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Using Colombia as a case study, this analysis provides insights on deforestation dynamics
in times of conflict and peace and the different factors driving these dynamics. We
performed time series clustering of yearly deforestation data (2001–2018) from 708 out
of 1,122 mainland Colombian municipalities (accounting for 98% of the total deforestation
areas in Colombia) and produced regression models using a gradient tree boosting
framework (XGBoost) to identify drivers that explain varying, local-level deforestation
dynamics. Municipalities were characterized by seven categories of deforestation
dynamics, with the Amazon region being largely represented by only four categories
and the Andes region displaying all categories of deforestation dynamics. Notably, six of
the seven representative categories exhibit substantial increases in deforestation in the
years following the peace agreement. The regression analysis revealed that coca
cultivation area, number of cattle, and municipality area are the top three drivers of
deforestation dynamics at national, regional, and category levels. However, the importance
of the different variables varied according to the different spatial dimensions. Results
provide further understanding on how the drivers of deforestation change not only at a
regional scale, as assumed by much of the current literature about drivers of deforestation,
but also at a lower scale of analysis (intraregional and intradepartmental variation in the
case of Colombia). Insights from this study can be used to understand deforestation
dynamics in other countries experiencing times of conflict and peace and will support
decision-makers in creating programs that align actions for peacebuilding, climate change
mitigation, and biodiversity conservation more effectively.
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1 INTRODUCTION

Anthropogenic activities are leading to global changes in biodiversity and climate (Ceballos et al.,
2015; IPCC, 2019; 2021). The paramount significance of tropical forests in halting biodiversity loss
and climate change is widely recognized; tropical forests represent a disproportionate amount of
global biodiversity (IPBES, 2019), housing at least two-thirds of the world’s organisms (Raven, 1988).
In addition, deforestation and forest degradation of tropical forests account for 0.5–3.5 GtC yr−1 of
annual greenhouse gas emissions (IPCC, 2019) resulting from the depletion of vegetation and soil
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carbon stocks (Don et al., 2011; Baccini et al., 2017). Nonetheless,
high deforestation rates in tropical regions persist (Curtis et al.,
2018; Ganzenmüller et al., 2019). Concurrently, many tropical
forest areas are marked by the presence of armed conflicts (De
Jong et al., 2007; Landholm et al., 2019). In these regions, the
interplay between conflict and peace shapes an important part of
how deforestation trajectories unfold.

The links between tropical forests and armed conflicts are
context-specific and non-uniform, resulting in varying
deforestation dynamics (Baumann and Kuemmerle, 2016;
Castro-Nunez et al., 2017a; Hanson, 2018). Three possible
mechanisms are hypothesized in the environmental security
literature to explain these links: 1) natural resource scarcity or
unequal sharing (Homer-Dixon, 1994); 2) accessibility and
competition (Peluso and Watts, 2001); and 3) hidden
movements and actions of illegal armed groups in forested
areas (Collier and Hoeffler, 2004). These context-specific
mechanisms can take effect in tropical forests, which are often
characterized by a weak state presence, widespread poverty,
disputes over land rights, and an abundance of high-value
natural resources available for financing armed groups (Collier
and Hoeffler, 2004; Rustad et al., 2008; Rustad and Binningsbø,
2012). This, in turn, also influences how forest cover changes are
associated with agricultural expansion, infrastructure
development, extractive practices, and underlying
demographic, economic, institutional, technological, and
cultural drivers (Geist and Lambin, 2002).

Forest cover change in regions with armed conflicts is
especially shaped by the strategic forest usage of the involved
armed groups (Castro-Nunez et al., 2017b). Deforestation in
conflict regions may be fostered through the exploitation of
natural resources, such as timber and minerals (Sánchez-
Cuervo and Aide, 2013), direct fighting actions (Dudley et al.,
2002; Van et al., 2015), cultivation of illicit crops (Davalos et al.,
2011), and the resettlement of displaced people (Ordway, 2015).
In contrast, armed conflicts can reduce deforestation through
forced migration (Sánchez-Cuervo and Aide, 2013; Burgess et al.,
2015), disruptions in agriculture and other economic activities
(Le Billon, 2000; Hecht et al., 2006; Burgess et al., 2015), and
access restrictions that can take diverse forms such as landmines
and infrastructure sabotage (Berhe, 2007).

In the aftermath of conflicts, pressures on forest cover changes
are often exacerbated (Stevens et al., 2011; Negret et al., 2017;
Suarez et al., 2018). Reasons for this pattern include the return of
displaced people, an increased demand for agricultural land, and
the expansion of economic sectors such as mining or logging
(Baptiste et al., 2017; Suarez et al., 2018).

The intensification of deforestation drivers in post-conflict
regions highlights the importance of better understanding the
different uses of forests in countries emerging from armed
conflicts and the political necessity of combining forest
conservation policies and peacebuilding programs (Castro-
Nunez, 2018; Prem et al., 2020). This suggests that to advance
our understanding of how periods of conflict and peace influence
forest cover, deforestation dynamics need to be linked with local-
level characteristics. Evidence suggests that drivers of
deforestation dynamics are highly context-specific at the local

scale (Sánchez-Cuervo and Aide, 2013); therefore, the scale of
analysis is an important consideration when studying what drives
deforestation in countries emerging from armed conflicts. Several
studies have been conducted at national and regional scales (e.g.,
Landholm et al., 2019; Negret et al., 2019; Prem et al., 2020);
however, such studies do not fully illustrate the intraregional
variation in deforestation dynamics across a country.

Despite numerous studies on deforestation in conflict and
post-conflict settings, these insights have not yet been
operationalized through spatially-explicit analyses. More
specifically, most studies focus on describing the effects of
conflict on forest cover and provide insights on conflict-
related variables influencing such effects. However, they do
not shed light on the diversity of local-level deforestation
dynamics observed across conflict-affected countries and the
combination of drivers that explain such dynamics.

To address this research gap, we computed time series
clustering of yearly forest cover loss data and used gradient
tree boosting to identify the combinations of drivers that
explain varying, local-level deforestation dynamics in
Colombia. We use Colombia as a case study because the
nation has endured over 50 years of armed conflicts and has
experienced various peace processes, which allow us to discuss
deforestation dynamics in times of conflict and peace. Variables
were selected based on dominant narratives in the academic
literature reporting extensive livestock pastures and coca
cultivation as major drivers of deforestation in Colombia,
alongside infrastructure development, illegal logging, and
mining (Alvarez, 2003; Armenteras et al., 2013; Sánchez-
Cuervo and Aide, 2013; Sánchez-Cuervo and Aide, 2013;
Castro-Nunez et al., 2017a; González et al., 2018; Landholm
et al., 2019). Furthermore, various effects of the armed conflict
on forest cover are documented, which we take into consideration
by including the variables “conflict events” and “displaced
people” in the analysis. Municipality area was also included in
the analysis to factor in the large differences in the areas of
Colombian municipalities under the assumption that the larger
the municipality, the lower the institutional presence. Locally,
drivers unfold differently and often influence each other. For
example, low institutional presence may favor illegal activities
such as coca cultivation, which in turn frequently serves as a
precursor for land ownership claims manifested through the
establishment of extensive pastures. The goal of this study is
to untangle the different drivers of deforestation at various scales
ranging from local to national and to determine their effects on
deforestation dynamics in Colombia. The insights from this study
will support decision-makers in creating programs that align
actions for peacebuilding, climate change mitigation, and
biodiversity conservation more effectively.

2 HISTORY OF DEFORESTATION AND
CONFLICT IN COLOMBIA

Colombia experienced over 50 years of armed conflicts that
resulted in nearly 270,000 killed and over 7 million displaced
people (RNI Red Nacional de Información, 2019). Decades of
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violence presented negative impacts on forest cover, with higher
deforestation rates present in conflict-affected areas (Landholm
et al., 2019). Several academic studies have documented the links
between forests, deforestation, and conflict in Colombia (Alvarez,
2003; Davalos et al., 2011; Sánchez-Cuervo and Aide, 2013;
Fergusson et al., 2014), and the growing awareness of these
links led to the inclusion of environmental considerations in
the last peace agreement with the Revolutionary Armed Forces of
Colombia (FARC), which brought an end to the longstanding
conflict (OACP Oficina del Alto Comisionado para la Paz, 2016).
Various scholars have warned of increased pressures on
Colombian forests following the peace agreement (Baptiste
et al., 2017; Suarez et al., 2018; Eufemia et al., 2019). They
argue that the peace agreement opened up areas that were
previously controlled and protected by the FARC who had
used these areas as hideouts. Subsequently, prevalent land-use
conflicts and land grabbing practices, exacerbated by land tenure
issues, were seen following the agreement (Murillo-Sandoval
et al., 2020, Murillo-Sandoval et al., 2021). These dynamics are
expanding the agricultural frontier and placing increased
pressure on forests. In particular, land-use conflicts, which
have vast and complex implications on forests, soils, and water
bodies, are considered to threaten environmental objectives
(Suarez et al., 2018). Land-use conflicts can be related to land
tenure and grabbing, which in turn are closely linked with
extensive cattle grazing when cattle are used to strengthen
land ownership claims (Castro-Nunez et al., 2017a).

The origins of the conflict are rooted in the 1960s when several
groups accused the Government of Colombia (GoC) of rural
neglect and formed guerilla organizations to challenge the state
and lead an armed rural insurgency. The most prominent armed
group during this time of internal conflict was the FARC. By the
late 1990s, armed actors of the FARC had taken control of many
areas throughout the country where state presence was weak or
absent. Counter to the FARC, right-wing paramilitaries arose in
the 1980s in opposition to the guerrilla groups. In 1997, most of
the paramilitary groups organized under an umbrella
organization called the United Self Defense Forces of
Colombia (AUC), which carried out direct military battles
against the FARC (Beittel, 2015).

Attempts to negotiate peace with the FARC, paramilitary
groups, and other illegal armed forces were made prior to the
final peace agreement signed in 2016. Between 1998 and 2002, the
Administration of President Andrés Pastrana established a large
demilitarized zone approximately the size of Switzerland
(~42,000 square miles) within which negotiations with the
FARC were to be held. Negotiations were abandoned,
however, in 2002 as the FARC was seen as using the
demilitarized zone to regroup and rearm its forces, fueling a
continuation of FARC military activity (Beittel, 2015).

In 2003, President Álvaro Uribe signed a peace deal with the
AUC, leading to the demobilization of over 31,000 AUC
members, and implemented “Plan Patriota,” which
commenced a new offensive against the guerrilla forces. This
plan brought major advances against the FARC, as FARC ranks
and territories were reduced and drug production equipment was
seized, but was met with heavy criticism due to the violence that

occurred and the large number of civilians displaced. The plan
was further criticized for not implementing a strategy to maintain
control of territories taken from the FARC and for failing to
establish a permanent state presence in these areas. President
Uribe continued advances against the FARC into his second term
(2006–2010), further successfully weakening their forces (Beittel,
2015).

The final peace negotiations with the FARC that brought an
eventual end to the armed conflict took place under the
administration of President Juan Manuel Santos. Talks began
in 2012 and a final agreement was reached in 2016 with the goal of
building lasting peace in the country (Nilsson and González
Marín, 2020). In 2017, the FARC officially ceased to be an
armed group; however, in 2019, several former combatants
called for a return to arms (BBC News, 2019). Today, despite
the peace agreement, FARC dissidents and other armed groups
are fighting over the control of previously FARC-controlled areas
(Nilsson and González Marín, 2020).

3 METHODS

3.1 Data Collection
We created a dataset containing information on the area of forest
cover loss, our outcome variable, and potential drivers of forest cover
loss at the municipality level for the period 2001–2018 (Table 1).
Potential drivers were selected based on dominant narratives around
the drivers of tropical deforestation in Colombia (Alvarez, 2003;
Armenteras et al., 2013; Sánchez-Cuervo and Aide, 2013; Castro-
Nunez et al., 2017a; Landholm et al., 2019).

Areas of annual forest cover loss in all 1,122 Colombian
municipalities were calculated from Hansen et al. (2013),
which define trees as all vegetation taller than 5 m and forest
cover loss as a stand-replacement disturbance or a change from a
forest to a non-forest state caused by anthropogenic or natural
processes. Given that the vast majority of tree cover loss in Latin
America is driven by direct anthropogenic modifications (Curtis
et al., 2018), the dataset is thus used as a proxy for deforestation.
However, we point out that the analyzed trends might include
areas of forest cover loss from natural processes, such as forest
fires for example.

Information on conflict events, defined as events of organized
and lethal violence, were taken from Sundberg and Melander
(2013) (UCDP Georeferenced Event Dataset version 19.1). The
number of conflict events in each municipality was determined by
adding up all georeferenced events within municipality borders in
each year (Supplementary Figure S1). Since there is no dataset
about the number of cattle at the municipality level covering the
whole time period, data were obtained through two different
sources. Data from the Federación Colombiana de Ganaderos
were used for the years 2001–2011 (FEDEGAN, 2019), while data
from the Instituto Colombiano Agropecuario were used for
2008–2018 (ICA Instituto Colombiano Agropecuario).1 For the

1ICA Instituto Colombiano Agropecuario. Respuesta Censo Bovinos por
Municipio 2008. Bogotá DC, Colombia: Internal communication.
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overlapping years (2008–2011), the mean values of both data
sources were taken.When plotting the data for each municipality,
several data artifacts were identified. Thus, we applied the
following correction procedure: when the number of cattle
increased/decreased by more than 25% in 1 year and then
decreased/increased by more than 25% in the next year, we
adjusted the number of cattle by calculating the mean of the
previous and subsequent year (Supplementary Figure S2).
Further obvious data artifacts were corrected manually.
Instituto Colombiano Agropecuario also provided us with data
on the number of cattle farms in each municipality for the period
2008–2018 (ICA Instituto Colombiano Agropecuario)1. For the
cattle farm dataset, the same error correction procedure described
for the cattle datasets was applied. The area of each municipality
was calculated based on a shapefile provided by the
Departamento Administrativo Nacional de Estadística (DANE,
2018). Information on displaced people and coca cultivation area
was taken from the Red Nacional de Información (RNI, 2019)
and Sistema Integrado de Monitoreo de Cultivos Ilícitos/United
Nations Office on Drugs and Crime (SIMCI/UNODOC, 2019),
respectively.

3.2 Time Series Clustering
To identify typical dynamics of forest cover losses across Colombian
municipalities, we conducted a time series clustering analysis. Time
series clustering techniques are applied in scientific and non-
scientific contexts to find time-specific patterns in large datasets
consisting of numerous time series (Aghabozorgi et al., 2015). The
goal of time series clustering is the unsupervised assembly of
unlabeled time series into coherent and homogeneous groups
(Rani and Sikka, 2012). Using this approach, we clustered
municipalities into a number of categories determined by shared
deforestation dynamics.

For the time series clustering analysis in this study, Colombian
municipalities without significant forest cover loss were excluded.
We separated municipalities with significant losses from
municipalities without by considering only the municipalities
that were responsible for 98% of the total forest cover losses
nationally. Thereby, 414 municipalities with ≤27.08 ha of mean
annual forest cover loss were excluded from the clustering
analysis.

For the remaining 708 municipalities, trend values were
calculated using the rolling mean with a rolling window of
3 years (Supplementary Figure S3). Thus, the trend value for
1 year is calculated as the mean of the forest cover loss values of
the previous, actual, and subsequent years. As a consequence,
there are no trend values for the years 2001 and 2018. However,
the data from these years are indirectly incorporated in the
analysis in the trend values of the years 2002 and 2017.
Subsequently, to cluster the municipalities based on the
direction of the trends rather than on absolute values, the
trend data were normalized by computing the z-scores.

In time series clustering analysis, four components are central:
1) the distance measure, 2) the clustering algorithm, 3) the cluster
evaluation, and 4) the prototype definition function
(Aghabozorgi et al., 2015). We measured the distance between
the trend time series by applying the Dynamic Time Warping
(DTW) algorithm. DTW is a widely used technique, originally
developed for automatic speech recognition, known for its high
accuracy at the expense of computational costs (Müller, 2007;
Wang et al., 2013). It is an elastic distance measure and thus has
the advantage of dealing well with temporal drifts (Aghabozorgi
et al., 2015). The window size was set to 1 year to allow minimum
flexibility (Giorgino, 2009; Aghabozorgi et al., 2015). Hierarchical
clustering was chosen as the clustering algorithm. The Silhouette
index (Rousseeuw, 1987) and the Dunn index (Arbelaitz et al.,
2013) served as evaluation criteria for the best number of clusters.
Prototypes were defined using a shape-based distance algorithm
(Paparrizos and Gravano, 2015).

3.3 Regression Analysis
The importance of potential drivers of forest cover loss was
assessed by fitting multiple Extreme Gradient Boosting
(XGBoost) models. XGBoost is a machine learning approach
and belongs to the group of gradient tree boosting techniques
introduced by Friedman (2001). In gradient tree boosting, a tree
ensemble model is optimized stepwise to minimize the residuals
of the current model (Chen and Guestrin, 2016; Nishio et al.,
2018). In many cases, XGBoost outperforms other regression
techniques as it uses a superior learning algorithm, is optimized
for parallel, distributed and out-of-core computing, and prevents
overfitting (Chen and Guestrin, 2016). For a detailed description
of the XGBoost algorithm, see Chen and Guestrin (2016). We
chose XGBoost over other regression techniques as it provides a
time- and memory-efficient way to access non-linear
dependencies (Chen and Guestrin, 2016).

TABLE 1 | Data used in the study.

Data Time covered Resolution Source

Forest cover loss 2001–2018 ~30 m×30 m Hansen et al. (2013)
Conflict events 1989–2018 Geographic coordinates Sundberg and Melander (2013) (UCDP GED version 19.1.)
Displaced people 1984–2018 Municipality level RNI Red Nacional de Información (2019)
Coca cultivation area 1999–2018 Municipality level SIMCI/UNODOC (2019)
Cattle 2001–2011 Municipality level FEDEGAN (2019)

2008–2018 Municipality level ICA Instituto Colombiano Agropecuario1

Cattle farms 2008–2018 Municipality level ICA Instituto Colombiano Agropecuario1

Municipality area — Municipality level Calculated based on DANE (2018)

1ICA Instituto Colombiano Agropecuario. Respuesta Censo Bovinos por
Municipio 2008. Bogotá DC, Colombia: Internal communication.
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For the analysis, we took forest cover loss area as the outcome
variable and conflict events, displaced people, coca cultivation
area, cattle, cattle farms, and municipality area as predictor
variables. Cattle farms were included to reflect recent forest-
conflict transition models, suggesting that redistribution of access
to land starts just after the colonization and land grabbing
processes are completed. Meanwhile, municipality area was
included as a predictor variable to consider the large
differences in the areas of Colombian municipalities under the
assumption that the larger the municipality, the lower the
institutional presence. XGBoost models were built for the
whole country, each natural region, each municipality
category, and each department. Since the departments
“Archipielago de San Andres, Providencia y Santa Catalina,”
“Bogota, D.C.,” “Guaviare,” and “Vichada” consist of fewer
than 5 municipalities, not enough data points were available to
build reasonable models. Therefore, these four departments were
excluded.

Overall, the driver analysis was conducted for 42 different
spatial units (whole country, 5 natural regions, 7 municipality
categories, 29 departments). For each of these spatial units,
five XGBoost models were selected from 100 models
initialized with random parameter settings in a predefined
parameter space. The selection of these models was done
through a 10-fold adaptive resampling procedure using the
Root Mean Square Error (RMSE) as evaluation criteria
(Kuhn, 2014). The minimum number of resamples used
before models were removed was set to 5 and the number
of complete sets of folds to compute was set to 10.
Consequently, 21,000 models overall were initialized and
evaluated (42 spatial units × 5 rounds × 100 initial
models). Results of each unit are presented as mean,
minimum, and maximum R2 and variable importance
values (Figure 2 and Supplementary Figure S4).

All data processing and analyses were done using R software
(R Core Team, 2013).

3.4 Methodological Limitations
This study has a few data and methodological limitations that
need to be considered. Firstly, the selected data on forest cover
change (Hansen et al., 2013) does not distinguish between
primary and secondary forests, e.g., the clearing of an oil
palm plantation is classified as deforestation, and the
classification of forest and non-forest may be erroneous in
certain cases (Tropek et al., 2014). Furthermore, the raw data
on forest cover change has not been processed uniformly, as an
improved detection process was applied to the years following
2011 (University of Maryland, 2021). Nevertheless, this dataset
is the best source available for covering yearly deforestation
rates in recent decades. The effects of inaccuracies and
misclassifications are limited by taking trend values, which
should buffer these inconsistencies. Secondly, full
transparency of the data aggregation for the other data
sources is not documented. On the other hand, all data were
collected from official institutions and are the best sources
available. Thirdly, the settings and methods chosen for the
time series clustering influence the number of clusters, the

grouping of municipalities and the shape of the prototypes.
We tried different settings and methods and found the results
presented here to be the most reasonable.

4 RESULTS

4.1 Deforestation Dynamics
The time series clustering of yearly deforestation data
(2001–2018) from 708 out of 1,122 mainland Colombian
municipalities, which account for 98% of the total
deforestation areas in Colombia, resulted in seven categories of
municipalities (Figure 1) reflecting distinct deforestation
dynamics. Six of these categories (A, B, C, D, E, and G)
exhibited a moderate to sharp increase in deforestation area
during the last third of the evaluated time period (2013–2018).
Interestingly, however, four of these six categories (A, D, E, and
G) displayed a substantial decline in deforestation during the
preceding second third of the period (2007–2012). Only three
categories (E, F, and G) exhibited similar or lower forest cover loss
at the end of the study period compared to the start of the period.

Category A (n = 129) showed a steady, moderate incline in
deforestation that began to decline in the second third of the
analysis period before transitioning to a sharp increase in
deforestation rates in the last third of the period. Categories B
(n = 176) and C (n = 56) were the only categories to not display a
significant decline in deforestation rates during the analyzed
period; however, category B had a stable rate of deforestation
before spiking in the last third of the period, while category C saw
an overall steady increase in deforestation rates throughout the
period. Deforestation rates in category D (n = 43) fluctuated over
time, peaking in the second third of the period before sharply
declining and then spiking again in the last third of the period.
Category E (n = 69) exhibited the longest period of declining
deforestation rates with rates rising only in the first and last years
of the analysis period. Category F (n = 74) was characterized by an
inverse, U-shaped trend in deforestation rates that reached a low
and stabilized in the last third of the period. Lastly, category G
(n = 161) displayed a similar trend as category E but saw rates rise
during the first half of the period.

4.2 Deforestation Dynamics in Natural
Regions
Approximately 75% of the total deforestation accounted for in the
study period occurred in the Amazon (38%) and Andes (37%)
regions. The greatest percentage of total deforestation in the analyzed
period was found in municipalities falling under categories B (34%),
A (20%), and C (18%), which were the three most predominant
categories in the Amazon region. Table 2 displays the number of
municipalities, the area of land, and the percent of total deforestation
under each category. It also shows how categories are distributed
among the five Colombian natural regions.

Municipalities in category B characterized the greatest
percentage of deforestation, accounted for the greatest area of
land, and were distributed across all regions but located
predominantly in the Amazon. Categories C, A, and E
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accounted for the second, third, and fourth greatest areas of land,
respectively. Category C was found mostly in the Amazon region,
category A in the Amazon and Andes, and category E in the
Andes and Orinoquia regions. This last category includes the
demilitarized zone established between 1998 and 2002 that was
considered as the stronghold of the FARC: La Macarena.
Categories G, F, and D covered smaller areas and accounted
for only 14% of deforestation. Category Gwas foundmostly in the
Andes and, to a lesser extent, Caribe; category F was distributed
mostly among the Andes, Pacifico, and Orinoquia regions; and
category D was found mostly in the Andes.

In the Amazon region, most municipalities exhibited patterns
with increasing deforestation trends. This region was
predominated by category B (43% of municipalities in the

region), C (29%), and A (12%). The Caribe and Orinoquia
regions were also predominated by category B (51 and 24% of
municipalities in the regions, respectively), while the Pacifico
region was dominated by categories B (26%) and F (26%). The
most common dynamics exhibited in the Andes region were
categories G (27%) and A (22%), which show relatively similar
trends. In addition, most of the municipalities that were excluded
from the analysis (n = 413) due to insignificant deforestation rates
were located in the Andes region.

Andean municipalities were widely represented in each of the
municipality categories. However, the area of municipalities in
the Amazon region is substantially larger than the area in the
Andes (Supplementary Figure S5). For example, although
category C characterized only 8% of the municipalities, it

FIGURE 1 | Categories and spatial distribution of 708 municipalities. Categories are based on trends in annual forest cover loss for the period 2001–2018. The
grey-colored category indicates municipalities that did not have significant losses in forest cover over the time period. Natural regions: (1) Caribe, (2) Pacifico, (3) Andes,
(4) Orinoquia, and (5) Amazon.

TABLE 2 | Summary of categories produced by the time series clustering of yearly deforestation data of 708 municipalities. The following details are displayed for each
category: 1) Number of municipalities and the R2 value of the time series clustering model; 2) Area of land covered; 3) Percent of total deforestation in Colombia for the
analyzed period; and 4) Distribution of the municipalities among the five natural regions of Colombia with percent of the area covered followed by the number of municipalities
in parentheses.

Categories
(n and R2 of the model)

Area of land covered
(km2)

% of total
deforestation in Colombia

(2001–2018)

Regional distribution of municipality categories
(% area of land covered, no. of municipalities)

Amazon Andes Caribe Orinoquia Pacifico

A (n = 129) R2 = 0.75 147,690 20 34% (7) 42% (95) 3% (14) 14% (7) 6% (6)
B (n = 176) R2 = 0.69 422,463 34 45% (25) 11% (59) 13% (72) 26% (9) 5% (11)
C (n = 56) R2 = 0.81 207,398 18 81% (17) 9% (23) 4% (9) 3% (3) 3% (4)
D (n = 43) R2 = 0.63 21,315 3 0% 78% (39) 22% (4) 0% 0%
E (n = 69) R2 = 0.68 106,360 14 17% (6) 34% (47) 11% (7) 35% (7) 2% (2)
F (n = 74) R2 = 0.36) 74,838 3 0% (1) 33% (53) 2% (2) 31% (7) 33% (11)
G (n = 161) R2 = 0.47 89,871 8 1% (2) 56% (116) 23% (33) 5% (4) 14% (6)
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covered the second-largest area compared to the other categories.
Therefore, although the Andean region represents all identified
patterns of deforestation, the four predominant deforestation
patterns in the Amazon region cover a larger area.

4.3 Local Drivers of Deforestation Dynamics
Regression analyses with XGBoost models at the national, regional,
and category level show the importance of different variables in
influencing deforestation dynamics. At the national level, the
combined influence of six variables (conflict events, displaced
people, coca area, cattle, cattle farms, municipality area) created
strong predictive models for explaining deforestation dynamics
(mean R2 = 0.71). At the categorical level, strong predictive
models were produced for category C (R2 = 0.81), followed by
categories A (mean R2 = 0.75), B (mean R2 = 0.69), E (mean R2

= 0.68), and D (mean R2 = 0.63). Similarly, strong predictive models
were built for the Amazon (mean R2 = 0.75), Orinoquia (mean R2 =
0.75), andAndes (meanR2 = 0.71) regions. In contrast, the regression
models explained the least amount of variation for categories F (mean
R2 = 0.36) and G (mean R2 = 0.47) as well as for the Caribe (mean R2

= 0.47) and Pacifico (mean R2 = 0.53) regions.
As shown in Figure 2, the number of cattle, coca area, and

municipality area were the strongest predictor variables for
deforestation dynamics at the national level. However, the
importance of the predictor variables varied among the five
biogeographic regions and the seven municipality categories.
Cattle emerged as the top predictor variable for the Amazon and
Pacifico regions, while coca area was an influential predictor for the
Andes and Orinoquia regions. Likewise, municipality area, cattle,
and coca area were the strongest predictor variables for categories A,
B, and C, respectively. For categories A and E, municipality area and
coca area emerged as the most important predictors. The two
strongest predictor variables for category C were coca area and

cattle, while for categories B and D cattle and municipality area were
the better predictor variables.

5 DISCUSSION

The results of our analysis indicate that deforestation dynamics have
fluctuated over time and differ markedly among and within
Colombian natural regions and departments. In recent years,
deforestation has increased throughout Colombia, which suggests
an undesirable effect of the peace agreement between the GoC and
the FARC on forest cover. Accordingly, our results support previous
studies reporting that the peace agreement negatively affected
deforestation in Colombia, even in places where deforestation
was declining before the agreement (Landholm et al., 2019;
Negret et al., 2019; Clerici et al., 2020; Murillo-Sandoval et al.,
2020, Murillo-Sandoval et al., 2021; Prem et al., 2020). However, a
deeper understanding of these effects requires consideration of the
multiple dynamics that are influenced by interactions between forest
cover and armed conflict variables (Castro-Nunez et al., 2017a). This
idea was operationalized in this study resulting in seven categories of
deforestation dynamics.

We find that deforestation dynamics change at regional,
departmental, and municipal levels and that municipalities
located in different regions can share similar deforestation
dynamics. Similarly, the results of the municipality-level
analysis demonstrate that the drivers of deforestation in
conflict and post-conflict settings also vary among and within
natural regions. This has been increasingly supported in the
Colombian literature (e.g., Sánchez-Cuervo and Aide, 2013;
González et al., 2018), highlighting that drivers of
deforestation are strongly context-specific at the local scale.
Studies from other regions also demonstrated that times of

FIGURE 2 | R2 and variable importance of Regression Analysis (XGBoost) for Colombia, natural regions, and municipality categories (mean, minimum, and
maximum values of five runs with random initialization).
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conflict and peace have varied effects on deforestation dynamics,
contributing to both increases and decreases in forest cover
(Hecht and Saatchi, 2007). In Sierra Leone, for example,
deforestation was found to be significantly lower in conflict-
afflicted settings compared to more conflict-free settings
(Burgess et al., 2015). In the Democratic Republic of the Congo,
conflict increased deforestation but also reduced mining activities
associated with deforestation (Butsic et al., 2015). Conversely, in El
Salvador, the civil war triggered international and urban migration
that in part drove forest recovery (Hecht et al., 2006). In Rwanda,
however, little difference was found in net trends of forest cover
changes between times of conflict and peace. Deforestation
dynamics differed spatially, though, which was partly related to
resource exploitation near refugee settlements (forest losses) and
forced migrations (forest gains) (Ordway, 2015).

Consistently, our results indicate that under certain circumstances,
the peace agreement between theGoC and FARCdid not significantly
change deforestation dynamics, while under others, it exacerbated
deforestation. For example, we found that after the peace agreement in
2016, deforestation trends changed from a downward trend to a
stabilized trend in the 74 municipalities under category F (which
represents 3% of Colombia’s deforestation during the analyzed
period). Subsequently, trends changed from a downward to an
upward trend in the 402 municipalities belonging to categories A,
D, E, and G (45% of Colombia’s deforestation). In the 176
municipalities under category B (34% of Colombia’s deforestation),
we see that deforestation dynamics remained stable throughout the
study period before spiking around 2014 when negotiations were
underway for the final peace agreement. Meanwhile, the 56
municipalities under category C (18% of Colombia’s deforestation)
showed a relatively steady incline in forest cover loss throughout the
study period, indicating that the peace agreement and past peace
negotiations had no effect on either the trajectory or intensity of
deforestation trends in these municipalities. These category C
municipalities cover an area of 207,398 ha and are mostly located
in the Andes and Amazon regions. Four of these municipalities are
among the top ten municipalities with the highest deforestation rates
in Colombia during the study period.

Our predictive models suggest that both forest dynamics and the
peace agreement’s effect on forest cover are influenced by the six
selected variables (conflict events, displaced people, coca area, number
of cattle, number of cattle farms, and municipality area) in five out of
the seven identified municipality categories. Moreover, the effect of
these variables change according to temporal and spatial dimensions.
The number of conflict events is the weakest predictor and coca, cattle,
andmunicipality area are the strongest predictors at national, regional,
and category levels. Combinations of the former three variables are the
top three predictors for the four categories where most of Colombia’s
deforestation occurs (A, B, C, and E). Municipality area, cattle, and
cattle farms are the top three predictors of category D, and
municipality area, cattle, and displaced people are the strongest
predictors of categories F and G. This is consistent with results
reporting that deforestation in Colombia’s forest frontiers is caused
by complex interlinkages between land grabbing, cattle, and coca
(Castro-Nunez et al., 2017a). However, low R2 values for categories F
and G suggest that additional factors are likely driving the overall
declining deforestation trends in these two categories. It is striking that

these categories are present mostly in certain coastal areas in the
Caribe and Pacifico regions and in the Andes close to municipalities
without significant deforestation. For the coastal municipalities, their
remoteness could be an explanation, while the municipalities in the
Andes may already have a low level of forest cover.

Studies from different regions have demonstrated that armed
conflicts can influence forest cover dynamics in varied ways through
a number of channels (Aide and Grau, 2004; Sánchez-Cuervo and
Aide, 2013; Burgess et al., 2015; Butsic et al., 2015; Ordway, 2015),
and thus there is no consensus on whether conflict negatively or
positively impacts forest cover. Our results also indicate that a variety
of factors influence whether the impacts will be positive or negative.
Armed conflicts might lead to forest cover losses in areas where
armed groups exploit natural resources to finance their military
campaigns (Didia, 1997). Alternatively, armed conflicts might
reduce deforestation and drive forest cover recovery as armed
forces protect dense forest areas to use as cover for their
operations (Hecht and Saatchi, 2007). In addition, our results are
in accordance with a previous spatially explicit analysis of
deforestation and conflict variables (Castro-Nunez et al., 2016).
The study reports that municipalities with a high number of
armed conflict events and municipalities with a high number of
conflict victims geographically overlap with low deforestation rates.
In the case of highly forested municipalities where low deforestation
rates and conflict events geographically overlap, these areas would be
preferred battle sites. Conversely, highly forested municipalities
where low deforestation rates overlap with a high number of
victims may be preferred by non-state armed groups with
hideouts (Castro-Nunez et al., 2017b).

The results of the analysis further support the hypotheses
proposed by the forest-conflict transition models for Colombia
(Castro-Nunez et al., 2017a). Based on our findings,
municipalities in category C correspond to early phases of
colonization. These municipalities on average are larger and
characterized by a larger area of coca, higher deforestation
rates, lower number of cattle considering the area of the
municipalities, and lower number of cattle farms. They also
have on average a higher number of conflict events. This
reflects municipalities that are in the early phases of colonization.

Municipalities in category B on average are the second-largest
municipalities, have the second-largest area of coca, the second-
highest number of cattle considering the area of municipalities, the
second-lowest number of cattle farms, the second-highest number of
conflict events, and the highest number of displaced people. These
characteristics are indicative of more advanced phases of colonization
and illustrate land grabbing processes, given the ratio of the number
of cattle to the number of cattle farms. Based on the deforestation
graphs, the sharp increase in forest cover loss in these municipalities
suggests that the peace agreement facilitated more aggressive land
grabbing processes in these areas, thereby exacerbating deforestation
in post-conflict years. Such post-conflict forest dynamics have been
reported by other studies (e.g., Murillo-Sandoval et al., 2020, Murillo-
Sandoval et al., 2021), which suggest a forest-coca-cattle ranching
transition followed by land accumulation processes of different non-
state actors.

The characteristics of municipalities in categories A and E
indicate dynamics that are progressing toward a turning point,
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after which conflict will decline and deforestation will continue.
Category E has the highest number of cattle and cattle farms, a
smaller coca area, and a lower number of displaced people, paired
with an overall higher number of conflict events and higher
deforestation rates compared to other categories. For this
category, we see that deforestation rates were declining from
2005 to 2014, which may indicate that several forested areas
under this category were being utilized and thereby protected by
armed groups to conceal their operations.

In this study, municipality area was included in the analysis to
factor in the large differences in the areas of Colombian
municipalities under the assumption that the larger the
municipality, the lower the institutional presence. This is
consistent with previous studies hypothesizing that high levels
of conflict, forced displacements and rates of deforestation
coincide with frontiers of expanding agriculture (Castro-Nunez
et al., 2017a) and arguments that deforestation is largely an
institutional and governance issue. Prem et al. (2020) argue
that with the discontinuance of FARC activities after the peace
agreement, regions previously controlled by the FARC became
available for private investors to establish businesses, which in
turn exacerbated deforestation. This process would likely be more
prevalent in areas with lower institutional presence due to limited
capacity to control and regulate such activities. Clerici et al.
(2020) and Murillo-Sandoval et al. (2020) report a highly
significant increase in the rate of deforestation in Colombia’s
protected areas in the years after the peace agreement and partly
attribute this to a lack of functional institutional presence by the
government in many protected areas.

Due to the scale of analysis, this study provides unique insights
into deforestation dynamics that past studies at the national or
regional scale have been unable to provide. It highlights local phases
of stability and instability of social-ecolocial systems as they are
reasoned in Panarchy theory (Chaffin and Gunderson, 2016; Reyers
et al., 2018). The different phases of adaptive cycles “exploitation,”
“conservation,” “collapse/release,” and “reorganization” theorized by
these scholars can be linked to different time periods of the identified
municipality categories. For example, the peace negotiations between
the GoC and the FARC can be seen as a form of reorganization,
which is followed by a phase of exploitation, as both national
institutions and international research teams report higher
deforestation rates in Colombia for the years after the peace
agreement (IDEAM Instituto de Hidrología Meteorología y
Estudios Ambientales, 2020; Global Forest Watch, 2021).
Furthermore, intertwined cross-scale interactions in social-
ecolocial systems are central to Panarchy theory. The results
in this study show the effect of certain cross-scale interactions
and how the influence of different drivers differs in space and
across scales. For example, we found that the importance of
some drivers emerged only at the local (department)
scale—cattle farms was an important predictor in Arauca,
Choco, and Sucre and displaced people was an important
predictor in Atlantico, Huila, Tolima, and Valle de Cauca
(Supplementary Figure S4)—while other drivers such as
municipality area, cattle, and coca were the main drivers at
larger scales.

The results of this study can be used to provide insights into
drivers of deforestation dynamics in other post-conflict
countries as well as countries with ongoing armed conflicts.
Furthermore, the conflict in Colombia may continue. FARC
dissidents, criminal bands, and competing paramilitary groups
continue to fight for control over areas previously dominated
by the FARC and have promoted livestock production and
coca crops as a means to expand territorial control (Clerici
et al., 2020). Thus, a better understanding of how periods of
conflict and peace influence forest cover and drivers of
deforestation is critical for designing policies that achieve
both peacebuilding and environmental conservation
objectives. For instance, insights into these dynamics can be
used to help blend approaches to achieving peace with those to
curbing tropical deforestation, such as those for reducing
deforestation and forest degradation (known as REDD+)
and those for incentivizing company commitments to green
agricultural supply chains. Similarly, such insights can help us
understand the role of forest conservation efforts in delivering
peace and, likewise, the role of peacebuilding efforts in
delivering forest conservation.
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