologies used by NGHGIs, miss-
ing reports from a few countries, sporadic and often 
outdated national reports in National Communications/
Biennial Update reports, uncertainties arising from dif-
ferent definitions of sectors and activities, and limitations 
in data collection.

Global datasets and spatially explicit models such as 
those used in Global Carbon Budgets, GCB [30, 31] can 
make a valuable contribution to the GST by providing 
an independent, regularly updated and consistent means 
of linking global to national GHG budget. First attempts 
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to link global approaches to national inventories have 
been recently made by [9, 19, 86, 91] for atmospheric 
inversions, and by [37] for global dynamic vegetation 
and bookkeeping models. Engaging in an open dialogue 
between the scientific community and national inventory 
agencies that produce NGHGI is fundamental to reduce 
sources of uncertainty in the different estimates of GHG 
budgets, improve comparability of different approaches 
(definitions, sectors, uncertainties of each approach) 
and to identify mismatches that can reveal problematic 
sectors [19, 38, 71]. A key challenge to this use of global 
budgets is that datasets from the global budgets from the 
Global Carbon Project [31, 81, 92] are themselves prone 
to large uncertainties in (i) the spatial distribution of sur-
face GHG fluxes, at the scale of large regions, and even 
more over small regions or countries due to model struc-
tural differences, parameter values and model input data, 
(ii) the land-use, land-cover change and management 
(LULCC) input datasets used to estimate corresponding 
fluxes  (FLUC) by bookkeeping models (BK) and Dynamic 
Global Vegetation Models (DGVM) used by GCB, (iii) 
the attribution of fluxes to human vs. natural processes, 
or to managed/unmanaged lands [38], (iv) definitions 
used to account for different fluxes [3, 13, 34, 35, 72].

A massive development and expansion of Earth Obser-
vation (EO) networks and satellite platforms to monitor 
Essential Climate Variables (ECVs) has been seen in the 
past decade, many of which are relevant to the global 
carbon cycle [74]. Yet, these vast amounts of EO data are 
still under used in NGHGI and BK/DGVM approaches. 
Recent case-studies have called for (and shown the 
potential of ) deeper integration of EO data in models 
used to quantify different terms of carbon budgets and 
attribute them to specific processes [46, 78], Bultan et al. 
In print [8]). A challenge in the use of EO data directly 
is that it allows estimating instantaneous fluxes only [27], 
while legacy fluxes also need to be considered [17, 78].

The REgional Carbon Cycle Assessment and Processes 
project phase-2 (RECCAP2), part of the Global Carbon 
Project, aims to produce the best possible regional budg-
ets of  CO2,  CH4 and  N2O in a globally consistent way 
while accounting for both emissions covered by GHG 
inventories and terrestrial and oceanic fluxes not cov-
ered by those inventories. The pilot project by the Euro-
pean Space Agency Climate Change Initiative (ESA-CCI) 
aimed at evaluating the potential of long-term global 
satellite Earth Observation archives to support REC-
CAP2 and the GST by promoting close interactions and 
discussions between the scientific community and four 
National Agencies responsible for UNFCCC NGHGIs 
and other relevant institutions in five countries (Brazil, 
France, Germany, Italy, United Kingdom, UK). A focus of 
the ESA-CCI RECCAP2 pilot project was to improve the 

use of EO data in models used in GCB, through practi-
cal case studies including the use of satellite GHG con-
centration measurements for atmospheric-based models 
(inversions) of GHG fluxes, and the use of satellite obser-
vations allowing to improve estimates of biomass change 
and attribute them to different land use practices.

As a result of this dialogue and in light of recent stud-
ies, here we discuss the potential of selected EO data-
sets to contribute to the GST and outline a roadmap for 
implementation of an EO GHG-monitoring program 
to support the GST. We focus on the practical lessons 
we learned from using satellite EO data of GHG atmos-
pheric concentration and land cover change to assess 
national scale GHG budgets. A summary of the models 
and datasets used here is provided in Table 1. This is not 
an exhaustive list, as many ECVs from EO data-streams 
exist that could be used to improve GHGIs (wetlands, 
fires, climate, permafrost, industrial or urban activities 
…). We nevertheless identify ECVs that we consider key 
priorities to improve estimates of natural vs. anthropo-
genic GHG fluxes for comparison and verification of 
national GHG budgets.

EO datasets for independent monitoring/verification 
of national GHG budgets in top‑down  CO2 and  CH4 
inversions approaches
Top-down approaches allow estimating spatially-explicit 
and globally consistent land- and ocean–atmosphere 
fluxes, thereby providing a means to link country-level 
fluxes to global budgets. Inversion-based solutions are 
consistent with the global growth rate of GHGs which 
is not the case for bottom-up methodologies. However, 
current global inversions have coarse spatial scale, and 
country-level fluxes are still relatively poorly constrained, 
at least for medium-sized and smaller countries, espe-
cially in geographic regions with sparse atmospheric 
observation networks and unfavourable observation 
conditions from space (clouds, lack of insolation, etc.). 
Comparisons with bottom-up estimates require adjust-
ments to consider processes that are actually excluded/
included in each approach. These can be applied either to 
top-down or bottom-up estimates but are usually applied 
to top-down fluxes [3, 19, 31]. Ciais et al. [13] proposed a 
framework to harmonize definitions and methods, which 
facilitates the use of top-down methods in the monitor-
ing and verification of GHG budgets from NGHGI. This 
framework has been tested in [19]. Below, we list the key 
state-of-the-art results, opportunities and requirements 
for the use of EO in improving national GHG monitoring 
and verification.

Atmospheric inversions, especially satellite-based 
inversions, provide a globally-consistent approach to 
constrain country-level GHG budgets provided that they 
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are adjusted to consider the same processes included in 
bottom-up estimates and that the net land–atmosphere 
fluxes estimated by inversions are corrected by removing 
fluxes that are not in the scope of the GHG inventories, 
provided these can be quantified. Inversions can thus be 
used to independently evaluate national GHG budgets 
from NGHGI reports. Discrepancies between the two 
estimates allow gaining understanding about processes 
that might be overlooked in NGHGIs. Yet, such a ‘veri-
fication’ does not have the same performance for all the 
greenhouse gases and geographic regions. Uncertainties 
in inversions estimates are large and differ between coun-
tries, owing to uncertainties in the atmospheric transport 
models, sparse surface observations, systematic errors of 
satellite observations of the column-average concentra-
tion, varying across satellite and retrieval product, and 
coarse spatial resolution of inversion fluxes. Generally, 
countries smaller or equal in size than a middle-sized EU 
country (France, Germany) cannot be constrained yet by 
global inversions due to computational constraints, but 
regional inversions may be used [68] at the cost of losing 
the link with the global growth rate of the GHGs. In addi-
tion, there is uncertainty in datasets required to make the 
adjustments needed to ‘post-process’ inversions to enable 
comparison with bottom-up methods and especially the 
separation of anthropogenic and natural fluxes for com-
parison with NGHGI [19].

Successful examples of the use of inversions for  CH4 
national emissions in large emitters countries for the 

agriculture and waste and the fossil fuel sectors are given 
in [19], and for oil/gas very large leaks of  CH4, localised 
in extraction basins and along pipelines by [60] and ultra-
emission events [53]. Namely, several oil and gas extrac-
tion countries like in the Persian Gulf region, Central 
Asia, and Russia, report significantly less fossil  CH4 emis-
sions than what is constrained by GOSAT-based satellite 
inversions [19]. In addition, very large  CH4 leaks (> 20 
 tCH4 per hour) systematically detected and quantified 
using data from the TROPOMI satellite [60] are ignored 
by NGHGIs and can correspond to between 10 and 80% 
of national reported emissions.

Attempts to use  CO2 inversions to constrain regional 
fluxes related with land-use, land-use change and for-
estry in NGHGI have been moderately successful in 
selected countries that have a large forest coverage and 
unmanaged lands are given in Deng et  al., [19]. Global 
inversions revealed either larger  CO2 sinks (boreal coun-
tries) or smaller  CO2 sinks (tropical countries) than 
NGHGI reports [19]. A limitation to refine the use of 
inversion results comes from the lack of spatially explicit 
information provided by countries about their managed 
lands areas, which prevents the accurate sampling of 
inversions gridded results over these areas [37], and from 
degradation  CO2 losses that are not explicitly reported 
by countries in their inventories. Degradation  CO2 losses 
have a large impact on the national C emissions in tropi-
cal countries, e.g. comparable to those of deforestation in 
Brazil [82].

Table 1 Summary of the different approaches to estimate  CO2 and  CH4 fluxes discussed in this study

Dataset Approach References

Atmospheric inversions Optimize net surface fluxes of  CO2,  CH4 and other trace gases based on in-situ or satellite-
based on atmospheric concentration data and using atmospheric transport models. 
Ancillary flux data (e.g., fossil fuel, lateral fluxes) can be used to adjust inversion-based 
estimates to estimate natural vs. anthropogenic fluxes. Typically cover the past 2–4 
decades

[13, 19, 31, 81]

Bookkeeping models (BK) Model carbon losses and gains following LULCC based on land-use/cover type specific 
C densities and response curves following transitions. Models differ in their parameters, 
response curves, LULCC forcing used and spatial detail of transitions and fluxes. Typically 
cover the full industrial period (since 1700)

[31, 34, 43, 48]

Dynamic global vegetation models (DGVM) Simulate vegetation productivity, growth, dynamics mechanistically in response to 
environmental conditions. Some models simulate nutrient cycling and fertilization, fire 
dynamics, wetland dynamics and methane emissions. Some management practices and 
shifting cultivation are usually included.  FLUC is usually derived as a difference between 
two simulations, one with fixed land-cover map and another with changing land-cover 
fields. GCBs cover the period since 1901, in Global Methane Budgets provide data since 
2000

[31, 70, 81, 84]

National GHG inventories (NGHGI) Report annually country-level emissions and removals of main greenhouse gases from 
five categories (energy; industrial processes and product use; agriculture; land use, land-
use change and forestry (LULUCF); and waste) and their subsectors since 1990. Follow 
a common reporting format established by UNFCCC with harmonized methodologies 
organized in different levels of complexity (Tiers)

(UNFCCC; [37]

Food and agricultural organization (FAO) Provide emissions from net forest conversion and fluxes on forest land as well as  CO2 
emissions from peat drainage and peat fires

[93], FAOSTAT)
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We propose the following recommendations for the 
use of EO in top-down inversions estimates:

1. Systematic evaluation of the different satellite EO 
datasets on GHG column concentrations used as 
input of inversions, both through inter-comparison 
between datasets and their benchmarking against 
independent measurements made from the AirCore 
Atmospheric Sampling System [55]. Remote sensing 
data from the ground by the Total Carbon Column 
Observing Network (TCCON, [101, 105]) or the 
Collaborative Carbon Column Observing Network 
(COCCON, [29]) could also be used for this purpose 
provided they further reduce their systematic errors.

2. Systematic evaluation of the performances of global 
inversions using independent cross validation (air-
craft) and sanity checks (fit to growth rate) as per-
formed for the inversions used by the global  CO2 
budget, but not by the  CH4 budgets to date.

3. Stipulating and reporting clearly the methods used 
to make the adjustments to ‘post-process’ inver-
sions’ fluxes to enable a more accurate comparison 
with bottom-up methods, especially the attribution 
of emissions to specific inventory sectors/categories 
and separation of anthropogenic and natural fluxes 
for comparison with NGHGI, and the removal of 
 CO2 fluxes due to lateral transport processes from 
inversions results, based on independent datasets 
[13, 19].

4. Systematic reporting of consistently defined man-
aged/unmanaged lands by countries so that gridded 
inversion estimates of GHG fluxes can be accurately 
sampled over the managed land areas covered by 
NGHGIs. We recommend that spatially explicit data-
sets on managed/unmanaged lands are provided by 
all the countries [37].

5. Clarification of where forest degradation processes 
causing  CO2 losses occur in each country. Degra-
dation is not explicitly reported in NGHGIs when 
it occurs on managed land, and not reported at all 
when it occurs in unmanaged land. Therefore, the 
degree to which degradation  CO2 losses are counted 
by countries is not clear, as current sample-based for-
est inventory data are insufficient to characterise C 
stock changes in forest land remaining forest land.

6. As pointed out in the introduction, countries can 
decide to treat natural disturbances emissions and 
recoveries in different ways, which makes a compari-
son with top-down  CO2 inversions fluxes challeng-
ing. We recommend that disturbance areas and emis-
sions are reported in a spatially explicit way so that a 
better comparison of NGHGIs and inversions can be 
possible

7. Some of the recommendations 3 to 6 can, in princi-
ple, be addressed by the incorporation of more EO 
data into atmospheric inversions. Examples include: 
fluxes from biomass burning, globally consistent 
fluxes from inland waters and wetlands (Fig.  1), or 
constraints on managed vs. undisturbed land.

Land cover EO datasets for improved estimates of fluxes 
from land‑use and land‑cover change and management
Fluxes from land-use and land-cover change and man-
agement  (FLUC) are one of the most uncertain compo-
nents of the global carbon budgets [30, 31]. Uncertainties 
in  FLUC arise from multiple sources: definitions and meth-
ods [33, 37, 70, 72], fluxes and management considered 
[2, 88], model parameterization [4], and the LULCC area 
information used [32, 34, 78]. Besides, the use different 
IPCC guidelines in NGHGIs results in inconsistencies of 
scopes and category classifications for reporting the  FLUC 
estimates.

An important aspect to consider are the differences 
between the definition of LULCC, used in bookkeep-
ing models and DGVMs, and that of LULUCF used in 
NGHGIs. Comparisons between each of these three 
approaches requires adjusting the definition of these 
fluxes for the land domains considered (e.g. managed vs. 
unmanaged, definition of forests, …) as well as in the pro-
cesses included in each. Since these differences have been 
extensively discussed elsewhere [33, 37, 38, 72], here we 
refer to  FLUC following the perspective of the Global Car-
bon Project carbon budgets, but note that most recom-
mendations can in principle be applied to NGHGIs as 
well.

Satellite remote-sensing is driving developments of 
spatially explicit land-cover and land-cover change data-
sets. Brazil is the single largest country emitter to global 
 FLUC on average and therefore an excellent country to 
study this particular problem. Rosan et  al. [78] made a 
promising prototype assessment of how new remote-
sensing data can be combined to target LULCC data-
set improvement in key countries. There, a high-quality 
long-term LULCC dataset based on Landsat data has 
been developed by “The Brazilian Climate Observa-
tory” (Mapbiomas), providing a unique reference data to 
evaluate global LULCC datasets. Rosan et  al. [78] com-
pared  FLUC estimates based on Mapbiomas with  FLUC 
estimates based on two datasets used in Global Carbon 
Budgets [30, 31]. The HYDE3.2 global dataset [57], used 
in the Land-use Harmonization (LUH2) to drive DGVM 
and one bookkeeping model in past global  CO2 budget 
assessments [10, 30] relied on a fixed 300 m land-cover 
reference map by ESA Land-Cover CCI (LC-CCI, [18]) 
to spatially allocate LULCC. In the GCB2021 updated 
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version of HYDE (3.3), annual LC-CCI maps were used 
to spatially constrain LULCC, resulting in better agree-
ment in the spatial patterns and trends of  FLUC in Brazil 
with estimates based on Mapbiomas.

The recently published HILDA + [103] dataset recon-
structed LULCC since 1960 at intermediate spatial 
resolution (1  km) using multiple remote-sensing based 
datasets, rather than a single one. Winkler et  al. [103] 

showed that using higher resolution data (30 m for Land-
sat-based datasets) and including regionally specific his-
torical information alters depicted LULCC patterns and 
temporal dynamics. For two of the focus countries in 
ESA-CCI RECCAP2 (Germany and France), we com-
pare the  FLUC estimates from DGVM simulations using 
LUH2 from GCB2021 and HILDA + as LULCC forcing 
(Fig. 2). We further compare these estimates with (i) BK 

Fig. 1 Comparison of mean, variability and trends of wetland CH4 emissions in the RECCAP2 Europe region simulated by top-down and 
bottom-up approaches in 2010–2017. The three rows show the spatial patterns of wetland  CH4 emissions (fWet) based on the datasets from the 
Global Methane Budget 2000–2017 [81]: an ensemble of 10 in-situ and 11 satellite-based atmospheric inversions (left column) and two simulations 
by an ensemble of 13DGVMs: one using prescribed wetland extent from the WAD2M datasets (DGVMs Diag., all 13 models, centre column) and 
another with prognostically simulated wetland extent (DGVMs Prog., only 8 out of 13 models, right column). The top row shows mean annual fluxes, 
the second row shows inter-annual variability in annual fluxes and the bottom row shows trends in the mean annual fluxes (red for negative trends, 
indicating reduced emissions, and blue for positive trends, indicating increased emissions). Inversions and DGVMs agree on fWet sources to be 
mostly located in Scandinavia, Denmark and northern UK but the magnitude of fWet is consistently lower in DGVMs. DGVM runs using prescribed 
wetland extent  (DGVMDiag) show consistent spatial distribution with inversions, while simulations using prognostic wetland extent  (DGVMProg) show 
strong sources in parts of eastern and central Europe. Interannual variability (second row) in inversion datasets is highest in northern and Eastern 
Europe, while for DGVMs, IAV patterns are more uniform across the whole region and higher for  DGVMProg. There is wide disagreement between 
the four datasets for the trends in 2010–2017 (bottom row). More detailed information about the datasets and model simulations is provided in 
Additional file 1
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models from GCB2021, (ii) the BLUE BK model forced 
with HILDA + by [32], and (iii) AFOLU fluxes from 
FAO (FAOSTAT [26]) and from the respective NGHGIs 
(Fig. 2). Note that in both France and Germany, all land is 
considered to be managed so that we avoid mis-matches 
due to different definitions.

The agreement of each dataset with reference data 
(BK models, FAO, NGHGIs) depends both on LULCC 
forcing and model. The differences in  FLUC estimated 

by each individual DGVM using two different LULCC 
forcing datasets are generally smaller than the differ-
ences between DGVMs with the same LULCC forcing. 
In Germany,  FLUC from DGMVs is on the lower range of 
the uncertainty envelope of BK models from GCB2021 
but generally close to NGHGI estimates. Simulations 
of DGVMs and BLUE with HILDA + LULCC lead to 
a weaker LULCC sink but are largely consistent across 
models. In France, OCN estimates much strong LULCC 

Fig. 2 Comparison of different estimates of  FLUC for two of the focus countries in ESA-CCI RECCAP2, Germany and France (different rows). The left 
panels show annual time-series of  FLUC simulated by two DGVMs (OCN [107] and ORCHIDEE-MICT [41]) based on two LULCC datasets: oneforced 
with LUH2 GCB2021 (blue lines) and HILDA + (yellow lines) for the period 1960–2020. These are compared tothe ensemble of bookkeeping models 
(black line for the mean and grey shades for the range of the models), the respective NGHGIs for each country (black line with triangle markers) 
and FAO (open circles). The right panels show mean decadal fluxes for individual models (OCN in filled bars, ORCHIDEE-MICT in hatched bars and 
BLUE-HILDA + in open bars) forced with the two LULCC datasets (blue colours for LUH2 GCB2021 and yellow for HILDA +). The markers show the 
corresponding values estimated by BK models (squares with vertical lines showing model spread), NGHGIs (triangles) and FAO (open circles). To 
estimate  FLUC with DGVMs we followed the commonly used approach in Global Carbon Budgets [31, 70, 83]: we run two simulations forced with 
changing CO2 and climate, but one with fixed LULCC distribution (in this case in 1950) and another with changing LULCC fields. The difference 
between the two allows estimating the effect of LULCC on the simulated carbon fluxes. Information about the respective LULCC datasets can be 
found in the Section on Land cover EO datasets and more details about the forcing datasets and model simulations is provided in Additional file 1
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sink than ORCHIDEE-MICT, with the differences 
between the models being comparable to differences 
between LULCC forcing. The estimates by OCN are close 
to the mean of BK models from GCB2021, which also 
shows good agreement with NGHGI estimates. These 
results highlight the important role of model uncertainty 
in addition to that uncertainty in LULCC forcing. Inter-
actions between model and LULCC forcings results in 
non-systematic biases, so that using multiple independ-
ent LULCC forcing datasets as well as consistent defini-
tions and land-use classes would help constraining  FLUC 
uncertainties.

We propose the following recommendations for the 
use of EO in  FLUC estimates:

1. High-resolution remote-sensing data of LULCC 
(10–30  m) and biomass allow quantifying  FLUC in 
a spatiotemporally explicit and globally consist-
ent manner and cost-effective way. They can there-
fore provide a key contribution to estimate  FLUC in 
regions/countries with limited capacity to produce 
detailed national inventories and statistics. The high 
resolution at field scale makes assumptions about 
sub-grid scale transitions, which introduce additional 
uncertainty, expendable. We recommend to establish 
a clear correspondence between land cover classes 
defined by satellite products and the finer-scale land 
use types defined by countries to make their inven-
tories, especially for systems that frequently change 
their land cover status such as cropland grassland 
rotations, etc. Provided legacy fluxes are added to 
remote-sensing based estimates of  FLUC [78], this 
will allow to make DGVM and bookkeeping model 
results suitable for evaluation of NGHGIs.

2. There are still large disagreements between different 
satellite-based LULCC products, owing to the char-
acteristics of the different sensors, different temporal 
coverage, spatial resolution, methodologies for land-
cover classification, and critically the definition of 
forest [62, 73]. For forest monitoring, we recommend 
to use directly quantitative information on canopy 
height, area, and tree cover to define limits of forests. 
For LULCC products in general, a harmonized com-
bination of available products, based on their com-
mon agreement, may reduce the uncertainty effects 
due to misclassification by the sensors/products.

3. It is currently not possible to assign more confidence 
to one LULCC dataset over another, especially at 
global scale, and existing datasets are to some extent 
dependent on the same underlying data. For exam-
ple, both HILDA + , LUH2v2 rely on FAO and CCI 
LC, although with fundamental differences in their 
methods. We call for more efforts to evaluate and 

validate LULCC datasets, e.g., based on regional 
high-resolution EO data or high-quality inventories, 
if available, and on a common global framework for 
benchmarking. We also recommend to compare EO 
based LULCC datasets with those used by NGHGI. 
In this case, if NGHGI report spatially explicit data-
sets instead of nation-wide averages, a detailed com-
parison can be performed to evaluate the different 
sources of error.

4. These uncertainties are propagated to estimates of 
 FLUC both in NGHGI and DGVMs or other mod-
els [78] but also to estimates of the natural sinks 
(because of the foregone sink capacity) and distur-
bance fluxes by models (Fig.  3). The sensitivity of 
estimated natural and anthropogenic fluxes to the 
LULCC forcing is likely to be stronger in regions 
undergoing intense LUC, i.e., Brazil compared to 
Europe. The approach in Rosan et al. [78] for Brazil 
provides a prototype of how high-resolution remote-
sensing data can be combined to target LULCC data-
set improvement in other key regions. Similar efforts 
should be extended to other countries/regions that 
have not been comprehensively analysed.

5. Interactive effects between LULCC forcing uncer-
tainty, process representation and model parameter-
izations make it challenging to track the impacts of 
differences in LULCC forcing on estimated fluxes [4, 
34, 70]. We propose that that using multiple LULCC 
forcing datasets in addition to different bookkeeping 
models or DGVMs may improve the representation 
of  FLUC uncertainties.

6. The impossibility of observational data to separate 
LULCC and natural processes on a global scale is one 
of the most important reasons for the application of 
models, or, on regional scale, the use of ancillary data 
such as photointerpretation [73]. EO data needs to be 
complemented by additional information to separate 
anthropogenic from natural drivers. Additional EO-
based datasets can be used to further constrain these 
processes/parameters in DGVMs and bookkeeping 
models and contribute to reduce uncertainties or 
make them more tractable. Examples of such remote-
sensing based datasets include: biomass C stocks 
for bookkeeping model parameterization (recom-
mended in [4]) or direct use of remotely-sensed bio-
mass data (next section), satellite-based burned area 
[11, 36], degradation/small scale natural and human 
disturbances (e.g. land management) or additional 
vegetation indicators to constrain C uptake [66].
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High‑resolution EO biomass changes data to improve 
national carbon accounting
Monitoring biomass change represents a major chal-
lenge and yet is key to underpinning NGHGI reporting. 
Vegetation Optical Depth (VOD) is a vegetation index 
retrieved from passive or active microwave remote 
sensing that reflects the attenuation of the microwave 
signal by the vegetation canopy, however, the signal is 
also influenced by soil moisture [28], leading to uncer-
tainty in VOD retrievals. High frequency products are 
less sensitive to soil moisture but much more sensitive 
to foliar dynamics than woody biomass. In a recent 
intercomparison of nine VOD datasets at different fre-
quencies (X-, C- and L- bands), Li et  al. have shown 
that L-VOD from SMOS-IC V2 and SMAP MT-DCA 
performs best for predicting biomass [63]. The spatially 
specific total above ground biomass changes that are 
provided by L-band Vegetation Optical Depth (L-VOD) 
derived from the ESA Soil Moisture and Ocean Salin-
ity (SMOS-IC) mission measurements [25] can now 
provide a global perspective on biomass changes, but 
at a relatively coarse resolution (25 × 25  km). L-VOD 
reflects changes within woody vegetation biomass 
including growth/regrowth, although it is also influ-
enced by fluctuations in vegetation water content and, 
in some regions, radio-frequency interference noise, 
so that long-term changes and interannual variations 

linked to high impact events (deforestation, major 
droughts, …) should be more reliable than more sub-
tle interannual fluctuations [58]. Despite L-VOD from 
passive measurements having coarse spatial resolution, 
it demonstrates the power of remote-sensed biomass 
change to inform carbon budgets [25].

Consolidating bottom-up approaches with top-down 
reference estimates of biomass change are important as 
besides reducing uncertainty there is potential to fur-
ther identify changes that may be missed in conventional 
bottom-up reporting such as (1) small scale disturbances 
or effects of environmental factors on forest growth 
missing in spatially explicit bottom-up EO based data-
driven models, (2) missing or mis-represented processes 
in DGVM models, and (3) lack of unmanaged lands, 
under-sampled land use types, limitations of low Tier 
methodologies in NGHGIs. These independent esti-
mates of biomass changes may also prove useful for bet-
ter inferring anthropogenic emissions from atmospheric 
inversions.

An emerging application of high-resolution (< 30  m, 
HR) EO is that through reporting LULCC at fine spatial 
grain it can be used in combination with region specific 
auxiliary data, in particular high resolution biomass data-
sets [6], Santoro and Cartus [80]) to estimate  CO2 fluxes 
associated with different natural and anthropogenic 
processes (Fig.  4). These include the deforestation of 

Fig. 3 Comparison of different estimates of  CO2 emissions from fire  (FFire) for Italy and influence of land-cover maps. The left panel shows 
annual time-series of  FFire simulated by two DGVMs (OCN [107] and ORCHIDEE-MICT [41]) based on two LULCC datasets: one forced with LUH2 
GCB2021 (blue lines) and HILDA + (yellow lines) for the period 1960 – 2020, the GFED4.1 s remote-sensing based global dataset (think black line) 
and the NGHGI estimates (thin line with markers). The right panel shows the mean decadal fluxes for individual models (OCN in filled bars and 
ORCHIDEE-MICT in hatched bars) with the corresponding LULCC forcing, and markers show the corresponding values estimated by GFED4.1 s 
(squares). The model simulations for the two LULCC forcing datasets were forced with historical  CO2, climate and N-deposition (OCN only). 
Information about the respective LULCC datasets can be found in the Section on Land cover EO datasets and more details about the model 
simulation protocol and forcing data are provided in the Additional file 1
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old-growth and secondary forest, small to medium scale 
disturbances due to drought-induced mortality, shifting 
cultivation, forest fires and selective logging [7, 98] and 
the offsetting capacity of regrowing secondary forests 
[46]. Such estimates have the potential to greatly sup-
port the capacity of countries to report emissions where 
national inventories are limited.

With careful ground-truthing, new remote-sensed bio-
mass change products will be transformative in our abil-
ity to monitor and verify biomass change in the coming 
decade. We propose the following recommendations that 
could improve process-attribution using high-resolution 
EO and satellite-based observations of biomass change:

1. Greater focus on degradation processes and their 
monitoring [82], using high to very high-resolution 
satellite data. These are not clearly accounted for in 
NGHGI reporting from most tropical countries, not 
represented in DGVMs (or poorly represented), and 
represented in an idealized manner in bookkeep-
ing models. Combined with empirical observations, 
remote-sensing can play a pivotal role in advancing 

our capability to model degradation processes at 
scale.

2. Since degradation is a multifaceted process includ-
ing fire, logging and droughts, C losses and recovery 
trajectories need to be quantified independently for 
each. Therefore, inventories in degraded forests need 
to be intensified in order to improve parametrization 
of the bottom-up approaches and to evaluate top-
down approaches.

3. Regular updates of global coarse to moderate-reso-
lution estimates of biomass changes such as hybrid 
products using optical and microwave data [106] and 
microwave L-VOD that has the advantage to saturate 
less in high biomass forests, e.g. the Biomass Car-
bon Monitor platform to deliver quarterly updates 
on Aboveground Biomass (AGB) for most countries 
and globally. It is an important step towards regular 
updates on biomass changes which may eventually 
be used to identify potential discrepancies between 
national reported statistics on land use change 
related carbon emissions.

4. Given its coarse resolution, L-VOD should be used 
as a top-down reference estimate of biomass change 
and used in combination with auxiliary datasets 
on LULCC for appropriate attribution of observed 
changes at coarse scale. For countries with greater 
expanses of forests such estimates will necessarily be 
more reliable than for smaller countries or countries 
with more fragmented landscapes due to the need to 
exclude areas with open water, urban areas and steep 
topography.

5. Comparisons and benchmarking of available dis-
turbance detection datasets based on time-series 
analysis, which still have large disagreements with 
semi-automated classification approaches based on 
individual observations [67].

6. Further efforts on deriving reliable high-resolution 
AGB changes e.g., from ESA-CCI Biomassmaps or 
from the NASA’s Global Ecosystem Dynamics Inves-
tigation (GEDI) mission [21], with different reference 
years are valuable as they would provide changes at 
the appropriate resolution for calibration and valida-
tion of EO-based bottom-up estimates.

Opportunities from new and upcoming sensors
The past few years have seen a drastic increase in EO data 
available for monitoring the atmospheric concentration 
of trace gases, vegetation cover, status and biomass and 
other relevant ECVs such soil-moisture, fires, permafrost, 
etc. [16, 28, 74].

Remote sensing of carbon dioxide has been particu-
larly challenging due to the drastic requirements on 

growth, recovery
CO2 fertilization

regrowth

deforestation degradation

Fig. 4 Schematic representation of how processes resulting in 
AGC change in the Amazon Biome can be diagnosed based on EO 
observations. Processes represented are deforestation, degradation 
including fires and selective logging, forest growth in old-growth, 
secondary forest or degraded forest areas and regrowth of forests on 
previously deforested areas. The data points represent the difference 
in forest cover and AGC between 2011 and 2018 for 0.25° grid-cells. 
AGC was derived from SMOS-IC v2 L-VOD data [102] and forest cover 
was derived from the Mapbiomas Amazonia collection 2 land-cover 
dataset. Arrows illustrate possible change vectors
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relative systematic errors for a tracer of such lifetime. 
Awaiting future imaging capabilities (e.g. [54]) or met-
rological innovations (e.g., [5]), NASA’s two Orbiting 
Carbon Observatories arguably set the current technol-
ogy benchmark, but with poor coverage of the globe on 
a daily basis [15, 24]. For methane, recent missions such 
as the Italian Space Agency’s PRISMA (Recursore Iper-
Spettrale della Missione Applicativa, [14]) launched in 
2019, the Advanced Hyperspectral Imager (AHSI) aboard 
the China’s GaoFen-5 satellite [64], launched in 2018, 
and the GHGsat, launched by the Indian Space Research 
Organization in 2016 and commercially operated, allow 
for high-resolution (30–50  m) methane mapping and 
improved detection of point sources and small plumes 
[40, 53, 99, 100].

The long-term high resolution (10–30  m) records of 
Landsat and the recent Sentinel-2 data are now used to 
derive tree cover loss [42] and land-cover changes [1, 75, 
103], and to improve the mapping of small fires which 
can result in a doubling of burned area [12]. These data 
can be combined with satellite-based biomass maps 
to estimate biomass carbon changes [45] as discussed 
above. Recently launched or planned sensors with high 
spatial resolution and temporal revisit frequencies such 
as ESA’Sentinel-1 and 2 or the EnMAP launched in 2022 
[39], are expected to further improve our capacity to 
map land-cover (Zanaga et al. [108]), land-cover changes 
occurring at small spatial scales such as selective logging 
[20, 77] or tree decline and mortality [79, 109]. At even 
higher spatial resolution (< 3 m), commercial data such as 
those provided by Planet allow for individual tree map-
ping [85], although accessibility is limited.

For biomass, recently launched and upcoming sensors 
are expected to further reduce uncertainties in tracking 
and attribution of changes. An example is the data being 
recently produced by GEDI, launched in 2018, which is 
currently being integrated for production of improved 
biomass maps(Dubayah [22, 23]. Planned missions such 
as ESA’s BIOMASS [61, 76] and the joint NASA/Indian 
Space Research Organization SAR (NISAR, [56]) mis-
sions, both planned for 2023, will enable further advances 
in higher spatial resolution tracking of biomass changes.

High- and very-high resolution information, combined 
with deep-learning approaches powered by increas-
ing computing power are expected to allow for dras-
tic improvements in forest cover and carbon stocks 
monitoring in the coming years [90]. Along with these 
advances, one should stress the value of long-term and 
continuation missions such as Landsat, recently contin-
ued by the launch of Landsat 9 [65, 104], the Suomi NPP 
program, allowing for continuity of the MODIS record 
through VIIRS (NASA [69] or the GOSAT-2 [89] and 
OCO-3 [24] missions that extend space-based  XCO2 

records. Therefore, we argue that while it is crucial to 
develop sensors that allow to monitor the Earth’s surface 
with increasing quality and spatiotemporal resolution, it 
is now just as important to ensure continuation or com-
patibility across sensors, to robustly attribute changes in 
land-cover and associated carbon fluxes to human-driven 
and climate-change in the long-term.

Final remarks
This project brought together the scientific community 
and National Agencies responsible for National GHG 
Inventories. While short, the project made consider-
able advances in (i) understanding differences between 
top-down and bottom-up GHG budgets, (ii) evaluating 
the added value of different EO products in support-
ing improved national or regional GHG budgets. These 
results contribute to the RECCAP2 activity by the Global 
Carbon Budget, which are expected to provide independ-
ent estimates of global and regional GHG budgets follow-
ing state-of-the-art scientific approaches.

Here we provide a path for future improvements in 
the methodologies for monitorization and verification of 
national GHG mitigation efforts in the Global Stocktake, 
while at the same time being able to constrain the col-
lective progress of nations towards the Paris Agreement 
goals.
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