
R E S E A R C H A R T I C L E

Adult-Onset Neurodegeneration in Nucleotide Excision Repair
Disorders (NERDND): Time to Move Beyond the Skin

Isabell Cordts, MD,1* Demet Önder, MD,2,3 Andreas Traschütz, MD,4,5 Xenia Kobeleva, MD,2,3 Ivan Karin, MD,6

Martina Minnerop, MD,7,8,9 Peter Koertvelyessy, MD,10 Saskia Biskup, MD, PhD,11 Stephan Forchhammer, MD,12

Johannes Binder, MD,13 Andreas Tzschach, MD,14 Frank Meiss, MD,15 Axel Schmidt, MD,16 Martina Kreiß, MD,16

Kirsten Cremer, MD,16 Martin A. Mensah, MD,17,18 Joohyun Park, MD,19 Maren Rautenberg, PhD,19

Natalie Deininger, MSc,19 Marc Sturm, PhD,19 Paul Lingor, MD,1 Thomas Klopstock, MD,6,20,21 Markus Weiler, MD,22

Franz Marxreiter, MD,23,24 Matthis Synofzik, MD,4,5 Christian Posch, MD, PhD,25,26 Judith Sirokay, MD,27

Thomas Klockgether, MD,2,3 Tobias B. Haack, MD,19,28 and Marcus Deschauer, MD1

1Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
2Department of Neurology, University Hospital Bonn, Bonn, Germany
3German Center for Neurodegenerative Diseases, Bonn, Germany

4Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
5German Center for Neurodegenerative Diseases, Tübingen, Germany

6Friedrich-Baur-Institute, Department of Neurology, University Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
7Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany

8Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University Düsseldorf,
Düsseldorf, Germany

9Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
10Department of Neurology, Campus Benjamin Franklin, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and

Humboldt-Universität zu Berlin, Berlin, Germany
11CeGaT GmbH und Praxis für Humangenetik Tübingen, Tübingen, Germany

12Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
13Zentrum für Nervenheilkunde, Herbolzheim, Germany

14Institute of Human Genetics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
15Department of Dermatology and Venereology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg,

Germany
16Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany

17Institute of Medical Genetics and Human Genetics, Charité–Universitätsmedizin Berlin, Berlin, Germany
18BIH Biomedical Innovation Academy, Digital Clinician Scientist Program, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Germany

19Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
20Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
21German Center for Neurodegenerative Diseases, Munich, Germany

22Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
23Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
24Center for Rare Diseases (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
25Department of Dermatology and Allergy, School of Medicine, German Cancer Consortium, Technical University of Munich, Munich, Germany

26Faculty of Medicine, Sigmund Freud University Vienna, Vienna, Austria
27Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany

28Centre for Rare Diseases, University of Tübingen, Tübingen, Germany

ABSTRACT: Background: Variants in genes of the
nucleotide excision repair (NER) pathway have been asso-
ciated with heterogeneous clinical presentations ranging

from xeroderma pigmentosum to Cockayne syndrome and
trichothiodystrophy. NER deficiencies manifest with photo-
sensitivity and skin cancer, but also developmental delay
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and early-onset neurological degeneration. Adult-onset
neurological features have been reported in only a few
xeroderma pigmentosum cases, all showing at least mild
skin manifestations.
Objective: The aim of this multicenter study was to
investigate the frequency and clinical features of patients
with biallelic variants in NER genes who are predomi-
nantly presenting with neurological signs.
Methods: In-house exome and genome datasets of
14,303 patients, including 3543 neurological cases, were
screened for deleterious variants in NER-related genes.
Clinical workup included in-depth neurological and der-
matological assessments.
Results: We identified 13 patients with variants in
ERCC4 (n = 8), ERCC2 (n = 4), or XPA (n = 1), mostly
proven biallelic, including five different recurrent and six
novel variants. All individuals had adult-onset progressive
neurological deterioration with ataxia, dementia, and

frequently chorea, neuropathy, and spasticity. Brain mag-
netic resonance imaging showed profound global brain
atrophy in all patients. Dermatological examination did
not show any skin cancer or pronounced ultraviolet
damage.
Conclusions: We introduce NERDND as adult-onset neu-
rodegeneration (ND) within the spectrum of autosomal
recessive NER disorders (NERD). Our study demon-
strates that NERDND is probably an underdiagnosed
cause of neurodegeneration in adulthood and should be
considered in patients with overlapping cognitive and
movement abnormalities. © 2022 The Authors. Move-
ment Disorders published by Wiley Periodicals LLC on
behalf of International Parkinson and Movement Disorder
Society.

Key Words: NER; ataxia; dementia; UV sensitivity;
xeroderma pigmentosum

Nucleotide excision repair (NER) is a mechanism to
repair DNA lesions caused by exogenous (eg, ultravio-
let [UV] light) or endogenous (eg, reactive oxygen spe-
cies) sources. Deficiencies of NER proteins caused by
biallelic variants in NER-associated genes are responsible
for a wide and varied range of cancer and premature
aging phenotypes. Typical disorders resulting from defi-
cient NER are xeroderma pigmentosum (XP), tri-
chothiodystrophy (TTD), Cockayne syndrome (CS), and
cerebro-oculo-facio-skeletal syndrome, a severe form of
CS. A complex genetic and phenotypic architecture has
been demonstrated in disorders associated with NER: var-
iants in the same gene can cause multiple phenotypes;
conversely, many different genes have been associated
with the same clinical presentation. Furthermore, over-
lapping syndromes with combined clinical hallmarks are
frequently observed. In fact, 12 NER genes have been
linked to five distinct disease entities and five different
overlapping phenotypes, with some genes being associated
with greater pleiotropy than others.1

TTD and CS are debilitating multisystem disorders
with cutaneous, neurological, and growth abnormali-
ties. Conversely, XP is characterized by an increased
sensitivity to UV radiation-induced skin pigmentation
and skin cancers on sun-exposed body parts. Many
patients with XP show severe sunburn reactions and
blistering on minimal sun exposure in childhood. Other
typical findings are freckling-like maculae and telangiecta-
sias, but also premalignant lesions and skin neoplasms,
such as basal or squamous cell carcinomas and malignant
melanomas.2 Approximately 20% of patients with XP
are affected by neurological abnormalities of variable
severity.3 The neurological signs, including sensorineural
deafness, ataxia, microcephaly, and cognitive deficits, usu-
ally have a childhood onset4 and are associated with
shorter survival compared with patients with XP without

neurological degeneration (median age at death, 29 and
37 years, respectively).5 Interestingly, a few cases of adult-
onset neurological impairment, such as ataxia and a cho-
reiform movement disorder with at least mild cutaneous
findings, have been reported, mostly in patients with vari-
ants in ERCC46–8 and rarely in ERCC3,9 ERCC5,9 and
XPA.10,11

In this study, we identified an isolated neurological
disorder with overlapping movement abnormalities and
cognitive features in 13 individuals caused by variants
in three different NER genes. We introduce the term
NERDND for the presented adult-onset neu-
rodegeneration (ND) within the spectrum of nucleotide
excision repair disorders (NERD).

Subjects and Methods

Genetic testing and reanalysis of exome and genome
data were performed according to the Declaration of
Helsinki and approved by the ethical committee of the
University of Tübingen (project number 066/2021BO2).
All patients agreed to the publication, and written
informed consent was obtained from all investigated
subjects.
Patients were referred for diagnostic exome or

genome sequencing from different neurological centers.
Next-generation sequencing (NGS) analyses were per-
formed at the Institute of Medical Genetics and Applied
Genomics in Tübingen on genomic DNA from affected
patients as previously described.12,13 In one patient
(identification number [ID] 06), who was seen at the
Department of Neurology of the Technical University
Munich, genetic testing was performed at CeGaT
GmbH earlier. In this study, all exome and genome
datasets (n = 14,303) of the Institute of Medical
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Genetics and Applied Genomics in Tübingen, including
3543 cases with diseases of the nervous system, were
screened for biallelic variants in NER-associated genes.
The pathogenicity of the identified variants was deter-
mined according to the American College of Medical
Genetics and Genomics guidelines.14 Variant confirma-
tion and carrier testing on available family members
were conducted by Sanger sequencing. Primers and
PCR conditions are provided on request.
After having obtained the genetic diagnosis, further clini-

cal details were collected at nine different German centers
by taking an in-depth medical history and performing an
extensive clinical examination, including Scale for the
Assessment and Rating of Ataxia for evaluation of ataxia,
Unified Huntington’s Disease Rating Scale to assess chorea,
and Montreal Cognitive Assessment as a screening instru-
ment for cognitive impairment. Routine laboratory tests of
peripheral blood and cerebrospinal fluid were performed.
In selected patients, neurofilament light chain protein levels
were determined in blood. Whenever possible, brain mag-
netic resonance imaging (MRI), electroencephalography,
audiometry, ophthalmological assessment, and dermato-
logical examination were performed as part of the diagnos-
tic workup. Pure-tone audiometry was done using standard
methods, and type of hearing loss was classified based on
air and bone conduction. Dermatological examination
involved a clinical-dermatological examination, including a
systematic skin cancer screening. Furthermore, the minimal
erythema dose (MED-UVB, mJ/cm2) was determined in
selected patients as described previously.15 Microscopic
examination of hair samples from six patients was per-
formed at one center using a Leica DM 3000 microscope
according to a standardized technique.16

Results
Genetic Testing

Genetic and clinical findings are summarized in
Table 1. A total of 13 patients, 11 sporadic cases, and
2 siblings with an adult-onset neurological phenotype
and variants in NER-associated genes were detected. Of
these patients, 12 were identified in our database of
14,303 individuals, containing exome and genome datasets
from patients of all disease groups, as well as healthy indi-
viduals. At the time of our study, our database contained
3543 patients with “diseases of the nervous system,” includ-
ing both pediatric and adult patients but excluding those
patients assigned to the disease group “mental, behavioral
or neurodevelopmental disorders.” Of these patients, 1206
patients were assigned with the Human Phenotype Ontol-
ogy (HPO) term “ataxia” (or cerebellar atrophy) and
340 patients with “dementia” (or cognitive impairment).
Both HPO terms “ataxia” (or cerebellar atrophy) and
“dementia” (or cognitive impairment) have been deter-
mined in 139 patients. With regard to these subgroups, the

frequency of our neurological patients with variants in
NER-associated genes was 0.4% (n = 12/3386) for all
patients with diseases of the nervous system, 1.0%
(n = 12/1206) for the subgroup of patients with ataxia,
3.5% (n = 12/340) for dementia, and 8.6% (n = 12/139)
for patients assigned to both ataxia and dementia.
All variants detected in our patients were either rare

or absent in gnomAD (https://gnomad.broadinstitute.
org/) and predicted to be deleterious in silico
(Supporting Information Table S1). Carrier testing on
available family members (families I–III, VI, and IX–

XII; see Supporting Information Fig. S1) showed full
cosegregation of the identified variants with the clinical
status in all families. None of the patients carried addi-
tional clinically relevant variants in genes associated
with movement disorders, cognitive impairment, or
other neurological phenotypes.
Eight patients (IDs 01–08) carried variants in ERCC4

(NM_005236.3). Seven of these patients (IDs 01–07)
harbored the previously reported missense variant
c.2395C>T (p.Arg799Trp)17 in heterozygous state. In
two of these seven unrelated patients (IDs 02 and 03),
the second variant was the splice variant c.580_584 +
1delCCAAGG (p.?) that has been published in a simi-
larly affected patient, also together with c.2395C>T.7

In five patients (IDs 01, 04, 05, 06, and 07), the respec-
tive second variant has not previously been described
in the literature: the frameshift variant c.1069dup
(p.Ile357AsnfsTer3), the frameshift variant c.516_517del
(p.Thr173TrpfsTer37), the missense variant c.904G>T
(p.Asp302Tyr), the frameshift variant c.1081dupA
(p.Met361Asnfs*4), and the missense variant c.2248C>T
(p.Arg750Cys). One patient (ID 08) carried the variant
c.2248C>T (p.Arg750Cys) in homozygous state.
Variants in ERCC2 (NM_000400.4) were identified

in four patients (IDs 09–12), with all of them carrying
the missense variant c.1726G>A (p.Glu576Lys) in het-
erozygous state. For this variant, which has not been
previously described in the literature, a replacement of
an evolutionarily highly conserved amino acid is
predicted. In two brothers (IDs 09 and 10), the second
variant was the truncating deletion c.1703_1704del
(p.Phe568TyrfsTer2), which has been reported in a
young girl with features of both XP and TTD.18 Fur-
thermore, this variant has been described several times
in heterozygous state in various cancers19,20 but was
mainly classified as a variant of unclear significance. In
two unrelated patients (IDs 11 and 12), the respective
second variant was c.2150C>G (in cis with c.1381C>G
[p.Leu461Val]). It has been shown that c.2150C>G
leads to aberrant splicing by activating a cryptic donor
splice site, resulting in a deletion of 15 amino acids (p.-
Val716_Arg730del).21 This change has been reported in
patients with TTD,21–23 XP/CS crossover syndrome,24,25

and classical XP.26,27 Interestingly, p.Ala717Gly was
expressed from the same allele as p.Val716_Arg730del
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by authentic splicing and was shown to partially res-
cue the loss of ERCC2 function, resulting in milder
manifestations.25

One individual (ID 13) carried biallelic variants in
XPA (NM_000380.4): c.619C>T (p.Arg207Ter), which
is a common variant in XP28 and has also been
reported in a young woman with XP and prominent
neurological involvement in trans with c.772_785del
(p.Arg258TyrfsTer5). The latter has been classified as
variant of unclear significance in different cancers19,29

but was also reported in a Hungarian family with
prominent neurological alterations.10

Clinical Characteristics (Table 1)
All individuals (n = 7 female and n = 6 male individ-

uals) were alive at the time of the study, with ages at last
examination ranging from 42 to 69 (median 53) years.
The most common symptoms at onset were gait distur-
bance (54%, n = 7) and cognitive deficits (54%, n = 7),
and disease onset ranged from age 25 to 60 (median 43)
years. First neurological diagnoses were (hereditary)
ataxia in six (IDs 02, 05, 09–12), choreatic movement
disorder/Huntington’s disease in two (IDs 01 and 04),
an unspecified neurodegenerative syndrome in two (IDs
03, 13), and dementia in two patients (IDs 06 and 07),
as well as amyotrophic lateral sclerosis in one patient
(ID 08). Neurological signs were slowly progressive over
years. At last examination, seven patients (IDs 03 and
06–11) were ambulatory without walking aids, one
(ID 13) used walking sticks, four needed a wheeled
walker (IDs 01, 04, 05, and 12), and one was wheelchair
dependent (ID 02).

Clinical characteristics of each individual patient are
listed in Table 1, and a summary of main neurological
features and diagnostic findings is provided in
Figure 1. The most frequent clinical findings in the
course of the disease were a cerebellar syndrome in all
patients with saccadic eye movements (100%), gait
ataxia (92%, n = 13/13), limb ataxia (92%,
n = 12/13), and cerebellar dysarthria (100%),
resulting in a mean Scale for the Assessment and Rat-
ing of Ataxia score of 15.1 (standard deviation 4.6)
points. Cognitive impairment was present in 100%,
with a mean Montreal Cognitive Assessment score of
17.1 (standard deviation 4.3) points. Many patients
(69%, n = 9/13) showed frontal lobe dysfunction.
Involuntary movements ranging from full-blown cho-
rea to rather subtle motor impersistence were present
in more than half of the patients (69%, n = 9/13),
while dystonia, athetosis, or postural tremor were
observed only in individual cases. Furthermore, spas-
ticity, mostly of lower limbs, was observed in 46%
(n = 6/13) and hyperreflexia in 62% (n = 8/13) of
patients. Some of the patients had signs of parkinson-
ism with hypomimia, postural instability, bradykinesia,
and/or rigidity; however, proper evaluation was made
difficult because of concomitant marked spasticity or
ataxia. Sensory symptoms were stated by only a few
patients (loss of feeling in 15%, n = 2/13). Clinical
examination demonstrated sensory impairment in all
individuals, and in the majority of patients (83%,
n = 10/12), electrophysiological studies showed a
mostly mixed axonal-demyelinating sensorimotor neu-
ropathy. MRI of the brain demonstrated profound
atrophy in all, mostly with severe global cerebral,

FIG. 1. Overview of the main clinical and diagnostic findings of patients with NERDND in this study. MRI, magnetic resonance imaging. [Color figure can
be viewed at wileyonlinelibrary.com]
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cerebellar, and brainstem atrophy (Fig. 2). Hearing
impairment was stated by 38% (n = 5/13) of patients,
four of which used hearing aids. Audiometry showed
clinically significant hearing loss, defined as four-
frequency (0.5, 1, 2, and 4 kHz) pure-tone
average >25 dB sensorineural hearing loss,30 in 56%
(n = 5/9), and four of these patients reported abnor-
mal hearing problems in daily life. Furthermore, high-
frequency (4, 6, and 8 kHz) sensorineural hearing loss
was found in three patients without subjective hearing
impairment (IDs 01, 08, and 09). Urinary urgency or
incontinence was reported by 64% (n = 7/11). None
of the patients had seizures or relevant abnormalities
on electroencephalogram.

Routine laboratory tests of peripheral blood and cere-
brospinal fluid showed no specific abnormalities. Neu-
rofilament light chain levels in blood were increased in
the four individuals tested (60, 123, 47, and 51 pg/mL
in individual IDs 01, 06, 08, and 12, respectively; cutoff
value of the reference laboratory: 45 pg/mL, based on
Verde et al.31).
Extraneurological signs associated with XP were

examined whenever possible. In one case (14%,
n = 1/7, ID 05), primary ovarian insufficiency was
diagnosed based on gynecological and laboratory
examinations and preceded neurological manifestation
about one decade. Premature menopause (before age
40 years31) occurred in one woman (ID 06). She had no
children, but there were no attempts to get pregnant.
One woman (ID 01) had a history of an unfulfilled
desire for pregnancy even after in vitro fertilization.
There were seven live births in three of the women (see
Supporting Information Fig. S1). One patient (ID 06)
was diagnosed with hepatocellular carcinoma 20 years
after the onset of neurological symptoms. Ocular symp-
toms such as photophobia or known eye diseases such
as ocular surface cancer were not reported in any of the
patients. However, a dedicated ophthalmological exam-
ination was performed in only four patients, showing a
sicca syndrome (IDs 01 and 05), a keratopathy (ID 03),
and no abnormalities (ID 04). After having obtained
the genetic diagnosis, patients were specifically asked
about skin symptoms, and an in-depth dermatological
examination was recommended. Patients indicated that
none of them had seen a dermatologist in the past for
skin problems, in particular, none of the patients had a
history of skin cancer. A dermatological examination
was performed in 92% (n = 12/13). A history of sun-
burn on rather mild sun exposure, eg, in childhood,
was reported by 50% (n = 6/12) of patients; however,
Fitzpatrick skin type was classified as I/II in all of these
individuals. Mild lentiginous pigmentation was stated
in 75% (n = 9/12; examples are demonstrated in
Fig. 3). Signs of premature skin aging, such as atrophy,
dryness, wrinkling, or small dilatations of vessels, were
seen in 33% (n = 3/9) and only in sun-exposed regions.
Mild facial telangiectasias or rosacea was present in
55% (n = 6/11). None of the patients had skin cancer.
In one patient, an actinic keratosis was suspected, but a
skin biopsy for histopathological confirmation could
not yet be performed. Overall, the patients’ skin
changes were classified as corresponding to age and
Fitzpatrick skin type. However, MED was tested in
three patients and showed values that correspond to
increased light sensitivity. Fragile, brittle hair was not
observed in any of the patients, and polarized light
microscopic examination of hair shafts did not show
any structural abnormalities or the tiger tail banding
pattern typical of TTD (n = 6/13 analyzed; IDs 05, 07,
09, 10, 12, and 13).

FIG. 2. Representative brain magnetic resonance images showing
global cerebral (A, C, E) and infratentorial (B, D, F) atrophy. (A) Patient
10, T1 weighted, axial. (B) Patient 10, T2 weighted, midsagittal.
(C) Patient 07, fluid-attenuated inversion recovery (FLAIR), axial.
(D) Patient 07, T2 weighted, midsagittal. (E) Patient 01, FLAIR, axial.
(F) Patient 01, FLAIR, midsagittal.
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FIG. 3. Exemplary illustration of skin changes in three patients with NERDND. Patient 13 presents with mild telangiectasias on her cheeks and nose (A).
She had mild lentiginous pigmentation on the back, shoulders, and upper arms (B), as well as on the décolleté (C). Patient 03 shows mild facial freck-
ling (D), as well as subtle freckles on the upper body (E, F). Patient 08 demonstrates mild facial telangiectasias (G). There was lentiginous pigmentation
on the upper body, but also some areas with hypopigmentation (H, I). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Novel modular classification system for nucleotide excision repair disorders (NERD). Representative of the many phenotypes and NER genes,
four examples of typical NER-related clinical conditions and six major pleiotropic genes are illustrated. The respective disease name is a composite of
the umbrella term NERD, the main phenotype(s), and the disease-causing gene. This nomenclature allows to assign more than one phenotype to a
gene, eg, NERDTTD-ERCC2 (red line) or NERDCS-ERCC2 (brown line), and to unite coexisting phenotypes, eg, NERDXP/ND-ERCC4 (blue line). [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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Novel Modular Classification System for
NERD

We introduce a new modular classification system
(Fig. 4) to address the many different and often over-
lapping subtypes of NERD. The proposed systematic
terminology includes (1) the umbrella term “NERD,”
(2) the major phenotype(s), and (3) the disease-causing
gene. This nomenclature allows not only to assign more
than one phenotype to a gene (eg, NERDTTD-ERCC2
or NERDCS-ERCC2) but also to unite coexisting phe-
notypes (NERDXP/ND-ERCC4). The classification
system is illustrated in Figure 4 for four typical NER-
related conditions, as well as six major pleiotropic NER
genes, based on former observations1 and this study. It
can be extended to any other NER-associated pheno-
types and genes already reported or possibly being dis-
covered in the future.

Discussion

We present NERDND as adult-onset neu-
rodegeneration with overlapping movement and cogni-
tive features within the various disease manifestations
of NER deficiencies. This is the largest series of patients
with variants in NER genes and a primarily neurologi-
cal phenotype to date.
Within our genetic database the frequency of

NERDND was 1% for all patients with ataxia, 3.5%
for all patients with a cognitive impairment, and 8.6%
for individuals assigned to both ataxia and dementia.
However, these numbers refer to our “real-world”
genetic database and have to be interpreted with cau-
tion in estimating frequency of NERDND. First, the
groups are not representative of all (hereditary) ataxias
or dementias, because in many of these patients,
exome/genome sequencing was performed only after
more common genetic causes had been previously ruled
out, eg, by single-gene/gene panel analyses or repeat
expansion detection assays. Second, not all patients are
regularly assigned to all applicable HPO terms. One
reason is that not all clinical findings are already pre-
sent at the time when the genetic diagnosis is initiated
but evolve later in the course of the disease. Moreover,
less pronounced clinical features are not always com-
municated by the referring clinician, eg, cognitive
impairment, when more prominent findings such as
chorea or ataxia are leading. Nevertheless, NERDND is
likely to be more frequent than previously assumed
among hereditary causes of neurodegeneration in adult-
hood. NERDND should be considered in patients with
cognitive impairment and overlapping movement
abnormalities, such as cerebellar signs, or chorea, espe-
cially in case of additional diagnostic findings, including
global brain atrophy, sensorineural hearing loss,
peripheral neuropathy, UV sensitivity, or premature

menopause. Clinicians should keep in mind that some
symptoms, eg, hearing impairment or sensory symp-
toms, are not reported by patients because of cognitive
deficits.
The remarkably complex phenotype–genotype rela-

tionship of NERD, with, on the one hand, the same
gene being linked to different clinical entities and, on
the other hand, variants in distinct genes resulting in
the same phenotype, is most likely explained by the
multifunctional nature of the NER system. Besides the
main NER pathways of global genomic repair and
transcription-coupled repair of damage, NER factors
are also involved in other DNA repair mechanisms,
posttranslational modifications, and crosstalk with
other cellular processes.1,32 However, the exact reasons
for neurodegeneration are poorly understood. Growing
evidence supports the relevance of alterations in oxida-
tive damage repair leading to endogenous DNA lesions
in NERD. Certain types of oxidative damage, such as
cyclopurines, can be repaired only by NER and are
therefore thought to accumulate over time in terminally
differentiated postmitotic cells such as neurons. Fur-
thermore, a pathophysiology beyond the impaired
repair of DNA lesions, including mitochondrial dys-
function or non–DNA repair–related oxidative stress,
has been suggested to play a role in the pathogenesis of
ND in XP.33,34

Few single patients with variants in ERCC4 pre-
senting with an adult-onset neurological deterioration
syndrome have recently been documented. The clinical
features reported were very similar compared with the
neurological phenotype described in the study herein,
with ataxia, cognitive decline, chorea, and neuropathy
being the cardinal signs. However, although rather
inconspicuous in some patients, all of the reported indi-
viduals presented with skin manifestations, mostly
photosensitivity, skin freckling, and/or skin
neoplasms.6–8,35–37,39 In patients with XP with variants
in XPA, severe and childhood-onset neurological
abnormalities with developmental delay, microcephaly,
and cerebellar dysfunction beyond the dermatological
findings are well known.4,36 Interestingly, individual
families with neurological abnormalities and only dis-
crete skin manifestations have also been reported.10,11

Patients with variants in ERCC2 have been associated
with TTD, cerebro-oculo-facio-skeletal syndrome, as
well as XP with typical dermatological signs and some-
times also accompanying abnormalities of the central
nervous system.36 However, an adult-onset neurodegen-
erative syndrome as in our patients has, to the best of
our knowledge, not been reported for ERCC2 to date.
In this study, sensorineural hearing loss was identified

in 89% of the patients examined and not always cor-
responded to patient-reported hearing impairment, pos-
sibly also because of concomitant dementia. Given the
high frequency of hearing impairment among patients
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with defects in DNA repair, even being a predictor of
neurological degeneration in patients with XP and corre-
lating with neurological decline,40 clinicians should be
aware, initiate early audiometric testing, and recommend
hearing aids if needed. Premature menopause, a feature
of premature aging, has been reported in almost one
third of patients with XP, mostly with variants in XPC
and ERCC2, and primary ovarian insufficiency was fre-
quently diagnosed.32 In our study, primary ovarian insuf-
ficiency was documented in one patient and premature
menopause and an unfulfilled desire for pregnancy were
stated in one further woman, respectively. Interestingly,
these women carried variants in ERCC4.
Interestingly, six of our seven patients with variants

in ERCC4 share the same missense variant p.-
Arg799Trp, which is a frequent variant17 that has been
reported in patients with a neurological phenotype
either in a homozygous6,7,36,39 or in a compound het-
erozygous state.6–8,37,39 A similarly affected patient har-
bored the same variant in trans with the splice variant
c.580_584 + 1delCCAAGG,7 which was detected in
two of our patients as well. Furthermore, two of our
patients with variants in ERCC4 carry the novel mis-
sense variant p.Arg750Cys, one in heterozygous state
and the other homozygously. Similarly, all of our indi-
viduals with variants in ERCC2 harbored the novel
missense variant p.Glu576Lys, in two unrelated cases
in trans with p.Val716_Arg730del. Finally, both vari-
ants in XPA detected in our patient, p.Arg207Ter and
p.Arg258TyrfsTer5, have previously been reported in
patients with prominent neurological features.10 We
hereby demonstrate that such recurrent variants, likely
being attributed to a mutational hot spot, can occur
more frequently than anticipated in rare diseases and
should not be missed when interpreting NGS data.
Interestingly, specific genotype–phenotype correlations
have been demonstrated in XPA-associated XP with
patients carrying variants closer to the C-terminal cod-
ing region of XPA having milder neurological and cuta-
neous findings.41,42 Uncovering further genotype–
phenotype correlations could be an important part to
understanding the phenotypic variability within the dif-
ferent entities of NERD.
In contrast with the previously reported cases with

predominant neurological impairment who all showed
at least mild skin manifestations, the patients in our
study had a freckling in UV-exposed regions, but no
clear pathological skin involvement at the time of der-
matological assessment. These differences in the extent
of dermatological involvement even in patients sharing
the same genetic change might be explained by addi-
tional influencing factors, such as differences in tran-
scriptional regulations. Furthermore, UV damage is
relevantly influenced by sun exposure and the use of
sun protection. Therefore, the variable skin involvement
observed between studies might also be because of

differences in lifetime UV exposure, possibly shaped by
personal or cultural circumstances. Nevertheless, a cer-
tain UV sensitivity is probably present even in patients
without obvious anamnestic or clinical evidence of skin
involvement, which is supported by the reduced MED
in our three tested patients.
Because variant interpretation of NGS data is funda-

mentally reliant on accurate annotation of phenotypes in
databases such as Human Gene Mutation Database and
Online Mendelian Inheritance in Man, it is crucial to
know and define exact phenotypes. However, the pre-
dominantly neurological phenotype in patients with NER
defects presented in this article and in previous case
reports is currently referred to as XP (eg, XP with Hun-
tington disease-like features1). For severely neurologically
affected patients, the nomenclatural assignment of their
disease to a dermatological condition seems inappropriate
and in the era of genetic diagnostics not up to date. The
challenge of different phenotypes co-occurring in patients
sharing the same genetic change, but also various genes
being associated to distinct phenotypes as “extreme ends”
of a disease continuum, has already been identified, eg, in
other movement disorders such as ataxia and spasticity.42

Furthermore, diseases should be defined based on the
responsible gene or pathway to allow an unbiased
approach of phenotyping and also because gene-based
nosology best aligns with the discovery of genotype-
targeted treatments. Therefore, we introduce a systematic
nomenclature for NER-associated disorders (Fig. 4), simi-
lar to the classification of genetically determined move-
ment disorders recommended by the International
Parkinson and Movement Disorder Society Task Force.43

Our study expands the spectrum of NERD and dem-
onstrates that NERDND is a probably underdiagnosed
cause in adult neurological patients with a combined
cognitive and movement disorder and a suspected
hereditary etiology. Therefore, genetic defects in
ERCC2, ERCC3, ERCC4, ERCC5, and XPA should
not be missed in these patients, and additional NER
genes will possibly be associated with NERDND in the
future. The provided detailed clinical description from a
neurological point of view can help clinicians to recog-
nize this disorder and allow specialized patient care,
including targeted symptomatic therapy of, eg, chorea
and spasticity. Although skin manifestations can be
inconspicuous, patients might have a subtle UV sensi-
tivity and should ensure appropriate prophylaxis to
prevent skin neoplastic complications. Further studies
are needed to understand the molecular background
behind ND and evaluate treatment strategies.
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