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Abstract

Background: Many different cluster methods are frequently used in gene expression
data analysis to find groups of co–expressed genes. However, cluster algorithms with the
ability to visualize the resulting clusters are usually preferred. The visualization of gene
clusters gives practitioners an understanding of the cluster structure of their data and
makes it easier to interpret the cluster results.

Results: In this paper recent extensions of R package gcExplorer are presented. gc-
Explorer is an interactive visualization toolbox for the investigation of the overall cluster
structure as well as single clusters. The different visualization options including arbitrary
node and panel functions are described in detail. Finally the toolbox can be used to
investigate the quality of a given clustering graphically as well as theoretically by testing
the association between a partition and a functional group under study.

Conclusions: It is shown that gcExplorer is a very helpful tool for a general exploration
of microarray experiments. The identification of potentially interesting gene candidates or
functional groups is substantially accelerated and eased. Inferential analysis on a cluster
solution is used to judge its ability to provide insight into the underlying mechanistic
biology of the experiment.

Background

Cluster analysis is frequently used in gene expression data analysis to find groups of co–
expressed genes which can finally suggest functional pathways and interactions between genes.
Clusters of co–expressed genes can help to discover potentially co–regulated genes or asso-
ciation to conditions under investigation. Usually cluster analysis provides a good initial
investigation of microarray data before actually focusing on functional subgroups of inter-
est. Genetic interactions are complex and the definition of gene clusters is often not clear.
Additionally microarray data are very noisy and co–expressed genes can end up in different
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clusters. Therefore the set of genes may be divided into artificial subsets where relationships
between clusters play an important role.

In the literature numerous methods for clustering gene expression data have been pro-
posed. Detailed reviews of currently used methods and challenges with gene expression data
are given in Sheng et al. (2005), Androulakis et al. (2007) and Kerr et al. (2008). The display
of cluster solutions particularly for a large number of clusters is very important in exploratory
data analysis. Visualization methods are necessary in order to make cluster analysis useful for
practitioners. They give an understanding of the relationships between segments of a partition
and make it easier to interpret the cluster results. In hierarchical clustering dendrograms and
heatmaps are routinely used (e.g., Eisen et al., 1998). The most popular group of partition-
ing cluster algorithms are centroid–based cluster algorithms (e.g., K–means or Partitioning
Around Medoids). Once a set of centroids has been found centroid–based cluster solutions are
usually visualized by projection of the data into two dimensions (e.g., by principal component
analysis). Silhouette plots (Rousseeuw, 1987) can be used to check whether clusters of points
are well separated whereas topology representing networks (Martinetz and Schulten, 1994)
reveal similarity between clusters. Neighborhood graphs (Leisch, 2006) combine these two
approaches to visualize cluster structure.

In this paper recent extensions of R package gcExplorer (Scharl and Leisch, 2009) are
presented. In the package neighborhood graphs are used for visual assessment of the cluster
structure. Several node functions can be used to add further information to the graph, e.g.,
cluster size or cluster tightness. Additionally it is possible to use distinct graphical symbols
for the representation of single clusters, e.g. line plots or boxplots. Beside the node function
a panel function is implemented allowing to explore the corresponding clusters interactively
in more detail by looking at arbitrary cluster plots or HTML tables of the group of genes
under investigation. Further, external information about the genes like gene function or
association to gene sets like Gene Ontology (The Gene Ontology Consortium, 2000) can
easily be integrated into the exploration. Finally the toolbox can be used to investigate the
quality of a given clustering graphically as well as theoretically. In the functional relevance
test the association between a partition and a functional group under study is tested. Further,
the validity of a cluster solution under different experimental conditions is tested.

Methods

The visualization methods discussed in this paper are designed for cluster solutions of parti-
tioning cluster algorithms where clusters can be represented by centroids (e.g., K–means and
PAM or QT–Clust (Heyer et al., 1999)).

Neighborhood graphs

Neighborhood graphs (Leisch, 2006) use the mean relative distances between points and cen-
ters as edge weights in order to measure how separated pairs of clusters are. Hence they
display the distance between clusters. In the graph each node corresponds to a cluster cen-
troid and two nodes are connected by an edge if there exists at least one point that has these
two as closest and second–closest centroid.

For a given data set XN = {x1, . . . , xN} the distance between points x and y is given by
d(x, y), e.g., the Euclidean or absolute distance. CK = {c1, . . . , cN} is a set of centroids and
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the centroid closest to x is denoted by

c(x) = argmin
c∈CK

d(x, c).

The second closest centroid to x is denoted by

c2(x) = argmin
c∈CK\{c(x)}

d(x, c).

The set of all points where ck is the closest centroid is given by

Ak = {n|c(xn) = ck}.

Now the set of all points where ci is the closest centroid and cj is second–closest is given by

Aij = {n|c(xn) = ci, c2(xn) = cj}.

For each observation x the shadow value s(x) is defined as

s(x) =
2d(x, c(x))

d(x, c(x)) + d(x, c2(x))
.

s(x) is small if x is close to its cluster centroid and close to 1 if it is almost equidistant
between the two cluster centroids. The average s–value of all points where cluster i is closest
and cluster j is second closest can be used as a proximity measure between clusters and as
edge weight in the graph.

sij =

{
|Ai|−1

∑
n∈Aij

s(xn), Aij 6= ∅
0, Aij = ∅

|Ai| is used in the denominator instead of |Aij | to make sure that a small set Aij consisting
only of badly clustered points with large shadow values does not induce large cluster similarity.

Functional relevance test

Now the obtained similarity between clusters and the neighborhood graph can be used to
evaluate a cluster result at hand. The cluster structure can be used to decide whether the
clustering is too coarse and needs further subdivision to respect the data or if it is too fine and
some clusters should be merged. On the one hand this can be accomplished by defining some
threshold t for the shadow value s above which two clusters are merged. In the case of too
large clusters more accurate clusters can for instance be obtained by running the algorithm
again with larger K.

On the other hand external knowledge about the data can be used to validate a given
clustering. In the case of microarray data a priori information about gene function or the
association to functional groups can be used as functionally related genes are more likely to
be co–expressed. Clusters with similar expression pattern are connected in the neighborhood
graph. If functional group F is independent of the experimental setup genes classified to
group F will be assigned to arbitrary clusters, i.e., they are assumed to be spread all over the
neighborhood graph. Further, genes functionally independent of the experimental setup do
not have a common expression pattern. If functional group F plays a role in the experiment
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the corresponding genes are more likely to show a typical pattern of either up– or down–
regulation and there should be clusters with accumulation of such genes.

Assigning all genes in the clustered data set to some functional group F yields proportions
π1, . . . , πK where K is the number of clusters or nodes and NF is the total number of genes in
the data set assigned to group F . If there is no association between the functional group and
the cluster solution then all proportions are the same, i.e., the differences between proportions
dij = 0 where

dij = |πi − πj |, i, j = 1, . . . ,K.

If there is an association then some πk will be large and others small. The test for functional
relevance of a given clustering is conducted in a stepwise way.

Step 1: Perform a global test of the equality of proportions, i.e., test the null hypothesis
that all proportions πF

k are the same

H0 : dij = 0 ∀i, j = 1, . . . ,K.

The test procedure stops if there is no difference in proportions. But if there are significant
differences in proportions each single difference has to be investigated in more detail. If the
proportion of functionally related genes is the same in two clusters these two clusters are
similar with respect to functional group F and can therefore be merged. This procedure
yields separated subgraphs with common gene function within the neighborhood graph.

Without knowledge about the cluster structure and the similarities between clusters given
in the neighborhood graph G each pair of clusters has to be tested for a significant difference
in proportions, i.e., K(K−1)/2 tests have to be conducted. Using the neighborhood structure
only a fraction of all possible pairs, i.e., clusters connected by an edge have to be tested. A
further reduction of tests can be achieved by taking into account only nodes where the number
of functionally assigned genes is above a threshold m.

Step 2: Assess the significance of the observed differences with respect to a reference
distribution by permuting the function labels. The null hypothesis is again no difference in
proportions.

� Select all clusters where the number of functionally assigned genes is above the prede-
fined threshold m and conduct all further calculations on the resulting subgraph G′.

� Calculate the difference between proportions dij , i, j = 1, . . . ,K for each edge in the
subgraph.

� Permute the function labels, i.e., randomly assignN ′F genes to functional group F , where
N ′F is the number of assigned genes in the subgraph G′ with N ′F ≤ NF . Compute the
resulting differences in proportions dl

ij , i, j = 1, . . . ,K and keep the respective maximum

M l = maxi,jd
l
ij

as used in Zeileis et al. (2007) to form a reference distribution {M l}Ll=1 where L is the
number of permutations considered.

� Compute marginal tests whether a particular dij is extreme relative to the joint dis-
tribution M l, i.e., compute how often the maximum of the permuted differences in
proportions is larger than the observed one.
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In other words, if the observed difference in proportions is very unlikely with respect to
the reference distribution of the maxima M l the edge will be removed. In this procedure a
modified neighborhood graph is formed for the cluster solution and functional group under
investigation. In this modified graph two clusters are only connected if they have

1. a large similarity value s and

2. no significant difference in proportions of functionally related genes.

Compare cluster results

Validation of microarray cluster results is a challenging task (e.g., Androulakis et al., 2007)
as there is in general no true cluster membership. The quality of a cluster solution should
be judged based on its ability to provide insight into the underlying mechanistic biology. As
described in the previous section the validity of a cluster solution can be judged based on
its ability to find groups of functionally related genes. Another approach is to find genes
with common mechanism of regulation by searching for groups of genes that show a common
response in different experiments.

For that purpose another test procedure was developed. We test how valid a given cluster
solution is on a different data set taking into account the average within cluster distance
W = (w1, . . . , wK) where

wk =
1
|Ak|

∑
n∈Ak

d(xn, ck).

Let XN be the data matrix of N genes for a given experiment and let M be the vector of
length N of the corresponding cluster memberships. Further let YN be the data matrix of the
same N genes in a different experiment. In order to test if the cluster memberships M found
for data set XN are also valid in data set YN the following procedure is used.

1. Compute the new cluster centroids C̃K for data set YN using the vector of cluster
memberships M .

2. For each cluster k compute the average within cluster distance of data points yn to their
assigned centroid c̃k, i.e.,

w̃k =
1
|Ak|

∑
n∈Ak

d(yn, c̃k).

3. Permute the cluster memberships, i.e., randomly assign the genes to clusters but do
not modify cluster sizes. Compute the resulting average within cluster distance w̃l

k for
each cluster and keep the W̃k = (w̃1

k, . . . , w̃
L
k ) where L is the number of permutations

considered.

4. Compute marginal tests for each cluster of whether a particular w̃k is extreme relative
to the joint distribution of W̃k.

For each k where k = 1, . . . ,K a single test is performed with the null hypothesis

H0 : w̃k = w̃l
k ∀l = 1, . . . , L

and the alternative hypothesis is
H1 : w̃k < w̃l

k.
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The null hypothesis is rejected if the propability of observing a smaller within cluster distance
by randomly assigning genes to clusters is less than e.g. 5%. In this case there is a relationship
between the investigated cluster solution on the original data set and on the new data set and
genes with common expression pattern across experiments are found.

Data

E. coli cultivation data were collected at the Department of Biotechnology of the University
of Natural Resources and Applied Life Sciences in Vienna. Two recombinant E. coli processes
with different induction strategies were conducted in order to evaluate the influence of the
expression level of the inclusion body forming protein NproGFPmut3.1 on the host metabolism
(Scharl et al., 2009). The standard strategy with a single pulse of inducer yielding in a fully
induced system was compared to a process with continuous supply of limiting amounts of
inducer resulting in a partially induced system (Striedner et al., 2003). In order to analyze the
cellular response to different induction strategies on the transcription level two independent
DNA microarray experiments were performed. A dye–swap design was used and the cells in
the non-induced state of each experiment were compared to samples past induction. The two
experiments are available at ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/). The
experiment with fully induced E. coli expression system has accession number E-MARS-16
and the experiment with partially induced system has accession number E-MARS-17. For
standard low level analysis the data were preprocessed using print–tip loess normalization.
Differential expression estimates were calculated using Bioconductor (Gentleman et al., 2005,
http://www.bioconductor.org) package limma (Smyth, 2005). The two data sets were filtered
by selecting genes with p-value of the corresponding F-statistic smaller 0.05. Additionally,
only genes expressed at a certain level (average log intensity A larger 8) and genes with clearly
defined pattern (log–ratio M larger ±1.5 at least at one time point) were used. After filtering
the data acquired from the experiment with a fully induced E. coli expression system consists
of 733 genes and the data acquired from the process with limited induction consists of 429
genes.

For the functional relevance test another E. coli experiment was used where various mu-
tants were investigated under oxygen deprivation (Covert et al., 2004). The mutants were
designed to monitor the response from E. coli during an oxygen shift in order to target the a
priori most relevant part of the transcriptional network by using six strains with knockouts of
key transcriptional regulators in the oxygen response. These experiments provide expression
profiles for 4205 genes derived from the original data set downloaded from the Gene Expres-
sion Omnibus (Barrett et al., 2007) with accession GDS680 by applying the altering steps
described in Castelo and Roverato (2009).

Functional grouping

Cluster analysis is used to find groups of co–regulated genes in the microarray data without
prior knowledge about the gene functions. However, by clustering expression profiles of co–
expressed genes groups of genes with similar function are often found.

The annotation of genes to categories or classes is a very important aspect in the analysis
of gene expression data. The genes can for example be mapped to functional groups like Gene
Ontology (GO The Gene Ontology Consortium, 2000) classifications or to protein complexes.
Gene functions are very complex, therefore genes are usually mapped to multiple classes. In
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any case the mapping is known a priori and does not depend on the data of the currently
investigated experiment.

External information about the annotation of genes to functional groups can easily be
included in the neighborhood graph, e.g., the accumulation of gene ontology (GO) classifica-
tions in certain gene clusters can be highlighted in the node representation. In microarray
data analysis gene ontology classifications about Biological Process, Molecular Function and
Cellular Component are typically investigated. In this study experimental data from E. coli
is used where further sources of external knowledge are the GenProtEC (Serres et al., 2004,
http://genprotec.mbl.edu/) classification system for cellular and physiological roles of E. coli
gene products and the RegulonDB (Salgado et al., 2006, http://regulondb.ccg.unam.mx/) for
detailed information about operons and regulons.

Software and implementation

All cluster algorithms and visualization methods used are implemented in the statistical com-
puting environment R (R Development Core Team, 2009). R package flexclust (Leisch, 2006)
is a flexible toolbox to investigate the influence of distance measures and cluster algorithms.
It contains extensible implementations of the K–centroids and QT–Clust algorithm and offers
the possibility to try out a variety of distance or similarity measures as cluster algorithms
are treated separately from distance measures. New distance measures and centroid compu-
tations can easily be incorporated into cluster procedures. The default plotting method for
cluster solutions in flexclust is the neighborhood graph.

A linear projection of the data into 2 dimensions using for example linear discriminant
analysis (LDA) has the advantage that the lengths of edges in the graph are directly inter-
pretable. However, LDA does not scale well in the number of clusters, and relationships
between the centroids of more than 15 clusters can hardly be displayed in the plane. As
shown in (Scharl and Leisch, 2008) linear methods cannot be used for high–dimensional gene
expression data and a large number of clusters. R package gcExplorer (Scharl and Leisch,
2009) uses non–linear layout algorithms implemented in the open source graph visualiza-
tion software Graphviz (http://www.graphviz.org/) for the display of neighborhood graphs.
Bioconductor packages graph and Rgraphviz (Carey et al., 2005) provide tools for creating,
manipulating, and visualizing graphs in R as well as an interface to Graphviz. Rgraphviz
returns the layout information for a graph object, x- and y–coordinates of the graph’s nodes
as well as the parameterization of the trajectories of the edges. Several layout algorithms can
be chosen:

dot: hierarchical layout algorithm for directed graphs

neato and fdp: layout algorithms for large undirected graphs

twopi: radial layout

circo: circular layout

The default layout algorithm in gcExplorer is “dot”. Even though distances between nodes
and length of edges are no longer interpretable when using non–linear layout algorithms the
increase in readability and clear arrangement is obvious.

The latest release of gcExplorer is always available at the Comprehensive R Archive Net-
work CRAN:
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Figure 1: Neighborhood graph of a cluster solution of the PS19 data where nodes correspond
to cluster centroids and the thickness of an edge between two clusters is proportional to their
similarity.

http://cran.R-project.org/package=gcExplorer. Details on how to use the gcExplorer can be
found in the online appendix (see Additional file 1 for the vignette and Additional file 2 for
the corresponding R code).

Exploratory analysis

Now the PS19 data is used to demonstrate the new functionality of gcExplorer. The data is
clustered using stochastic QT–Clust (Scharl and Leisch, 2006) yielding a cluster object which
consists of 14 clusters.

The neighborhood graph of the cluster solution shown in Figure 1 allows a detailed view on
the cluster structure even for a large number of clusters. The nodes in the graph correspond
to cluster centroids and the shadow values between clusters defined above are used as edge
weights. The thickness of an edge between two clusters is proportional to their similarity.
Related clusters are not forced to lie next to each other in the graph as edges can have
various lengths. For example cluster 13 located at the right end of the graph is related to
cluster 1 located in the top of the graph. Several groups of clusters can be found. The clusters
in the bottom left corner of the graph (e.g., clusters 3, 6, 12 and 14) are not connected to
the clusters in the right part of the graph (e.g., clusters 5, 9, 10 and 13) indicating that the
corresponding genes show very different expression profiles over time.
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Node functions

Color coding of nodes

In the graph shown above one single kind of node symbol is used for all nodes. This way
no information about the different clusters is revealed. There are several possibilities how to
include additional information in the representation of nodes. The most simple method is to
use color coding, e.g., to color nodes by size or tightness of the corresponding clusters. In this
case the color of a node depends on the distribution of a certain property over all nodes where
the maximum will get the darkest and the minimum will get the brightest color. Usually the
smaller or tighter clusters are more interesting and can more easily be explored.

The percentage of genes in a cluster assigned to a functional group under investigation can
also be used for color coding. The visualization of functional groups in the graph is not only
a validation of the cluster method. It is also a very helpful tool for practitioners to quickly
find subgroups of genes related to specific functions under study.

Some examples of color coding are shown in Figure 2. In panel (a) cluster size is high-
lighted, i.e., dark node symbols indicate large clusters and light node symbols indicate small
clusters. In panel (b) cluster tightness is used where dark nodes correspond to tight clusters
which usually correspond to groups of genes with clearly defined gene expression profiles. In
panels (c) and (d) two functional groups are investigated. In panel (c) clusters with accumu-
lation of σ32–regulated genes are highlighted which are related to heat shock. In panel (d)
the GO term “flagellar motility” is shown which is part of the biological process classification.

Flagellar motility is an example of a functional group where the corresponding genes have
similar expression profiles and are therefore grouped into similar clusters (i.e., clusters 11, 3
and 14) which are connected by edges in the neighborhood graph. In the case of σ32–regulated
genes (panel (c)) there is no clear relationship between the cluster solution and the functional
group as the corresponding genes are located in various clusters.

Node symbols

The second option for adding further information to the display of the neighborhood graph is
to use different graphical symbols for the representation of nodes. For that purpose gcExplorer
makes use of R package symbols ((Voglhuber, 2008), http://r-forge.r-project.org/projects/
symbols). symbols is based on Grid (Murrell, August 2005), a very flexible graphics system
for R. Grid features viewports, i.e., rectangular areas allowing the creation of plotting regions
all over the R graphic device. Due to the layout algorithms used in the gcExplorer nodes
remain quite large allowing large viewports for the visualization of nodes. Several grid–based
functions are implemented in package symbols which can directly be used as node functions
in the gcExplorer.

The most natural node symbols in the case of time–course gene expression data are line
plots showing the gene expression profiles over time for either the cluster centroids or the
whole group of genes in a certain cluster. Figure 3 gives a very good overview of the cluster
solution and the single gene clusters where similarities in gene expression profile can directly
be investigated. It can be seen that clusters containing down–regulated genes are located in
the bottom left part of the graph whereas up–regulated genes are located in the right part of
the graph. Further, there are no edges between clusters of up- and down–regulated genes.

In order to visualize group memberships pie charts are frequently used. Figure 4 panel
(a) shows the portion of genes with F statistic (F) > 20 and F ≤ 20 respectively. In panel
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Figure 2: Different options for color coding. Top left panel: cluster size, top right panel:
cluster tightness, bottom left panel: Sigma 32 regulated genes, bottom right panel: genes
involved in flagellar motility.
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Figure 3: Neighborhood graph using line plots as node symbols where the genes expression
profiles are plotted in grey and the cluster centroids are plotted in red.
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F <= 20

F >  20

Figure 4: Neighborhood graph using pie charts (left panel) and boxplots (right panel) as node
symbols.

(b) of Figure 4 boxplots of the log F statistic are shown.

Edge options

Directed vs. undirected graph

The neighborhood graph is a directed graph as the similarity of cluster 1 to cluster 4 is
different from the similarity of cluster 4 to cluster 1 and so on. Besides plotting the original
directed graph there are several options how to plot edges taking into account for instance
the mean, minimum or maximum of the similarities between two clusters. In practice the
mean similarity is frequently used especially when testing the functional relationship between
clusters (an example is given below).

Graph modifications

The non–linear layout algorithms implemented in Graphviz are optimized for the given set of
nodes and edges. Removing an edge or a node will result in a different graph which makes
comparisons between graphs rather complicated. R package gcExplorer contains the function
gcModify which allows to modify a given graph without changing the original layout. There
are several possibilities how to modify a given graph. However, it is only possible to remove
nodes and edges from a larger graph. Adding new nodes and edges is not allowed. The node
symbols are independent of the graph structure so different node functions can be used in
each modified graph.

Sometimes only a subgraph of the original graph is of interest, e.g., clusters of all up–
regulated genes. A subgraph can be created specifying either the set of nodes which should
remain in the graph or by specifying the nodes which should be removed from the graph. In
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Figure 5: A subgraph of the neighborhood graph before zooming without specified node
function (left panel) and after zooming with a node function (right panel).

the next step manual or automatic zooming can be used to enlarge certain parts of the plot.
An example of a subgraph is given in Figure 5.

Filtering by cluster similarity can be used to simplify the original neighborhood graph.
Edges between nodes are only drawn if the similarity between clusters is above a certain
threshold, e.g., at least 10%. This prevents the graph from being too complex. Examples of
the neighborhood graph where different cutoff values for drawing edges are shown are given
in Figure 6.

Comparisons of different cutoff values as shown in Figure 6 are only possible when starting
with the largest set of edges.

Inferential analysis

Compare cluster solutions

Finally the goodness of the cluster solution of the PS19 data investigated so far is judged based
on its validity when applied to the PS17 experiment where the same set of genes was exposed
to different experimental conditions. Table 1 gives the results of the comp_test consisting
of cluster size, observed average within cluster distance, the 5% quantile of the permuted
average distances and the probability of observing a lower within cluster distance by randomly
assigning the genes to clusters. In this case 10 out of 14 clusters have a significantly smaller
within cluster distance when using the cluster solution of the PS19 experiment compared to
random assignment. In other words these 10 groups of genes form clusters under different
experimental conditions and are more likely to contain co–regulated genes.
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Figure 6: Use of different cutoff values for drawing edges in the neighborhood graph. Top
left panel: all edges, top right panel: similarity > 10%, bottom left panel: similarity > 20%,
bottom right panel: similarity > 30%.
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size obs.av.dist 5%quantile.perm p.val.lower
1 302 0.58 0.95 0.00
2 299 0.55 0.94 0.00
3 41 0.65 0.83 0.00
4 59 0.62 0.85 0.00
5 52 0.73 0.84 0.00
6 31 0.61 0.79 0.00
7 30 0.66 0.78 0.00
8 26 0.82 0.77 0.10
9 14 0.52 0.68 0.00

10 10 0.38 0.62 0.00
11 10 0.70 0.63 0.12
12 5 0.49 0.45 0.07
13 12 0.96 0.66 0.53
14 10 0.62 0.63 0.04

Table 1: Judge the validity of the PS19 cluster solution for the PS17 data using the comp test.

Functional relevance test

Another possibility for external validation of a cluster solution is to test the functional rele-
vance of single edges, i.e., to test the relationship between a functional grouping and a cluster
solution. In this example the E. coli oxygen data set (Covert et al., 2004) is used and the GO
term GO:0009061 (anaerobic respiration) is investigated. The accumulation of genes involved
in anaerobic respiration is displayed in Figure 7 left panel. In the case of edge tests undirected
graphs are used instead of the original directed graphs as each pair of nodes is only tested
once.

The output of function edgeTest (see Table 2) gives detailed information about the tested
edges, i.e., the corresponding cluster sizes, the difference in proportions and the p–value.
Additionally, function edgeTest gives the 95% quantile of the maxima of the permuted average
distances which is 0.22 in this case. The p-values are now used to form a new similarity matrix
using function newclsim. If the p–value of an edge is smaller than 0.05 the edge weight is
set to 0. This new similarity matrix based on the p–values of the functional relevance test is
finally used to draw a modified neighborhood graph where significant edges are removed. In
this case 11 edges have significant p–values and differences in proportions larger than 0.23.
In Figure 7 right panel the modified neighborhood graph is displayed. It can be seen that
clusters 32, 43, 36, 34, 21 and 22 contain most of the genes involved in anaerobic respiration
and form a disconnected subgraph after testing the functional relevance of the edges.

Power simulations for the functional relevance test

The power of the functional relevance test is simulated on artificial cluster solutions. For
defined

� datasize

� number of clusters
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Clsize1 Clsize2 Diff.in.Prop. P-value
1˜2 671 526 0.02 1.00
1˜3 671 424 0.01 1.00
4˜6 378 209 0.02 1.00
2˜7 526 121 0.01 1.00
4˜7 378 121 0.02 1.00
6˜8 209 108 0.01 1.00

4˜12 378 16 0.11 0.59
1˜14 671 33 0.14 0.51
2˜14 526 33 0.16 0.50
1˜16 671 13 0.11 0.59
3˜16 424 13 0.12 0.57
1˜21 671 9 0.40 0.00
3˜21 424 9 0.41 0.00

14˜21 33 9 0.26 0.05
14˜22 33 12 0.48 0.00
21˜22 9 12 0.22 0.13
4˜25 378 10 0.19 0.29
6˜25 209 10 0.17 0.34

12˜25 16 10 0.08 0.93
2˜32 526 11 0.34 0.01
7˜32 121 11 0.33 0.03

12˜32 16 11 0.24 0.05
22˜32 12 11 0.30 0.03
3˜34 424 6 0.30 0.03
5˜34 263 6 0.33 0.03

21˜34 9 6 0.11 0.77
2˜35 526 17 0.09 0.81

21˜36 9 5 0.04 1.00
34˜36 6 5 0.07 0.94
22˜43 12 9 0.44 0.00
32˜43 11 9 0.14 0.51
36˜43 5 9 0.18 0.33

Table 2: Functional relevance test of the E. coli oxygen data for functional group GO:0009061
(anaerobic respiration).
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Figure 7: Left Panel: Neighborhood graph of the oxygen data set where the mean edge
method is used. Right Panel: Neighborhood graph where significant edges are removed using
the functional relevance test.

� difference in proportions between cluster 1 and 2

� proportion of grouped genes in cluster 1

� proportion of grouped genes in the total data set

a cluster solution is simulated where the difference in proportions between clusters 1 and 2
is fixed and the remaining proportions are random. For a given setup the functional relevance
test is run 1000 times where only the power for the edge between clusters 1 and 2 is observed
(see Table 3). The number of clusters is 10 in all data sets. It can be seen that the test
performs best if the proportion of grouped genes in cluster 1 is large and the proportion of
grouped genes in the total data set is small.

Conclusions

Clustering gene expression profiles is a helpful tool for finding biologically meaningful groups of
genes without prior information from databases. As the definition of gene clusters is not very
clear and genetic interactions are extremely complex the relationship between clusters is very
important and co–expressed genes can end up in different clusters. In order to make cluster
analysis useful for practitioners the interactive visualization tool gcExplorer was developed.
It allows not only to visualize the cluster structure in form of neighborhood graphs, beyond
the gene clusters are plotted or shown in HTML tables with links to databases. In this
paper recent extensions of the package were presented including different node representations
using node coloring and the choice of node symbols. Additional properties of the clusters
like cluster size or cluster tightness can be highlighted as well as external information like
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Data size prop.c1 prop.all d 0.05 d 0.1 d 0.15 d 0.2 d 0.25 d 0.3 d 0.35 d 0.4
100 0.50 0.50 0 0.000 0.000 0.000 0.004 0.043 0.062 0.108
100 0.50 0.33 0 0.000 0.000 0.000 0.010 0.044 0.095 0.179
100 0.50 0.25 0 0.000 0.000 0.000 0.011 0.074 0.129 0.229
100 0.50 0.20 0 0.000 0.000 0.001 0.018 0.078 0.186 0.300
100 0.33 0.50 0 0.000 0.001 0.005 0.033 0.051 0.033 0.029
100 0.33 0.33 0 0.000 0.000 0.006 0.035 0.068 0.071 0.044
100 0.33 0.25 0 0.000 0.000 0.013 0.049 0.065 0.074 0.062
100 0.33 0.20 0 0.000 0.001 0.020 0.064 0.087 0.088 0.080
500 0.50 0.50 0 0.000 0.010 0.084 0.276 0.653 0.999 1.000
500 0.50 0.33 0 0.000 0.015 0.137 0.442 0.918 1.000 1.000
500 0.50 0.25 0 0.000 0.010 0.180 0.606 0.996 1.000 1.000
500 0.50 0.20 0 0.000 0.025 0.248 0.700 1.000 1.000 1.000
500 0.33 0.50 0 0.001 0.026 0.159 0.384 0.747 0.764 0.450
500 0.33 0.33 0 0.001 0.069 0.242 0.551 0.978 0.889 0.669
500 0.33 0.25 0 0.002 0.074 0.301 0.733 1.000 0.909 0.905
500 0.33 0.20 0 0.000 0.098 0.414 0.903 1.000 0.935 0.976

Table 3: Power simulations for the functional relevance test using differences in proportion
between 0.05 and 0.4.

functional grouping. Graphs can be modified by removing nodes and edges or by zooming
into a subgraph of interest. Further, the functional relevance of a clustering can be tested
using external information about gene function from databases. Finally, the validity of a
cluster solution can be judged based on its performance on another data set where the same
set of genes is investigated under different experimental conditions.

Availability and requirements

Project name: gcExplorer ; Project home page: http://cran.R-project.org/package=gcExplorer.
Operating system(s): A wide variety of UNIX platforms, Windows and MacOS. Programming
language: R ; License: GPL-2.

The gcExplorer package and its associated packages are part of the R/Bioconductor
project, an environment for statistical computing and bioinformatics. The R software en-
vironment is freely available at http://www.r-project.org. The dependencies flexclust and
Rgraphviz can be downloaded from CRAN (http://cran.r-project.org) and the Bioconductor
project website (http://bioconductor.org).
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Additional Files

Additional file 1

File format: PDF
Title: gcExplorer Vignette
Description: A detailed description of how to perform the analysis with the gcExplorer shown
in this paper.

Additional file 2

File format: TXT
Title: R Code
Description: The corresponding R commands to perform the analysis with the gcExplorer
shown in this paper.
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