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Boosting

Benjamin Hofner∗, Torsten Hothorn, Thomas Kneib, Matthias Schmid

Abstract

Variable selection and model choice are of major concern in many statistical applications,
especially in high-dimensional regression models. Boosting is a convenient statistical method
that combines model fitting with intrinsic model selection. We investigate the impact of
base-learner specification on the performance of boosting as a model selection procedure. We
show that variable selection may be biased if the covariates are of different nature. Important
examples are models combining continuous and categorical covariates, especially if the number
of categories is large. In this case, least squares base-learners offer increased flexibility for
the categorical covariate and lead to a preference even if the categorical covariate is non-
informative. Similar difficulties arise when comparing linear and nonlinear base-learners for
a continuous covariate. The additional flexibility in the nonlinear base-learner again yields
a preference of the more complex modeling alternative. We investigate these problems from
a theoretical perspective and suggest a framework for unbiased model selection based on a
general class of penalized least squares base-learners. Making all base-learners comparable in
terms of their degrees of freedom strongly reduces the selection bias observed in naive boosting
specifications. The importance of unbiased model selection is demonstrated in simulations
and an application to forest health models.

Keywords: effective degrees of freedom, penalized least squares base-learner, penalized ordinal
predictors, P-splines, ridge penalization, variable selection

1 Introduction

The methodological and computational advances in statistical regression modeling that we have

seen during the last 15 years make it possible nowadays to model regression relationships in

complex or high-dimensional structures that are hard to handle using the classical methods, such

as GLMs with stepwise selection.

Especially ideas from computer science and machine learning have become popular in this respect.

Perhaps the three most influential approaches are random forests (Breiman, 2001), support vector
∗benjamin.hofner@imbe.med.uni-erlangen.de;
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machines (Vapnik, 1995), and boosting (Freund and Schapire, 1996). While random forest is a

rather simple yet very powerful non-parametric approach to regression modeling, support vector

machines and boosting might rather be seen as “meta-algorithms” that provide a rich framework

to derive specialized solutions from.

The main focus of these methods, at least from a machine learning point of view, is prediction

modeling, i.e., the construction of a superb oracle for unseen data. However, statisticians are

more interested in inference about the unknown regression relationship. Random forests, support

vector machines or boosting, however, do not necessarily provide measures statisticians are used

to interpret. As a remedy, variable importance measures for random forests or tree-based gradi-

ent boosting are commonly used to pick “important” variables from the set of potentially many

covariates.

Yet, there is ongoing discussion about the nature of such variable importance measures. Their

theoretical foundations are still under debate (e.g., van der Laan, 2006) and some unintended

behavior has been observed. The most problematic one is the so-called variable selection bias.

Basically, a variable might receive a high variable importance not only because of their correlation

with the response but also because of it’s measurement scale. The problem has received a lot

of attention in the regression tree community since the 1980s (Breiman et al., 1984; Loh and

Vanichsetakul, 1988; Loh, 2002; Kim and Loh, 2003; Hothorn et al., 2006b) and, later on, was also

observed and described for random forests (Strobl et al., 2007).

Clearly, the problem comes from the fact that no well-defined statistical model is available that

describes these methods in a probabilistic way. One way out of this dilemma was shown by the

seminal papers of Friedman et al. (2000) and Bühlmann and Yu (2003) who interpreted functional

gradient boosting as an optimization algorithm that can be modified in a way such that the

resulting fit can be reformulated into a generalized additive model. Consequently, statisticians can

interpret these models based on regression coefficients (linear model) or by looking at the partial

contributions of each model component. In the meantime, boosting procedures for advanced model
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fitting have been introduced to a variety of fields, for example survival analysis (e.g. Hothorn et al.,

2006a; Schmid and Hothorn, 2008b) or spatial statistics (Kneib et al., 2009).

The finding we are going to present in this paper is the fact that generalized additive models

fitted using a component-wise functional gradient boosting algorithm are also, under circumstances

described later, subject to variable selection bias. One instance of the problem is that a categorical

covariate with a large number of levels gets selected more often compared to a covariate that has the

same “importance” but is measured at less levels. We investigate the sources of variable selection

bias in component-wise boosting theoretically. The results give insights into how to modify the

algorithm to reduce the effect of variable selection bias. We finally study the effect empirically

in artificial data generating processes and present a case-study on forest health where a complex

spatial regression model not suffering from variable selection bias is fitted.

2 Component-Wise Boosting for Regression Models

Consider observations (yi,x
>
i ), i = 1, . . . , n, where yi is the response variable and x>i consists of

possible predictors of different nature, such as categorical and continuous covariates. To model the

dependence of the response on the predictor variables, we consider a structured regression model

where E(y|x) = h(η(x)) with (known) response function h and structured additive predictor η(x)

of the form

η(x) = β0 +
J∑
j=1

fj(x). (1)

The functions fj(·) are generic representations for modeling alternatives such as linear effects

(fj(x) = xβ, where x is one of the predictors), categorical effects (fj(x) = z>β, where z results

from dummy-coding of a categorical covariate) and smooth effects (fj(x) = fj,smooth(x), where x

is one of the predictors). Other modeling alternatives such as spatial and random effects can also

be expressed in this framework, see Fahrmeir et al. (2004) for details. Generalized additive models

(GAMs) as introduced by Hastie and Tibshirani (1986, 1990) appear as an important special case
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of (1). Having the model formulation at hand, two challenges arise: First, a method for model

fitting in this flexible framework is needed. Second, the question which covariates should enter

the model and how these covariates should be modeled needs to be answered. All issues can be

addressed in one framework applying component-wise boosting.

Component-wise functional gradient descent boosting (see e.g., Bühlmann and Hothorn, 2007,

for a detailed introduction) aims at minimizing the expected loss E(ρ(y, η)) with respect to the

structured predictor η, where ρ(·, ·) is a suitable loss function for the statistical model under

consideration, such as the L2-loss for “Gaussian” regression problems or the negative log-likelihood

in more general cases. In practice, minimization of the expected loss is replaced by minimizing the

empirical risk n−1
∑n

i=1 ρ(yi, ηi) by component-wise boosting. After initialization of the function

estimates f̂ [0]
j (·) ≡ 0 and the additive predictor η̂[0](·) ≡ argminc

1
n

∑n
i=1 ρ(yi, c) the negative

gradient of the loss function ρ(yi, η) is computed and evaluated at the predicted values of the

previous iteration η̂[m−1](xi):

u
[m]
i = − ∂ρ(yi, η)

∂η

∣∣∣∣
η=η̂[m−1](xi)

, i = 1, . . . , n. (2)

We then relate the negative gradient vector u[m] = (u
[m]
1 , . . . , u

[m]
n )′ to subsets of the covariates

using real-valued base-learners gj, usually by least squares or penalized least squares estimation

(Bühlmann and Yu, 2003). The base-learners correspond to the modeling alternatives as expressed

by the generic functions fj in the structured predictor (1), although each effect in (1) may be rep-

resented by more than one base-learner for example if model choice between competing modeling

alternatives shall be implemented.

After evaluating all base-learner, we choose the best fitting gj∗ , i.e., the base-learner that minimizes

the residual sum of squares (RSS)

j∗ = argmin
1≤j≤J

n∑
i=1

(u
[m]
i − gj(xi))2 (3)

and compute the update of the additive predictor η̂[m](·) = η̂[m−1](·) + ν · ĝ[m]
j∗ (·) and the function

estimate f̂ [m]
j∗ (·) = f̂

[m−1]
j∗ (·) + ν · ĝj∗(·) while leaving all other function estimates fj, j 6= j∗ un-
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changed. In each update step, only a fraction 0 < ν ≤ 1 of the fitted values are added, which can

be seen as a step-length factor in the gradient descent approach. As we select only one modeling

alternative in each boosting iteration, variable selection and model choice is achieved by stopping

the boosting procedure after an appropriate number of iterations m̂stop,opt.

Obviously, the base-learner selection in (3) is the crucial part for variable and model selection.

For variable selection, one specifies one base-learner for each covariate, while model choice is

incorporated by additionally specifying base-learners for different, competing modeling alternatives

(Kneib et al., 2009).

All base-learners gj(x) considered in this paper can be expressed as penalized linear models

gj(x) = X(X>X + λK)−1X>u, (4)

where X is a suitable design matrix for x, λ is the smoothing parameter and K is a suitable

penalty matrix. The smoothing parameter λ governs the amount of penalization and unpenalized

least squares base-learners appear as a special case with λ = 0.

In the case of a continuous covariate x, we consider penalized least squares base-learners based on

P-splines as introduced by Eilers and Marx (1996) for nonparametric regression and converted to

the boosting framework by Schmid and Hothorn (2008a, see there for details). While an unpenal-

ized least squares base-learner might be the first choice for (dummy coded) categorical covariates,

we consider the more general approach of univariate ridge regression (Hoerl and Kennard, 1970)

with treatment contrasts to serve as base-learners. In the case of ordinal categorical covariates,

one could again use a ridge penalty for the coefficients of the dummy coded design matrix if penal-

ized estimation is desired. However, it is often the case that ordering of the covariate categories

converts to a similar ordering of the corresponding effects and this additional information can

be incorporated to enforce stable estimation. Therefore, we consider a ridge-type penalty for the

differences of adjacent parameters that favors smooth coefficient sequences similar as for penalized

splines. A slight difference arises from the fact that the effect of the reference category is restricted

to zero, and we will use the restriction β1 = 0 in the following. Hence, the penalty is given by
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∑ncat

i=2 (βi − βi−1)
2, where β = (β1, . . . , βncat)

> is the vector of dummy coded effects. For more

details we refer to Gertheiss and Tutz (2009).

3 (Un-) Biased Selection of Base-Learners

Using the component-wise boosting approach naturally leads to variable selection and model choice

if we choose an appropriate stopping iteration m̂stop,opt. However, the selection of base-learners

in each iteration can be seriously biased if the competing base-learners have different degrees of

flexibility. This bias is intuitively plausible if one tries to distinguish whether a covariate x has

a linear or a smooth effect on y. In this case, the usual strategy would be to specify a linear

base-learner g1(x) = βx and a smooth base-learner g2(x) = fsmooth(x) and to distinguish between

the two based on the selection in the boosting algorithm. However, the smooth base-learner offers

much more flexibility and typically incorporates a linear effect for x as a special case. Hence, we

can expect that boosting (almost) always prefers the smooth base-learner over the linear base-

learner, regardless of the nature of the true effect. A similar selection bias can be expected when

performing variable selection between competing categorical covariates with different numbers of

categories. The covariate with more categories offers greater flexibility and thus is preferred in

general when using unpenalized least squares base-learners.

In the following, we will theoretically investigate the presence of selection bias in the selection of

base-learners for the special case of L2-boosting based on the L2-loss in the null model, i.e., when

the response y is independent of the covariates.

Theorem 3.1 Let x1 and x2 be categorical covariates with M1 and M2 categories and design

matrices X1 and X2. Let u be the n × 1 negative gradient vector arising in the first step of the

boosting algorithm for a response variable y of i.i.d. normally distributed random variables with

variance σ2 that is independent of x1 and x2, i.e. u is simply the centered response variable. Let

β̂1 and β̂2 denote the effect estimates resulting from unpenalized least squares base-learners and
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define the difference of the residual sums of squares as ∆ = (u − X1β̂1)
>(u − X1β̂1) − (u −

X2β̂2)
>(u−X2β̂2). Then we have

E(∆) = σ2(M2 −M1), (5)

i.e., E(∆) = 0 if and only if M1 = M2.

The proof can be found in Appendix A. Theorem 3.1 can be interpreted such that the expected

difference of the RSS is greater than zero if the number of additional categories of x2, i.e. M2−M1,

is greater than zero, which reflects that a selection bias in favor of x2 is present. To overcome this

problem, the base-learners should be made comparable with respect to their flexibility even if the

number of categories is different. A specific possibility to achieve this is presented in the following

theorem.

Theorem 3.2 Assume that the assumptions from Theorem 3.1 hold. Furthermore, we replace the

categorical base-learners with ridge penalized base-learners, where the penalty matrices K1 and K2

are identity matrices (of appropriate dimensions) and λ1 and λ2 are the corresponding smoothing

parameters. Let S1 = X1(X
>
1 X1 + λ1K1)

−1X>1 be the smoother matrix of x1 and S2 be defined

accordingly. Then

E(∆) = 0⇔ tr
(
2S1 − S>1 S1

)
= tr

(
2S2 − S>2 S2

)
, (6)

where ∆ is the difference in RSS resulting from the penalized least squares fits.

The proof is again given in Appendix A. From Theorem 3.2 one can deduct that the degrees of

freedom

df := tr
(
2S − S>S) (7)

should be comparable for the two competing base-learners in order to overcome the selection

bias. Note that the degrees of freedom resulting from Theorem 3.2 are different from the standard

definition in the smoothing literature given by d̃f := tr (S). However, df is an alternative definition
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for the degrees of freedom in penalized models that is the preferred choice if one compares two

models with respect to the RSS as stated by Buja et al. (1989) and confirmed by Theorem 3.2.

In Web Supplement B, we show that a similar selection bias occurs when trying to distinguish

between linear and smooth modeling alternatives based on penalized least squares base-learners

and that the selection bias can be avoided by making the degrees of freedom df comparable. This

can be seen as an improved version of the model choice scheme proposed in Kneib et al. (2009)

who used d̃f instead of df. Following these lines, one should specify equal df for all base-learners

if unbiased model choice and variable selection is the goal. The natural choice for this common

degrees of freedom is one single free parameter as it appears for a simple least squares base-learner

of one single continuous covariate. This can easily be achieved for categorical covariates by setting

the smoothing parameter to an appropriate value (see below). Note that we do not include an

intercept in the base-learners but specify a separate base-learner for the intercept.

However, for P-splines we cannot make df arbitrary small even with λ approaching infinity since

a polynomial of order d − 1 remains unpenalized by a d-th order difference penalty (Eilers and

Marx, 1996). As we usually apply second order differences, a linear effect (with intercept) remains

unpenalized and thus df ≥ 2 for all λ. To be able to specify a base-learner with df = 1 a

reparameterization as described in Kneib et al. (2009) is needed, where the smooth base-learner

is decomposed into parametric parts for the unpenalized polynomial and a smooth deviation from

this polynomial

gj(x) = β0,j + β1,jx+ . . .+ βd−1,jx
d−1 + gcentered(x), (8)

where only gcentered(x) is modeled using a P-spline base-learner. Now, we can specify separate

base-learners for each parametric effect and a base-learner with one degree of freedom for the

smooth deviation from the polynomial. For more details on the technical realization and further

implications of the decomposition we refer to Kneib et al. (2009).

As mentioned above, we specify the smoothness of all base-learners via the degrees of freedom.

We use an initial value df init for each penalized base-learner and solve tr
(
2S − S>S) = df init for
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λ. The following lemma provides a convenient, numerically efficient way to compute the degrees

of freedom and therefore to determine the corresponding λ.

Lemma 3.3 Let S = X(X>X+λK)−1X> be the smoother matrix of x with symmetric penalty

matrix K. Let X>X = R>R be the Cholesky decomposition of the cross product of the design

matrix. Then, the degrees of freedom df(λ) = tr
(
2S − S>S) are equal to

df(λ) = 2
M∑
j=1

1

1 + λdj
−

M∑
j=1

1

(1 + λdj)2
(9)

where dj ≥ 0 are the singular values of R−>KR−1.

The proof of Lemma 3.3 can be derived using the Demmler-Reinsch orthogonalization (cf., App.

B.1.1 Ruppert et al., 2003, with proof). As Lemma 3.3 only requires the penalty matrix K to

be symmetric, we can use (9) to compute the degrees of freedom for all base-learners proposed in

this paper.

4 Variable Selection Bias under Test

4.1 Biased Selection of Categorical Covariates

To empirically evaluate the bias introduced by categorical covariates with potentially many cate-

gories, we examine two situations: the null case, where none of the covariates has an influence on

the response and a set of power cases, where a subset of the covariates influences the response.

In the null case, the response is simply i.i.d. normally distributed, yi
i.i.d.∼ N(0, 1) but we fit a

model with structure

y = Xβ +Z1γ1 + ε (10)

where the n×p matrixX = (x1, . . . ,xp) is formed of continuous covariates, Z1 is a dummy coded

design matrix for the categorical covariate z1 and β and γ1 are the corresponding parameter

vectors. The p = 25 continuous covariates were sampled as realizations X1, . . . , Xp
i.i.d.∼ U [0, 1] and
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the categorical covariate z1, with varying numbers of categories ncat ∈ {2, . . . , 10}, was sampled

from a discrete uniform distribution on {1, . . . , ncat}.
In the first power case, the response depends on five continuous covariates, the remaining 20

continuous covariates and the categorical covariate have no influence on y. The effects used to

generate the response y can be found in Table 1 (upper part). Again, we fit a model with structure

(10).

In the second power case setting, we add a second, informative categorical covariate z2 with the

same numbers of categories as z1 and sampled i.i.d. from a discrete uniform distribution as used

for z1. The response now depends on five continuous covariates and on the categorical covariate

z2. The model is fitted according to the structure

y = Xβ +Z1γ1 +Z2γ2 + ε (11)

where Z2 and γ2 are design matrix and coefficients vector for z2. The effects of the categories for

z2 do not exceed two and hence are comparable to the other effects in (10). Table 1 summarizes

all simulation settings.

For both the null case and the power cases, the sample size was set to n = 150 and the error terms

are i.i.d. samples from ε ∼ N (0, σ2) with σ2 chosen such that the fraction of explained variance

is either R2 ≈ 0.3 or R2 ≈ 0.5 (results for the second case are omitted in the following because

they are qualitatively the same as for R2 ≈ 0.3). In the power cases, we simulated B = 100 data

sets while B = 1000 simulation replicates were considered in the null case.

All models were fitted using the gamboost function from the R package mboost and one separate

base-learner was specified for each model component. All continuous covariates were standardized

since we use base-learners without intercept (and specify an additional base-learner for the inter-

cept). Without centering of the covariates, linear effects of base-learners without intercept would

be forced through the origin (with no data lying there). Hence, convergence would be very slow

or the algorithm would not converge to the “correct” solution even in very simple cases. For the
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base-learner of categorical covariates, we considered either unpenalized or penalized least squares

base-learners. In the remainder of the paper we use the terms “unpenalized model” and “penalized

model” to refer to models where the base-learner for the categorical effect is unpenalized and ridge

penalized, respectively. The stopping iteration m̂stop,opt was determined based on an independent

test sample of size 750.

To measure the variable selection bias we use the mean squared prediction error (MSE) of the

coefficients

MSE =
1

p̃

ep∑
i=1

(β̂i − βi)2, (12)

where p̃ is the number of coefficients in the model including those for the categorical effect(s).

Another important quantity is the selection frequency of the base-learners averaged over all sim-

ulation runs, which is a strong indicator for variable importance.

In the null model case, i.e., in the case where no covariate has an influence on the response, a

sensible selection procedure should not prefer one base-learner over another but should randomly

select any of the non-informative covariates. The selection rates in models with and without penal-

ized base-learners can be found in Figure 1. Obviously, the selection frequency of the categorical

covariate increases with increasing ncat if no ridge penalty is applied. When applying the ridge

penalty, the selection frequency of the categorical covariate becomes comparable to the selection

frequency of the continuous covariates. Hence, we can conclude that using penalized categorical

base-learners improves boosting algorithm in the null case w.r.t. the selection rates.

In the first power case, we again compare the performance of the boosting models with and without

ridge penalization for categorical covariates. To correct for the bias, a ridge penalty is applied to

the categorical covariate. Hence, the parameter estimates are shrunken such that the resulting dfs

are all equal to one (independently of ncat). Figure 2(a) indicates that the median selection rates

are decreased when comparing the penalized and the unpenalized case and Figure 2(b) shows that

the MSE is also decreased when using the penalized base-learner for z1.
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In the the second power case, an additional informative categorical covariate z2 is included in

the model. Figure 3(a) shows the difference of the MSE for the models with unpenalized and

penalized base-learners for categorical covariates. As the boxes cover zero or sometimes are even

located below, the “unpenalized model” seems to be better. However, the figures represent a

mixture of two different, competing effects: The effect of the non-influential categorical covariate

is shrunken towards zero with the penalized base-learner (decrease of MSE). At the same time,

the effect of the influential covariate is also shrunken towards zero introducing an additional bias

(increase of MSE). However, this is true for any penalization approach. Looking at Figure 3(b)

one can see the difference of MSE where the influential, categorical covariate z2 is excluded (for

the calculation of the MSE but not for the estimation of the model). Here one clearly sees the

superiority of the penalized approach. One can conclude that penalization has the advantage

to reduce the selection bias for non-informative covariates and additionally shrinks the effects

of influential covariates. If one deals with high-dimensional settings and variable selection and

shrinkage are desired beforehand, the ridge penalty is exactly what one would like to apply.

To benchmark the model choice and variable selection scheme with ridge penalized base-learners

we compared the resulting MSEs to the mean squared errors of a linear model with forward

stepwise selection based on the AIC. In our settings, the boosting models are better on average

than the stepwise models. In the first power case where the categorical covariate has no effect, the

boosting model was better in more than 75% of the cases w.r.t. the mean squared prediction error.

For the second power case with influential categorical covariate, boosting was superior to stepwise

regression in more than 75% of the cases if we drop the informative categorical covariate for the

computation of the MSE. If we compute the MSE with the informative categorical covariate,

the shrinkage effect decreases the superiority of boosting a bit but still, boosting is superior to

stepwise regression in the majority of the cases.

If categorical covariates are ordinal, one can use ordinal penalized base-learners instead of ridge

penalized base-learners (see Sec. 2). To asses the properties of this penalty we used the same
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simulation setting as for unordered covariates (see Table 1).

To summarize the results (not shown here for sake of brevity), we can conclude that ordinal

penalized base-learners show basically the same behavior as ridge penalized base-learners: In the

null case, the penalized ordinal base-learners correct the selection bias such that the selection

frequency of all base-learners is approximately equal. In the first power case, the MSE is improved

in comparison to the unpenalized model. Figure 4(a) shows that both, ordinal penalized base-

learner and ridge penalized base-learner are overall comparable in the first power case where the

categorical covariate has no influence. In the second power case with an additional, informative

covariate z2, the penalized model shows again an improvement compared to the unpenalized model,

but the ordinal penalty offers a further improvement over the ridge penalty, which does not exploit

the ordinal structure of z2. This can be seen in Figure 4(b), where we see another increase in the

differences of the MSE. This is possibly due to a weaker penalization of the higher categories,

which have a bigger effect (cf. Table 1): The ridge penalty shrinks all coefficients equally against

zero, whereas the ordinal penalty just shrinks the increase with respect to the preceding category

against zero. Hence, we can conclude that it is preferable to exploit the ordinal structure of the

covariates if possible and only use ridge penalized base-learners if no ordinal structure can be

assumed.

4.2 Biased Selection of Smooth Effects

To evaluate the preferred selection of smooth effects compared to linear effects we examined again

the null case and a set of power cases. The data were generated similar to the categorical case

(Sec. 4.1), where the categorical covariate was replaced by a continuous covariate. This leads to

the model

y = Xβ + fz(z1) + ε (13)

with the n × 1 dimensional response vector y, the n × p matrix X = (x1, . . . ,xp), and the

corresponding parameter vector β of length p (see Table 1). The function fz(·) can be of different
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natures, e.g., it can be a linear function, a smooth function or it can be a function that is equal

to zero for all realizations z1 (cf. Table 1). The p = 25 continuous covariates were all sampled

i.i.d. from U [0, 1], as well as the continuous covariate of interest z1. The error term was sampled

again from ε ∼ N (0, σ2) with σ2 such that the fraction of explained variance is either R2 ≈ 0.3 or

R2 ≈ 0.5. Results in the latter case are not reported here but are essentially the same as in the

former case. To empirically evaluate the selection bias introduced by smooth terms compared to

linear terms we simulated B = 100 data sets with n = 150 observations from model (13).

To measure the model selection bias that is introduced by competing linear and smooth base-

learners we use the following L2-norm

∆L2
partial,i =

∫ max(xi)

min(xi)

[f̂(x̃)− f(x̃)]2dx̃. (14)

Thus, we measure the deviation of the estimated partial function from the true function. For

numerical evaluation, we predicted the model on a fine, equidistant grid and applied the trapezoidal

rule to evaluate the integral. As a summary measure we use the mean L2 deviation ∆L2 =

p̃−1
∑p̃

i=1 ∆L2
partial,i, where p̃ is the number of covariates. Thus, ∆L2 can be seen as an analogon to

the MSE (12) extended to smooth effects.

In the following paragraph, we exemplify the results for the second power case where fz(z1) = 1.5 ·
z1, i.e., the covariate of interest has a linear effect. We specify a linear and a smooth base-learner

for z1, once without applying the decomposition (8) and in the second scheme with decomposition

(8). Figure 5(a) shows that the model with decomposition is almost always better (or comparable)

to the model without decomposition with respect to the deviations of the partial fits, i.e. the fitted

functions seem to be better in many cases. At the same time, we can observe a significant increase

of the selection frequency of the linear base-learner for z1 if the decomposition is applied. We can

still observe a reasonable amount of selections for the smooth base-learner but one should note

that the linear base-learner is selected more often than the smooth base-learner. Without the

decomposition, the linear base-learner is never selected. Hence, the true nature of the underlying

effect is missed in this case.
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For the other simulation settings given in Table 1 (lower part; results not presented here) we

observed that the P-spline decomposition (8), where all base-learners are specified with one degree

of freedom, leads to an improved selection of modeling alternatives as well as improved models in

terms of the mean L2 deviation. In all simulations, we specified a linear and a smooth base-learner

for z1, once without applying the decomposition and once with the P-spline decomposition. In

the null case, the model without decomposition showed a serious selection bias in favor of the

smooth effect which vanishes if the decomposition is used. In the power case with non-influential

z1, the selection bias is again corrected by applying the decomposition and the mean L2 deviation

∆L2 is reduced, i.e. the model is improved. In the power case with smooth effect for z1 both

models are almost equally good (on average) regarding the mean L2 deviation. Despite the fact

that the model with P-spline decomposition reduces the selection of smooth effects as it makes

them comparable to linear effects, the model without decomposition (and thus greater flexibility to

model the smooth effect) is not better. Thus, the model with decomposition is clearly preferred.

This is true for the given setting as well as for other models we investigated. Hence, we can

conclude that using the model decomposition for P-splines leads to overall improved models and

reduces the selection bias in favor of smooth effects.

5 Application: Forest Health Prediction

In our application, we consider models describing forest health status. The aim is to identify

predictors of the health status of beeches, which is measured in terms of the degree of defoliation.

The data originates from yearly visual forest health inventories carried out from 1983 to 2004 in

a northern Bavarian forest district. The data consists of 83 plots of beeches within a 15 km ×
10 km area with a total of n = 1793 observations. The response is a dichotomized version of the

defoliation index indicating defoliation above 25%. Obviously, the data set combines a longitudinal

and a spatial structure. An overview of the covariates is given in Table 2 (Web Supplement C).
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Previous analyses (Kneib and Fahrmeir, 2006; Kneib et al., 2009; Kneib and Fahrmeir, 2010)

resulted in models that contained categorical covariates, as well as linear and smooth effects of

continuous covariates. Additionally, a spatial effect and a random effect for the plots could be

identified. When considering a structured additive regression model of comparable complexity in

a naive boosting implementation, biased model selection of smooth model components as well as

categorical covariates with several categories is likely to occur. In the following, we will apply

the methodology developed in this paper to achieve unbiased variable selection and model choice

for the forest health data. Since the outcome is binary, we minimize the negative binomial log-

likelihood, i.e., we fit a structured logit model to the data.

We use linear, P-spline, ridge penalized and ordinal penalized base-learners to model the defoliation

indicator. The spatial effect can be flexibly modeled using a tensor product of P-splines. Finally, a

ridge penalized base-learner is assigned to the plot-specific (random) effects with a fixed smoothing

parameter (see Kneib et al., 2009, for details). All modeling alternatives considered for possible

inclusion in the model can be specified as base-learners with 1 df and thus, the selection bias, as

discussed in this paper, can be avoided. For more details on the candidate model we refer to Web

Supplement C.

The optimal stopping iteration was estimated via stratified bootstrap, i.e., we randomly selected

plots (with replacement) and not single observations, as the plots can be seen as the observational

units. The resulting model included five covariates, the spatial information and the random

intercept for the plots. Fertilization (represented as a binary indicator for the application of

fertilization) was included in the model with a negative effect on defoliation (βfert = −0.76), and

age and calender time (both included as linear base-learners) had positive effects (βage = 0.016

and βyear = 0.068). This means that the severity of defoliation increases each year if the other

covariates (including the age of the trees in the plot) are kept fix. The effect estimates of base

saturation, which was modeled using a penalized ordinal base-learner, and canopy density, which

was included as a combination of a linear and a smooth base-learner, can be found in the upper part
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of Figure 6. The spatial effect was included in the model but is clearly dominated by the spatially

unstructured, plot-specific effect (Figure 6). The remaining six covariates were not included in the

final model. In summary, our boosting framework allows to fit a complex model comprising many

different kinds of effects while obtaining results that are interpretable and biologically meaningful.

Finally, to benchmark our approach, we compared the bias corrected modeling approach with the

uncorrected approach where each smooth base-learner and the random effect base-learner were

added with 4 df and the categorical base-learners were added unpenalized. We used stratified

10-fold cross validation where the corrected as well as the uncorrected model were fitted on the

learning sample. The optimal stopping iteration within each learning sample was estimated by

stratified bootstrap separately for each model. Each of the 10 test samples was used to determine

the out-of-bag risk, i.e., the negative log likelihood. We observed that the corrected model was

superior to the uncorrected model in 80% of the cases with respect to the prediction error measured

by the negative log likelihood. Thus, correcting for biased selection of base-learners resulted also

in improved prediction accuracy.

6 Concluding Remarks

Component-wise boosting techniques offer the possibility to fit a wide range of models with intrinsic

variable selection and model choice. To avoid selection bias of the base-learners, equal degrees

of freedom need to be assigned to all base-learners. This can be achieved by using penalized

least squares base-learners. We considered ridge penalized base-learners for categorical covariates,

penalized base-learners with a ridge penalty applied to the differences of adjacent coefficients for

ordinal covariates and penalized spline base-learners for smooth model terms. For the latter,

an additional reparameterisation step has to be applied to differentiate between an unpenalized

polynomial and the penalized deviation (Kneib et al., 2009).

For all base-learners, degrees of freedom can be specified using df = tr
(
2S − S>S). This definition
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is tailored for the comparison of residual sums of squares (RSS) and also appeared naturally from

our theoretical considerations about the selection bias. Furthermore, centering of covariates is

highly important if base-learners without intercept (for each base-learner) are applied. It is a

first, very important step to achieve unbiased model choice and variable selection using boosting.

Specifying equal dfs for all modeling components to achieve unbiased model choice can be easily

incorporated in all component-wise functional gradient descent boosting approaches.

In contrast, most of the literature dedicated to likelihood-based boosting (based on Fisher scoring)

currently advocates to use one single smoothing parameter λ for the penalty (e.g., Tutz and

Binder, 2006), or even to decrease the penalty for some covariates to prefer them in the selection

step without a thorough theoretic reasoning, yielding a faster convergence towards the maximum

(partial) likelihood estimates (Binder and Schumacher, 2008). Obviously, one could also define

the smoothing parameters in this framework such that the resulting degrees of freedom are equal

and thus obtain unbiased variable selection and model choice procedures based on likelihood-

based boosting. However, one problem arises in this context: The degrees of freedom for a fixed

smoothing parameter change over the subsequent boosting iterations (Hofner et al., 2008), for

example, due to changes in the working weights for GLMs.

Alternatively, one could think of altering the goodness-of-fit criterion that is used to determine the

best fitting base-learner in each step instead of making the competing base-learners comparable

by specifying equal dfs to achieve unbiased base-learner selection. Examples include penalized

alternatives to the RSS such as AIC and BIC. In the context of likelihood-based boosting, Binder

and Schumacher (2008) propose to use the penalized partial likelihood or the AIC as selection

criterion but do not give empirical results for the selection frequencies of the base-learners. Another

idea could be to use F-tests, which also account for the different degrees of freedom. However, our

experience from simulation studies shows that such approaches are not working when comparing

base-learners with very different degrees of freedom. Criteria such as AIC and BIC are composed

of two parts: One that measures the fit via the likelihood and one term for the penalty. In the
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linear regression model, which applies here, we can write AIC = n/ log(RSS /n) + 2 df. In the

course of the boosting procedure, the information still left in the data decreases sequentially and

consequently the RSS are forced to decrease. Thus, the criterion will be dominated by the penalty

term and the selection of base-learners in later iterations is based solely on the penalty while

neglecting the fit to the data. Hence, base-learners with fewer df are preferred, more flexible

terms are even completely ignored in later iterations. The same reasoning applies for BIC as

well as F-tests. The problem that arises here is that the penalty is not chosen adaptively to the

maximum variance that could be explained. Thus, unbiased model selection seems not possible if

different dfs are specified. As we directly specify the dfs of the base-learners, no high-dimensional

optimization via cross validation is needed to choose appropriate smoothing parameters. Choosing

the appropriate complexity is reduced to one dimensional cross validation to choose an appropriate

stopping iteration mstop. However, due to the iterative nature of boosting, the final degrees of

freedom for one covariate can vary greatly even if equal degrees of freedom are specified for the

base-learners.

Implementation

The R (R Development Core Team, 2009) add-on package mboost (Hothorn et al., 2009) im-

plements component-wise boosting for various loss functions, i.e., for a broad range of regression

problems such as Gaussian, binomial or even survival regression models. Structured additive mod-

els as discussed in this paper can be fitted using the function gamboost. The proposed base-learners

are all implemented and can, for example, be applied using the formula interface of gamboost.

Further base-learners for random effects and spatial effects, among others, are also available.
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A Proofs

Proof for Theorem 3.1 The difference of the RSS is given by

∆ = RSSX1 − RSSX2 = (u−X1β̂1)
>(u−X1β̂1)− (u−X2β̂2)

>(u−X2β̂2)

= u>(I −X1(X
>
1 X1)

−1X>1 )2u− u>(I −X2(X
>
2 X2)

−1X>2 )2u

= u>(I −X1(X
>
1 X1)

−1X>1 )u− u>(I −X2(X
>
2 X2)

−1X>2 )u

= u>Qu

with Q = [I −X1(X
>
1 X1)

−1X>1 ]− [I −X2(X
>
2 X2)

−1X>2 ] and

tr(Q) = [n− (M1 − 1)]− [n− (M2 − 1)] = M2 −M1 . (15)

Using the theorem for the expected value of quadratic forms (Ruppert et al., 2003, App. A.4.5)

it holds:

E(∆) = E(u>Qu) = tr[Qcov(u)] + E(u)>QE(u) . (16)

As we assumed E(u) = 0 and cov(u) = σ2I, we obtain

E(∆) = σ2 tr(Q) = σ2(M2 −M1) . (17)

�

Proof for Theorem 3.2 The difference of the RSS in the ridge penalized model is given by

∆ = (u−X1β̂pen,1)
>(u−X1β̂pen,1)− (u−X2β̂pen,2)

>(u−X2β̂pen,2)

= (u− S1u)>(u− S1u)− (u− S2u)>(u− S2u)

= u>(I −X1(X
>
1 X1 + λ1K1)

−1X>1 )2u− u>(I −X2(X
>
2 X2 + λ2K2)

−1X>2 )2u

= u>Qpenu

with

Qpen = (I −X1(X
>
1 X1 + λ1K1)

−1X>1 )2 − (I −X2(X
>
2 X2 + λ2K2)

−1X>2 )2

= −2X1(X
>
1 X1 + λ1K1)

−1X>1 + (X1(X
>
1 X1 + λ1K1)

−1X>1 )2

+2X2(X
>
2 X2 + λ2K2)

−1X>2 − (X2(X
>
2 X2 + λ2K2)

−1X>2 )2 (18)

=
[−2S1 + S>1 S1

]− [−2S2 + S>2 S2

]
.
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With E(u) = 0 and cov(u) = σ2I, σ2 > 0 it follows from (17) that

E(∆) = 0 ⇔
tr(Qpen) = 0 ⇔

tr
{[−2S1 + S>1 S1

]− [−2S2 + S>2 S2

]}
= 0 ⇔

tr
[
2S1 − S>1 S1

]
= tr

[
2S2 − S>2 S2

]
.

�

B Web Supplement - Theorem with Proof for Smooth Base-

Learners

Theorem B.1 Let x be a continuous covariate with design matrix X = (1,x). A smooth effect

for x is modeled using P-splines with the design matrix B = (B1(x), . . . , Bk(x)), which consists

of B-spline basis functions evaluated at the values of x. Let K = D>D be the penalty matrix,

where D is a difference matrix of order 2. The corresponding smoothing parameter is denoted by

λ. Let u be the n × 1 negative gradient vector arising in the first step of the boosting algorithm

for a response variable y of i.i.d. normally distributed random variables with variance σ2 that

is independent of x, i.e. u is simply the centered response variable. Let β̂ and β̂pen denote the

effect estimates resulting from unpenalized and penalized least squares base-learners and define the

difference of the residual sum of squares as ∆ = (u−Xβ̂)>(u−Xβ̂)−(u−Bβ̂pen)>(u−Bβ̂pen).

Then it holds that

E(∆) > 0 (if λ <∞). (19)

Proof for Theorem B.1 The difference of the RSS is given by

∆ = RSSlin − RSSpen = u>(I −X(X>X)−1X>)2u− u>(I −B(B>B + λK)−1B>)2u

= u>(I −X(X>X)−1X>)u− u>(I −B(B>B + λK)−1B>)2u

= u>Qu
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with

Q = [I −X(X>X)−1X>]− [I −B(B>B + λK)−1B>]2

= X(X>X)−1X> + 2B(B>B + λK)−1B> − (B(B>B + λK)−1B>)2. (20)

It holds that tr(B(B>B + λK)−1B>) = tr((I + λK̃)−1) =
∑k

j=1(1 + λdj)
−1, where K̃ =

(B>B)−1/2K(B>B)−1/2 and dj are the eigenvalues of K̃ (cf. Eilers and Marx, 1996). For second

order difference penalty matrices D two eigenvalues are equal to zero, all others eigenvalues dj are

positive. Thus

tr(Q) = −2 + 2
k∑
j=1

(1 + λdj)
−1 −

k∑
j=1

(1 + λdj)
−2

≥ −2 + 2
k∑
j=1

(1 + λdj)
−1 −

k∑
j=1

(1 + λdj)
−1

= −2 +
k∑
j=1

(1 + λdj)
−1 ≥ 0,

where tr(Q) = 0 if and only if λ → ∞. As we assumed E(u) = 0 and cov(u) = σ2I, by using

(16) we obtain for a finite smoothing parameter λ

E(∆) = σ2 tr(Q) > 0.

�

From (20) we can see that tr(2B(B>B+λK)−1B>− (B(B>B+λK)−1B>)2) = tr(2S−S>S)

needs to be controlled to make the terms comparable. Thus, the appropriate degrees of freedom

have the same form as for categorical effects.

C Web Supplement - Model for Forest Health Data

In the application we modeled the health status of beeches in a northern Bavarian forest district.

More details on the data and the results can be found in Section 5 of the paper. An overview of the
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covariates can be found in Table 2. Based on previous analyses (e.g., Kneib and Fahrmeir, 2006;

Kneib et al., 2009; Kneib and Fahrmeir, 2010) we consider a candidate model with the additive

predictor

η = x>β + f1(ph) + f2(canopy) + f3(soil) + f4(inclination)

+f5(elevation) + f6(time) + f7(age) + f8(s1, s2) + bplot, (21)

where x contains the parametric effects of the categorical covariates fertilization, stand, humus

and saturation. The ordinal covariates humus and saturation are modeled using ridge penalized

ordinal base-learners, whereas the other categorical covariates are modeled using ridge penalized

base-learners. The smooth effects f1, . . . , f7 are specified as a combination of linear base-learners

and univariate cubic penalized splines with 20 inner knots and second order difference penalty.

For the spatial effect f8 we assumed bivariate cubic penalized splines with first order difference

penalties and 12 inner knots for each of the directions. Finally, the plot-specific effects bplot is

represented by a ridge-type “random effects” base-learner with fixed degrees of freedom (see Kneib

et al., 2009, for details). All continuous covariates were centered. To correct for the selection bias,

one degree of freedom is assigned to each single base-learner including the spatial and random

effect base-learners.

For the benchmark of the bias corrected model to an uncorrected model we used the same model

but specified four degrees of freedom for all smooth base-learners and added the categorical co-

variates unpenalized.
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(a) Unpenalized Base-Learner
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(b) Ridge Penalized Base-Learner

Figure 1: Null Model: Average selection frequencies of base-learners for ncat = {2, 5, 10} in the
“optimal step” m̂stop,opt without and with ridge penalty. The last bar in each graph represents the
selection frequency of the categorical covariate.

●

●●
●
●●●
●

●

●

●●
●

●

●

●●
●●

●

●

●
●●

●

●

●

●

●
●

2 3 4 5 6 7 8 9 10

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

ncat

(a) Difference of Relative Selection Frequencies

●●
●
●

●●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●
●
●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●
●
●
●

●●

●

●
●●
●

●●

●

●●

2 3 4 5 6 7 8 9 10

−
0.

02
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10

ncat

(b) MSEunpenalized−MSEpenalized

Figure 2: Power Case 1: Differences in relative number of selections for categorical base-learner
(unpenalized - penalized) (left) and differences of MSE (right).
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Figure 3: Power Case 2: Boxplots represent MSEunpenalized−MSEpenalized where the MSE is
computed with (left) and without (right) the influential, categorical covariate z2.

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●●
●
●
●

●

●●

●

●
●
●

●

●
●
●

●

●

●

●●
●
●
●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●●●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

2 3 4 5 6 7 8 9 10

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

ncat

(a) Power Case 1

●●

●

2 3 4 5 6 7 8 9 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

ncat

(b) Power Case 2

Figure 4: Comparison of model with ridge penalized and ordinal penalized base-learner:
Boxplots represent MSEridge penalized−MSEordinal penalized with non-influential categorical covariate
(left) and with additional influential categorical covariate (right).
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(b) Selection Frequency

Figure 5: Power Case 2 (Continuous Covariate): Partial deviation ∆L2
model −

∆L2
modelwith decomposition (left) and mean selection frequency of base-learners in the “optimal step”

m̂stop,opt with 4 df (upper) and decomposition (i.e., 1 df; lower). The last bar in each graph repre-
sents the smooth term and the second bar from the right represents the linear term (for z1). The
bars 2 to 6 represent the influential covariates x1, . . . , x5. Note that the height of the bar increases
with increasing effect size |βi|.
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Figure 6: Forest Health: Effects of base saturation, canopy density, spatial effect and random
effect (without spatial variation).
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Table 1: Simulation: Overview of different schemes for categorical covariates z1 and z2 (upper
part) and continuous covariate z1 (lower part)

Effects for x1, . . . , x25 Effects for z1 (and z2)

Null Model β = (0, . . . , 0)> γ1 = (0, . . . , 0)>

Power Case 1 z1 non-influential β = (−2,−1, 1, 2, 3, 0, . . . , 0)> γ1 = (0, . . . , 0)>

Power Case 2 z1 non-influential β = (−2,−1, 1, 2, 3, 0, . . . , 0)> γ1 = (0, . . . , 0)>

z2 influential γ2 = ( 2
ncat/2 , 3

ncat/2 , . . . , ncat
ncat/2 )>

Null Model β = (0, . . . , 0)> fz(z1) ≡ 0
Power Case 1 z1 non-influential β = (−2,−1, 1, 2, 3, 0, . . . , 0)> fz(z1) ≡ 0
Power Case 2 linear effect of z1 β = (−2,−1, 1, 2, 3, 0, . . . , 0)> fz(z1) = 1.5z1

Power Case 3 smooth effect of z1 β = (−2,−1, 1, 2, 3, 0, . . . , 0)> fz(z1) = sin(−(2z1)2 − 0.6(2z1)3)

Table 2: Forest health data: Description of covariates. All continuous covariates were centered
before included in the model, categorical covariates are dummy coded with the first category as
reference.
Covariate Description

age average age of trees at the observation plot in years (continuous, 7 ≤ age ≤ 234)
time calendar time (continuous, 1983 ≤ time ≤ 2004)
elevation elevation above sea level in meters (continuous, 250 ≤ elevation ≤ 480)
inclination inclination of slope in percent (continuous, 0 ≤ inclination ≤ 46)
soil depth of soil layer in centimeters (continuous, 9 ≤ soil ≤ 51)
ph ph-value at 0-2cm depth (continuous, 3.28 ≤ ph ≤ 6.05)
canopy density of forest canopy in percent (continuous, 0 ≤ canopy ≤ 1)

humus thickness of humus layer in 5 categories (ordinal, higher categories represent higher
proportions)

saturation base saturation in 4 categories (ordinal, higher categories indicate higher base
saturation)

stand type of stand (categorical, −1 = mixed forest, 1 = deciduous forest)
fertilization fertilization (categorical, −1 = no, 1 = yes)

30


