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Abstract

Boosting is one of the most important methods for fitting regression mod-
els and building prediction rules. A notable feature of boosting is that the
technique can be modified such that it includes a built-in mechanism for
shrinking coefficient estimates and variable selection. This regularization
mechanism makes boosting a suitable method for analyzing data charac-
terized by small sample sizes and large numbers of predictors. We extend
the existing methodology by developing a boosting method for prediction
functions with multiple components. Such multidimensional functions oc-
cur in many types of statistical models, for example in count data models
and in models involving outcome variables with a mixture distribution.
As will be demonstrated, the new algorithm is suitable for both the esti-
mation of the prediction function and regularization of the estimates. In
addition, nuisance parameters can be estimated simultaneously with the
prediction function.

Keywords: Gradient boosting, multidimensional prediction function, scale pa-
rameter estimation, variable selection, count data model.
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1 Introduction

A common problem in statistical research is the development of model fitting
and prediction techniques for the analysis of high-dimensional data. High-
dimensional data sets, which are characterized by relatively small sample sizes
and large numbers of variables, arise in many fields of modern research. Most no-
tably, advances in genomic research have led to large sets of gene expression data
where sample sizes are considerably smaller than the number of gene expression
measurements
(Golub et al. 1999, Dudoit et al. 2002). A consequence of this “p > n” situation
is that standard techniques for prediction and model fitting (such as maximum
likelihood estimation) become infeasible. Moreover, high-dimensional data sets
usually involve the problem of separating noise from information, i.e., of select-
ing a small number of relevant predictors from the full set of variables.

In a regression framework, the problem of analyzing high-dimensional data
can be formulated as follows: Consider a data set containing the values of an
outcome variable Y and predictor variables X1, . . . , Xp. Although Y will be
one-dimensional in most applications, we explicitly allow for multidimensional
outcome variables. The objective is to model the relationship between Y and
X := (X1, . . . , Xp)⊤, and to obtain an “optimal” prediction of Y given X.
Usually, this is accomplished by optimizing an objective function ρ(Y , f, σ) ∈ R
over a prediction function f (depending on X) and a set of scale parameters
(denoted by σ). Linear regression with a continuous outcome variable Y ∈ R is
a well-known example of this approach: Here, ρ corresponds to the least squares
objective function, f is a parametric (linear) function of X, and σ ∈ R+ is the
residual variance.

In order to address the issue of analyzing high-dimensional data sets, a vari-
ety of regression techniques have been developed over the past years (see, e.g.,
Hastie et al. 2009). Many of these techniques are characterized by a built-in
mechanism for “regularization”, which means that shrinkage of coefficient es-
timates or selection of relevant predictors is carried out simultaneously with
the estimation of the model parameters. Both shrinkage and variable selection
will typically improve prediction accuracy: In case of shrinkage, coefficient esti-
mates tend to have a slightly increased bias but a decreased variance, while in
case of variable selection, overfitting the data is avoided by selecting the most
informative predictors only. Note that regularization is not only useful for an-
alyzing high-dimensional data but also tends to improve prediction accuracy in
low-dimensional settings where p ≤ n.

Important examples of recently developed regularization techniques are gra-
dient boosting (which will be considered in this paper) and L1 penalized estima-
tion. Gradient boosting (Breiman 1998, 1999, Friedman et al. 2000, Friedman
2001) is an iterative method for obtaining statistical model estimates via gradi-
ent descent techniques. A key feature of gradient boosting is that the procedure
can be modified such that variable selection is carried out in each iteration
(Bühlmann and Yu 2003, Bühlmann 2006). As a result, the final boosting fit
typically depends on only a small subset of predictor variables but can still be
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interpreted as the fit of a regression model. The possibility of making estimates
interpretable is in fact a major strength of gradient boosting: Although boosting
algorithms are tuned to optimize prediction accuracy, uninterpretable “black-
box” predictions (which are obtained, e.g., from the random forest method,
Breiman 2001) can be avoided. L1 penalized estimation techniques have been
developed for regression models with a linear prediction function. Due to the
structure of the L1 penalty, a number of coefficient estimates will typically be-
come zero, so that the procedure implicitly results in a selection of the most
informative predictor variables. The most important examples of L1 penalized
techniques are the Lasso and its extensions (Tibshirani 1996, Tibshirani et al.
2005, Zou 2006, Yuan and Lin 2006), SCAD procedures (Fan and Li 2001) and
the Elastic Net methodology (being a combination of L1 and L2 penalized re-
gression, see Zou and Hastie 2005). By introducing the LARS algorithm for
linear prediction functions, Efron et al. (2004) have embedded boosting and
L1 penalized techniques into a more general framework (LARS will, however,
not be considered in this paper). Both boosting and L1 penalized estimation
techniques can be applied to a large variety of statistical problems, such as re-
gression, classification and time-to-event analysis (Bühlmann and Hothorn 2007,
Park and Hastie 2007). Besides being computationally efficient, the techniques
are competitive with methods based on a separation of the variable selection
and model fitting processes (see, e.g., Segal 2006).

A limitation of classical boosting and L1 penalized estimation approaches is
that the techniques are designed for statistical problems involving a one-dimen-
sional prediction function only. In fact, boosting and L1 penalized estimation
are suitable for fitting many common statistical models, such as linear or logistic
regression. However, there is a variety of important statistical problems that
cannot be reduced to estimating a one-dimensional prediction function only.
This is particularly true when scale parameters or nuisance parameters have to
be estimated simultaneously with the prediction function, or when the predic-
tion function itself depends on multiple components. Typical examples of such
multidimensional estimation problems are:

(a) Classification with multiple outcome categories. Regressing outcome vari-
ables with a multinomial distribution on a set of predictor variables is a natural
extension of the binary classification problem. In the setting of a multino-
mial logit model, each of the outcome categories is associated with a separate
component of the prediction function. Thus, if there is a total number of K
possible outcome categories, a K-dimensional prediction function has to be es-
timated. Hastie et al. (2009) have addressed this problem by constructing a
gradient boosting algorithm for multiclass prediction (see Algorithm 10.4 in
Hastie et al. 2009). Apart from multiclass gradient boosting, various other
multiclass boosting procedures have been discussed in the literature, see, e.g.,
Freund and Schapire (1997), Schapire and Singer (1999), Zhu et al. (2005), Li
(2006), Sun et al. (2007) and the literature cited there.

(b) Regression models for count data. Apart from the classical Poisson
model, count data models are typically used to address problems such as overdis-
persion or excessive amounts of zero counts. A typical example in this context
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is negative binomial regression, where the prediction function has to be esti-
mated simultaneously with a scale parameter used to model overdispersion. If
excessive amounts of zero counts have to be taken into account, it is common
to use zero-inflated Poisson or negative binomial models (see Hilbe 2007). With
models of this type, the outcome variable is assumed to be a mixture of a zero-
generating (Bernoulli) process and a counting process. As a consequence, using
zero-inflated Poisson or negative binomial models involves the estimation of a
two-dimensional prediction function (where the first component of the prediction
function is used to model the zero-generating process and the second compo-
nent is used to model the counting process). It is important to note that each
of the two components may depend on different sets of predictor variables. Fur-
thermore, fitting zero-inflated negative binomial models involves the estimation
of an additional scale parameter, where both the two-dimensional prediction
function and the scale parameter have to be estimated simultaneously.

Obviously, the examples described above are special cases of a more general
estimation problem involving prediction functions with multiple components.
We will address this problem by developing a boosting algorithm for multidi-
mensional prediction functions. The proposed algorithm is based on the classical
gradient boosting method introduced by Friedman (2001) but is modified such
that both parameter estimation and variable selection can be carried out in each
component of the multidimensional prediction function. Instead of “descending”
the gradient only in one direction, the algorithm computes partial derivatives of
the objective function with respect to the various components of the prediction
function. In a next step, the algorithm cycles through the partial derivatives,
where each component of the prediction function is successively updated in the
course of the cycle. This procedure can be modified such that variable selection
is carried out in each step of the cycle. If necessary, updates of scale parameters
can be obtained at the end of the cycle. This is accomplished by using the
current value of the prediction function as an offset value.

As we will demonstrate, the new algorithm constitutes a flexible approach
to model fitting in both low-dimensional and high-dimensional data settings.
Moreover, the algorithm shares the favorable properties of the classical boosting
approach when it comes to efficiency and prediction accuracy. In the special
case of a one-dimensional prediction function, the new approach coincides with
the original boosting algorithm proposed by Friedman (2001). In addition, it
generalizes the work by Schmid and Hothorn (2008b) who developed a boosting
algorithm for parametric survival models with a scale parameter. In case of
a multinomial logit model, there is a direct correspondence between the new
algorithm and the multiclass gradient descent procedure suggested by Hastie
et al. (2009).

The rest of the paper is organized as follows: In Section 2, the new algo-
rithm is presented in detail, along with a number of technical details involved in
choosing appropriate tuning parameters. The characteristics of the algorithm
are demonstrated in Section 3 where an example from epidemiological research is
discussed and where the results of a simulation study are presented. A summary
of the paper is given in Section 4.
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2 Boosting with multidimensional prediction func-
tions

Let (X1, Y1), . . . , (Xn, Yn) be a set of independent realizations of the random
variable (X, Y ), where X is a p-dimensional vector of predictor variables and
Y is a (possibly multidimensional) outcome variable. Define X := (X1, . . . , Xn)
and Y := (Y1, . . . , Yn). The aim is to estimate the K-dimensional prediction
function f∗ ∈ RK and the L-dimensional set of scale parameters σ∗ ∈ RL, which
are defined by

(f∗, σ∗) = (f∗1 , . . . , f∗K , σ∗1 , . . . , σ∗L)

:= argmin
f,σ

EY ,X

[
ρ(Y , f(X), σ)

]
. (1)

The objective function (or “loss function”) ρ is assumed to be differentiable with
respect to each of the components of f = (f1, . . . , fK).

Usually, in the boosting framework, f∗ and σ∗ are estimated by minimizing
the empirical risk

∑n
i=1 ρ(Yi, f(Xi), σ) over f and σ = (σ1, . . . , σL). Since the

components of f∗ may have different degrees of complexity, we define a K-
dimensional vector of stopping values mstop = (mstop,1, . . . , mstop,K) that will be
used to determine the number of iterations of the boosting algorithm (the choice
of mstop will be discussed later). We introduce the following multidimensional
extension of the gradient boosting approach developed by Friedman (2001):

1. Initialize the n-dimensional vectors f̂
[0]
1 , . . . , f̂

[0]
K with offset values, e.g.,

f̂
[0]
1 = 0, . . . , f̂

[0]
K = 0. Further initialize the one-dimensional scale param-

eter estimates σ̂
[0]
1 , . . . , σ̂

[0]
L with offset values, e.g., σ̂

[0]
1 = 1, . . . , σ̂

[0]
L = 1.

(Alternatively, the maximum likelihood estimates corresponding to the
unconditional distribution of Y could be used as offset values.)

2. For each of the K components of f specify a base-learner, i.e., a regression
estimator with one input variable and one output variable. Set m = 0.

3. Increase m by 1.

4. (a) Set k = 0.

(b) Increase k by 1. If m > mstop,k proceed to step 4(f). Else compute
the negative partial derivative − ∂ρ

∂fk
and evaluate at

f̂ [m−1](Xi) =
(
f̂

[m−1]
1 (Xi), . . . , f̂

[m−1]
K (Xi)

)
,

σ̂[m−1] =
(
σ̂

[m−1]
1 , . . . , σ̂

[m−1]
L

)
,
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i = 1, . . . , n. This yields the negative gradient vector

U
[m−1]
k =

(
U

[m−1]
i,k

)
i=1,...,n

:=
(
− ∂

∂fk
ρ
(
Yi, f̂

[m−1](Xi), σ̂[m−1]
))

i=1,...,n

.

(c) Fit the negative gradient vector U
[m−1]
k to each of the p components

of X (i.e., to each predictor variable) separately by using p times the
base-learner (regression estimator) specified in step 2. This yields p
vectors of predicted values, where each vector is an estimate of the
negative gradient vector U

[m−1]
k .

(d) Select the component of X which fits U
[m−1]
k best according to a

pre-specified goodness-of-fit criterion. Set Û
[m−1]
k equal to the fitted

values of the corresponding best model fitted in 4(c).

(e) Update f̂
[m−1]
k ← f̂

[m−1]
k +ν Û

[m−1]
k , where 0 < ν ≤ 1 is a real-valued

step length factor.

(f) For k = 2, . . . , K repeat steps 4(b) to 4(e). Update f̂ [m] ← f̂ [m−1].

5. (a) Set l = 0.

(b) Increase l by 1.

(c) Plug f̂ [m] and σ̂
[m−1]
1 , . . . , σ̂

[m−1]
l−1 , σ̂

[m−1]
l+1 , . . . , σ̂

[m−1]
L into the empiri-

cal risk function
∑n

i=1 ρ(Yi, f, σ) and minimize the empirical risk over
σl. Set σ̂

[m−1]
l equal to the newly obtained estimate of σl.

(d) For l = 2, . . . , L repeat steps 5(b) and 5(c). Update σ̂[m] ← σ̂[m−1].

6. Iterate Steps 3 to 5 until m > mstop,k for all k ∈ {1, . . . , K}.

From the above algorithm it is easily seen that each component fk, k = 1, . . . , K,
is updated by

1. using the current estimates of the other components f∗1 , . . . , f∗k−1,
f∗k+1, . . . , f

∗
K and σ∗1 , . . . , σ∗L as offset values (step 4(b)) and by

2. adding an estimate of the true negative partial derivative U
[m−1]
k to the

current estimate of f∗k (step 4(e)).

Note that this strategy is similar to the backfitting strategy developed by Hastie
and Tibshirani (1990). With both strategies, components are updated succes-
sively by using estimates of the other components as offset values. However, in
contrast to gradient boosting (where estimates of f∗ are only slightly modified
in each iteration), backfitting determines a totally new estimate of f∗ in every
cycle.
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Initialize: f̂
[0]
1 , . . . , f̂

[0]
K and σ̂

[0]
1 , . . . , σ̂

[0]
L with offset values.

for k = 1 to K do
Specify a base-learner for component fk.

end for
Evaluate:

for m = 1 to max(mstop) do
for k = 1 to K do

if m ≤ mstop,k then
(i) Compute − ∂ρ

∂fk
and evaluate at f̂ [m−1](Xi), σ̂[m−1], i =

1, . . . , n. This yields U
[m−1]
k .

(ii) Fit U
[m−1]
k to each of the p components of X separately by

using p times the base-learner.

(iii) Select the component of X which fits U
[m−1]
k best. Set Û

[m−1]
k

equal to the fitted values from the best-fitting model.

(iv) Update f̂
[m−1]
k ← f̂

[m−1]
k + ν Û

[m−1]
k .

end if
end for
Update f̂ [m] ← f̂ [m−1].
for l = 1 to L do

Plug f̂ [m] and σ̂
[m−1]
1 , . . . , σ̂

[m−1]
l−1 , σ̂

[m−1]
l+1 , . . . , σ̂

[m−1]
L into the em-

pirical risk function and minimize over σl. Set σ̂
[m−1]
l equal to

the newly obtained estimate of σ∗l .
end for
Update σ̂[m] ← σ̂[m−1].

end for

Figure 1: Gradient boosting with multidimensional prediction functions.

After having obtained an update of f̂ in step 4, the algorithm cycles through
the components of σ, where in each step of the cycle, an update of σl, l =
1, . . . , L, is obtained (step 5). This is accomplished by minimizing the empir-
ical risk (evaluated at the current estimates of the other parameters f∗ and
σ∗1 , . . . , σ∗l−1, σ

∗
l+1, . . . , σ

∗
L) numerically. A summary of the algorithm is given in

Figure 1.
The values of the stopping iterations mstop,1, . . . , mstop,K are the main tun-

ing parameters of the algorithm. In case of classical gradient boosting with only
one dimension K = 1, it has been argued that boosting algorithms should not
be run until convergence. Otherwise, overfits resulting in suboptimal predic-
tion rules would be likely (see Bühlmann and Hothorn 2007). Usually, cross-
validation (CV) techniques are used to determine the value of mstop,1 (i.e.,
mstop,1 is the iteration with lowest predictive risk). In case of the new boost-
ing algorithm with K dimensions, we will use K-dimensional cross-validation,
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i.e., the predictive risk is evaluated on a K-dimensional grid corresponding to
combinations of mstop,1, . . . , mstop,K . This strategy will be further discussed in
Section 3. In principle, many types of cross-validation techniques can be applied
to estimate mstop,1, . . . , mstop,K (leave-one-out CV, k-fold CV, repeated k-fold
CV, bootstrap CV with 0.632 or 0.632+ adjustments, etc.). While it is possi-
ble that different cross-validation techniques may have different effects on the
estimates of the stopping iterations, we will restrict ourselves to using five-fold
cross-validation in this paper.

The choice of the step length factor ν has been shown to be of minor im-
portance with respect to the predictive performance of the classical boosting
algorithm (K = 1). The only requirement is that the value of ν is small
(0 < ν ≤ 0.1), such that a stagewise adaption of the true prediction function
is possible (see Bühlmann and Hothorn 2007 or Schmid and Hothorn 2008a).
In the remainder of the paper, a constant value of ν (= 0.1) will be used for
all K dimensions. In step 4(d) of the algorithm we will use the R2 measure of
explained variation as the goodness-of-fit criterion (since the vectors U

[m−1]
k are

measured on a continuous scale).
As outlined in Section 1, the algorithm combines model estimation with the

selection of the most relevant predictor variables. It is important to note that
the “component-wise” variable selection mechanism introduced in step 4 of the
algorithm is not a necessary feature of boosting algorithms (since, in principle,
any type of regression model could be used to compute estimates of the negative
gradient). However, incorporating variable selection into boosting algorithms
typically increases the efficiency of model estimates and predictions, especially
if p > n (see, e.g., Bühlmann and Yu 2003 or Bühlmann and Hothorn 2007).

In steps 4(c) to 4(e), by using a regression estimator as the base-learner, a
structural relationship between Y and the set of predictors X is established.
Due to the additive structure of the update (step 4(e)), the final estimates of
f∗1 , . . . , f∗K at iterations mstop are fits of an additive model but will depend
only on a subset of the p components of X. In each iteration, the algorithm
selects the basis direction “closest” to the descent direction of the prediction
function (step 4(d)). Since only one element of X is used for updating the
prediction function in step 4(e), the algorithm is applicable even if p > n. The
step length factor ν can be viewed as a regularization factor used for shrinking
the predictions f̂ [m]. In this context, the proposed algorithm can be interpreted
as a “stagewise regression” technique (cf. Efron et al. 2004).

It is easily seen that in case of a one-dimensional prediction function f∗ ≡
f∗1 and an empty set of scale parameters, the boosting algorithm presented
above reduces to the classical gradient descent algorithm developed by Friedman
(2001). Similarly, if f∗ ≡ f∗1 and σ∗ is one-dimensional, the algorithm is a
generalization of the model fitting approach developed by Schmid and Hothorn
(2008b) (where boosting was used for deriving parametric survival prediction
rules). In case of a multinomial logit model with K outcome categories, the
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conditional probability of falling into category k is typically modeled via

P (Y = k|X) =
ef∗k (X)∑K

j=1 ef∗j (X)
. (2)

Thus, by setting σ∗ equal to the empty set and mstop,1 = . . . = mstop,K , the
boosting algorithm introduced above can be used for fitting the multiclass model
defined by (2). If the negative multinomial log likelihood

ρmultinom(Y, f) = −
n∑

i=1

K∑
k=1

I(Yi = k)fk(Xi) +
n∑

i=1

log

 K∑
j=1

efj(Xi)

 (3)

is used as the loss function, the proposed algorithm will give essentially the
same result as the multiclass method suggested by Hastie et al. (2009), Algo-
rithm 10.4.

Finally, the boosting algorithm presented above can easily be modified such
that the components of f are restricted to depend on subsets χ1, . . . , χK ⊂
{X1, . . . , Xp} only. Reducing the predictor spaces in step 4 of the algorithm
adds considerable flexibility to the boosting procedure, since it allows for taking
into account prior knowledge about the dependency between f∗k and Y .

3 Examples

3.1 Modeling nevus counts of preschool children

Nevus counts of children have been established as an important risk factor
for malignant melanoma occurring in later life (Gallagher et al. 1990). To
address this issue in an epidemiologic study, the CMONDE Study Group (Uter
et al. 2004, Pfahlberg et al. 2004) conducted a standardized skin assessment
of consecutive cohorts of preschool children in the German town of Göttingen.
Nevus counts were collected in the course of a mandatory medical examination
prior to school enrollment in 1999 and 2000. For reasons of homogeneity we focus
here on the subset of n = 1235 children examined in 1999. Predictor variables in
the data set included three continuous predictors (age, skin pigmentation, body
mass index) and five categorical predictors (sex, hair color, skin type, color of
iris, degree of freckling). The number of possible combinations of the categories
was equal to 576.

In the following we will use the eight predictor variables to model expected
nevus counts of children. In order to construct accurate predictions of the nevus
counts, identification of relevant covariates is necessary. Also, given the fact that
a relatively large number of categories is involved in the modeling process, some
sort of regularization of the prediction function is desirable. Since the algorithm
introduced in Section 2 can be used to obtain both regularized estimates and an
interpretable prediction function, it is an appropriate technique for addressing
these issues.
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We will compare the prediction accuracy of boosting estimates obtained from
four different loss functions, where each loss function corresponds to a particular
type of count data model:

1. Negative Poisson log likelihood loss. The most popular distribution used
for modeling count data is the Poisson distribution. In the generalized
linear model (GLM) setting (McCullagh and Nelder 1989), Poisson model
estimates are obtained by maximizing the conditional log likelihood

lPo(Y, f1) =
n∑

i=1

Yi · f1(Xi)

−
n∑

i=1

(
log (Yi!) + exp (f1(Xi))

)
(4)

over a one-dimensional prediction function f = f1 (where exp(f1(X)) cor-
responds to the conditional expectation of the outcome variable Y given
the predictors X). Since maximum likelihood estimation tends to become
unstable in the presence of a larger number of categorical predictors, we
use the boosting algorithm introduced in Section 2 for obtaining estimates
of the optimal prediction function f∗. This is accomplished by setting the
loss function ρ equal to the negative Poisson log likelihood and the set of
scale parameters σ equal to the empty set.

2. Negative NB log likelihood loss. The underlying assumptions of the Poisson
model are often too restrictive for capturing the full variability contained
in a data set. A common way to model such overdispersed data is to
consider negative binomial (NB) regression models. The log likelihood of
the negative binomial model is given by

lNB(Y, f1, σ1) =
n∑

i=1

(
log [Γ(Yi + σ1)]− log (Yi!)

)
− n log [Γ(σ1)] +

n∑
i=1

Yi · f1(Xi)

+
n∑

i=1

σ1 log
(

σ1

exp (f1(Xi)) + σ1

)

−
n∑

i=1

Yi log (exp (f1(Xi)) + σ1) ,

(5)

where f = f1 is a one-dimensional prediction function and σ = σ1 is a one-
dimensional scale parameter used for modeling the variance of Y . It is well
known that λ := exp(f1(X)) corresponds to the conditional expectation of
the outcome variable Y given the predictors X, and that the conditional

10



variance of Y |X is given by λ + λ2/σ1. The log likelihood given in (5)
converges to the Poisson log likelihood as σ1 → ∞. In the following
we will use the boosting algorithm introduced in Section 2 for obtaining
estimates of the optimal parameters f∗1 and σ∗1 . This is accomplished by
setting ρ equal to the negative NB log likelihood and σ equal to the scale
parameter σ1 in (5).

3. Negative zero-inflated Poisson log likelihood loss. Excessive amounts of
zero counts, i.e., more zeros than expected in a Poisson or negative bino-
mial model, are a common problem associated with count data. In case
of the CMONDE data, the fraction of zero nevus counts is approximately
9.2%, which is about 20 times as much as the corresponding fraction to be
expected from the unconditional Poisson distribution of the nevus counts
(0.479%). In order to take this problem into account, we additionally fit
a zero-inflated Poisson model to the CMONDE data. The log likelihood
of the zero-inflated Poisson model is given by

lZIPo(Y, f1, f2) = −
∑

i:Yi=0

log
(
1 + ef1(Xi)

)
+

∑
i:Yi=0

log
(
ef1(Xi) + e−ef2(Xi)

)
−

∑
i:Yi>0

log
(
1 + ef1(Xi)

)
+

∑
i:Yi>0

(
Yi · f2(Xi)− log (Yi!)

)
−

∑
i:Yi>0

ef2(Xi) , (6)

where f1 is the predictor of the binomial logit model

P (Z = 0|X) =
ef1(X)

1 + ef1(X)
(7)

with binary outcome variable Z ∈ {0, 1}, and f2 is the predictor of the
Poisson model

P
(
Ỹ = k|X) =

ek·f2(X)

k!
e−ef2(X)

(8)

with Poisson-distributed outcome variable Ỹ . It is easily seen from (6) to
(8) that the zero-inflated Poisson model is a mixture of a point mass at
zero (accounting for an extra amount of zeros) and a Poisson distribution.
For details we refer to Hilbe (2007). Since we want to regularize the esti-
mates of both components of the prediction function, we use the boosting
algorithm introduced in Section 2. This is achieved by setting ρ equal to
the negative log likelihood given in (6) and f = (f1, f2). The set of scale
parameters σ is set equal to the empty set.
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4. Negative zero-inflated NB log likelihood loss. In case of overdispersed data,
modeling additional amounts of zero counts can be accomplished by using
the zero-inflated negative binomial model. The log likelihood of this model
is given by

lZINB(Y, f1, f2, σ1) = −
n∑

i=1

log
(
1 + ef1(Xi)

)
+
∑

i:Yi=0

log

(
ef1(Xi) +

(
ef2(Xi) + σ1

σ1

)−σ1
)

−
∑

i:Yi>0

σ1 log
(

ef2(Xi) + σ1

σ1

)
−
∑

i:Yi>0

Yi log
(
1 + e−f2(Xi) · σ1

)
−
∑

i:Yi>0

(
log (Γ(σ1)) + log (Γ(1 + Yi))

)
+
∑

i:Yi>0

log (Γ(σ1 + Yi)) . (9)

Similar to the zero-inflated Poisson model, the zero-inflated negative bi-
nomial model is a mixture of a point mass at zero (modeled by a binomial
GLM) and a zero-inflated negative binomial regression
model. We apply the new boosting algorithm to the CMONDE data by
setting ρ equal to the negative log likelihood given in (9) and f = (f1, f2).
The set of scale parameters σ is set equal to the scale parameter σ1 in (9).

In order to compare the four models described above, we carried out a bench-
mark study using the CMONDE data. In a first step, the full data set was
randomly split 50 times into pairs of training samples and test samples. Each
training sample contained 1111 observations, i.e., about 90% of the data. In
a next step, the boosting algorithm introduced in Section 2 was used to esti-
mate the parameters of the four count data models. As base-learners, simple
linear regression models were used, so that the components of f̂ became lin-
ear functions of the predictors. As a consequence of this strategy, coefficient
estimates were obtained for each predictor variable. For all components of f ,
variables were selected from the full set of predictors (i.e., no restrictions were
made to the set of predictors at the beginning of the algorithm). In a last
step, the prediction rules obtained from the four models were evaluated using
the 50 test samples. All computations were carried out with the R System for
Statistical Computing (version 2.7.2, R Development Core Team 2008) using
a modification of the glmboost() function in package mboost (version 1.0-4,
Hothorn et al. 2008). In case of the Poisson and negative binomial models, we
ran five-fold cross-validation on the training samples to determine the 50 values
of the stopping iteration mstop,1. In case of the zero-inflated Poisson and neg-
ative binomial models, this approach had to be extended: Since the prediction
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functions of these two models are two-dimensional, it is possible for the com-
ponents of the prediction functions to have different degrees of complexity. To
take this issue into account, we ran two-dimensional five-fold cross-validation on
the 50 training samples, determining pairs of optimal stopping iterations mstop,1

and mstop,2.
Since the negative versions of the log likelihood functions (4), (5), (6) and (9)

are used as loss functions for the respective boosting algorithms, it would be a
natural approach to measure the prediction accuracy of the boosting methods by
computing the predictive log likelihood values from the test samples. Since the
functions (4), (5), (6) and (9) are measured on different scales, however, using
this approach would be unsuitable for comparing the four models. We there-
fore used the Brier score (Brier 1950), which is a model-independent measure
of prediction error. The Brier score is defined as the average squared distance
between the observed proportions and the predicted proportions of the outcome
categories in the test samples. Thus, since the count data models under con-
sideration are characterized by equidistant outcome categories, using the Brier
score corresponds to using the integrated squared difference of the predicted
and observed c.d.f.’s of the test observations as a measure of prediction error.

More formally, the Brier score for test sample t, t ∈ {1, . . . , 50}, is defined
as

BS t :=
1
nt

M∑
k=1

nt∑
i=1

(pikt − p̂ikt)
2

, (10)

where nt is the number of observations in test sample t and M is the number of
categories of the outcome variable. Let Yit be the i-th realization of the outcome
variable Y in test sample t. Then the parameters pikt in (10) are defined as

pikt =
{

1 if Yit = k
0 otherwise . (11)

The parameters pikt can be interpreted as the observed proportions of category k
given Xit (where Xit denotes the i-th realization of the predictor variables X
in test sample t). Similarly, the predicted proportions of category k given Xit

(denoted by p̂ikt) are obtained by plugging the estimates of f∗ and σ∗ (computed
from training sample t) into the log likelihood functions corresponding to test
sample t. For computational reasons we defined piMt := 1−∑k≤M∗ pikt, where
M∗ is the largest outcome value observed in the CMONDE data.

The Brier score can generally be used for assessing the quality of proba-
bilistic forecasts. It is an example of a so-called “proper” scoring rule, where
“proper” means that the expectation of (10) is minimized if the predictions p̂ikt

are computed from the true model with parameters f∗ and σ∗. For details on
proper scoring rules we refer to Gneiting and Raftery (2007). Generally, a small
value of the Brier score corresponds to a highly accurate prediction rule (and
vice versa).

In Figure 2, boxplots of the Brier score values computed from the 50 test
samples of the CMONDE data are shown. In addition, Figure 2 includes the
Brier score values corresponding to a Poisson “null” model with no covariate
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Figure 2: Predictive Brier score values computed from the 50 test samples of
the CMONDE data (Null = null model, Po = Poisson model, ZIPo = zero-
inflated Poisson model, NB = negative binomial model, ZINB = zero-inflated
negative binomial model, NB, stepwise ML = predictions obtained from max-
imum likelihood estimation of the negative binomial model). Obviously, the
negative binomial models perform better than the Poisson models, indicating
that overdispersion is present in the CMONDE data. In case of the negative
binomial model, using boosting estimates instead of maximum likelihood esti-
mates results in an increase of prediction accuracy.

information. Obviously, in most cases, the Brier score values corresponding
to the two Poisson regression models are smaller than those corresponding to
the null model. It can also be seen from Figure 2 that introducing a scale
parameter for modeling overdispersion, i.e., using a negative binomial model,
leads to improved predictions. This result indicates that not all of the structure
contained in the data is captured by the Poisson distribution. If compared to
the negative binomial model, the zero-inflated negative binomial model does
not seem to lead to an additional increase in predictive power. The negative
binomial model even results in smaller prediction errors on average than its
zero-inflated version. This conjecture is confirmed by a Wilcoxon signed rank
test on the differences between the Brier score values of the two models (p =
0.001). Therefore, and also because of its simpler structure, we suggest to use
the negative binomial model for predicting nevus counts.
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The coefficient estimates of the negative binomial model (computed from
the full data set) are shown in Table 1. When comparing the directions of the
estimates to the results published by the CMONDE study group, it becomes
obvious that the original results (Pfahlberg et al. 2004) are supported by the
boosting estimates. For example, children with blonde hair tend to have sub-
stantially more nevi than children with black hair. Also, the number of facial
freckles is positively correlated with the number of nevi, where male children
have more nevi (on average) than female children. A detailed description of the
variables contained in Table 1 and their effect on nevus counts can be found in
Pfahlberg et al. (2004). The selection rates of the eight covariates are shown in
Table 2. Obviously, selection rates corresponding to the count components are
higher on average than selection rates corresponding to the zero components.
While age and body mass index do not seem to have a large effect on the zero
component of the zero-inflated models, skin pigmentation and facial freckles
seem to explain many of the observed zero counts. In case of the negative bi-
nomial model, selection rates of covariates are generally very high. This result
suggests that all eight covariates are important if a negative binomial model is
used for prediction of nevus counts. Obviously, in case of the negative binomial,
it is the shrinkage property of the boosting method that leads to an optimized
prediction accuracy.

In a last step, we used the 50 training samples to compute Brier score val-
ues from the “classical” negative binomial maximum likelihood (ML) estimates.
Here, no shrinkage procedures were applied, and variable selection was carried
out in a stepwise fashion (using the AIC as a goodness-of-fit criterion). Figure 2
illustrates that in case of the CMONDE data, the regularization properties of
boosting are indeed superior to those of ML estimation with stepwise variable
selection. This result demonstrates that if predictive accuracy and estimation
accuracy are considered to be equally important, boosting is a very good al-
ternative to ML estimation even in low-dimensional settings. However, average
prediction accuracy is still higher in case of the negative binomial ML estimates
than in case of the boosting estimates obtained from the Poisson models. This
result suggests that regularization cannot fully overcome problems caused by
choosing a wrong type of count data model. Very similar results were obtained
when the BIC was used as a goodness-of-fit criterion for stepwise variable selec-
tion in the ML setting.

3.2 Simulation study on zero-inflated negative binomial
regression

In this section we discuss the estimation and regularization properties of the
proposed boosting algorithm in high-dimensional settings (p > n). We will
analyze the boosting estimates obtained from a simulation study on zero-inflated
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Table 1: Boosting coefficient estimates obtained from the CMONDE data (neg-
ative binomial model). The 95% intervals correspond to the 2.5 and 97.5 per-
centiles computed from 500 bootstrap samples. Skin type was determined using
the categories proposed by Fitzpatrick (1988). Skin pigmentation was quanti-
fied with remission photometry, i.e., small reflectance measurements correspond
to a highly pigmented skin.

Predictor Est. Coef. 95% interval

Intercept -0.4400 [-0.4598, -0.0977]
sex (male) 0.0000
sex (female) -0.0350 [-0.1142, 0.0387]
hair color (blonde) 0.0000
hair color (brown) -0.0497 [-0.1644, 0.0132]
hair color (red) -0.6253 [-1.2318, -0.0339]
hair color (black) -0.3432 [-0.8132, -0.0661]
Fitzpatrick skin type (I) 0.0000
Fitzpatrick skin type (II) 0.2648 [ 0.0159, 0.3964]
Fitzpatrick skin type (III) 0.1557 [-0.0709, 0.2863]
Fitzpatrick skin type (IV) -0.0288 [-0.2600, 0.0327]
color of iris (blue) 0.0000
color of iris (dark brown) -0.5714 [-0.8634, -0.2400]
color of iris (green-blue) 0.0191 [-0.1273, 0.1561]
color of iris (green-brown) 0.0019 [-0.1719, 0.1634]
color of iris (light blue) -0.0317 [-0.2140, 0.0722]
color of iris (light brown) -0.1620 [-0.3202, 0.0000]
facial freckles (none) 0.0000
facial freckles (few) 0.1547 [ 0.0269, 0.2848]
facial freckles (many) 0.1766 [-0.0344, 0.3945]
skin pigmentation
(reflectance in % at 650 nm) 0.0240 [ 0.0010, 0.0454]
age in years 0.0932 [ 0.0000, 0.2268]
body mass index in kg/m2 0.0331 [ 0.0154, 0.0534]
σ̂ 1.8303 [ 1.7477, 2.0664]

negative binomial regression with σ1 = 3 and with linear prediction functions

f1 = X⊤β

= −0.4 ·X1 − 0.2 ·X2 + 0 ·X3 + 0.2 ·X4 + 0.4 ·X5

(zero component),

f2 = X⊤γ

= 0.4 ·X1 + 0.2 ·X2 + 0 ·X3 − 0.2 ·X4 − 0.4 ·X5

(count component),
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Table 2: Selection rates of covariates (in %) obtained from the 50 training sam-
ples of the CMONDE data (Po = Poisson model, ZIPo = zero-inflated Poisson
model, NB = negative binomial model, ZINB = zero-inflated negative binomial
model, CC = count component, ZC = zero component). In case of the two
zero-inflated models, selection rates corresponding to the count components are
higher on average than selection rates corresponding to the zero components.
Apart from indicating that the two components have different degrees of com-
plexity, this result also suggests that many of the zero counts observed in the
CMONDE data can solely be explained by the count components of the zero-
inflated models.

Po, CC ZIPo, CC ZIPo, ZC

sex 100 100 12
hair color 100 100 44
Fitzpatrick skin type 100 100 54
color of iris 100 100 48
facial freckles 100 100 60
skin pigmentation 10 80 100
age 44 96 0
bmi 100 100 12

NB, CC ZINB, CC ZINB, ZC

sex 92 100 2
hair color 100 100 46
Fitzpatrick skin type 100 100 78
color of iris 100 100 74
facial freckles 100 100 88
skin pigmentation 100 22 100
age 94 2 0
bmi 100 26 0

where β := (β1, . . . , β5)⊤ = (−0.4,−0.2, 0, 0.2, 0.4)⊤, γ := (γ1, . . . , γ5)⊤ =
(0.4, 0.2, 0,−0.2,−0.4)⊤, and where the covariates Xj , j = 1, . . . , 5, followed a
normal distribution with zero mean and standard deviation sd =

√
5 each. With

f1, f2 and σ1 taking the above values, the dependent variable of the zero-inflated
negative binomial model will have approximately 67% zero counts on average.
To simulate high-dimensional data settings, we added 1000 non-informative co-
variates X6, . . . ,X1005 to the covariate space. Each of the additional covariates
followed a normal distribution with zero mean and standard deviation sd =

√
5.

All covariates (including X1, . . . ,X5) were equicorrelated with correlation coef-
ficient ρ = 0.5. Note that covariate X3 is also non-informative. It will serve as
an example of a non-informative predictor and will be studied in more detail
than the other non-informative predictors (see Figure 3).
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Since the prediction functions f1 and f2 are linear in the predictors, simple
linear regression models were used as base-learners in the proposed boosting
algorithm. Three values of n were considered (n = 400, 600, 800). For each
value of n, boosting was applied to 50 independent data sets generated from
the zero-inflated negative binomial regression model defined above. The values
of the stopping iterations mstop,1 and mstop,2 were determined by evaluating
independent test data sets of size ntest = 1000 that were generated from the
same model as the original 50 data sets.

In Figure 3, boxplots of the 50 parameter estimates of β and γ are shown.
As expected, all coefficient estimates are shrunken towards zero. The signs of
the coefficient estimates (and also the magnitudes of the coefficient estimates
relative to each other) clearly reflect the true structures of f1 and f2. Selec-
tion rates of non-informative covariates are close to zero for all n (see Table 3).
Table 3 also reveals that in case of a small sample size (n = 400), there is still a
considerable amount of samples where informative covariates have not been se-
lected. This result, which is especially true for the zero component f1, indicates
that different components of a prediction function may require different degrees
of shrinkage in order to optimize the overall predictive power of the model. De-
spite the predictive power being maximized, the coefficient estimates obtained
for n = 400 clearly lack interpretability (since in many cases informative covari-
ates have not been selected). As n increases, coefficient estimates become larger
and selection rates of informative covariates increase. For n = 800, boosting
seems to work reasonably well with respect to both variable selection and in-
terpretability of coefficient estimates. In this context, it is important to note
that a sample size of n = 800 is still smaller than typical sample sizes needed
for obtaining stable maximum likelihood estimates in low-dimensional settings.
As an example, consider the data sets that have been used by Hilbe (2007) to
demonstrate maximum likelihood estimation of zero-inflated regression models.
In case of these data sets, n is always larger than 1000 while p ≤ 5.

We finally analyzed the behavior of the stopping iterations mstop,1 and
mstop,2 when the components of the prediction function have varying degrees
of complexity. To do this, we kept the value of γ = (0.4, 0.2, 0,−0.2,−0.4)⊤

constant and considered three different settings for β:

setting 1: β = 0 ,

setting 2: β = −γ ,

setting 3: β = −2 · γ .

In setting 2, both components f1 and f2 have the same complexity with respect
to β and γ. In setting 1, the complexity of f1 is smaller than the complexity
of f2 while in setting 3 it is “twice” as large. We expect the estimates of the
optimal values mstop,1 to increase with increasing complexity of f1.

Table 4 shows the results of a simulation study with 20 simulation runs
and n = 600. Stopping was performed in the same way as in the previous
simulation study. While mstop,2 is relatively constant on average in all three
settings, mstop,1 indeed increases with increasing complexity of f1. Moreover,
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Figure 3: Coefficient estimates corresponding to the 50 samples generated from
the zero-inflated negative binomial model defined in Section 3.2. Obviously, the
magnitude of the coefficient estimates increases with n increasing. In case of
the non-informative covariate X3, selection frequencies are zero for almost all
samples. Consequently, the estimates of γ3 and β3 are also equal to zero in these
cases.

we see from Figure 4 that a two-dimensional evaluation of the stopping iterations
is necessary for minimizing prediction errors when the complexities of f1 and f2

are different: If the same stopping iteration was used for both components (i.e.,
when mstop,1 was restricted to be equal to mstop,2), the predictive risk increased
in comparison to the two-dimensional stopping approach.

19



Table 3: Selection rates of covariates (in %) obtained from the 50 samples
generated from the zero-inflated negative binomial regression model defined in
Section 3.2. Obviously, selection rates increase with n increasing. In case of the
zero component of the model, selection rates of informative covariates are small
for n = 400. The last column contains the selection rates corresponding to the
non-informative covariates X6−X1005. In case of the latter covariates, variable
selection works remarkably well.

count component

X1 X2 X3 X4 X5 X6 −X1005

n = 400 100 94 0 86 100 2.73
n = 600 100 100 4 100 100 2.95
n = 800 100 100 2 100 100 3.37

zero component

X1 X2 X3 X4 X5 X6 −X1005

n = 400 98 46 0 56 96 1.18
n = 600 98 58 2 68 100 1.17
n = 800 100 84 0 82 100 1.48

4 Summary and conclusion

Originally developed as a machine learning technique for predicting binary out-
comes (Freund and Schapire 1997), boosting has gained considerable attention
in the statistical community over that last years. Most notably, by showing that
the original boosting algorithm for binary classification can be interpreted as
a gradient descent technique for minimizing arbitrary loss functions, Breiman
(1998, 1999) has laid the foundations for applying boosting algorithms to a wide
class of statistical estimation problems. Later, by introducing the “statistical
view” of boosting, Friedman et al. (2000) have established boosting as a tool
for fitting very general types of regression models. Due to their regularization
properties, boosting algorithms can generally be used to achieve a balance be-
tween estimation and prediction accuracy (see Friedman et al. 2000; Bühlmann
and Hothorn 2007).

In this paper we have extended the classical gradient boosting approach by
constructing a boosting algorithm for regression models with multidimensional
prediction functions. Instead of descending the gradient in one direction only,
the algorithm introduced in this paper successively computes the partial deriva-
tives of the components of the prediction function. Updates of a component of
the prediction function are then computed by using the current values of the
other components as offset values. Most important, the regularization concept
of the original boosting approach carries over to the new multidimensional algo-
rithm. As a result, the algorithm introduced in this paper is useful for analyzing
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Table 4: Average stopping iterations mstop,1 (line 1) and mstop,2 (line 2) ob-
tained from 20 samples of a zero-inflated negative binomial regression model.
The three parameter settings defined in Section 3.2 were considered (n = 600,
ZC = zero component, CC = count component). Standard deviations are given
in brackets. Obviously, the average value of mstop,1 increases with increasing
complexity of f1. Since the complexity of f2 is equal in all three settings, the
average values of mstop,2 are relatively constant.

setting 1 setting 2 setting 3

ZC, f1 160 (88.26) 665 (397.72) 3085 (1071.29)
CC, f2 550 (274.34) 450 (216.43) 395 (119.10)
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Figure 4: Predictive risk obtained from the first simulation run in setting 1
(Section 3.2). Obviously, two different stopping iterations are needed for min-
imizing the predictive risk. The two-dimensional stopping strategy improves
prediction accuracy if compared to a one-dimensional stopping strategy with
the same number of iterations for each component of the prediction function.
This result could be observed in almost all simulation runs.

both low-dimensional and high-dimensional data (where selecting a moderate
number of relevant predictors is often a key problem).
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As demonstrated in Section 3, boosting with multidimensional prediction
functions is a suitable technique for fitting count data models with different
types of prediction functions and scale parameters. Apart from the models
considered in this paper, the algorithm could easily be used to fit other popular
types of count data models, such as the Hurdle model (Mullahy 1986) or the
generalized Poisson distribution (Consul and Jain 1973).

Concerning the regularization properties of the proposed boosting algorithm,
our empirical results suggest that in order to optimize prediction accuracy, differ-
ent components of a multidimensional prediction function may require different
degrees of regularization. As a consequence, we recommend to use a multidi-
mensional cross-validation strategy for determining the values of the stopping
iterations. Clearly, this approach might become infeasible if the number of
components of the prediction function is too large. In such situations, defining
groups of related components and applying the same number of boosting itera-
tions to the components of each group could be a viable strategy. For example,
in case of the gradient boosting algorithm for multiclass prediction, Hastie et al.
(2009) used the same stopping iteration for all outcome categories.

In contrast to the values of the stopping iterations, the value of the step
length factor ν does not seem to have a large effect on prediction accuracy. It
is, however, important to keep ν small (ν ≤ 0.1). Additional experiments that
were conducted in the course of our simulation study revealed that the proposed
algorithm may become instable if ν > 0.5. This is, however, also true for the
classical boosting algorithm with a one-dimensional prediction function.

In addition to the count data examples presented in Section 3, the proposed
algorithm is generally suitable for solving a wide class of estimation problems
with multidimensional prediction functions. In particular, boosting constitutes
a natural approach to estimating the parameters of identifiable finite mixture
models, where, in addition to the regression parameters, the class probabili-
ties of a fixed number of latent categories have to be estimated. (Note that
the zero-inflated count data models considered in Section 3 are special cases
of finite mixture models.) Furthermore, the algorithm can easily be modified
such that different types of base-learners can be applied to different components
of the prediction function. For example, one could use smooth base-learners to
model the first component of the prediction function, tree base-learners to model
the second component, linear base-learners to model the third component, etc.
Similarly, by using two-dimensional base-learners, interaction terms between the
covariates can be included into the prediction function. In addition, instead of
updating scale parameters by numerical optimization, it is possible to regress
them on a (possibly restricted) set of covariates. This can easily be accom-
plished by treating the (sub)set of scale parameters as an ordinary component
of the prediction function, i.e., by modeling the scale parameter(s) via the same
base-learning procedures as used for the prediction function. In this regard,
boosting with multidimensional prediction functions constitutes a highly flexi-
ble approach to statistical model estimation.
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