
R E S E A R CH A R T I C L E

Data-driven staging of genetic frontotemporal dementia
using multi-modal MRI

Jillian McCarthy1 | Barbara Borroni2 | Raquel Sanchez-Valle3 |

Fermin Moreno4,5 | Robert Laforce Jr6 | Caroline Graff7,8 | Matthis Synofzik9,10 |

Daniela Galimberti11,12 | James B. Rowe13 | Mario Masellis14 |

Maria Carmela Tartaglia15 | Elizabeth Finger16 | Rik Vandenberghe17,18,19 |

Alexandre de Mendonça20 | Fabrizio Tagliavini21 | Isabel Santana22,23 |

Chris Butler24,25 | Alex Gerhard26,27 | Adrian Danek28 | Johannes Levin28,29,30 |

Markus Otto31 | Giovanni Frisoni32,33 | Roberta Ghidoni34 | Sandro Sorbi35,36 |

Lize C. Jiskoot37 | Harro Seelaar37 | John C. van Swieten37 |

Jonathan D. Rohrer38 | Yasser Iturria-Medina1,39,40 | Simon Ducharme1,41 |

GENetic Frontotemporal Dementia Initiative (GENFI)†
1McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

2Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy

3Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigaci�ons Biomèdiques August Pi I Sunyer, University of

Barcelona, Barcelona, Spain

4Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain

5Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain

6Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Quebec, Quebec,

Canada

7Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden

8Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden

9Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany

10Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany

11Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy

12Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Dino Ferrari Center, Milan, Italy

13University of Cambridge Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, and RC Cognition and Brain Sciences Unit,

Cambridge, UK

14Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada

15Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, Ontario, Canada

16Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada

17Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium

18Neurology Service, University Hospitals Leuven, Belgium

19Leuven Brain Institute, KU Leuven, Leuven, Belgium

Yasser Iturria-Medina and Simon Ducharme equally shared the senior authorship.

†GENetic Frontotemporal Dementia Initiative (GENFI) members are listed in the Appendix.

Received: 7 June 2021 Revised: 2 November 2021 Accepted: 11 November 2021

DOI: 10.1002/hbm.25727

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2022;43:1821–1835. wileyonlinelibrary.com/journal/hbm 1821

https://orcid.org/0000-0002-9285-0023
https://orcid.org/0000-0001-9340-9814
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/hbm
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhbm.25727&domain=pdf&date_stamp=2022-02-03


20Faculty of Medicine, University of Lisbon, Lisbon, Portugal

21Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy

22Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal

23Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal

24Department of Clinical Neurology, University of Oxford, Oxford, UK

25Department of Brain Sciences, Imperial College London, UK

26Division of Neuroscience & Experimental Psychology, Faculty of Medicine, Biology, and Health, University of Manchester, Manchester, UK

27Departments of Geriatric Medicine and Nuclear Medicine, Essen University Hospital, Essen, Germany

28Ludwig-Maximilians-Universität München, Munich, Germany

29German Center for Neurodegenerative Diseases (DZNE), Munich, Germany

30Munich Cluster of Systems Neurology (SyNergy), Munich, Germany

31Department of Neurology, University Hospital Ulm, Ulm, Germany

32LANE - Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy

33Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland

34Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy

35Department of Neurofarba, University of Florence, Italy

36IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy

37Department of Neurology, Erasmus University Medical Centre, Rotterdam, Netherlands

38Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK

39Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

40Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Canada

41Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Canada

Correspondence

Simon Ducharme, Montreal Neurological

Institute, 3801 University Street, Montreal,

QC, H3A 2B4, Canada.

Email: simon.ducharme@mcgill.ca

Funding information

Fondation Brain Canada; Fonds de Recherche

du Québec - Santé; Canada Foundation for

Innovation, Grant/Award Number: CFI Project

34874; Health Canada; Brain Canada

Foundation

Abstract

Frontotemporal dementia in genetic forms is highly heterogeneous and begins many

years to prior symptom onset, complicating disease understanding and treatment

development. Unifying methods to stage the disease during both the presymptomatic

and symptomatic phases are needed for the development of clinical trials outcomes.

Here we used the contrastive trajectory inference (cTI), an unsupervised machine

learning algorithm that analyzes temporal patterns in high-dimensional large-scale

population datasets to obtain individual scores of disease stage. We used cross-

sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content,

resting-state functional amplitude, gray matter fractional anisotropy, and mean diffu-

sivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a con-

trol group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We

compared the cTI-obtained disease scores to the estimated years to onset (age—

mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI

based disease scores were correlated with all clinical and neuropsychological tests

(measuring behavioral symptoms, attention, memory, language, and executive func-

tions), with the highest contribution coming from mean diffusivity. Mean cTI scores

were higher in the presymptomatic carriers than controls, indicating that the method

may capture subtle pre-dementia cerebral changes, although this change was not rep-

licated in a subset of subjects with complete data. This study provides a proof of con-

cept that cTI can identify data-driven disease stages in a heterogeneous sample

combining different mutations and disease stages of genetic FTD using only MRI

metrics.
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1 | INTRODUCTION

Frontotemporal dementia (FTD) is a highly heterogeneous disorder with

substantial clinical, genetic, and pathological variations. FTD is caused by

frontotemporal lobar degeneration (FTLD) and presents clinically with

predominantly behavioral changes [behavioral variant FTD (bvFTD);

Rascovsky et al., 2011] or language impairment (primary progressive

aphasias; Gorno-Tempini et al., 2011). However, patients with FTLD can

also develop symptoms of amyotrophic lateral sclerosis, progressive

supranuclear palsy, and corticobasal syndrome. Up to one-third of cases

are caused by an autosomal-dominant genetic mutation. The three most

common mutations are in progranulin (GRN), microtubule-associated pro-

tein tau (MAPT), and chromosome 9 open reading frame 72 (C9orf72),

which together account for 10–20% of all FTD cases (Rademakers, Neu-

mann, & Mackenzie, 2012). MAPT mutations are associated with tau

pathology, while GRN mutations and C9orf72 expansions are associated

with TAR DNA-binding protein 43 (TDP-43). The most common clinical

presentation in all genetic forms is bvFTD, but all phenotypes can occur

(Lashley, Rohrer, Mead, & Revesz, 2015).

The heterogeneity of FTD is a major barrier to the development

of treatments. To optimize therapeutic opportunities, we need bio-

markers that can accurately track disease progression despite hetero-

geneity, both in symptomatic FTD and in the long presymptomatic

period. There are several disease-modifying treatments under devel-

opment for genetic FTD variants (Tsai & Boxer, 2016). The near to full

penetrance of FTD-causing gene mutations means that asymptomatic

carriers could eventually be included in clinical trials, however, trials

are impeded by the variation in age at onset and clinical presentation

observed within gene mutations given that presymptomatic mutation

carriers will develop different phenotypes. In the context of a rela-

tively rare disease, phase 3 trials will need to merge presymptomatic

carriers with symptomatic subjects into a single study with unified

outcome measures. Potential biomarkers such as neuroimaging mea-

sures from structural and functional MRI find differing group-level

patterns across clinical (Bisenius, Neumann, & Schroeter, 2016; Lam,

Halliday, Irish, Hodges, & Piguet, 2014; Pan et al., 2012; Seeley,

Crawford, Zhou, Miller, & Greicius, 2009) and genetic variants, both

symptomatically and in presymptomatic gene carriers (Cash

et al., 2018; Jiskoot et al., 2019; Meeter, Kaat, Rohrer, & van

Swieten, 2017; Panman et al., 2019). However, considerable variabil-

ity has also been found within genetic groups; and atrophy in no one

region captures the disease process in all subjects well (Olney

et al., 2020). While neuroimaging remains a key biomarker of FTD,

this high variance in biomarkers across FTD variants reduces the util-

ity of these single measures to stage the disease. It is necessary to

find unifying ways to stage the disease during both the pres-

ymptomatic and symptomatic phases.

Few studies have investigated disease staging of genetic FTD.

Group-level patterns have been found in gray and white matter by

regressing against the estimated years to onset (Jiskoot et al., 2018;

Rohrer et al., 2015). Data-driven models of disease staging typically

order a select number of biomarkers, assuming a single disease trajec-

tory for all subjects, such as a recent model of GRN mutation carriers

(Panman et al., 2021). A study combining disease progression model-

ing and clustering found data-driven subtypes that corresponded with

genetic FTD mutations and their temporal progression patterns. This

study used lobar gray matter volumes only (Young et al., 2018).

The contrastive trajectory inference (cTI) is a recent unsupervised

machine learning algorithm for staging and subtyping disease. This

model uses multi-dimensional data to uncover underlying temporal

patterns in a diseased population, and subsequently orders and scores

individuals along sub-trajectories of disease progression. When

applied to gene expression data from individuals with Alzheimer's and

Huntington's diseases, cTI-identified individual disease scores were

significantly associated with clinical and neuropathological disease

severity (Iturria-Medina, Khan, Adewale, & Shirazi, 2020).

In this study, we applied the cTI to multi-modal neuroimaging fea-

tures from presymptomatic and symptomatic carriers of FTD-causing

mutations. We focused on neuroimaging given its key role in the diag-

nosis of FTD in the absence of approved molecular biomarkers. We

compared the cTI obtained disease scores to existing measures of dis-

ease severity and clinical performance as a proof of concept of cTI

scores for staging disease in a heterogeneous dataset of genetic FTD.

2 | METHODS

2.1 | Dataset

This study used data release 3 from the Genetic FTD Initiative

(GENFI; http://www.genfi.org.uk/). GENFI is a large international

study gathering longitudinal data on individuals with genetic FTD

(C9orf72 expansion, GRN, or MAPT mutations) and their first-degree

relatives, which include an equal proportion of asymptomatic carriers

and noncarriers. GENFI aims to develop markers which can identify

FTD in its earliest stages as well as track disease progression.

We used multimodal MRI (volumetric T1 and T2, resting-state

functional MRI, and diffusion-weighted imaging) as well as demo-

graphic, clinical, and neuropsychological data from the third data

release of GENFI2, comprising 690 participants recruited from 23 sites

in Canada and Europe. All participants were genotyped at their local

site and underwent a standardized clinical assessment which con-

sisted of a medical history, family history, and physical examination

(Rohrer et al., 2015). Symptomatic status was based on this
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assessment, according to established diagnostic criteria (Gorno-

Tempini et al., 2011; Rascovsky et al., 2011). Mutation carriers were

defined a presymptomatic when clinical criteria were not fulfilled.

2.2 | Image acquisition and processing

MRI scans were acquired using 3 T scanners, or 1.5 T at sites where

3 T was not available. Protocols were designed to harmonize across

scanners and sites as much as possible (Rohrer et al., 2015).

T1: Volumetric T1-weighted MRI were acquired for 643 subjects.

Acquisition parameters (median and ranges) included slice thickness

1.1 mm (1–1.2 mm), repetition time 2,000 ms (6.6–2,400), echo time

2.9 ms (2.2–9 ms), flip angle 8 (8–11), and number of slices 208 (140–

208). Images were processed following the steps described in Iturria-

Medina, Carbonell, Sotero, Chouinard-Decorte, and Evans (2017). In

summary, images were segmented into gray matter, white matter, and

cerebrospinal fluid probabilistic maps using SPM12. The gray matter

maps were normalized to MNI space using DARTEL

(Ashburner, 2007) and modulated to preserve the total amount of

signal.

T2: Volumetric T2-weighted MRI were acquired for all available

subjects (n = 530). Acquisition parameters (median and ranges)

included: repetition time 3,200 ms (2,200–3,200 ms), echo time

401 mm (75–403 mm), slice thickness 1.1 mm (1–1.2 mm), flip angle

120 (90–120), and the number of slices 176 (156–196). All T2 images

were normalized to MNI space using the parameters acquired for the

T1 image with the closest acquisition date, using SPM12. T1/T2 ratios

were calculated by dividing the T2 image from the T1 image with the

closest acquisition date.

Resting-state functional MRI: Resting-state fMRI data were

acquired for all available subjects (n = 619) using an echo-planar imag-

ing sequence. Acquisition parameters (median and ranges) included:

slice thickness 3.5 mm (2.7–3.5 mm), repetition time 2,500 ms

(2,200–3,000 ms), echo time 30 ms (30–50 ms), flip angle 80 (80–90),

and number of timepoints 200 (140–200). Images were processed fol-

lowing steps outlined in (Iturria-Medina et al., 2017) using tools from

SPM12, FSL, and the REST toolbox. Preprocessing steps included

motion correction, slice timing correction, normalization to MNI space

using the parameters acquired for the T1 image with the closest

acquisition date, and signal filtering to keep only low frequency fluctu-

ations (0.01–0.08 Hz). Maps of fractional amplitude of low frequency

fluctuations (fALFF) were calculated, to have a regional indicator of

the brain's functional integrity (Zou et al., 2008).

Diffusion-weighted MRI: Diffusion-weighted images were acquired

for all subjects who had the standard GENFI protocol (n = 483) which

consisted of two sequences, with either four or five b0 images

(no diffusion sensitization) and 64 diffusion-weighted images

(b = 1,000 s/mm2). The second sequence was used when available.

Additional acquisition parameters (median and ranges) included: slice

thickness 2.5 mm (2–3 mm), repetition time 7,300 ms (3,742–

10,300 ms), and echo time 90 ms (36–100 ms). Images were

preprocessed using Mrtrix3 software (Tournier et al., 2019).

Preprocessing steps included denoising, Gibbs ringing correction, eddy

current distortions correction, and bias field correction. Diffusion ten-

sor measures of fractional anisotropy (FA) and mean diffusivity

(MD) were calculated using FSL. Images were normalized to MNI

space using the parameters acquired for the T1 image with the closest

acquisition date using SPM12. All subsequent analyses of FA and MD

refer to gray matter.

2.3 | Quality control and data preprocessing

All modalities underwent visual inspection, and images of poor quality

were excluded. Imaging data from 637 subjects were used in the sub-

sequent analysis. All imaging data were processed using the

NeuroPM-box (Iturria-Medina et al., 2021; available at neuropm-lab.

com/neuropm-box.html) “organizing input for MCM” tool, consisting

of regional gray matter parcellation of each image, outlier detection

and correction, and imputation of missing modalities. The NeuroPM-

box is currently designed for the analysis of gray matter. As such, all

modalities in this study are measured in the gray matter. Mean gray

matter density, fALFF, T1/T2 ratio, and gray matter FA and MD were

calculated for 78 cortical and subcortical regions, based on the

Desikan–Killiany–Tourville (DKT) atlas (Klein & Tourville, 2012). All

baseline data with missing modalities were imputed using the trimmed

scores regression with internal principal component analysis algo-

rithm, implemented in the Missing Data Imputation Toolbox for

MATLAB, which considers the relationship between all subjects and

variables to obtain imputed data by iteratively fitting PCA models to

the data (Folch-Fortuny, Arteaga, & Ferrer, 2016).

2.4 | Data harmonization

We used ComBat to harmonize baseline data of each imaging metric

by site and scanner type. ComBat, an empirical Bayesian method of

harmonizing multi-site data originally used in genomics (Johnson, Li, &

Rabinovic, 2007), has been shown to be robust for multi-site imaging

studies with small numbers of participants per site (Fortin et al., 2017,

2018). The biological variability in genetic variants, disease status

(noncarrier, presymptomatic carrier, and symptomatic carrier), and the

estimated years to symptom onset (EYO) was preserved, as well as

age, sex, and years of education.

2.5 | cTI method

The contrastive Trajectory Inference algorithm [cTI; Iturria-Medina

et al. (2020) implemented in the user-friendly open-access NeuroPM-

box software (Iturria-Medina et al., 2021)] is an unsupervised machine

learning method to analyze temporal patterns in multi-dimensional

populational datasets. Data can first be adjusted for confounding vari-

ables using robust additive linear regression modeling with pair-wise

interactions. The cTI method then consists of unsupervised feature

1824 MCCARTHY ET AL.
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selection (for high dimensional datasets), dimensionality reduction via

contrastive principal component analysis, and subject ordering to

obtain individual disease scores [described in detail in Iturria-Medina

et al. (2020)].

Contrastive principal component analysis (cPCA; Abid, Zhang,

Bagaria, & Zou, 2018) is an unsupervised method of data exploration

and visualization which identifies patterns in a target population (i.e., a

diseased population) by controlling against patterns in a background

population (a control group). By adjusting for patterns identified in the

background population, such as aging effects or noise, cPCA has been

found to be more sensitive to disease progression, by identifying

trends in the population of interest that may be missed using standard

methods of dimensionality reduction (i.e., PCA). The model then auto-

matically chooses the contrasted principal component space which

best optimizes the enriched trends in the target population. Each sub-

ject's position in the contrasted principal component space, therefore,

reflects their disease state, with further distance from the background

indicating more advanced disease.

Subjects are ordered and assigned an individual “pseudo-time”
score according to their proximity to the background, standardized to

be between 0 and 1. Low scores indicate proximity to the background

population while high scores indicate proximity to the most advanced

disease state. In the context of neurodegeneration, the pseudo-time

score can be interpreted as a personalized index of disease stage

(from the continuum of young subjects that are decades away from

symptoms up to the more advanced dementia cases).

The cTI also estimates the specific contribution of each feature

on the obtained disease scores. Individual weights of each feature

reflect how much that feature contributed to the contrasted principal

component space from which the subject ordering and disease scores

were obtained. A larger weight value, therefore, indicates a greater

influence on the cTI-obtained disease scores.

2.6 | cTI analysis

In this analysis, we considered baseline data from five MRI-derived

biomarkers in the gray matter (gray matter density, fALFF, T1/T2

ratio, FA, and MD). The cTI was run using all features due to the rela-

tively small number of included features (5 modalities � 78 brain

regions = 390 features). Data were first linearly adjusted by age, sex,

and years of education. Parameters of the linear regression were

obtained in noncarriers only, to obtain estimates of healthy aging.

Parameters were then applied to all subjects. All noncarriers were

used as the background population. As opposed to including all gene

mutation carriers in the target population, we choose to include symp-

tomatic carriers only. Therefore, the symptomatic subjects only were

used in the data exploration and visualization via cPCA, in contrast to

the noncarriers, and the corresponding transformations of the data to

the disease-associated space (contrastive principal component space)

were then applied to all subjects. We used symptomatic subjects as

the target population due to their more advanced disease state which

should allow for better determination of the disease-associated

patterns by the cTI (as only subtle changes are expected in the pres-

ymptomatic participants), and due to the much larger number of pres-

ymptomatic carriers compared to symptomatic (many of whom are

young and likely far from symptom onset) which would likely bias the

model towards early presymptomatic cases, increasing the difficulty

of finding underlying disease-associated trends. The cTI was run using

the combination of all five-imaging metrics, as well as each metric

individually.

2.7 | Post-hoc statistical analysis

We compared the cTI obtained disease scores to the EYO, clinical

assessment, and neuropsychological test scores using Pearson's corre-

lation. Tests included the Mini-Mental State Examination (MMSE) for

cognition, the Cambridge Behavioural Inventory Revised version (CBI-

R) for behavioral symptoms, and a neuropsychological battery measur-

ing cognition, attention, memory, language, and executive function

(Digit Span forward and backward from the Wechsler Memory Scale-

Revised, a Digit Symbol Task, Parts A and B of the Trail Making Test,

the short version of the Boston Naming Test, Category Fluency (ani-

mals), Letter Fluency and the Wechsler Abbreviated Scale of Intelli-

gence Block Design task). Z scores were calculated for all

neuropsychological tests based on language-specific norms (Rohrer

et al., 2015). Differences in disease status were tested using one-way

ANOVAs. Post hoc pairwise differences between groups were ana-

lyzed using Tukey's test. All analyses were conducted using MATLAB

(version 2019b) and R (version 4.0.3).

2.8 | Sensitivity analysis

To assess the impact of missing data and the subsequent imputation

of this missing data on the analyses, the cTI was run, with all five

modalities in combination, using only those individuals with all imag-

ing modalities at their baseline visit (n = 282) and the above analyses

repeated in this subgroup.

3 | RESULTS

We analyzed cross-sectional data from 637 participants who had at

least one useable T1 scan, including 269 presymptomatic carriers,

115 symptomatic carriers, and 253 noncarriers (see Table 1 for demo-

graphic characteristics). Of the presymptomatic carriers, 92 had a

C9orf72 expansion, 129 had a GRN mutation, and 48 had a MAPT

mutation. Of the symptomatic subjects, 56 had a C9orf72 expansion,

40 had a GRN mutation, and 19 had a MAPT mutation. Eighty had a

diagnosis of bvFTD, 20 had a primary progressive aphasia (15 non-

fluent variant, 1 semantic variant, 4 non-specified), 4 had amyotrophic

lateral sclerosis (ALS), 5 had FTD-ALS, 2 had corticobasal syndrome,

1 had progressive supranuclear palsy, and 3 had non-specified

dementia.

MCCARTHY ET AL. 1825
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3.1 | cTI-identified disease scores

The cTI identified disease scores, obtained using all imaging metrics in com-

bination, were significantly correlated with MMSE (r = �.273, p < .001,

Figure 1a), CBI-R (r = .516, p < .001, Figure 1b), and each neuropsychologi-

cal test (all jrj .276–.468, p < .001, Figure 2) for all gene mutation carriers. A

higher disease score was associated with greater impairment on all tests

and clinical scales. Correlations were not significant in presymptomatic car-

riers only (p > .05, Table 2), while in the symptomatic group, only the

MMSE was significantly correlated with disease scores (p < .05, Table 2).

Correlations between cTI scores in the full group (including noncarriers)

were similar to those in the gene mutation carriers (all p < .001, Table 2).

Significant differences in disease scores were found for disease

status (F = 270.9, p < .001), with symptomatic subjects having higher

disease scores than both asymptomatic carriers and noncarriers and

asymptomatic carriers having higher disease scores than noncarriers

(p < .001, Figure 1c). Differences were not driven by a single genetic

group. Disease scores were also significantly correlated with the EYO

for all gene mutation carriers, with a higher disease score associated

with a shorter expected time to symptom onset (r = .334, p < .001,

Figure 1d). See Table 2 for all correlations. Figure 3 shows the associa-

tion between disease scores and age, by disease status.

3.2 | Feature contributions

We summed the feature weights across modalities and regions to

determine the total contribution of each modality (Figure 4) and the

total contribution of each brain region (Figure 5) to the obtained dis-

ease scores. DTI metrics provide the highest contribution

(MD followed by FA), while fALFF provides the lowest. Gray matter

density and T1/T2 ratio had similar contributions. Total regional con-

tributions indicate the highest values for frontal, temporal, and sub-

cortical regions.

3.3 | Individual modalities

When obtained using each imaging metric individually, the cTI

identified disease scores in all gene mutation carriers were signifi-

cantly correlated with MMSE (Table 3; gray matter density:

r = �.368, fALFF: r = �.355, p < .001), CBI-R (Table 3; gray mat-

ter density: r = .391, fALFF: r = .377, T1/T2 ratio: r = .373,

p < .001), and all neuropsychological tests for all modalities

(Table 3; gray matter density: jrj = .281–.447, fALFF: jrj =

.277–.442, p < .001), with a higher disease score being associated

with greater impairment on all tests. Significant differences in dis-

ease scores were found for disease status, with symptomatic sub-

jects having higher disease scores than both asymptomatic

carriers and noncarriers (p < .001). Differences between asymp-

tomatic carriers and noncarriers were not significant (fALFF,

p = .15; FA, p = .1; T1/T2 ratio, p = .07; MD, p = .06; gray matter

density, p = .97). A significant correlation was found with the

EYO for all modalities (Table 3; jrj = .192–.349, p < .005) except

MD (r = .090, p = .0792), with a higher disease score associated

with a shorter time to symptom onset among gene carriers.

TABLE 1 Demographics of included
subjects

Presymptomatic Symptomatic Noncarriers

N 269 115 253

Mutationa

C9orf72 92 (34.2) 56 (48.7) 87 (34.4)

GRN 129 (48.0) 40 (34.8) 126 (49.8)

MAPT 48 (17.8) 19 (16.5) 40 (15.8)

Age (years)b 44.9 ± 11.9 (20.1–75.5) 63.0 ± 8.6 (32.9–78.7) 46.8 ± 13.7 (18.6–85.7)

Sex (female)c 170 (63.2) 50 (43.5) 142 (56.1)

Education (years)b 14.3 ± 3.3 11.9 ± 4.1 14.0 ± 3.5

CBI-Rb 5.1 ± 9.1 61.2 ± 32.0 3.9 ± 6.3

MMSEb 29.3 ± 1.2 22.5 ± 6.3 29.4 ± 1.1

EYOb �13.8 ± 11.5 3.4 ± 6.8 NA

Note: Diagnoses in symptomatic subjects: 79 bvFTD (41 C9orf72, 20 GRN, and 19 MAPT), 5 FTD-ALS

(all C9orf72), 4 ALS (C9orf72), 15 nonfluent variant PPA (2 C9orf72, 13 GRN), 1 semantic variant PPA

(C9orf72), 2 corticobasal syndrome (GRN), 4 dementia—not otherwise specified (GRN), and 1 progressive

supranuclear palsy (C9orf72). Data are n (%) or mean ± standard deviation (range).

Abbreviations: ALS, amyotrophic lateral sclerosis; bvFTD, behavioral variant frontotemporal dementia;

CBI-R, Cambridge Behavioural Inventory Revised version; EYO, estimated years to symptom onset;

MMSE, Mini-Mental State Examination; PPA, primary progressive aphasia.
aGenetic mutation status in noncarriers refers to the mutation carried in family members.
bp < .001 (one-way ANOVA), significant differences between symptomatic and presymptomatic, as well

as noncarriers (p < .001, Tukey tests).
cp < .001 (chi-square), the difference in distribution across groups.
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3.4 | Sensitivity analysis

Overall results of the analysis in the subset of subjects with full base-

line imaging are similar to those in the full dataset; cTI disease scores

were significantly correlated with all clinical and neuropsychological

tests, and with the EYO (Figures S1 and S2). All correlations were

equal to or stronger than in the full analysis. Significant differences in

disease scores were found for disease status (F = 318.6, p < .001;

Figure S1c). Symptomatic subjects had higher disease scores than

both asymptomatic carriers and noncarriers (p < .001), but differences

between asymptomatic carriers and noncarriers were not significant

(p = .15). The feature contribution analysis indicated a higher contri-

bution of gray matter density (Figure S3). The ordering of regional

contributions were also somewhat altered (Figure S4), but the highest

values were again found for frontal, temporal, and subcortical regions.

4 | DISCUSSION

In this study, we show that the cTI, a data-driven staging model, can

identify the cross-sectional progression of disease in a heterogeneous

sample of genetic FTD using only neuroimaging metrics without

TABLE 2 Correlation (r) between cTI
disease scores (all modalities) and each
clinical/neuropsychological test for all
gene carriers, presymptomatic carriers
only, symptomatic carriers only, and the
full group (including noncarriers)

Carriers Presymptomatic Symptomatic All

MMSE �0.273 �0.014 0.237 �0.337

CBI-R 0.516 0.017 0.109 0.573

DS F score �0.276 0.008 0.087 �0.269

DS B score �0.292 �0.017 0.091 �0.295

TMTA time 0.357 0.019 �0.072 0.392

TMTB time 0.466 0.061 0.015 0.490

Digit symbol �0.468 0.025 �0.026 �0.461

Boston naming �0.334 0.015 0.132 �0.385

VF animals �0.436 0.043 0.057 �0.424

VF F �0.406 �0.007 �0.062 �0.387

VF A �0.386 �0.064 0.023 �0.374

VF S �0.398 �0.037 �0.021 �0.389

Block design �0.370 0.090 0.069 �0.371

EYO 0.343 �0.089 0.026 0.298

Abbreviations: CBI-R, Cambridge Behavioural Inventory Revised version; DS B, Digit Span backward;

DS F, Digit Span forward; EYO, estimated years to symptom onset; MMSE, Mini-Mental State

Examination; TMTA, Trail Making Test Part A; TMTB, Trail Making Test Part B; VF, verbal fluency.
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clinical information. As a proof of validity, significant correlations were

found between the data-driven cTI identified disease scores and the

estimated years to symptom onset and to all the tested measures of

clinical performance. In addition, higher mean cTI scores were found

in presymptomatic carriers compared to noncarriers, suggesting that

the staging system may be able to detect subtle pre-dementia changes

in mutation carriers. Gray matter DTI measures, particularly MD, pro-

vided the largest contribution to the model. Disease scores derived

from individual metrics were also significantly correlated with clinical

performance. Differences in disease scores between presymptomatic

carriers and noncarriers did not reach statistical significance in individ-

ual metrics, suggesting a combination of metrics may be important to

differentiate presymptomatic carriers from asymptomatic subjects.

This study is a proof of concept that it is possible to generate a

data-driven unified staging system across genetic and phenotypical

variations that correlate strongly with the most relevant clinical and

cognitive measures in FTD. Previous application of the cTI model has

shown strong associations between the model-derived disease scores

and clinical and neuropathological disease severity in both Alzheimer's

and Huntington's diseases, as well as a cohort encompassing the spec-

trum of both diseases (Iturria-Medina et al., 2020). Our results corrob-

orate the use of cTI-derived disease scores as a marker of

neurodegenerative diseases, showing that the individual scores reflect

0
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MD FA T1/T2 ratio GM density fALFF
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F IGURE 4 Total contribution of each modality to the cTI
identified disease scores. FA, fractional anisotropy; fALFF, fractional
amplitude of low frequency fluctuations; GM, gray matter; MD, mean
diffusivity
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a combination of subtle clinical differences in the presymptomatic

stage and disease severity in symptomatic patients. We further show

that the model can accurately identify disease stages in a heteroge-

neous population including the wide variety of clinical presentations

and genetic mutations found in genetic FTD, factoring the pres-

ymptomatic and symptomatic spectrum. This association is found

despite a large number of subjects in the early presymptomatic stage

(i.e., more than 30–40 years prior to probable symptom onset). The

association was largely driven by differences between pres-

ymptomatic and symptomatic stages, as correlations in the individual

subgroups were mostly not significant; this is likely due to the fact

that most presymptomatic subjects will have normal to very mild

impairment on these tests, while symptomatic subjects are impaired.

It also may reflect the inability of the clinical and cognitive scales to

reflect specific aspects of each individual's subtle clinical decline.

The cTI has previously been applied to gene expression data.

Here we show the utility of this model derived using neuroimaging

features. The feature contributions analysis indicates that DTI metrics,

in particular MD, are the biggest contributors to the model. These

measures have rarely been studied in gray matter, although increases

in MD have been reported in symptomatic FTD (Whitwell

et al., 2010). This finding may warrant further investigation of gray

matter microstructural changes. Of note, both DTI metrics indicate

strong contributions to the model from similar brain regions. While FA

and MD measure different processes, it is likely that multiple inter-

related microstructural changes are occurring in the same brain

regions.

Our results indicate moderate association between disease scores

derived individually from gray matter atrophy, fALFF and T1/T2 ratio,

and clinical performance. Gray matter atrophy is the most frequently

studied imaging biomarker in FTD, and atrophy has been consistently

reported across phenotypes and genetics, symptomatically and

presymptomatically (Cash et al., 2018; Rohrer et al., 2015; Staffaroni

et al., 2020). T1/T2 ratio and fALFF have been much less frequently

studied. Alterations in functional connectivity have been reported in

both presymptomatic and symptomatic FTD (Dopper et al., 2014; Lee

et al., 2017; Premi et al., 2016). T1/T2 ratio, as a marker of intra-

cortical myelin, has not been investigated in FTD to our knowledge;

results here indicate a change in myelin content along with FTD pro-

gression. We obtained the highest correlations with clinical measures

when using a combination of all modalities, and all modalities provid-

ing some level of contribution to the model, indicating an added bene-

fit of combining information from multiple modalities which provide

complementary information. Our results suggest that the combination

of metrics may be particularly important to differentiate pres-

ymptomatic carriers from controls. The regional contributions analysis

indicated that along with frontal and temporal regions, subcortical

involvement was an important contributor to the model, while the left

inferior parietal region also showed a high contribution. Subcortical

involvement has also been reported in genetic FTD, while parietal

involvement has been reported most commonly in GRN mutations

(Rohrer et al., 2015).

The sensitivity analysis suggests that the observed associations

between disease scores and the estimated years to symptom onset

and to all the tested measures of clinical performance are fairly robust,

while the differences between presymptomatic carriers and controls,

the contribution of GM density to the disease scores are more sensi-

tive to missing data. These findings should therefore be validated in a

larger dataset with more complete data.

The development of data-driven biologically based staging would

be useful for clinical trials. This study provides initial evidence

supporting the potential usefulness of this type of modeling as a uni-

fied measure to track disease progression and monitor treatment

effectiveness in a highly heterogeneous population. A main advantage

TABLE 3 Correlation (r) between cTI
disease scores for each modality and
each clinical/neuropsychological test (in
all gene carriers)

GM density T1/T2 ratio fALFF FA MD

MMSE �0.368 �0.188 �0.355 �0.093 �0.24

CBI-R 0.391 0.373 0.377 0.28 0.261

DS F score �0.306 �0.237 �0.277 �0.107 �0.258

DS B score �0.281 �0.258 �0.289 �0.177 �0.243

TMTA time 0.358 0.160 0.376 0.210 0.238

TMTB time 0.447 0.275 0.442 0.225 0.265

Digit symbol �0.442 �0.261 �0.372 �0.264 �0.237

Boston naming �0.415 �0.244 �0.362 �0.247 �0.216

VF animals �0.433 �0.296 �0.355 �0.210 �0.239

VF F �0.358 �0.285 �0.374 �0.248 �0.266

VF A �0.336 �0.269 �0.322 �0.229 �0.258

VF S �0.357 �0.236 �0.318 �0.220 �0.269

Block design �0.360 �0.217 �0.350 �0.211 �0.233

EYO 0.353 0.225 0.286 0.205 0.107

Abbreviations: CBI-R, Cambridge Behavioural Inventory Revised version; DS B, Digit Span backward;

DS F, Digit Span forward; EYO, estimated years to symptom onset; MMSE, Mini-Mental State

Examination; TMTA, Trail Making Test Part A; TMTB, Trail Making Test Part B; VF, verbal fluency.
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of the cTI is that it is an unsupervised data-driven model, determined

by cross-sectional data, which does not rely on a priori phenotypical

information. The clinical variables are not used to train a predictive

model, removing concerns of circularity or overfitting. Furthermore,

the cTI can incorporate various features from high dimensional data,

and data-driven feature selection, eliminating the necessity of choos-

ing select biomarkers or brain regions, seen in existing data-driven

models (Panman et al., 2021; Young et al., 2018). It therefore provides

unbiased biomarkers based solely on biological metrics. Further work

is needed to evaluate the usefulness of this type of measure clinically

and as a validated outcome for clinical trials.

A limitation of this study is the modalities used. All neuroimaging

features used here are in the gray matter; including DWI metrics from

white matter in future models may provide increased benefit to the

model, as white matter microstructure changes may be an early fea-

ture of FTD (Feis et al., 2018; Jiskoot et al., 2018). Future models

would likely also benefit from non-imaging neurodegeneration bio-

markers like neurofilament light chain, which has good potential as a

prognostic biomarker in clinical FTD (Benussi et al., 2020; Rohrer

et al., 2016) and presymptomatic mutation carriers (Meeter

et al., 2016; van der Ende et al., 2019). Our model suggests that while

single biomarkers may perform reasonably well on their own and have

high clinical feasibility, the inclusion of other advanced imaging met-

rics may increase precision, particularly in presymptomatic subjects,

and therefore could be valuable in a clinical trial setting. Ultimately, a

select number of biomarkers providing distinct information to the

model, such as a combination of imaging and non-imaging metrics,

may provide the best staging system. Future work could also analyze

each genetic group separately, as larger datasets become available.

Finally, we used EYO as a measure of disease severity, which has been

shown to be imprecise as a predictor of actual onset (Moore

et al., 2020). However, EYO remains the only predictive estimate of

time to symptom onset other than age.

In summary, this study provides promising evidence for the devel-

opment of unifying staging of heterogeneous neurodegenerative dis-

orders using data-driven, unsupervised methods. Neuroimaging

features show promise as potential biomarkers of disease progression

but would most likely benefit from being combined with complemen-

tary clinical and biological information for optimal staging. While fur-

ther validation work is required, biologically based staging systems are

a promising tool to monitor monitoring disease progression and treat-

ment outcomes in future clinical trials of genetic FTD.
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