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Introduction

This thesis deals with models for extreme events in financial time series data. As it is
written in the middle of the largest crisis of the global financial system for the last 80
years, the virulence of the topic is almost all-too obvious.

The current crisis is not new insofar as it again shows the habit of extreme returns
to occur in clusters. Market risk measures which are not able to account for the clus-
tering phenomenon are not appropriate since their inability results in the clustering of
violations. In presence of an appropriate risk measure, such violations should occur non—
systematically, i.e. randomly. Figure 1.1 offers one striking example from the dusk of the
crisis for the inadequacy of VaR estimates when they are confronted with the clustering
phenomenon. The model does obviously not have the ability to estimate a reliable VaR
from September 2008 on at latest.!

Clusters of extreme events can also be seen as an implication of the already well-known
pattern of volatility clustering in financial returns. In times of high volatility extreme
events occur very often, in times of low volatility we observe none of them.

Unlike the well established volatility models — with GARCH and its derivatives being
the most prominent — the main goal of this work is to better understand the temporal
aspect, i.e. the durations between extreme events. Particularly it should be analyzed to
which extent extreme events can be forecast or anticipated.? This might help to construct
tools for risk managing purposes that perform better in view of volatile times.

To this end, the thesis is organized as follows. Chapter 2 reviews the typical properties
(stylized facts) of financial returns on the basis of Dow Jones Industrial Average index
data, particularly with durations in view.

The main section is divided into two parts. Part I builds the core of the thesis. It
deals with self-exciting peaks—over—thresholds (POT) models. After a short review of
some prerequisites (extreme value theory, point processes, risk measures), some point
process models which aim to capture the change between tranquil and stormy periods
are proposed (chapter 3). Applications of these models to univariate daily return series
including goodness—of-fit testing and the in—sample and out—of-sample performance of
Value—at—Risk estimations based on these models follow in chapter 4.

Part II introduces one further approach to model clustering of extreme values: duration

LAn event that might be associated with a possible structural break is the fall of Lehman Brothers on
September 15, 2008, when the firm filed for bankruptcy protection.

2The possibility of forecasts based on historical data contradicts the postulate of efficient capital markets,
i.e. the martingale property of security prices as stated by Fama (1970).



ERTRAGE DER HANDELSBEREICHE UND VALUE-AT-RISK IN 2007
in Mio €

Ertrage der Handelsbereiche
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Figure 1.1.: Aggregated 0.99 Value-at—Risk for all trading divisions of Deutsche Bank
in 2008. Most loss exceedances over the predicted VaR occur within
relatively short intervals of a few days. Moreover, these smaller viola-
tion clusters can be combined to a larger cluster in the fourth quarter of
2008. Source: http://geschaeftsbericht.deutsche-bank.de/2008/gb/
serviceseiten/downloads/files/dbfy2008_risikobericht.pdf

models (chapter 5) which originally stem from the econometric literature on intraday
transaction data.

The final chapter 6 provides a concluding comparison of generalized POT and ACD
models, some economic remarks and an outlook on further research to be done.
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Statistical properties of financial data with durations in view

In this chapter, we give an overview of some typical properties of daily financial return
data. In terms of these stylized facts, many financial (return) data from different areas as
e.g. stocks and stock indices, commodity prices and exchange rates of currencies exhibit
surprisingly similar properties. For instance, ARCH-models for volatility clustering have
originally been applied to UK inflation data (Engle (1982)), but have meanwhile become
a standard technique for portfolios consisting of a variety of asset classes. Thus, in the
following we use continuous returns of the Dow Jones Industrial Average (DJIA) index
data as representative for financial data. Some of its properties continue to hold even if
we look at longer (weeks, months) or shorter (intraday) time intervals.

Since stock prices are mostly non—stationary (I(1)), it is common to model relative
changes of prices, the return series. Major stylized facts of financial returns are

e Little serial dependence of returns, but strong correlation of squared or absolute

returns,
e hence time-dependent volatility and volatility clustering.

e As a consequence of clustered volatility extreme events (losses as well as gains)
appearing in clusters.

e Heavy-tailedness / leptokurtosis, i.e. the assumption of normally distributed returns
(that is made e.g. within the Black—Scholes model) is not justifiable.

The plots of continuous or log returns of the DJIA index and its autocorrelations shown
in figures 2.2 and 2.3 underline the first two stylized facts. Returns seem to fluctuate almost
symmetrically around zero, and there are no periods that can exclusively be characterized
as either boom or bust stages, i.e. the returns itself show little serial dependence. In
contrast, the return series exhibits volatility clusters which can be inferred from both eye
inspection of the return series as well as the ACF plot presented in the right panel of figure
2.3.

An immediate consequence of volatility clustering is clustering of extreme returns —

positive as well as negative.
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Figure 2.1.: Dow Jones Industrial Average prices between 1928-10-02 and 2009-03-27
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Figure 2.2.: Continuous returns of the Dow Jones Industrial Average (DJIA) index be-
tween 1928-10-02 and 2009-03-27. The horizontal lines indicate losses and
gains larger than 1, 2 and 3 %, respectively.
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Figure 2.3.: Autocorrelations of the Dow Jones Industrial Average returns between 1928-
10-02 and 2009-03-27 (left panel) and the absolute returns (right panel).
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Figure 2.4.: Threshold exceedances of continuous DJIA returns (losses, gains, and both)
between 1928-10-02 and 2009-03-27 with thresholds of 1, 2 and 3 %.
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Laws of seismicity and financial returns

The models to be discussed in chapters 3 and 4 originally stem from seismological applica-
tions of point process models. Interestingly, parallels between seismological and financial
earthquakes do not only exist in metaphorical terms: magnitudes and temporal structure
of earthquakes and extreme returns comprise similar patterns.

To show this, we assume exponentially distributed magnitudes of earthquakes or extreme
returns. The probability of an exceedance of threshold u is thus given by

P(exceedance|u):/ Ae Mds

u

For the exponential distribution — in point process language: for a homogeneous Poisson
process N — this probability times the width of the interval under observation, a constant
n, yields the expected number of events E(N). Taking logarithms we obtain

E(log N) = logn — Au.

Therefore, under the assumption of an exponential distribution the logarithmized num-
ber of exceedances should be linear in the threshold u. Figure 2.6 illustrates that this
connection known from earthquake magnitudes and called the Gutenberg—Richter law in
the seismological literature (Gutenberg and Richter (1954)) is fulfilled surprisingly well by
our Dow Jones data.

Likewise, the decaying probability of further occurrences of shocks after a mainshock
which is responsible for the temporal clustering of events is known in the seismological
literature as the Omori law (Omori (1894)). Its modified version says that the decay of
the aftershock frequency (or "rate”) R can be described by

k
RO = o

where k, ¢ and p are constant parameters. As we will see, this "rate” R is not precisely
equivalent to the intensity or hazard rate A(t) of our point process models, but it is one
major ingredient.
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be a straight line. This is equivalent to magnitudes having an exponential
distribution.
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Methodological background

The two constituting components of the kind of processes we are interested in are times and
"marks”, i.e. exceedances. The temporal part is basically modelled using point processes.
Moreover, marked point processes are also able to capture potential effects of marks on
times. The distribution of the marks itself is modelled using results from extreme value
theory (EVT).

Therefore, in the next section basic ideas from EVT are introduced. In the succeeding
section we outline and discuss self-exciting marked point processes on the line and their

usage within a generalized class of POT models.

3.1. Extreme value theory

EVT deals with the distribution of largest— and smallest—order statistics, i.e. EV'T focuses
on the tail of a distribution. This section contains to some extent a "customized” distillate
of the seminal treatment of EVT in Embrechts, Kliippelberg, and Mikosch (1997) — not
much unlike many other depictions to be found in the literature. There are two types of
model for extreme values that can be distinguished, block maxima models and threshold
exceedance models. Although we confine ourselves to the latter type, we introduce some
concepts from the analysis of maxima first.

The central limit theorem (CLT) says that appropriately standardized sums S, =
X1+ ---+ X, of iid random variables X; converge in distribution to the standard nor-
mal distribution for large n. The generalized extreme value distribution (GEV) plays
a similar role within the analysis of extremes. According to EVT, normalized maxima
M,, = max(Xy,...,X,) of "blocks” with size n converge in distribution to distributions of
the GEV family.

Definition 1 (The generalized extreme value (GEV) distribution). The distribution func-
tion of the standardardized GEV distribution is given by

exp(—(1+ &)%), €#0,

exp(—e™"), £=0,

where 1 +&x > 0. A three—parameter family with location u € R and scale o > 0 can be

He(z) =

constructed as follows:

He puo(x) = He((x — p1)/0).

10



3.1 Extreme value theory

The parameter £ is the shape parameter of the GEV. Moreover, GEV embraces Fréchet
(£ > 0), Gumbel (£ = 0), and Weibull distributions (£ < 0) as special cases. The Weibull
distribution has a finite right endpoint (it is "short-tailed”), whereas the Fréchet distribu-
tion is "fat-tailed”.

We assume there exist sequences of real constants (d,,) and (¢,,) with ¢, >0 V n such
that

lim P((M,, —d,)/cn < z) = lim F"(cpx+d,) = H(x) (3.1)
n—oo n—oo

for non—degenerate d.f. H(z). The central role of the GEV distribution is based on the
following theorem.

Definition 2 (Maximum domain of attraction). If (3.1) holds for some non—degenerate
d.f. H, F is said to be in the maximum domain of attraction of H; we write ' € MDA (H ).

Theorem 1 (Fisher-Tippett, Gnedenko). If F € MDA(H ) for some non—degenerate d.f.
H, then H has to be a distribution from the GEV family.

Block maxima methods do not deal parsimoniously with the data since there is a trade—
off between the size of the blocks and the number of blocks to be constructed from a given
dataset. A different characterization of "extremeness” can be achieved by considering only
data which exceed a certain “high” threshold. The pivotal distribution for exceedances
over thresholds is the generalized Pareto distribution (GPD).

Definition 3 (Generalized Pareto distribution (GPD)). The distribution function of the
GPD is given by

L—(L+&x/B)" 18, €40,

G =
gﬂ(x) 1- exp(—x/ﬁ), g = 07

where >0 and x > 0 when £ > 0 and 0 < x < —F/& when £ < 0. The parameters £ and

0B are responsible for shape and scale of the distribution, respectively.

It is possible to add a location parameter, say v, by replacing x by (z —v). Special cases
of the GPD include the ordinary Pareto distribution (with o = 1/£ and k = 3/€) and the
exponential distribution when £ = 0; when £ < 0, the distribution is short—tailed, i.e. it
has a finite right endpoint (for examples see figure 3.1). Moreover, G¢ g € MDA(H¢) holds
for any £ € R.

Because it plays a crucial role within the model likelihoods in later sections, we take
the first derivative of the cdf including the location parameter v in order to obtain the
corresponding density function.

(e
ewp() = | o
(-5). <=0

B exXp
The GPD is employed to model the excess distribution over high thresholds. Therefore
we present two more definitions that are useful in this context.

Definition 4 (Excess Distribution over Threshold w). Let X be a rv with d.f. F. The
distribution of excesses over the threshold u is given by its d.f.

11
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Figure 3.1.: Distribution functions (left) and densities (right) for three special cases of the
GPD

F(z+u) — F(u)
1—F(u)
where 0 <z < xp —u and xp < 0o is the right endpoint of F'.

Fu(z)=P(X —u<z|>u)=

(3.2)

Definition 5 (Mean excess function). The mean excess function of a rv X with finite
mean s given by

e(u) = E(X —u|X > u). (3.3)

Using equation 3.2, it is easy to obtain the excess distributions for the exponential and
GPD distribution, respectively. For the former we have

1— e—A(ac—l-u) _ (1 _ e—Au)
1—1+e
=1 -

= F(z),

whereas the latter yields (£ # 0)

1—(1+&+u)/B) V-1 (1+&x/3)7 V¢
1—1— (1+¢€u/B) Ve

_1- <1+§x/ﬂ+£um>”g

N 1+ &u/p ’

F.(z) =

12
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Figure 3.2.: Mean excess plots for 4 samples (size n = 1000) drawn from the standard expo-
nential distribution. As the exceedance sizes are independent of the threshold
u, mean excesses fluctuate randomly around the mean (unity).

and by expanding the fraction we finally obtain

B &x -1/
- (H ﬁ+£u>

= Ge g (),

where f(u) ==+ &u, 0 <z < oo if £ >0,and 0 <z < —(5/§) —u if £ <O0.

For the exponential distribution, the excess distribution is independent of the threshold
u. This result is illustrated in figure 3.2.
The mean of the GPD exists if £ < 1 holds. It is given by
Bx)= -2
1-¢
As we have shown, the mean excess distribution of the GPD is also a GPD with a
modified scaling that grows linearly with the threshold u. Hence we have the following
mean excess function for the GPD:

1-¢°

This linearity property is illustrated in figure 3.3. It is crucial for checking the appro-
priateness of the GPD model for threshold exceedances. The GPD model should only be
applied to data exceeding a threshold u for which the mean excess grows linearly.

13
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Figure 3.3.: Mean excess plots for 4 samples (size n = 1000) drawn from the GPD with
& =0.5and # = 1. The mean excesses fluctuate randomly around the straight
line with intercept 8/(1 — &) = 2 and slope /(1 — &) = 1.
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3.2 Point processes

3.2. Point processes

A point process is a random measure N that specifies the number of points N(A) located
in a compact set A which is part of the state space X of the process.! Therefore it is a
method to randomly allocate points to intervals on the real line (R) or hyper-rectangles
in d-dimensional Euclidean space (R%).

According to Daley and Vere-Jones (2003),

[...] a point process is completely defined if the joint probability distributions
are known for the number of events in all finite families of disjoint intervals (or

rectangles etc.).

In case of the one—dimensional point process, the real line is often interpreted as the time
axis. Hence a point process provides the opportunity to model the occurrences of events
in time. Before we display these point process models we present some basic definitions

from survival analysis.

3.2.1. Basic definitions and relations from survival analysis

Definition 6 (Survivor function). The survivor function is the (unconditional) probability

of surviving time t, i.e. the probability that no event occurs up to t.

S(t) = P(T > t) (3.4)

When T is a continuous random variable, the survivor function is the complement of

the cumulative distribution function F'(¢), hence

S(t)=1—-F(t) = /t ~ fa)da, (3.5)

where f(t) denotes the density corresponding to F'(t). Thus

ds(t)

RPN —f(t). (3.6)

Definition 7 (Hazard function). The hazard function is the given by probability of an
event (“death”) within the interval [t,t + At] given survival up to t, normalized by the
width At of the interval:

Pt<T<t+At|T>t)

h(t) = ~ . (3.7)

Note that the hazard or intensity function is mot a probability and can take values

above 1. The expression limas—.oo h(t) is called hazard or intensity as well. Particularly
in presence of a constant hazard, it is often represented by the letter A.

Definition 8 (Cumulative hazard). Let h(t) be some hazard function. The corresponding
cumulative hazard s given by

'For comprehensive treatments see Karr (1991) and the two volumes Daley and Vere-Jones (2003) and
Daley and Vere-Jones (2008) which are the major references for the following presentation. Vere—
Jones also contributed prominent articles on seismological applications of marked point process models
(Vere-Jones (1970), Vere-Jones and Ozaki (1982)).
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3.2 Point processes

¢
Ht) = / h(z)da. (3.8)
0
An important relation of these quantities is given by

h(t) = gig (3.9)

3.2.2. One—dimensional point processes

A point process on the line is a natural model for occurrences of events in time. It
can equivalently be described by a non—decreasing integer—valued step function, by the
sequence of its points {t;} = to,t1,t2,..., or by the sequence of intervals (durations)
between successive events {7;} = 71,72, ..., where 7; = t; — ;.

Let A be an interval on the real line and N(A) the number of events within A. Writing
A; for indexed partitions of the state space which are mutually disjoint we have

N (U Ai> - ZT:N(AZ-). (3.10)

Assuming that the process starts in t = 0, we use the following equivalent notations.
N(t) = N(0,1] = N((0,]), (0 <t < o0).

If the distribution of the number of points lying in an interval does not depend on
the interval’s location on the time axis but only on its length, we call the point process
stationary. Similarly, we can establish such a stationarity property for the operational
time series of durations between events 7; also.

Formally we can give the following definition.

Definition 9 (Stationarity and duration stationarity). A point process is stationary when
for every r = 1,2,... and all bounded Borel subsets A1, ..., A, of the real line, the joint
distribution of

{N(A1+t)a"'aN(Ar+t)}

does not depend on t (—oo < t < 00).
It is duration stationary when for every r = 1,2,... and all integers i;, ..., i, the joint
distribution of {Ti, 4k, ..., Ti,+k} does not depend on k (k=0,%1,...).

According to Khinchin’s Existence Theorem, the hazard rate for a stationary process
exists. When it is finite, we can rewrite the definition of the hazard (3.7) as

P(N(t,t + h] > 0) = P(there occurs at least one event in (t,t+h])
= A+ o(h) when h | 0.

Moreover, a point process is called simple if

P(N({t})=0o0r1Vt),
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3.2 Point processes

i.e. if events do not occur simultaneously. It is regular if — roughly speaking — the
probability of events is a continuous function of the size of the evaluated interval.

A generalization to higher dimensions is straightforwardly achieved. Therefore, the
Poisson process is assumed to take its values in a complete separable metric space (c.s.m.s.)
X — usually d-dimensional Euclidean space. Instead of points in the interval (one—
dimensional case), the probability of N(A) = n points falling into the bounded set A is
modelled via the parameter measure A(-) of the process.

In principle, the exceedances could enter the model as a second dimension of the point
process, but the following analysis centers around the concept of marked point processes
(MPP) where the actual point process only consists of event times. The marks (ex-
ceedances) can be seen as properties of the events, determining the "family” the events are
from.

3.2.3. Marked processes and cluster processes

To account for possible interconnections between durations and exceedances, the latter can
be included as marks of a marked point process. Times and marks in principle constitute
processes in their own right. The locations {z;} where (in our special case: {¢;} and
"when”) the events occur is also called the ground process, denoted by N,. The formal
definition of a marked point process can be written as follows.

Definition 10 (Marked point process).

A marked point process (MPP) with locations in the c.s.m.s. X and marks in the c.s.m.s.
KC is a point process {(xi, ki) } on X xKC with the additional property that the ground process
Ny(-) is itself a point process; i.e. for bounded A € By we have N(A x K) < oo.

The concepts of simplicity (no more than one event per point in time) and stationarity
can also be defined for MPPs.

Definition 11 (Simplicity and stationarity of MPPs).
(a) The MPP N is simple if the ground process Ny is simple.

(b) The MPP N on X is stationary (or homogeneous) if the probability structure of the

process is invariant under shifts in X.

Definition 12 (Independent marks and unpredictable marks). Let the MPP N = {(z;, K;)}
on the product space X x K be given.

(a) N has independent marks if, given N4, the marks are mutually independent random
variables such that the distribution of k; depends only on the corresponding location

ZTy.

(b) For X =R, N has unpredictable marks if the distribution of the mark at x; is inde-

pendent of locations and marks {(z;,k;)} for which x; < x;.

Hence, in our case independent marks would be present if the size of exceedances was
independent of the size of adjacent exceedances, which is a questionable supposition. Be-
cause we can observe a clustering effect of returns exceeding a certain threshold, the sizes
are likely to be clustered, i.e. highly autocorrelated, as well.

17



3.2 Point processes

Unpredictable marks imply in our context that the history of times and sizes of ex-
ceedances does not make any contribution to explain later realizations of exceedances.

The notion of cluster processes provides a different interpretation of MPPs: Points of
cluster processes can be used to describe the locations of individuals from consecutive
generations of a branching process.

This offers in deviation from efficient market theory (EMT) an economic interpretation
as well: The market’s reaction to exogenous shocks ("news arrival”) may give birth to
further reactions of the market. Market participants might not be completely aware of
the reactions of the remainder of the market, consequently the market might exhibit some
momentum without news arrival, a phenomenon one might call endogeneous news”.

Such cluster processes can be best understood by the separation of two components:
the locations of clusters on the one hand and the locations of cluster members within
its particular cluster on the other hand. The superposition of the latter constitutes the
observed process, while the intrinsic dissociation of the process into centre process and
“within—cluster processes” can not be observed. The cluster elements constitute point
processes N (- | y;) indexed by the cluster centres {y;}. The cluster locations itselves can
be described by the process N, of cluster centres whose realization consists of the points
{y;} € ). Usually both processes are defined on the same state space, i.e. Y = X. Within
the branching process interpretation, the centres might be seen as germs or ancestors for
the clusters they generate. However, the observed process does not include information
which events might be ancestors and which might be offspring.

The formal definition of a cluster process is the following.

Definition 13 (Cluster process). N is a cluster process on the completely separable metric
space X with centre process N on the c.s.m.s. ) and component processes N(- |y):y € Y

associated with one of the centres, when for every bounded A € By

N(A) = / N(A | y)N.(dy) = Z N(A | yi) < oo almost surely. (3.11)
y
yi€Ne()

One special class of cluster processes is the Poisson cluster process. We speak of a
Poisson cluster process when the cluster centres are the points of a Poisson process.

Note that the suggestive word "cluster” should not be taken too literally: let mark space
and centre space be indentical, points belonging to the same family within the mark space
K =Y, i.e. belonging to the same cluster centres, are not necessarily neighbours within
the primary state space X (the time axis). However, if such a connection between locations
within /IC and X exists, it can be modelled in the MPP framework.

The Hawkes process

The Hawkes process is a so—called self-exciting process or infectivity model. The points
{z;} of a Hawkes process are of two types: “immigrants” without extant parents in the
process which can be seen as triggering events in the finance context, and "offspring” that
are "breeded” by existing points. The arrival of immigrants occurs at (constant) rate 7,
while the offspring arise as elements of a finite Poisson process that is associated with
some point already constructed. This interpretation is obviously closely linked to the
Poisson special case of definition 13 above. Any point of the process has the potential
to give birth to further points whose locations are those of a (finite) Poisson process.
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Figure 3.4.: The branching structure of the Hawkes process (top) and the observed process
on the time axis (bottom). Source: Mgller and Rasmussen (2005).

The processes are assumed to be mutually independent, points within one cluster (i.e.
given the triggering event) to be identically distributed and independent of the immigrant
process as well. Hence, each immigrant has the potential to produce descendants whose
numbers in successive generations constitute a so—called Galton—Watson branching process
with Poisson offspring distribution. When the branching process is of finite total size, it is
also called sub—critical. Hence, clusters are defined as immigrants (= ancestors) plus their
descendants. A Hawkes process is constituted by the entirety of these clusters.

Besides its cluster process representation, the process can also be defined by its intensity
function that is given by

Ny =r+ 3 n(t—ti):f—i—/o n(t — u) N (du).

This representation is very illustrative as it can be divided into an "immigrant part” 7
and the time—varying offspring part” in the sum. Usually, the function 7 is descending
(On(t —t;)/0(t —t;) < 0) in order to capture the clustering phenomenon mentioned above
— "young” events should be more likely to produce further events than “old” ones. The

precise functional forms chosen for our applications are discussed in later sections.

The marked Hawkes process

We now consider a marked Hawkes process with unpredictable marks. According to the
branching process interpretation of Hawkes processes, events can be characterized as either
“immigrants” or ”"descendants” of these immigrants. Within the marked point process
framework, the marks x; associated with the times x; can be interpreted as the "type” of
the individual event, i.e. in our case its degree of extremeness.

In the context of cluster processes, we denoted the sequence of cluster centres by {y;}.
In Hawkes processes, the cluster centres are the "immigrants” who also act as ancestors
of further members of their family, the family being characterized by their marks. They
are assumed to arrive according to a compound homogeneous Poisson process N (dy x dk)
with rate u. and fixed mark distribution F'(dk). Immigrants as well as descendants have
the potential to act as ancestors of first—generation offspring; they constitute an ordinary
Poisson process with rate depending on the ancestor’s mark and time elapsed since the
ancestor event. The marks of the offspring form an i.i.d. sequence with distribution
function F'(dk), hence the family members share this d.f. as "surname”.
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3.2 Point processes

The ETAS model

Ogata (1988) introduced the ETAS (Epidemic Type After-Shock) model to earthquake
modelling. It can be interpreted as a special case of the marked Hawkes process with
occurrence times z; = t; and magnitudes of the shocks x;. The intensity is a decreasing
function of time elapsed since the last event and increasing with respect to the mark size
or "magnitude”. More precisely, due to seismological considerations the intensity follows
the Gutenberg—Richter law of magnitudes and the empirical Omori law of event clustering
mentioned in the introduction.

The Gutenberg—Richter (GR) Law implies exponentially distributed magnitudes, an
assumption that is close to the newer GPD model for threshold exceedances. The Omori
law ceteris paribus postulates an hyperbolic decay with respect to time elapsed.

3.2.4. Conditional intensities & likelihoods
General relations

To construct a likelihood in presence of a realization (x1,...,z,) of points (or events),
we require the joint probability density of the x; . Such a likelihood is considered as a
function of the parameters defining the joint density, whereas the points x; and its number
n are assumed to be given.

The most important building blocks of point process likelihoods are the so—called Janossy
densities.> Roughly speaking, these densities are used to describe the probability of spe-
cific allocations of events in the state space X (usually X = R?), or possibly in some subset
A of the state space.

Let jn(z1,...,2,) be the density of the Janossy measure J,(-) with z; # x; for i # j
(only one point of the process per location). The probability of one specific allocation is
given by

there are exactly n points in the
Jn(x1, .. xpn)dey -+ - dxyy = P process, one in each of the n distinct

infinitesimal small regions (x;, z; + dx;)

When and if interest centers around a bounded subset A of the entire state space X,
e.g. a certain time interval, the following definition is particularly useful.

Definition 14 (Local Janossy measures and densities). Given any bounded Borel set A,
the Janossy measures localized to A are the measures J,(- | A), n =1,2,..., with locations
x; €A i=1,...,n, for which

(3.12)

Jo(dz1 % -+ X dzy) = P ( there are exactly n points in A ) .

at locations dxq, ... ,dx,
The densities of these measures are the local Janossy densities.

Under some regularity conditions fulfilled by the point process IV, the likelihood of its
realizations can be defined.

2The Janossy measure is named in Daley and Vere-Jones (2003) after Hungarian physicist Lajos Janossy
who introduced it to model particle showers. For mathematical details see Daley and Vere-Jones (2003),
chapter 5 (Janossy measures) and chapter 7 (conditional intensities and likelihoods).
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3.2 Point processes

Definition 15 (Point process likelihood). The likelihood of a realization x1,...,z, of a
(reqular) point process N on a bounded Borel set A C RY where N(A) = n is the local
Janossy density

La(zy,...,2n) = jn(x1,..., 25 | A). (3.13)

If the neighbourhood A is identical with the entire state space X, the notation can be
further simplified by dropping the subscript A.

The one—dimensional case

According to Daley and Vere-Jones (2003), the evaluation of such likelihoods on general
state spaces is difficult. Since we are interested in the particular state space X = Ry —
the time axis — there is an alternative approach to obtain tractable likelihood functions:
the use of conditional intensity functions. The period under observation can be denoted
by A = [0,T], therefore we have a point process on state space Ri. The ordered set of
occurrence times of extreme events is denoted by {t1,...,ty(1)}, and the ¢; as well as the
durations 7; = t; —t;_; between events are assumed to be well-defined rvs. The (Janossy)
density for the location of n events on the interval (0,w) is denoted by jn(t1,...,t, | w),
the corresponding local Janossy df is denoted by Jo(w) = Jo((0,w)).
Furthermore we introduce conditional survivor functions by defining

Sk(w ‘ tl,...,tkfl) = P(Tk > w ’ t1,.. .,tk,l), (3.14)

i.e. the probability that the kth duration exceeds w given all former event times (€ A).
The densities corresponding to the survivor functions Si(- | -) are denoted by px(- | -).

Proposition 1 (Conditional survivor function and conditional densities). Under some reg-
ularity conditions, for a point process on X = Ry there exists a uniquely determined family

of conditional density functions pu(t | t1,...,tn—1) and corresponding survivor functions

t
Sn(t ‘ t1,... ,tj_l) =1- / p(u ’ t1,... ,tn_l)du (t> tn—l) (3.15)

tn—1
defined on 0 < t1 < -+ < tp—1 < t such that each py(- | t1,...,tn—1) has support carried
by (tn—1,00).
For n > 1 and finite [0,T] with T > 0, the Janossy densities for the locations of
t1,...,tn—1 can be obtained recursively:

Jo(T) = S5i(T) (3.16)
Jn(t, ..y tn | T) = gnlte, ... tn | (0,T))

:pl(tl)pg(tg | tl) "'pn(tn | t1,... ,tnfl) X Sn+1(T ’ t1,.. .,tn).
(3.17)

The conditional hazard function can be obtained using (3.9) and (3.15).

pn(t ’ t1,... atn—l)

. 3.18
Sn(t | tl,...,tnfl) ( )

ha(t | £, tnot) =

As Sp(t |-) = exp(—Hy(t |-)), we can write
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t
Pt | H1 et t) = ot | s 1) exp (-/t hu | 1, ,tn_l)du>  (3.19)
n—1
On the basis of (3.18), we are able to define a conditional intensity function given some
sequence {t;} with 0 < ¢; < .-+ <t, < ---. Usually the terms "hazard” and "intensity” are
used synonymously, but within the following definition the conditional intensity function
is a hybrid consisting of the unconditional hazard in (0,¢;] and the conditional hazard
known from (3.18) for (¢, o0].

Definition 16 (Conditional intensity function). The conditional intensity function \*(-)
for a (regular) point process on X = Ry = [0,00) is defined by

(8 = hy(t) for0 <t <t (3.20)
Pn(t | t1,. . tney)  fortno1 <t <tn, n>2.

Note that in this definition conditioning is based on the past of the process. More
formally speaking: its sequence of o—algebras (its filtration/ information set) H;_ consists
only of the occurrence times {t1,t2,...,t,—1} up to time ¢ (but not including ¢). In
principle the filtration can also include covariate information. We are going to exploit this
fact in the next chapter by taking exceedances as covariates.

Proposition 2 (Likelihood of a self-exciting point process). Let N be a (regular) point
process on [0,T] for some finite positive T, and let t1,... ,ty(ry be a realization of that
process in [0, T]. Then, the likelihood L of the process can be expressed by

L= ]ﬁ))\*(ti) exp <—/T)\*(u)du>. (3.21)

0

Proof. To see this, we use (3.17), (3.19), and (3.25). We can write the likelihood as

L=jnmyts, - tnery | (0,T), N(T)).

Since we have a realization of known size N(T'), the last term of (3.17) disappears via

conditioning and we obtain

L =pi(t1)p2(t2 | t1) - iy (En(T), - - - 1)

() exp (— /Otl h(u)du) halts | ) exp (- /: hu | tl)du>

N(T)
i=1 Yti-1

= ]ﬁ) N (t;) | exp <— /OTA*(u)dU>,
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3.2 Point processes

where ¢y 7y =T and to = 0.

O]

Using this result, the expansion to MPPs is straightforward. The state space of MPPs
on the line is given by [0, 00) x I, the corresponding Janossy density can be written

(@1, Ty K1y ooy B | AXK). (3.22)

The recursion of (3.17) can be expanded and we obtain

n

Jo(T) = S1(T) (3.23)
g1tk | T) = pi(tr, k1) = pa(ta) fi(ka | t1)
Jo(ti,t2, k1, k2 | T) = pi(ta) fi(ka | t)p2(te | (t1, k1)) fa(k2 | (t1, K1), t2))

(3.24)

The history ‘H of the MPP consists of pairs of event locations and the associated marks.
The expanded conditional intensity function can be defined as follows.

Definition 17 (Conditional intensity function for MPPs). The conditional intensity func-
tion X*(+) for a (regular) marked point process on X = Ry = [0,00) x K is defined by

hl(t)fl(,‘i | t) fOT’ 0<t< t1,

A*(t) = hn(t | (th /{1)7 ceey (tnfla "{nfl)) (325)
an("{ | (tlaﬁl), SRRE) (tnfla'%nfl)at) fOT th1 <t<tp, n= 2

We furthermore introduce the more convenient notation

Nt k) = A (1) £ (k]D), (3.26)

where the right-hand side abbreviates the product of the hazard conditional (when
n > 2) on the history of the MPP, and the mark density conditional on that same history

and t. The first term is also called the intensity of the ground process.

Marked point process likelihood

Proposition 3 (Likelihood of a self-exciting marked point process). Let N be a (regular)
MPP on [0,T] x C for some finite positive T', and let t1,...,tx(r) be a realization of that
process in [0, T]. Then, the likelihood L of the process can be expressed by

Ny (T Ny (T

) ) T
L= I[l X () 1:[1 Fo(si | )| exp <— /O A;(u)du>. (3.27)

23



3.3 Generalizing the POT model

Proof. Marks are conditionally independent of the associated ground process. Therefore,
the product of mark densities simply has to be multiplied with the likelihood of the ground
process that has already been derived (proof of proposition 2). ]

3.3. Generalizing the POT model

Time series data of threshold exceedances comprise two components, times and sizes of
events. As we have shown, in a marked point process model with one-dimensional point
process the components can be represented by (conditionally) independent terms in the
log—likelihood.

3.3.1. The basic POT model

Within the basic peaks over thresholds (POT) model, events follow a homogeneous Poisson
process, hence the intensity is a constant and durations between events are iid. The excess
sizes above the threshold are iid generalized Pareto, particularly they are independent of
their locations in time.

In this simple case, the associated likelihood can be obtained even by a two—dimensional
point process approach (McNeil, Frey, and Embrechts (2005)). However, to be consistent
we present the MPP version of the likelihood for all models.

Using the general MPP likelihood from (3.27) and the conditional intensity from (3.25)
and (3.26), we can write the log-likelihood of the basic POT model as

Nr T Nt
10,6.6) = D loa(Ny(6)) = [ Xilu) du-t 310w F s 1)
=1 =1

“times” "marks”

and using the (mutual and time—) independence of both event times and marks we obtain

Nt T Nt
—ZlogT—/ Tdu—l—Zlogf(ni),
i=1 0 i=1

where f(k;) is the density of the GPD. Hence
Nt
=nlogT —TT —nlogf — (1+1/§) Zlog(l +¢ki/B). (3.28)
i=1
3.3.2. The self-exciting POT model

We derive the likelihood of several versions of the self-exciting POT model, namely

e model without and with influence of excess sizes on the intensity,

e model without and with time-varying GPD scale parameter 3.

The core of all these models is the Hawkes—type conditional intensity function of the
ground process given by

24



3.3 Generalizing the POT model
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Figure 3.5.: Contribution of a single event at ¢ = 40 to the intensity for the simple Hawkes
(straight lines) and the ETAS model (dashed lines) and several choices of the
parameters. Note that the parameter values are not comparable due to the

different functional forms of the models (exponential vs. hyperbolic decay).

N =Y Yt -ty k)

J:0<t; <t
=7+ Yu*(t) (3.29)

where v*(t) is a convenient notation of v*(¢ | (t1,k1),...). We use two versions of 7(-),

e 7(s,k) = (1 + 0k)exp(—~s) where s denotes the time elapsed since an event. We
refer to this version as the "simple Hawkes model”. Furthermore we have

o n(s,k) = (1 +dr)(1 + %)_(Hp). This version is referred to as the "ETAS model”
(Epidemic Type After—Shock model).

The function 7(-) is decreasing in the elapsed time since the last event s = t — ¢;.
Ceteris paribus older events have less weight than younger ones. The effect of the excess
sizes kj = x; —u on 7n(-) and hence on the intensity remains subject of the empirical
evaluation, i.e. we do not constrain the responsible parameter(s) (we do not put a priori
information into the analysis). Moreover, it is possible to test for the presence of an effect
of mark sizes on the intensity ("mark influence”) using likelihood ratio tests.

However, the specific functional forms of 7(-) will be further discussed in the next chapter
on estimation and empirical results. It is largely dictated by the feasability of numerical

optimization routines.?

3Problems with the numerical optimization of likelihoods even based on simple versions of Hawkes-type
conditional intensities are well known, see Daley and Vere-Jones (2003), p. 234. See also appendix A.
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3.3 Generalizing the POT model

Model with unpredictable marks

In order to obtain likelihood functions for our models, we start by considering the gener-
alized since self-exciting times model while still assuming iid GP distributed marks. We
can write the logarithmized version of (3.27) as

Nr T Nt
A B,6,..) = log(\s(ti) — /0 Xy () du+ " log f (ki [t:),
i=1 i=1

”times” "marks”
hence
Nr T Nt
= Zlog T+ Z n(ti —tj, k) | — / Ag(u) du + Zlog f(ki [He,—)
i=1 §:0<t;<t; 0 i=1

Note that all events preceding each ¢; have some influence on Aj (t;), i.e. the intensity
process has infinite memory. This property is therefore reproduced in the exceedance
process.

The second term — the log survivor function at T' equalling the area under the intensity
— can be obtained analytically for the simple Hawkes model and our version of the ETAS
model.

T T n
/OA;(s)ds:/O THY D s —ti, k) ds
=1

n_ T
:7T+¢2/ n(s—ti,fﬁ) ds.
i=1"0

For one single arbitrary event (t;, k;), s > t; with n(-) of simple Hawkes type we have

T T
/ (14 6k;) exp(—y(s — t;)) ds = (1 + Ok;) / exp(—vy(s —t;)) ds
0 0

_ oy [ L= exp(=(s — 1)) g
= (1+ 0r;) { S )
= (1 + 0r;) 1= eXp(_J(T - ti)),

where the constant of integration is chosen such that the log survivor function for ¢t = 0
equals 0. Similarly we obtain for this single arbitrary event and 7(-) taken from the ETAS

model
e /OT (1 += ;t> e ds = (1 + k) [7(1 —(1+ (Z — ti)/v)—f’)}:
-+ -t ; =)”)

as can be easily verified.
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3.4 Measures of risk

Altogether, the second term of the log-likelihood can be written

T+ . (1+ (5@)% for the simple Hawkes model,

g *
/Ox\g(s) ds = 7(1_<H_¥>—p)

T+ (14 0k;) 5 for the ETAS model.

(3.30)
The history of the process H;,— up to but not including ¢; in the last term is irrelevant

when we assume iid GP distributed marks.

Model with predictable marks

We now turn to the case of predictable marks where the mark distribution depends on
the history of the intensity process also. Recalling the conditional intensity function from
(3.26), the difference to the model with unpredictable marks lies only in the mark distri-
bution — the ground model described by A7(t) remains the same.

Precisely, the scale parameter of the GPD is enriched by a time-dependent term. In
times of high intensity, the scale parameter § is thus able to grow or shrink. Thereto, it
is triggered by some additional parameter « leading to the conditional intensity

At k) = Ay (1) (k]E)

1 T—u —l/et
oy arang) e

mark density

= ([T+yu()
—_———

ground model intensity

3.4. Measures of risk

3.4.1. Market risk

The risk that the value of a financial instrument will fluctuate as a result of changes in
market prices is called market risk. These changes are either caused by factors specific to
the individual instrument or its issuer, or by factors affecting all securities traded in the
market. Depending on the specific asset class market risk may include e.g. equity risk,
commodity risk, interest rate risk, or currency risk. In many situations quantile based
measures of the loss distribution are used as risk measures, such as Value-at-Risk (VaR)
or expected shortfall (ES).

It has been recalled by the current financial crisis that these statistic measures can only
predict what history has shown already. They usually lose their value for risk that arises
from single events such as takeovers, sudden changes of market conditions (regime shifts)
or liquidity supply.

3.4.2. Value—at—Risk

Value-at—Risk (VaR) is likely to be the most common risk measure, since it is crucial
within the Basel 11 capital-adequacy framework. It is usually easy to calculate, and it can
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3.4 Measures of risk
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3.4 Measures of risk

be interpreted easily, making it accessible to corporate executives without much statistical

training.

Definition 18 (Value-at-Risk (VaR)). Given some confidence level o € (0,1), the 1 — «
Value—-at—Risk of an asset (or portfolio of assets) S is the 1—a quantile of the corresponding
loss distribution, formally

VaRy =inf{l e R: P(L>1) <1—a}=inf{l e R: FL(l) > a},
where the rv L denotes the losses.

Losses can be defined either in terms of absolute values or in terms of changes ("returns”)
of the value of a portfolio. Since we use daily returns over long time horizons, we confine
ourselves to distributions of (positive and negative) log returns, i.e. relative losses.

VaR is not a coherent risk measure. The definition of coherence includes several
axiomatic requirements postulated in Artzner, Delbain, Eber, and Heath (1999) that
a reasonable risk measure should fulfil. VaR is not coherent because it is not sub-
additive which means that for two financial instruments S; and Sy it is possible that
VaR(S; 4+ S2) > VaR(S7) + VaR(S2) holds, i.e. merging two portfolios can create extra
risk.

A favourable since coherent alternative is the Expected Shortfall (ES) which is the
expected loss given that the loss is exceeding a certain level. However, ES is mostly difficult
to obtain because the entire tail of the loss distribution has to be known (or estimated
at least). In case of the self-exciting POT model, the loss distribution comprehends
the intensity of the exceedance process as well as the excess distribution. Thus, already
the computation of the conditional VaR is precarious, obtaining the ES is even more
challenging.

3.4.3. Conditional Value—at—Risk

The conditional VaR is a quantile of the predicted loss distribution. According to the
models discussed above, there are three types of predicted distributions that are relevant
for VaR estimation, namely

e basic POT: events follow a homogeneous Poisson process with iid generalized Pareto
distributed exceedances;

e self-exciting POT with unpredictable marks: the probability of events is time—
dependent, whereas the exceedances retain the iid GPD assumption;

e self-exciting POT with predictable marks: event times as well as exceedance sizes
are time dependent.

Let x; denote an exceedance at time ¢t and G the predictive df using information

KH—At\Ht

up to t to predict the loss distribution At days ahead.* The ¢g—quantile of this distribution
and hence VaR, is then given by

i =inf{x €R: Gy, o 11, = a0} (3.32)

4Note that x denotes the rv as well as its realization in order to retain the notation from chapter 3.
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3.4 Measures of risk

Because of the conditional independence of times and marks, the probability of an

exceedance higher than a certain level and At days ahead can be written

P(Fét_t,_At > K ’ Ht) = P(/f,t_A,_At —U>K—U ’ Rt+At — U,Ht) (333)
X P(Kieae > u | Hy) (3.34)

The second term on the right—hand side is determined by the conditional intensity —
event or no event —, while the first term comprises the size of the possible exceedance
which is assumed to follow a GPD.

Let us now assume At = 1. The second term can only be approximated since the
continuous time intensity model in contrast to the daily data allows for more than one

event per day. Neglecting the probabilities for 2,3, ... events we write
P(N(t,t+1)=1|Hy) =1—P(N(t,t +1)=0| Hy) (3.35)
=1-S{t+1|H,)

t+1
=1—exp (—/ /\;‘ﬂ(s)d:s) .
t

Thus, it is possible to estimate the Value-at—Risk for the self-exciting POT models,
which is done in chapter 4.
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Empirical results

4.1. The data

In this thesis, we consider point process models for univariate financial time series only.
However, in order to obtain meaningful results, we perform our analyses using several
datasets of sufficient length. We consider daily closing prices of the DJIA index and five
stocks that have been traded at the NYSE over the whole period under investigation:
General Electric (GE), IBM, Coca Cola (CO), Boeing (BO), and General Motors (GM),
with data ranging from 1962-01-03 to 2009-03-27.1 Although the DJIA dataset is actually
longer, estimation results presented in this chapter are based on the same period. Some
descriptive statistics of the data are shown in table 4.1. The Ljung-Box statistics for
raw and absolute returns and 10 lags indicate that all series exhibit the autocorrelation
structure typical for financial returns as described above.

Series ~ Mean Std.Dev. Skewness Exc.Kurt. Ljung-Box(10) Ljung-Box(10), abs. ret.

DJIA  0.0002 0.0103 -1.3327 37.2374 47.9990 6397.6999
GE -0.0002 0.0237  -18.5071  681.5657 8.9214 707.6842
IBM  -0.0002 0.0239  -22.8697 1121.0437 7.8137 331.9966
CO -0.0001 0.0239 -19.4231  676.0397 15.1179 292.4246
BO -0.0000 0.0249 -6.6211  161.0556 25.5071 537.5002
GM -0.0002 0.0222 -2.9076  103.8712 80.7144 7699.4933

Table 4.1.: Descriptive statistics of univariate return series

4.2. Estimation and model choice

Figure 4.1 shows mean excess plots for the six datasets under investigation. At least in the
cases of GE, Coca Cola, and Boeing, the linearity property and hence the GPD assumption
appears to be reasonable for thresholds above 0.05, if at all.

In this section, estimation results and model selection are summarized, whereas detailed
tables with all estimates, standard errors, maximum log likelihoods etc. can be found in
the appendices B and C. Generally, estimation of self-exciting POT models is difficult and

L All datasets are available from http://finance.yahoo.com.
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4.2 Estimation and model choice
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Mean excess plots for the six datasets. In case of the DJIA data, the plot

appears to be linear above a relatively low threshold of about 0.01. The fact

that the index exhibits less volatility is well-known from portfolio theory. GM

and GE seem to be piecewise linear. For Boeing, GM and Coca Cola, the mean

excesses start to be linear at a relatively high threshold of roughly 0.05 which

questions the applicability of the GPD model for lower thresholds in these

cases.
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4.2 Estimation and model choice

often averted by numerical problems (for details see appendix A on optimization routines).
Thus, results presented here are based on those models which could be estimated. It is pos-
sible that some “feasibility bias” caused by the numerical problems arises, i.e. estimation
results may not be "missing at random”. However, since there are no obvious indiosyn-
cratic properties of the underlying data which are responsible for the estimation problems,
it still may be legitimate to assume that the obtained results are passably representative
for stock returns in general.

For the six univariate datasets described above the model constellations summarized
in table 4.2 have been estimated. All versions of the ETAS model (hyperbolic intensity
decay) could only be estimated for the Dow Jones data, possibly due to the fact that an
index might exhibit some idiosyncrasies that are favourable in this context, e.g. lower
volatility because of diversification effects. Therefore results and conclusions presented
are almost entirely based on the simple Hawkes—type models (with exponential decay of

the conditional intensity).

self-excitement type | mark influence | predictability | # parameters

Hawkes no no 3 (times) + 2 (marks) = 5
Hawkes yes no 4 (times) + 2 (marks) = 6
Hawkes no yes 3 (times) + 3 (marks) = 6
Hawkes yes yes 4 (times) + 3 (marks) =7
ETAS no no 4 (times) + 2 (marks) = 6
ETAS yes no 5 (times) + 2 (marks) =7
ETAS no yes 4 (times) 4+ 3 (marks) = 7
ETAS yes yes 5 (times) + 3 (marks) = 8

Table 4.2.: Parametrizations of self-exciting POT models.

The models are estimated for both loss and gain processes, i.e. for the point processes
generated by threshold exceedances of both negative and positive log returns. We consider
three thresholds which are determined by the data (0.90, 0.95 and 0.99 quantile of losses
/ gains of each dataset) plus three arbitrary thresholds (returns of 0.01, 0.02, 0.03) to
achieve two different kinds of comparability.

The choice of an appropriate model implies the answers to the following questions:

1. Temporal homogeneity of extreme events: Do the conditional intensity models
perform significantly better than the homogeneous Poisson model?

2. Influence of marks on the intensity: Does the size of the exceedances have an
effect on the probability of further exceedances in the near future?

3. Predictability of marks: Are exceedances time—dependent? Does the conditional
GPD model perform significantly better than the iid GPD model?

4. ETAS: Does the ETAS model outperform the simpler parameterization of the in-
tensity function?

In order to answer these questions, we use the Akaike information criterion given by

AIC = 2 x # parameters — 2 X maximum log likelihood,
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4.2 Estimation and model choice

which penalizes the addition of parameters and rewards improvement of the maximum
of the likelihood and has to be minimized by the model of choice.
Furthermore, we back these results by employing likelihood ratio (LR) tests. The LR
statistic is given by
N 15 L(0)
LR =2(I(0) — 1(f)) = 2lo = 4.1
10) ~10) = 2108 7 (a.1)
where 0 denotes the ML estimator under Hy (restricted model), and 0 signifies the MLE

under the alternative. A convenient result says that as the sample size n approaches

00, the test statistic LR for a nested model will be asymptotically x? distributed with
degrees of freedom equal to the difference in dimensionality of the models under the null
and alternative hypotheses, respectively. We use this result in order to test for model
appropriateness.

The times model

The model for the temporal part of the point process can be chosen separately because
it is independent of the associated mark distribution. In contrary the scale of the time—
dependent marks model is dependent on the times model. If and when there is an influence
of exceedance sizes (the only covariate in our model) or possibly further covariates on the
probability of events, this might in turn cause a feedback to the mark distribution and so
on. The consequence of this property in terms of model choice is that one has to choose
the times model first to be able to choose the associated marks model. More precisely:
If mark sizes affect the intensity of the process, this might also affect the mark sizes,
which is a feature typical for complex systems and also attractive in terms of economic
interpretations.

Tables 4.3 and 4.4 depict the AICs for loss and gain processes, in each case without (up-
per panel) and with (centre panel) mark influence.? The lower panel shows the difference
between the two. Empty cells indicate that the respective model could not be estimated
due to numerical difficulties. Since the AIC should be minimized in presence of a “good
model”, negative differences indicate that exceedances seem not to influence the intensity,
positive differences suggest that they do. In case of the loss exceedance processes, evidence
in favour of the presence of a mark influence is strong for low thresholds for all datasets,
while exceedance sizes over high thresholds do not appear to have such an influence. For
DJIA index returns, the 1 percent most extreme events (implying a threshold of less than
0.03 in contrast to the other five series) do have an influence on the intensity, marks ex-
ceeding 0.03 do not. For the other series, the 0.99 quantile implies a much higher threshold
in absolute terms, and no mark influence is diagnosed. This may lead to the conclusion
that the presence of some mark influence is up to the absolute level of thresholds, or even
more roughly: extremeness might be attributed in absolute terms. On the other hand we
may conclude that, given a certain level of extremeness, the exact amount of extremeness
is no more relevant for further events to occur.

In remarkable contrast, the degree of extremeness of gains affects the probability of
further extreme gains irrespective of the level of the threshold. Hence we seem to have

2For the corresponding likelihood ratio tests — which essentially yield the same results — see appendix

C.
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4.2 Estimation and model choice

uncovered an asymmetry between gains and losses. The estimate of the parameter
determining the mark influence is positive in all cases: the higher the excess sizes, the
higher the probability of further events in the near future (parameter estimates can be
found in appendix B).

dataset 0.01 0.02 0.03 | 0.90 quantile 0.95 quantile 0.99 quantile
DJIA 8926.79 2405.85  808.13 8283.49 4769.76 1194.63
GE 14340.15 6463.76 2824.22 8343.82 4763.15 1174.47
IBM 14606.17 6716.08 3098.61 8399.86

CO 13846.49 6112.96 2702.73 8427.35 4889.09 1349.05
BO 1715291 9993.26 5435.93 8482.76 4939.32

GM 15798.67 8297.28 4151.75 8297.28 4628.18 1109.64
DJTA 8924.04 2404.57  810.10 8281.30 4767.06 1193.98
GE 14323.46 6460.96 2826.22 8341.78 4762.40 1176.47
IBM 14597.63 6716.60 3100.50 8398.51

CO 13835.59 6112.85 2704.57 8421.98 4889.47 1351.05
BO 17144.25 9989.96 5435.96 8479.06 4940.99

GM 15792.06 8292.69 4152.71 8292.69 4628.64 1111.64
DJTA 2.76 1.28 -1.97 2.19 2.70 0.65
GE 16.70 2.79 -2.00 2.04 0.76 -2.00
IBM 8.53 -0.52 -1.89 1.36

CO 10.90 0.11 -1.84 5.37 -0.37 -2.00
BO 8.66 3.30 -0.03 3.70 -1.67

GM 6.61 4.60 -0.96 4.60 -0.46 -2.00

Table 4.3.: AIC for the times models without (upper panel) and with (central panel) mark
influence and difference between the two for negative log returns and several
thresholds.

The marks model

Since exceedance sizes seem to affect the conditional intensity, we compare the performance
of marks models based on a mark—influenced version of the times model. The competing
marks or exceedance models are the iid GPD model vs. the GPD model with time-
dependent scale parameter (3. Recall from (3.31) that the conditional mark density f*(x|t)
enters the conditional intensity of the MPP such that

A(t, k) = Ag(0) f* (5]t)

. 1 T—u —est

ground model intensity
mark density

The expression ( + av*(t) represents the time—dependent scale of the GPD, where «
in practice is always positive though not restricted, and v*(¢) fulfilling v*(¢) >0Vt e X
comprises the sum of all past influences on the present intensity. As we have chosen the
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dataset 0.01 0.02 0.03 | 0.90 quantile 0.95 quantile 0.99 quantile
DJIA 9329.74 2681.31  947.46 8398.32 4857.17 1223.26
GE 7205.54 3341.12 8437.45 4879.75
IBM 8457.86 4915.47
CcO 6998.37 3275.32 8554.76 4996.92 1311.09
BO 8580.67 5018.83 1372.80
GM 15653.83 8671.16 4560.46 8335.58 4873.38 1163.17
DJIA 9314.85 2655.47 941.84 8382.65 4836.46 1213.74
GE 7186.78 3326.66 8414.72 4860.92
IBM 8422.98 4894.78
CcO 6979.20 3252.19 8533.14 4973.43 1307.43
BO 8568.73 5007.85 1372.66
GM 15621.83 8661.31 4551.61 8325.57 4861.55 1154.78
DJIA 14.89 25.85 5.62 15.67 20.71 9.53
GE 18.76 14.46 22.73 18.83
IBM 34.88 20.68
CcO 19.17 23.14 21.62 23.49 3.65
BO 11.95 10.98 0.15
GM 32.01 9.85 8.85 10.01 11.83 8.40

Table 4.4.: AIC for the times models without (upper panel) and with (central panel) mark
influence and difference between the two for positive log returns and several
thresholds.

times model with mark influence we retract the notational simplification introduced above
to write

v (t) = v*(t, k),

emphasizing the mark dependence of the conditional GPD model. Within the self-
exciting POT model with predictable marks (conditional GPD) extreme events cause the
occurrence of further events via an increasing intensity, which in turn makes the events
likely to be more extreme by expanding the scale of the mark distribution. This connection
is illustrated in figure 4.2 for the DJIA data.

We again examine the necessity of such time dependence using Akaike’s information
criterion. The results can be found in tables 4.5 for loss exceedances and 4.6 for gain
exceedances. The AIC differences appearing in the lower panels of the tables are mostly
large, unambiguously indicating that the mark distribution is time dependent for each of
the considered thresholds.
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Figure 4.2.: Implied exceedance distributions from 2008-01-01 to 2009-03-27 according to
the simple Hawkes model with mark influence for DJTA data (upper panel).
The GPD’s scaling (centre panel) evidently reacts strongly to the volatility
rise in the fourth quarter of 2008 (lower panel).
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dataset 0.01 0.02 0.03 | 0.90 quantile 0.95 quantile 0.99 quantile
DJIA -10374.67 -1988.37  -476.13 -9422.67 -4609.12 -782.79
GE -17479.73 -5786.13 -1925.75 -8134.36 -3814.33 -588.23
IBM -17971.32 -6022.26 -2124.59 -8161.57

CcO -16829.64 -5391.87 -1727.63 -8318.18 -3993.22 -604.68
BO -21154.90 -9623.35 -4188.11 -7649.20 -3661.10

GM -19217.69 -7642.45 -3085.99 -7642.06 -3604.93 -536.69
DJIA -10579.37 -2014.02  -485.09 -9598.37 -4714.41 -792.76
GE -17771.74  -5911.13  -1954.78 -8299.20 -3887.48 -592.00
IBM -17989.75 -6095.23 -2131.73 -8254.87

CcO -16842.28 -5407.31 -1730.04 -8364.82 -4000.96 -604.62
BO -21339.02 -9702.10 -4194.57 -7702.27 -3665.44

GM -19713.84 -7902.42 -3198.14 -7902.01 -3724.72 -556.22
DJIA 204.70 25.65 8.96 175.71 105.29 9.98
GE 292.01 125.00 29.04 164.84 73.15 3.77
IBM 18.44 72.96 7.15 93.30

CcO 12.64 15.45 2.41 46.64 7.74 -0.06
BO 184.12 78.74 6.45 53.06 4.34

GM 496.15 259.97 112.14 259.95 119.79 19.53

Table 4.5.: AIC for the marks models without (upper panel) and with (centre panel) pre-

dictable mark distribution and difference between the two (lower panel) for

negative log returns and several thresholds.
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dataset 0.01 0.02 0.03 | 0.90 quantile 0.95 quantile 0.99 quantile
DJIA -10946.63 -2192.75  -604.06 -9463.72 -4602.40 -828.58
GE -6741.48 -2503.73 -8346.62 -4054.99

IBM -8239.97 -4003.25

CcO -6398.92 -2412.98 -8362.74 -4128.82 -778.19
BO -7675.01 -3745.52 -725.28
GM -18602.83 -8158.55 -3342.91 -7705.59 -3631.30 -583.33
DJIA -11085.12 -2208.11 -606.19 -9593.81 -4665.72 -829.07
GE -6856.08 -2544.74 -8471.30 -4116.02

IBM -8308.03 -4025.24

CcO -6457.55 -2422.53 -8441.40 -4157.03 -778.38
BO -7715.32 -3751.66 -726.89
GM -18629.24 -8336.16 -3476.25 -7876.38 -3767.74 -612.30
DJIA 138.49 15.36 2.13 130.08 63.31 0.49
GE 114.59 41.01 124.68 61.03

IBM 68.06 21.98

CcO 58.63 9.55 78.66 28.21 0.19
BO 40.31 6.14 1.61
GM 26.41 177.61 133.34 170.79 136.44 28.97

Table 4.6.: AIC for the marks models without (upper panel) and with (centre panel) pre-

dictable mark distribution and difference between the two (lower panel) for

positive log returns and several thresholds.
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4.3 Goodness of fit

4.3. Goodness of fit

The model of choice identified by likelihood ratio tests and AIC is the simple Hawkes model
with mark influence and time—dependent mark distribution. It should be underlined that
this model may be seen as the best among the existing models because it shows the best
global fit. However, this does not mean that no better model is possible.

Besides the relative comparison of models we therefore have to assess the absolute
goodness of fit of the chosen model. To be able to appraise the quality of the times
component of our model of choice, we employ residual analysis methods proposed by
Ogata (1988) which are very similar to the Cox—Snell residuals of Cox’s proportional
hazards regression model.

Generally speaking, in presence of a “good fit” residuals should not comprise any deter-
ministic pattern, because this pattern should have been identified and extracted by the
model. However, while in regression models the construction of appropriate residuals is
straightforward in general — difference between response and fit at the observed covariate
values —, it is not that obvious in terms of point processes. The model output is essentially
an estimated intensity process, i.e. a realization of a stochastic process in continuous time,
that implies probabilities of event occurrences within certain time intervals. The data (of
the times component) consist of discrete locations of events on the time axis only.

Ogata (1988) proposes the construction of yet another point process, the residual process.
Its aim is to compare the estimated conditional intensity function of the ground process
5\;() to its true intensity process Aj(-) whose outcome are the locations of events in time.
Once again we consider the sequence of observed event times t1,%2,. .., (1) generated by
this true intensity process on [0,7]. According to Papangelou (1972), the points of the

cumulative intensity process

At) = /0 “Ni(s)ds (4.2)

for i = 1,...,N(T) constitute a homogeneous Poisson process of rate 1 on an interval
[0, N(T')] which hence is part of a transformed time axis. This is intuitive since — roughly
speaking — there should occur one event per unit of area under the intensity function
on average, i.e. one event per unit of time on the transformed time axis. The resulting
property of exponentially distributed durations enables us to test for the presence of a
homogeneous Poisson process via a Kolmogorov—Smirnov test.
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Figure 4.3.: Plots of the residual processes for DJIA’s self-exciting POT models with the
thresholds 0.01, 0.02, and 0.03. The p—values of Kolmogorov—Smirnov tests
for the presence of a homogeneous Poisson process (with iid exponentially dis-
tributed inter—event times) are 0.007, 0.7114, and 0.8767, respectively. Hence,
for the two higher thresholds the self-exciting POT model appears to be ap-
propriate, for the lowest threshold it is clearly not since the homogeneous
Poisson hypothesis is rejected.
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Figure 4.4.: Plots of the residual processes for GE’s self-exciting POT models with the
thresholds 0.01, 0.02, and 0.03. The p—values of Kolmogorov—Smirnov tests
for the presence of a homogeneous Poisson process (with iid exponentially dis-
tributed inter—event times) are 0, 0.0538, and 0.8699, respectively. Hence, for
the highest threshold the self-exciting POT model appears to be appropri-
ate, for the lowest threshold it is clearly not since the homogeneous Poisson

hypothesis is rejected. Evidence for u = 0.02 is not clear.
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Figure 4.5.: Plots of the residual processes for IBM’s self-exciting POT models with the
thresholds 0.01, 0.02, and 0.03. The p—values of Kolmogorov—Smirnov tests
for the presence of a homogeneous Poisson process (with iid exponentially dis-
tributed inter—event times) are 0, 0.1017, and 0.8803, respectively. Hence, for
the highest threshold the self-exciting POT model appears to be appropriate,
for both lower thresholds it is not since the homogeneous Poisson hypothesis
is rejected.
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Figure 4.6.: Plots of the residual processes for Coca Cola’s self-exciting POT models with
the thresholds 0.01, 0.02, and 0.03. The p—values of Kolmogorov—Smirnov
tests for the presence of a homogeneous Poisson process (with iid exponen-
tially distributed inter—event times) are 0, 0.6372, and 0.7921, respectively.
Hence, for the highest threshold the self-exciting POT model appears to be
appropriate, for the lower thresholds it is clearly not since the homogeneous

Poisson hypothesis is rejected.
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Figure 4.7.: Plots of the residual processes for Boeing’s self—exciting POT models with the
thresholds 0.01, 0.02, and 0.03. The p—values of Kolmogorov—Smirnov tests
for the presence of a homogeneous Poisson process (with iid exponentially dis-
tributed inter—event times) are 0, 8¢-04, and 0.5371, respectively. Hence, for
the two higher thresholds the self-exciting POT model appears to be appro-
priate, for the lowest threshold it is clearly not since the homogeneous Poisson
hypothesis is rejected.
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Figure 4.8.: Plots of the residual processes for GM’s self-exciting POT models with the
thresholds 0.01, 0.02, and 0.03. The p—values of Kolmogorov—Smirnov tests
for the presence of a homogeneous Poisson process (with iid exponentially dis-
tributed inter—event times) are 0, 0.0148, and 0.6743, respectively. Hence, for
the two higher thresholds the self-exciting POT model appears to be appro-
priate, for the lowest threshold it is clearly not since the homogeneous Poisson

hypothesis is rejected.
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4.4. Estimation of risk measures

The empirical examination of the conditional Value—at—Risk proposed by Chavez-Demoulin,
Davison, and McNeil (2005) and explained in section 3.4 requires just a few words. Neg-
ative returns and corresponding in—sample 0.99 VaR one—-step—ahead predictions based
on negative returns exceeding 1% are depicted in figure 4.9 for the six datasets. Visual
inspection suggests that the conditional excess distribution’s faster reaction to increasing
and decreasing volatility may lead to a better performance compared to the unconditional
marks model. This would also be in accordance with the suggestions in section 4.2. How-
ever, both models perform very poorly, in case of the DJIA data the conditional GPD
model is even worse than the unconditional model because the VaR is underestimated
when volatility is declining. The percentage of violations which is meant to be about one
percent ranges between about 4 up to about 12 (!) percent.

The assessment of the model performance in terms of interval forecasts as proposed in
Christoffersen (1998) is neither possible for small nor for large (up to eight years) moving
windows due to the numerical problems already mentioned.

Since even the in—sample performance is rather poor, the forecasting ability can not be
expected to be better anyway. Estimation of the models using data until 2008-06 only,
i.e. before the last substantial rise of volatility which can be observed for all time series
considered, does not change the parameter estimates and VaR forecasts heavily.
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datasets (in—sample).
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Duration models

5.1. ACD models

ACD models (Engle and Russell (1998)) were originally designed to understand the pro-
cessing of exogeneous information in financial markets, leading to applications to durations
between trades, arrivals of orders, updates of quotes, or price changes. These applications
became possible due to the availability of so—called tick—by—tick or high frequency financial
data. According to classical financial theory, trading activities are only necessary when
new information is arriving at the market. However, duration models aim at analyzing
possible market frictions and the presence of arbitrage opportunities. All these data have
in common that they exhibit non—equally spaced durations. The transfer to our problem
at hand is obvious: time intervals between threshold exceedances are not equally spaced,
either. Hence, from a methodological point of view it does not matter whether we model
intraday transaction data with stochastic trading times or daily excess data with stochastic
occurrences.

Engle and Russell (1998) propose a framework similar to Engle (1982)’s ARCH models
for volatility. ARCH models are concerned with conditional volatilities, whereas the so—
called ACD (autoregressive conditional duration) models deal with conditional durations.

The durations between event times 7, = t; — t;_1 constitute an operational time series
whose properties are modeled directly within the ACD framework — in contrast to the
models treated in chapters 3 and 4, where the conditional intensity is directly estimated
resulting in an occurrence probability for each day and in principle for each point in
continuous time. However, the self-exciting ground model (without mark influence) and
the ACD model correspond as they both employ the same information about the point
process N(0,7]. Although the ACD model on the one hand and conditional intensity
models on the other represent alternative strategies of event modelling, it is possible to
characterize ACD model in terms of their implied conditional intensity.

In the ACD(q,p) model it is assumed that the expected duration E(7;|H;—) = 1, —
where H,_ denotes the filtration or information set up to but not including the i-th event —
depends on its own past, the past durations and possibly further possibly time—dependent

covariates:

q p
vi=w+ Y o+ > B+ Ca,

j=1 j=1
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5.1 ACD models

where durations which are standardized by some appropriate function f(-) satisfy
71/ f (i) “a. Thus, introducing an error term ¢;, the duration can be written in terms

of the expected duration as

7 = (i) (5.1)

The distribution G is not time—dependent since the dependence structure is entirely
captured by the sequence of conditional durations {t;}. To secure that 1); is always
positive, involving the exponential function to obtain the log ACD model can be useful
(Bauwens and Giot (2001)).

Similar to GARCH models, the difference process §; = 7; — f(¢;) is a martingale differ-
ence sequence, i.e. F(d;|H;—) = 0. This fact motivates the following ARMA representation
of the duration process:

max(p,q) q
T, =w+ Z (Oéj"Fﬁj)Ti—j _Zﬁjéi—j‘i‘gj-
Jj=1 J=1

The two distributional assumptions considered within the original ACD model (Engle
and Russell (1998)) are the exponential and the Weibull distribution. In case of the
exponential distribution, when standardization can be achieved very easily (f(vi) = 1),
the density function g(-) corresponding to G can be expressed as

g (;Z; |H’L7eg> = eXp <_1’Z> 9

where 0, is the rate of the exponential distribution. When we know the information
included in H;_ we also know v; and can write

1

g (1 |Hi—,0y) = —exp (—) .

o <

It can easily be seen that the parameter of the exponential distribution equals the
reciprocal of the conditional duration. The conditional intensity implied by the EACD

model right before the i-th event is hence given by

Ag(ti) = o

The implied conditional intensity remains constant until the subsequent event, then the
intensity takes another constant value and so on. The process can be called somewhat
contradictory a “piecewise homogeneous” Poisson process. Although exponentially dis-
tributed, durations only seemingly have a lack of memory since the rate of the process
depends on the conditional duration which is determined by the past according to the
order of the model — the larger the order, the longer the memory. Moreover, the fact that
the process is only piecewise homogeneneous in principle facilitates to model the clustering
phenomenon.

For the Weibull case (WACD model) and with standardization function f(v;) = ¢;[I'(1+
1/7)] the following conditional density and conditional intensity functions can be obtained:

9(mi | Hi-,0y) = % (f(:;;i))’yem {_ (f(:;fz))q ’
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Figure 5.1.: Implied conditional intensities of EACD(1,1) (left panel) and WACD(1,1)
(right panel) models based on five artificial data points. The resulting condi-

tional durations are very similar, the implicit intensities are not.

and

Ag(ti) = Fl) 7y

The conditional intensity decreases (0 < v < 1) or increases (v > 0) monotonicly with
respect to 7;, and it is reduced to the EACD model for v = 0. It is hence not possible to
model a non—monotonic course of the conditional duration. Besides the functional form,
the remarks about the memory of the process that could be stated for the EACD model
also hold for the WACD case: the memory depends on the order of the model.

An important difference of the implied WACD intensity to the explicitely modelled con-
ditional intensity function of part I lies in its behaviour in the neighbourhood of the latest
preceding event. In the latter case, neglecting possible mark influences, the contribution
of the last event to the conditional intensity is finite (about 1) in the simple Hawkes as
well as in the ETAS model. The WACD intensity decays much more rapidly, the prob-
ability of further events in the close neighbourhood is very high (figure 5.1). Since we
actually analyze discrete data with minimum duration of one day, this feature might not
be a desirable one.

Generalizations of these distributional assumptions have foremostly been introduced in
order to account for possible non—monotonicity of durations. Such distributional assump-
tions include the generalized Gamma distribution (GACD model, Zhang, Russell, and
Tsay (2001)) and the Burr distribution (Burr-ACD model, Grammig and Maurer (2000)).
While durations between trades can indeed be assumed to have a monotonic implied haz-
ard, price durations — the time span required for the price change to exceed a certain
threshold — and volume durations — time span to achieve a certain cumulative trading
volume — can not. However, these kinds of generalizations may match the needs of some
tick—by—tick transaction data, e.g. price and volume durations.

To inspect the appropriateness of the Weibull model for daily exceedance durations
we use the kernel density estimations and empirical ACFs depicted in figures 5.3 and
5.4, respectively. Taking into account the lowest possible duration for daily data, the
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Figure 5.2.: Density estimate using a biweight kernel and empirical ACF of exceedances
of IBM stock’s negative returns over the thresholds 0.0243 (upper panel) and
0.0431 (lower panel), i.e. the 0.95 and 0.99 quantiles.

density estimation is based on the continuous support [1,00). Figure 5.3 indicates that
the Weibull model might be sufficient insofar as the duration density appears to decay
monotonicly. The autocorrelograms in figure 5.4 suggest that the duration process exhibits
significant autocorrelations even for higher lags. However, it may again be underlined
that the meaning of long memory of the duration series and memory of the exceedance
process on the original time axis have very different implications. Due to the clustering
phenomenon, tranquil periods are represented by much fewer observations 7; than volatile
periods, hence significant autocorrelations for higher lags may nonetheless imply short
memory on the original time axis if they are based on many, but clustered events. The
results shown for the 0.95 quantile thresholds hold for higher thresholds as well.

Maximum likelihood estimation

The likelihood function of an ACD(q,p) model of durations 79, ..., 7y given the vector of
parameters 6 is!

!Because of the definition of 7; the first duration is 72. For convenience and because of the large sample
size we can ignore the first (left—censored) and last (right—censored) observation and obtain N — 1
durations between N events.
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Figure 5.3.: Density estimate using a biweight kernel for exceedance durations of the six
negative return series over the thresholds determined by the 0.95 and 0.99

quantiles.
N
L(T% -y TN | 0) = H g(Ti ’ Hi—ae) X g(Tmax(p,q) ‘ 9)
i=max p,q+2

It is acceptable to ignore the marginal density function g(-|@) for sufficiently large N
and compute parameter estimates based on the conditional part. In the following, we
consider the exponential (EACD), Weibull (WACD), and generalized Gamma (GACD)
models. The conditional log likelihood of the latter can be written as

N
Toy .., TN | 7, Ky t1) = Z log (FZ%)) + (ky — 1) log(m)

i=max(p,q)+2

— kylog(D™H(1 + 1/9)) — <F—1(1 fl/v)%) ’

including the special cases of the WACD model (for x = 1) and the EACD model (for
k=~vy=1).

5.2. Empirical results

Not only does the inspection of the estimated duration densities suggest a monotonic
decay and hence a monotonic decay of the implied intensity. Estimation results for the
generalized Gamma ACD model indicate that the model is "too general” as well, since the
estimation of its shape parameter k is highly dependent on the initial value within the
numerical optimization. Imposing the restriction k = 1 leads to the WACD model without
much impact on the value of the maximum log likelihood. This result strongly supports
the conjecture of a monotonic conditional intensity function.

Therefore, in the following only EACD and WACD models are considered. In both cases
model selection somewhat surprisingly (because of the "long memory” suggested by the
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the thresholds determined by the 0.95 quantiles.
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5.2 Empirical results

empirical ACFs) displays the most parsimonious versions — EACD(1,1) and WACD(1,1)
— as the best ones in terms of likelihood ratio tests and AIC.

Moreover, we can examine whether the WACD model performs significantly better than
the EACD model because of their nestedness.

IBM  DJIA GE GM CO BO
90% 0.0172 0.0106 0.0167 0.0200 0.0163 0.0227
95% 0.0243 0.0149 0.0233 0.0285 0.0227 0.0315
99% 0.0431 0.0254 0.0441 0.0531 0.0395 0.0552

Table 5.1.: Quantiles of negative returns that are used as thresholds to construct the point

processes of exceedances under investigation.

The tables 5.2 and 5.3 show maximum log likelihoods and the associated AIC values for
three stocks. The latter leads us to the following conclusions:

e For the low threshold, the more general Weibull model does not provide much im-
provement compared to the EACD model (if any), irrespective of the order of the
model (i.e. the memory). The result holds for even higher orders as well.

e For both higher thresholds, the WACD models outperform the EACD models.

e However, evidence for the appropriate order of the WACD models is ambiguous. For
the IBM and GM stocks, the WACD(1,1) model appears to be of sufficient order. For
the GE stock and especially the 0.99 quantile threshold, the inclusion of durations
with lag 2 leads to a substantial improvement of the fit. However, inclusion of yet
more lags does not provide any further improvement.

The first result is intuitive in principle since the lower the threshold is chosen, the more
the resulting point process has to resemble a homogeneous Poisson process because of the
very nature of the data, though the characterization of the 0.9 quantile as "low” is not
that evident indeed. The stylized fact of a decaying intensity discussed earlier is captured
by the WACD model only and appears to be more appropriate at least for the higher
thresholds. The memory of the duration process seems not to be very long since the order
(p=2, q=1) is favourable according to ACD models’ AICs. In order to assess the reliability
of these results we perform the same residual analysis as for the self-exciting POT models.
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5.2 Empirical results

model data .90 .95 .99
EACD(1,1) IBM | -4210.8191 -2465.6422 -679.9352
WACD(1,1) IBM | -4210.1167 -2436.0797 -643.1026
EACD(2,1) IBM | -4209.9843 -2465.6856 -677.7949
WACD(2,1) IBM | -4209.3232 -2436.1437 -642.3329
EACD(1,1) GE | -4187.6044 -2383.3849 -651.0213
WACD(1,1) GE | -4186.2518 -2381.0740 -603.0535
EACD(2,1) GE | -4187.5809 -2381.7651 -633.9026
WACD(2,1) GE | -4186.2288 -2379.6575 -592.4614
EACD(1,1) GM | -4148.9296 -2346.2637 -552.7331
WACD(1,1) GM | -4148.7254 -2334.4298 -543.3283
EACD(2,1) GM | -4147.5675 -2347.6047 -549.5884
WACD(2,1) GM | -4147.3414 -2335.2118 -541.6241

Table 5.2.: Log likelihood values at the ML estimate for the thresholds marked by the 0.9
/ 0.95 / 0.99 quantiles of negative log returns of IBM, GE and GM.

model data .90 .95 .99
EACD(1,1) IBM | 8427.6383 4937.2843 1365.8704
WACD(1,1) IBM | 8428.2333 4880.1593 1294.2052
EACD(2,1) IBM | 8427.9686 4939.3712 1363.5899
WACD(2,1) IBM | 8428.6464 4882.2874 1294.6659
EACD(1,1) GE | 8381.2089 4772.7698 1308.0426
WACD(1,1) GE | 8380.5036 4770.1481 1214.1071
EACD(2,1) GE | 8383.1618 4771.5302 1275.8052
WACD(2,1) GE | 8382.4576 4769.3151 1194.9227
EACD(1,1) GM | 8303.8591 4698.5275 1111.4661
WACD(1,1) GM | 8305.4507 4676.8597 1094.6567
EACD(2,1) GM | 8303.1350 4703.2093 1107.1767
WACD(2,1) GM | 8304.6828 4680.4236 1093.2482

Table 5.3.: AIC values for the thresholds marked by the 0.9 / 0.95 / 0.99 quantiles of
negative log returns of IBM, GE and GM.
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5.3 Goodness of fit
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Figure 5.5.: Implied conditional intensities for the EACD(1,1) model and events being the
10 (5, 1) percent largest daily losses of the IBM stock.

5.3. Goodness of fit

In order to examine the goodness of fit of the models, i.e. their ability to reproduce the
temporal structure of occurrence times, again the strategy of Ogata (1988) is chosen. This
means that we do not examine the residuals of the actual ACD models but the residual
process constituted by the implied intensities instead.

We recall from (4.2) that the points of the cumulative intensity process

Alt:) = /0 X3 (s)ds

fori =1,...,N(T) constitute a homogeneous Poisson process of rate 1 on an interval
[0, N(T')] being a subset of a transformed time axis. The resulting property of exponen-
tially distributed durations establishes the applicability of the Kolmogorov—Smirnov test.
Evidence is quite unambiguous this time: all p—values indicate that the null hypothesis is
rejected, neither the EACD nor the WACD yield a good fit to the data.
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Figure 5.6.: Implied conditional intensities for the WACD(1,1) model and events being the

10 (5, 1) percent largest daily losses of the IBM stock.
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Figure 5.7.: Residual processes for the EACD(1,1) model and events being the 10 (5, 1)
percent largest daily losses of the IBM stock.
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Figure 5.8.: Residual processes for the WACD(1,1) model and events being the 10 (5, 1)
percent largest daily losses of the IBM stock.

58



Summary, conclusions and perspectives

In this section, major results are summarized, economic implications are discussed, and
perspectives of further research are outlined.

Table 6.1 contrasts central features of self-exciting POT and ACD models that are
discussed in detail within the chapters 3 to 5.

The goodness—of-fit assessment using the residual process of Ogata (1988) strongly sup-
ports the self-exciting models which are appropriate at least for higher thresholds. None of
the ACD models is able to perform similarly well, the null hypothesis of a Poisson residual
process with rate 1 is rejected for all ACD models assessed and all thresholds. However,
the endeavour of estimating a conditional Value-at—Risk via self-exciting POT models
can be cautiously described as unsuccessful, either — its predictions are outperformed
even by an unconditional Gaussian model. This result might partly be caused by the
inappropriateness of the GPD model: mean excess plots suggest that even a threshold of
0.05 might not be sufficiently high for three of the datasets. Nevertheless, the main reason
for the bad performance is the inability of extreme events to speak for all returns. The
results become much worse using yet higher thresholds, although for the extreme events
itselves the GPD model as well as the point process model are successful according to the
goodness—of—fit tests.

Generalizations of ACD models mostly concern the monotonicity assumption of the
intensity, but this constraint appears to be appropriate for daily exceedance data. Within
transaction data applications the phenomenon of a delay in information processing might
be common leading to a local maximum of the implied hazard apart from zero. In case of
daily data it can be assumed that this delay is not very important, the stylized facts can
be captured by a model with monotonic intensity.

From an economist’s point of view, the possibility of separate analyses of gains and losses
is very appealing. We have shown that the conditional intensity is differently affected
by exceedances of positive and negative returns. Extreme positive returns increase the
probability of further extreme positive returns in the near future according to their size
— even very high gains affect the probability of further very high gains—, while negative
returns lose this predictive property above some level. Moreover, this level appears to be
determined by an absolute threshold size. Although we do not have any information on
an individual market participant’s level, this might imply that market participants’ loss
aversion is inelastic from a certain threshold on. This phenomenon is indeed known from
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Aspect SEPP models ACD models

Main focus estimation of monotonously | estimation of conditional du-
decaying conditional intensity | rations
function

Role of the inten- | explicitely modelled implicitely modelled

sity

Role of durations | implicitely modelled explicitely modelled

Covariate infor- | time elapsed + mark size, | former durations and condi-

mation potentially further influences | tional durations (autoregres-
(marks) possible sion), further influences possi-

ble
Memory infinite usually short, depending on

the order of the model

Table 6.1.: Comparison self-exciting PP vs. ACD models

behavioral economics and, e.g., incorporated within prospect theory.! However, it should
not be concealed that such diagnoses based on one data point per day are somewhat
speculative.

The self-exciting point process models have large potential to be expanded and refined.
More general functional forms of the conditional intensity are in principle possible, e.g.
via time dependent parameters. Therefore, the stability of parameter estimates has to
be examined which can be done using the model scores (Zeileis and Hornik (2007)). On
the other hand, restrictions of the memory of the process might simplify the estimation
without loss of predictive power. Further covariate influences such as market liquidity
could enter the model as marks.

In order to use self-exciting POT models for risk managment purposes, combinations
of estimated intensities for several thresholds might improve VaR estimates towards com-
petitiveness with other models.

'See Barberis and Thaler (2002) for an overview and Benartzi and Thaler (1995) for an application of
Tversky’s prospect theory to the equity premium puzzle.
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Implementation of self—exciting models

The self-exciting models introduced in chapter 77 were estimated using functions based
on the R package QRM1ib, which is the R implementation of Alexander McNeils’s S-Plus
library accompanying McNeil, Frey, and Embrechts (2005).

All self-exciting point processes considered have something in common: their conditional
intensity A*(t) = p + ¥v*(-) is of Hawkes type, hence it has the main ingredient

vty = >t —T; X, —w),
§:0<Ty<t

whereas the choice of (s, x) determines the specific model, e.g. "Hawkes” or "ETAS” in
McNeil’s terminology.

As was pointed out in chapter 3, Hawkes—type models and ETAS models are defined
and distinguished somewhat differently from the earthquake literature they were adopted
from. Moreover, there are some differences between the model formulae presented in
Chavez-Demoulin, Davison, and McNeil (2005) and the book accompanied by the package
(McNeil, Frey, and Embrechts (2005), see p. 306 therein) on the one hand and McNeil’s
implementation on the other. The formulae from both the book and the C subroutines
used within QRM1ib are shown in table A.1.

Remarkably, model estimation with the R implementations of the respective functions
n(s,x) presented in McNeil, Frey, and Embrechts (2005) make the model estimation un-
feasible (singular hessian within the numerical optimization routine) in even more cases
than before, presumably because of the parameter(s) within the exponential function.
In general such difficulties with numerical optimization of Hawkes—type likelihoods are a
well-known fact according to Daley and Vere-Jones (2003).

The sensitivity of estimation practicability was inspected with several directions in view.
Smaller intervals might be preferable in presence of structural breaks that are not captured
by — e.g — time dependent parameters. Larger intervals might be necessary if the method

model name ‘ QRM book ‘ QRM1ib implementation

Hawkes n(s,x) = exp(dx — s) n(s,z) = (1 + dx)exp(—~s)
BTAS | 7(s2) = exp(02)(s + 7) D | (s,2) = (11 a)(1 + 2) #+D

Table A.1.: Model formulae in McNeil, Frey, and Embrechts (2005) vs. implementation
within the QRM1ib package in R
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is very wasteful of data. However, the feasibility of estimation does not appear to depend
on the width of the interval.

Moreover, it does not appear to depend larglely on the optimization method chosen. The
numerical problems could not be remediated by using alternate optimization algorithms,
either. The QRM1ib implementation uses optimization using PORT routines (R function
nlminb within the stats package, a quasi Newton optimizer).! The Nelder-Mead algo-
rithm essentially yields the same results — they especially suffer from the same numerical
difficulties for the same models as the PORT optimization. Several further optimizers —
including BFGS that was preferable within ACD model estimation — do converge even
less often. The sensitivity to starting values for the parameters is not substantial.

!The PORT documentation is available at http://netlib.bell-labs.com/cm/cs/cstr/153.pdf.
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Model tables

B.1. Losses, thresholds 0.01, 0.02, 0.03
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B.2 Losses, thresholds equalling 0.90 (0.95, 0.99) quantile
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B.3 Gains, thresholds 0.01, 0.02, 0.03
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B.4 Gains, thresholds equalling 0.90 (0.95, 0.99) quantile
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B.4 Gains, thresholds equalling 0.90 (0.95, 0.99) quantile
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Likelihood ratio tests

C.1. Losses, thresholds 0.01, 0.02, 0.03

Question 1: Is the intensity time—dependent?

dataset threshold pvalue
DJTA 0.01 0.00
DJIA 0.02 0.00
DJIA 0.03 0.00
GE 0.01 0.00
GE 0.02 0.00
GE 0.03 0.00
IBM 0.01 0.00
IBM 0.02 0.00
IBM 0.03 0.00
KO 0.01 0.00
KO 0.02 0.00
KO 0.03 0.00
BA 0.01 0.00
BA 0.02 0.00
BA 0.03 0.00
GM 0.01 0.00
GM 0.02 0.00
GM 0.03 0.00

Table C.1.: P—values for the likelihood ratio tests for time—varying intensities. The model

under the null hypothesis is the homogeneous Poisson model, the alternative

model is the simplest self-exciting ground model (simple Hawkes model with-

out mark influence). In this case, the LR distribution exhibits two degrees of

freedom.
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C.1 Losses, thresholds 0.01, 0.02, 0.03

Question 2: Do exceedance sizes affect the intensity?

dataset threshold pvalue

dji 0.01 0.03
dji 0.02 0.07
dji 0.03 0.86
ge 0.01 0.00
ge 0.02 0.03
ge 0.03 1.00
ibm 0.01 0.00
ibm 0.02 0.22
ibm 0.03 0.74
€oCo 0.01 0.00
coco 0.02 0.15
coCo 0.03 0.69
bo 0.01 0.00
bo 0.02 0.02
bo 0.03 0.16
gm 0.01 0.00
gm 0.02 0.01
gm 0.03 0.31

Table C.2.: P—values for the likelihood ratio tests for the presence of an influence of mark
sizes on the intensity. Therefore, the simple Hawkes model without mark
influence is tested against the simple Hawkes model with mark influence (rep-
resented by the parameter delta). For the lowest of the investigated thresholds
such an influence clearly exists, contrary to the the highest threshold. Evidence
for w = 0.02 is not definite.
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C.1 Losses, thresholds 0.01, 0.02, 0.03

Question 3: Are exceedances time—dependent?

dataset threshold pvalue

dji 0.01 0.00
dji 0.02 0.00
dji 0.03 0.00
ge 0.01 0.00
ge 0.02 0.00
ge 0.03 0.00
ibm 0.01 0.00
ibm 0.02 0.00
ibm 0.03 0.00
€oCo 0.01 0.00
coCo 0.02 0.00
coCo 0.03 0.03
bo 0.01 0.00
bo 0.02 0.00
bo 0.03 0.00
gm 0.01 0.00
gm 0.02 0.00
gm 0.03 0.00

Table C.3.: P—values for the likelihood ratio tests for the predictability property using the
marks part of the likelihood which is conditionally independent of the times
part (ground model without mark influence). For all datasets and thresholds,
there is clear evidence in favour of the predictability property, i.e. the excess
distribution appears to be time—dependent.
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C.2 Losses, thresholds equalling 0.90 (0.95, 0.99) quantile

C.2. Losses, thresholds equalling 0.90 (0.95, 0.99) quantile

Question 1: Is the intensity time—dependent?

dataset threshold pvalue

DJIA 0.01 0.00
DJIA 0.01 0.00
DJIA 0.03 0.00
GE 0.02 0.00
GE 0.02 0.00
GE 0.04 0.00
IBM 0.02 0.00
CO 0.02 0.00
CO 0.02 0.00
CO 0.04 0.00
BO 0.02 0.00
BO 0.03 0.00
GM 0.02 0.00
GM 0.03 0.00
GM 0.05 0.00

Table C.4.: P—values for the likelihood ratio tests for time—varying intensities. The model
under the null hypothesis is the homogeneous Poisson model, the alternative
model is the simplest self-exciting ground model (simple Hawkes model with-
out mark influence). In this case, the LR distribution exhibits two degrees of
freedom.
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C.2 Losses, thresholds equalling 0.90 (0.95, 0.99) quantile

Question 2: Do exceedance sizes affect the intensity?

dataset threshold pvalue

DJIA 0.01 0.04
DJIA 0.01 0.03
DJIA 0.03 0.10
GE 0.02 0.04
GE 0.02 0.10
GE 0.04 1.00
IBM 0.02 0.07
CcO 0.02 0.01
CO 0.02 0.20
CO 0.04 1.00
BO 0.02 0.02
BO 0.03 0.57
GM 0.02 0.01
GM 0.03 0.21
GM 0.05 1.00

Table C.5.: P—values for the likelihood ratio tests for the presence of an influence of mark
sizes on the intensity. Therefore, the simple Hawkes model without mark
influence is tested against the simple Hawkes model with mark influence (rep-
resented by the parameter delta). For the lowest of the investigated thresholds
such an influence clearly exists, contrary to the the highest threshold. Evidence
for w = 0.02 is not definite.
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C.2 Losses, thresholds equalling 0.90 (0.95, 0.99) quantile

Question 3: Are exceedances time—dependent?

dataset threshold pvalue

DJIA 0.01 0.00
DJIA 0.01 0.00
DJIA 0.03 0.00
GE 0.02 0.00
GE 0.02 0.00
GE 0.04 0.02
IBM 0.02 0.00
CcO 0.02 0.00
CO 0.02 0.00
CO 0.04 0.16
BO 0.02 0.00
BO 0.03 0.01
GM 0.02 0.00
GM 0.03 0.00
GM 0.05 0.00

Table C.6.: P—values for the likelihood ratio tests for the predictability property using the
marks part of the likelihood which is conditionally independent of the times
part (ground model without mark influence). For all datasets and thresholds,
there is clear evidence in favour of the predictability property, i.e. the excess
distribution appears to be time—dependent.
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C.3 Gains, thresholds 0.01, 0.02, 0.03

C.3. Gains, thresholds 0.01, 0.02, 0.03

Question 1: Is the intensity time—dependent?

dataset threshold pvalue

DJIA 0.01 0.00
DJIA 0.02 0.00
DJIA 0.03 0.00
GE 0.02 0.00
GE 0.03 0.00
CO 0.02 0.00
CO 0.03 0.00
GM 0.01 0.00
GM 0.02 0.00
GM 0.03 0.00

Table C.7.: P—values for the likelihood ratio tests for time—varying intensities. The model
under the null hypothesis is the homogeneous Poisson model, the alternative
model is the simplest self-exciting ground model (simple Hawkes model with-
out mark influence). In this case, the LR distribution exhibits two degrees of

freedom.

97



C.3 Gains, thresholds 0.01, 0.02, 0.03

Question 2: Do exceedance sizes affect the intensity?

dataset threshold pvalue

DJIA 0.01 0.00
DJIA 0.02 0.00
DJIA 0.03 0.01
GE 0.02 0.00
GE 0.03 0.00
CO 0.02 0.00
CO 0.03 0.00
GM 0.01 0.00
GM 0.02 0.00
GM 0.03 0.00

Table C.8.: P—values for the likelihood ratio tests for the presence of an influence of mark
sizes on the intensity. Therefore, the simple Hawkes model without mark
influence is tested against the simple Hawkes model with mark influence (rep-
resented by the parameter delta). For the lowest of the investigated thresholds
such an influence clearly exists, contrary to the the highest threshold. Evidence
for u = 0.02 is not definite.
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C.3 Gains, thresholds 0.01, 0.02, 0.03

Question 3: Are exceedances time—dependent?

dataset threshold pvalue

DJIA 0.01 0.00
DJIA 0.02 0.00
DJIA 0.03 0.04
GE 0.02 0.00
GE 0.03 0.00
CO 0.02 0.00
CO 0.03 0.00
GM 0.01 0.00
GM 0.02 0.00
GM 0.03 0.00

Table C.9.: P—values for the likelihood ratio tests for the predictability property using the
marks part of the likelihood which is conditionally independent of the times
part (ground model without mark influence). For all datasets and thresholds,
there is clear evidence in favour of the predictability property, i.e. the excess
distribution appears to be time—dependent.
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C.4 Gains, thresholds equalling 0.90 (0.95, 0.99) quantile

C.4. Gains, thresholds equalling 0.90 (0.95, 0.99) quantile

Question 1: Is the intensity time—dependent?

dataset threshold pvalue

DJIA 0.01 0.00
DJIA 0.02 0.00
DJIA 0.03 0.00
GE 0.02 0.00
GE 0.02 0.00
IBM 0.02 0.00
IBM 0.03 0.00
CO 0.02 0.00
CO 0.02 0.00
CO 0.04 0.00
BO 0.02 0.00
BO 0.03 0.00
BO 0.06 0.00
GM 0.02 0.00
GM 0.03 0.00
GM 0.05 0.00

Table C.10.: P—values for the likelihood ratio tests for time-varying intensities. The model
under the null hypothesis is the homogeneous Poisson model, the alternative
model is the simplest self-exciting ground model (simple Hawkes model with-
out mark influence). In this case, the LR distribution exhibits two degrees of
freedom.
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C.4 Gains, thresholds equalling 0.90 (0.95, 0.99) quantile

Question 2: Do exceedance sizes affect the intensity?

dataset threshold pvalue

DJIA 0.01 0.00
DJIA 0.02 0.00
DJIA 0.03 0.00
GE 0.02 0.00
GE 0.02 0.00
IBM 0.02 0.00
IBM 0.03 0.00
CcO 0.02 0.00
CO 0.02 0.00
CO 0.04 0.02
BO 0.02 0.00
BO 0.03 0.00
BO 0.06 0.14
GM 0.02 0.00
GM 0.03 0.00
GM 0.05 0.00

Table C.11.: P—values for the likelihood ratio tests for the presence of an influence of
mark sizes on the intensity. Therefore, the simple Hawkes model without
mark influence is tested against the simple Hawkes model with mark influ-
ence (represented by the parameter delta). For the lowest of the investigated
thresholds such an influence clearly exists, contrary to the the highest thresh-
old. Evidence for u = 0.02 is not definite.
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C.4 Gains, thresholds equalling 0.90 (0.95, 0.99) quantile

Question 3: Are exceedances time—dependent?

dataset threshold pvalue

DJIA 0.01 0.00
DJIA 0.02 0.00
DJIA 0.03 0.21
GE 0.02 0.00
GE 0.02 0.00
IBM 0.02 0.00
IBM 0.03 0.00
CcO 0.02 0.00
CO 0.02 0.00
CO 0.04 0.46
BO 0.02 0.00
BO 0.03 0.09
BO 0.06 0.07
GM 0.02 0.00
GM 0.03 0.00
GM 0.05 0.00

Table C.12.: P—values for the likelihood ratio tests for the predictability property using the
marks part of the likelihood which is conditionally independent of the times
part (ground model without mark influence). For all datasets and thresholds,
there is clear evidence in favour of the predictability property, i.e. the excess
distribution appears to be time-dependent.
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Properties of the homogeneous Poisson process

To illustrate the connection of exponentially distributed durations and Poisson distributed
event numbers within some period A, we start with the gamma distribution. The density
of the gamma (Pearson—type II) distribution with shape parameter a > 0 and (inverse)
scale parameter 3 can be written

oze—,B:E
Ja,p(x) = xo‘_lﬂr(a) , (x > 0). (D.1)

The exponential density is a special case for oo = 1.

Gamma distribution functions G, g are sum-reproductive, i.e. the sum of m independent
gamma rvs with parameters oy, §; is a gamma rv with parameters a; + ... + a,, and
01+ ...+ Bm. Moreover, gamma dfs approach the normal df as a — oo.

For positive integers & = n+1, the sum-reproductivity property leads to the distribution
of the sum of n + 1 iid exponential rvs X;. When assuming 3; = 3, the gamma df can be
written

n i
Gunpla) =13 I o), (D.2)
i=0

and is also called the Erlang distribution in this special case.

We now consider the homogeneous Poisson process N (t) = {number of events in (0, ]}
with parameter \, whereas t; denotes the time of the ith event. From (D.2) we can deduce

P(N(t) = k) = Pty <t tgp > t)
= P(ty <t) — P(tp1 < 1)

()\]:')k oM

Hence, the number of events N(t) is a Poisson rv with parameter A\t. The expected
number of events E[N(t)] = At grows linearly with the width of the observed interval.
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