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Abstract Here, we review the highlights of cardiovascular basic science published in 2021 and early 2022 on behalf of the European 
Society of Cardiology Council for Basic Cardiovascular Science. We begin with non-coding RNAs which have emerged as 
central regulators cardiovascular biology, and then discuss how technological developments in single-cell ‘omics are pro-
viding new insights into cardiovascular development, inflammation, and disease. We also review recent discoveries on the 
biology of extracellular vesicles in driving either protective or pathogenic responses. The Nobel Prize in Physiology or 
Medicine 2021 recognized the importance of the molecular basis of mechanosensing and here we review breakthroughs 
in cardiovascular sensing of mechanical force. We also summarize discoveries in the field of atherosclerosis including the 
role of clonal haematopoiesis of indeterminate potential, and new mechanisms of crosstalk between hyperglycaemia, lipid 
mediators, and inflammation. The past 12 months also witnessed major advances in the field of cardiac arrhythmia includ-
ing new mechanisms of fibrillation. We also focus on inducible pluripotent stem cell technology which has demonstrated 
disease causality for several genetic polymorphisms in long-QT syndrome and aortic valve disease, paving the way for  
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personalized medicine approaches. Finally, the cardiovascular community has continued to better understand COVID-19 
with significant advancement in our knowledge of cardiovascular tropism, molecular markers, the mechanism of vaccine- 
induced thrombotic complications and new anti-viral therapies that protect the cardiovascular system.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Cardiology • Vascular • Biomarkers • Precision medicine

1. Introduction
The aim of this review from the European Society of Cardiology (ESC) 
Council for Basic Cardiovascular Science is to highlight the most note-
worthy developments over the past year, in the field of cardiovascular ba-
sic science. The cited reports were selected as representative examples of 
studies which provided robust evidence for particularly novel insights. 
Cardiovascular Research previously reviewed the highlights of 2020 divided 
into vascular and cardiac topics,1,2 but here we integrate both areas to 
generate the Basic Cardiovascular Science Highlights of 2021/22.

2. Cardiovascular RNA universe
2.1 Non-coding RNAs
In addition to the role of messenger RNA (mRNAs) in the ‘central 
dogma’ of molecular biology as a template for protein synthesis, the 
RNA universe also contains multiple constellations of microRNAs 
(miRNAs; miRs), long non-coding RNAs (lncRNAs) and circular RNAs 
(circRNAs) that control fundamental processes of life. These RNA 
species adopt complex structures and interact with nucleotides, pro-
teins and lipids to control multiple functions including chromatin struc-
ture, transcription, RNA splicing and stability, intracellular signalling, and 
organelle dynamics. Research reported in 2021 has provided further in-
sight into the role of miRNAs, lncRNAs, and circRNAs in the regulation 
of vascular remodelling and cardiac disease. Using both single-cell (sc) 
and bulk RNA-sequencing to investigate transcriptional changes asso-
ciated with endothelial-to-mesenchymal transition (EndMT), Monteiro 
et al. identified for the first time the genomic locus hosting the 
lncRNA MIR503HG as necessary to maintain endothelial cell (EC) iden-
tity and function.3 In a series of our loss- and gain-of-function experi-
ments the group demonstrated that loss of lncRNA is a causal event 
in EndMT observed in pulmonary arterial hypertension (PAH) in associ-
ation with vascular remodelling (Figure 1). Furthermore, located up-
stream from the vascular smooth muscle cell (vSMC)-associated 
miR-143 and -145 cluster, the lncRNA CARMN (Cardiac Mesoderm 
Enhancer-associated Noncoding RNA) was recently identified as key 
regulator of vSMC function and the pathophysiology of atherosclerotic 
disease.4 Crucially, while crosstalk between lncRNA host genes and 
coupled miRNAs is often seen, CARMN was found to function inde-
pendently from miR-143/-145 in regulating vSMC and activating a 
pro-atherogenic proliferative state (Figure 1).

Gong et al.5 identified in atherosclerotic mouse models a novel 
circRNA, circEsyt2, involved in vascular remodelling through the tar-
geted inhibition of alternative mRNA splicing. By performing loss- and 
gain-of-function mutation analyses in vascular smooth muscle cells, 
circEsyt2 was shown to enhance cell proliferation and migration and 
blunt apoptosis and differentiation. Furthermore, silencing of circEsyt2 
prevented neointima formation while circEsyt2 overexpression en-
hanced neointimal hyperplasia in an in vivo model of carotid artery injury. 
The role of miRNAs in atherosclerosis progression was examined by 

Liu et al. by describing the role of the Nuclear Factor of Activated 
T-cell isoform c3 (NFATc3)/miR-204 axis in the regulation of foam 
cell formation in atherosclerosis. Using genetically modified mice, they 
showed that NFATc3 prevents macrophage foam cell formation and 
limits the expression of scavenger receptors SR-A and CD36 by inducing 
expression of the microRNA miR-204,6 suggesting the NFATc3/ 
miR-204 axis as a potential therapeutic target to reduce plaque forma-
tion. In a separate study involving macrophages, Schober et al. illumi-
nated the circadian patterns of myocardial infarction (MI) by 
evaluating macrophage-related miRNAs. They evidence, in a murine 
model of atherosclerosis, that macrophage miR-21 drives circadian 
regulation of macrophage apoptosis by targeting proapoptotic Xaf1 
(XIAP-associated factor 1), thereby regulating plaque composition and 
susceptibility to rupture.7 Further studies in a murine model of 
pressure-overload heart failure have also found a key role for macro-
phage miR-21 in modulating cardiac fibrosis by regulating macrophage 
polarization towards a pro-inflammatory (M1) phenotype.8 In addition, 
Hinkel et al. identified a pivotal role of miR-132 in the mediation of 
pathologic cardiac hypertrophy in a novel porcine model of percutan-
eous aortic constriction by stent implantation.9

ncRNAs have also continued to attract attention as biomarkers with 
prognostic and diagnostic potential. A landmark study from 
Blanco-Dominguez et al. identified a novel miRNA with potential diag-
nostic value in acute myocarditis. The authors performed miRNA micro-
array analyses in sorted CD4+ T cells and Type 17 helper T (Th17) cells 
after inducing experimental autoimmune myocarditis or MI in mice and 
identified mmu-miR-72 as a differentially expressed miRNA. They further 
identified the human homologue hsa-miR-Chr8:96 and demonstrated its 
potential to distinguish patients with myocarditis from those with MI and 
healthy controls.10 Thus, miR-Chr8:96 has translational potential as a no-
vel biomarker to diagnose myocarditis. miR-133a is a well-established, 
diagnostic circulating biomarker in patients with heart failure.11 Escate 
et al. expanded on the diagnostic potential of this miRNA by demonstrat-
ing that elevated plasma levels of miR-133a predict the future occurrence 
of major adverse cardiovascular events (MACE) in patients with familial 
hypercholesterolaemia (FH).12 This observation supports the potential 
utility of miR-133a in improving risk stratification and prognosis in high- 
risk patients. More broadly, an international consortium supporting 
collaboration and research on ncRNAs in cardiovascular disease 
(CardioRNA Cost Action CA17129) published a Position Paper on the 
pathophysiologic role of ncRNAs, and to provide recommendations to 
translate this into clinical practice.13

Other studies have progressed ncRNA candidates with therapeutic 
potential towards clinical translation.9,14,15 Kay et al examined the po-
tential of targeting ncRNAs to promote cell-based regenerative strat-
egies for heart disease. Using an integrated approach, they identified 
CARMA (CARdiomyocyte Maturation-Associated lncRNA), a con-
served lncRNA controlling cardiomyocyte differentiation and matur-
ation in human embryonic stem cells. CARMA knockdown promoted 
cardiogenic commitment and cardiomyocyte differentiation in embry-
onic stem cells, and is therefore a novel target for improving human 
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ESC-derived cardiomyocyte production in regenerative cardiovascular 
medicine.14 On the other hand, Modica et al. provided evidence for 
the effectiveness of a novel nanotechnology-based approach for deliver-
ing exogenous synthetic miR-133a. The authors demonstrated that 
intra-tracheal nebulization of miR-133a-nanoconstruct once-a-day on 
alternate days for 4 consecutive weeks protects against heart failure 
progression (improved cardiac function parameters and lower fibrosis) 
in a murine model. This improvement was associated with the restor-
ation of physiological levels of miR-133a in cardiomyocytes without sig-
nificant accumulation in other myocardial cells or organs.15

2.2 Single-cell approaches
Single-cell RNA-sequencing (scRNAseq) has emerged as a powerful tool 
to dissect transcriptional profiles of the complex cardiovascular system 
at single-cell resolution. scRNAseq has been insightful in our under-
standing of the earliest stages of cardiac development by identifying 
the epicardial progenitor field, which is anatomically and transcriptionally 
distinct from the currently known first and second heart fields.16 In the 
formed heart, scRNAseq and spatial transcriptomics were used to show 
that dysregulation of TBX5, the mutated gene causing septal and con-
duction defects in patients with Holt–Oram syndrome, leads to tran-
scriptional consequences in specific cardiomyocyte subtypes.17 The 
study went on to show using cell-based analyses and mice that the sta-
bility of many gene regulatory networks, including those that have been 
shown to be relevant to congenital heart disease, are sensitive to TBX5 
dosage.

At the level of the vasculature, the number of publications of atlas-type 
human or primate scRNAseq, or Assay for Transposase-Accessible 

Chromatin (ATAC) datasets has steadily increased, which provides a valu-
able, yet often descriptive resource.18–21 scRNAseq has been used to 
identify transcriptional changes upon conditional cell type-specific genetic 
deletion, otherwise obscured in bulk tissue RNA-sequencing.22 As for im-
mune cells in atherosclerosis, the detection of different subsets has culmi-
nated in a consensus on cell type markers,23 yet to be achieved for the 
many varieties of vSMCs identified using scRNAseq in recent years, i.e. fi-
bromyocytes, pro-inflammatory or modified vSMCs, SMC-derived inter-
mediate cells.21,24–26 scRNAseq has also progressed our understanding of 
EC,27,28 with Rodor et al. identifying CD74 as potential target in PAH and 
showing its capacity to regulate barrier integrity.28

At a cardiac level, the implementation of scRNAseq allowed the im-
pact of heart failure on circulating immune cells to be determined.29

Furthermore, it demonstrated an exacerbated inflamed transcriptome 
in circulating monocytes and a signature of T-cell activation in heart fail-
ure patients harbouring clonal haematopoiesis-driver mutations in DNA 
methyltransferase DNMT3A, thereby providing further insights into the 
potential effect of DNMT3A mutations in heart failure progression.30

On the other hand, Hesse et al. have defined a high level of heterogeneity 
of epicardial stromal cells following MI, similar to cardiac fibroblast het-
erogeneity, with evidence of regenerative capacity and hypoxic signal-
ling.31 Tombor et al. used scRNAseq of endothelial-lineage traced 
mice to change the dogma on EndMT in MI, showing this is a transient 
affair, often without a definite mesenchymal endstage.32

Moving forward, cardiovascular scientists will benefit greatly from the 
generation of multi-omics reference atlases, including different layers of 
information on RNA, protein, spatial anatomy, interactome and cell 
ontology.33–35 Overall, scientific progress can be expedited by open- 
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Figure 1 Novel insights into the role of ncRNAs. Several complex loci composed of lncRNA and miRNA clusters have been identified throughout the 
genome. Nonetheless, despite their genomic and often transcriptional overlap, they have been found to have distinct functional and regulatory targets. The 
X-linked lncRNA MIR503HG maintains EC identity by interacting with the RNA splicing regulatory protein PTBP1, with decreased expression leading to 
broad changes associated with EndMT. Importantly, these phenotypic changes seem to be independent of miR-424 and miR-503 expression, which overlap 
the lncRNA locus3. Similarly, loss of the CARMN primes vSMCs into a pro-atherogenic proliferative state, while migration or dedifferentiation are regu-
lated through the modulation of the overlapping miR-143 and miR-145.4
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access science and data sharing. Thus, the integration of available data-
sets for mesenchymal cells,36 as previously carried out for immune cells 
in atherosclerosis,37 and a web-based application by the Miller lab 
(plaqview.com),38 pave the way for new, meaningful discoveries in car-
diovascular biology.

3. Cardiovascular development
2021 witnessed progress in several important aspects of heart develop-
ment with implications for our understanding of both congenital and ac-
quired heart conditions. Genomic studies of congenital heart 
malformations now allow the analysis of variants within the context of 
gene networks. A good example of this is the recent genomic study 
on hypoplastic left heart syndrome (HLHS),39 where whole-exome se-
quencing, coupled to nuclear transcriptomics and scRNAseq identified 
genetic heterogeneity in HLHS that converges to alter fundamental pro-
cesses (e.g. autophagy, apoptosis, proliferation) in myogenesis.

Despite the relative ease in differentiating functional, if immature, car-
diomyocytes from inducible pluripotent stem cell (iPSC), it has proven 
remarkably difficult to create organoids resembling the cellular and 
structural complexity of the vertebrate heart in vitro. However, 
Lewis-Israeli et al.40 described a robust protocol for producing cardiac 
organoids from iPSC using a three-step Wnt signalling modulation strat-
egy. These organoids develop a broad range of cardiac cell types, includ-
ing those that are induced through interactions between distinct primary 
cardiac cell types, and develop cavities that superficially resemble the lu-
men of the chambers. Moreover, they are vascularized and display regu-
lar beating. Importantly, the transcriptome of the organoids more 
closely resembles foetal hearts than monolayer cardiomyocytes. This 
method is an important step on the path to developing a robust human- 
based in vitro model of the heart.

It is increasingly apparent that the majority of valve malformations and 
dysfunction arise from abnormal development, and yet the mechanisms 
of valve development are incompletely understood. The study by Fukui 
et al. focussed on the role of mechanical factors using zebrafish em-
bryos.41 They identified a critical role for shear stress by showing that 
ectopic activation of wall shear stress, using agarose beads implanted 
into the atrium of the early zebrafish heart, resulted in the formation 
of valve-like structures that expressed the characteristic molecular sig-
nature of primitive valves, including the activation of NFATc and klf2a. 
Downstream of this, they ruled out a number of well-known mechano-
sensitive pathways, and instead identified adenosine tri-phosphate sig-
nalling as a mediator of Ca2+ oscillations that were essential for 
specifying valve cell identity. Overall, the convergence of large-scale gen-
omic network analyses, scRNAseq and spatial transcriptomics and ex-
perimental developmental biology is coming close to explaining the 
mechanisms underlying heart malformations presenting at birth and in 
adulthood.

4. Vascular disease and repair
4.1 Mechanosensing
The Nobel Prize in Physiology or Medicine 2021 was awarded to David 
Julius from the University of California San Francisco and Ardem 
Patapoutian from The Scripps Research Institute La Jolla for explaining 
the molecular basis for sensing heat, cold, and mechanical force.42

Ardem Patapoutian identified PIEZO 1 and 2 as ion channels activated 
by mechanical force,43 and they are central responders of arterial 

responses to flow.44 Recently, the protein kinase N2 (PKN2) has been 
shown to be activated by flow through the mechanosensitive ion channel 
PIEZO1 and mediate flow-induced endothelial NO synthase activation 
and vascular tone regulation45 (Figure 2). As another important mechan-
osensor, the glycocalyx modulates the endothelial redox state in re-
sponse to shear stress and could mediate an atheroprotective 
synergism between glycocalyx sialic acids and nuclear factor erythroid 
2-related factor (NRF2) antioxidant signalling.46 The regulation of 
NRF2 plays also a major role in the reduced EC viability and wound heal-
ing in response to cigarette smoke extracts under atherogenic low flow 
conditions.47 The concept of disturbed flow as an initial stimulus for the 
development of atherosclerotic plaques has led to exciting new therapies 
to target mechanosensitive genes like TWIST1, GATA4, and bone mor-
phogenic proteins using small interfering RNA (siRNA)-based technolo-
gies in an attempt to slow down the progression of atherosclerosis.48,49

4.2 Atherosclerosis risk factors
The metabolic syndrome—in concert with inflammation—plays a cen-
tral role in atherosclerosis. In particular, the causal role low-density lipo-
protein (LDL) in atherosclerosis is indisputably supported by multiple 
lines of evidence such as epidemiological studies, Mendelian randomiza-
tion and genetic analyses, as well as randomized clinical trials and animal 
model experimentation.

Traditional lipid-lowering drugs such as statins aim to reduce lipid up-
take and/or cholesterol synthesis and are still widely used. However, the 
availability of genetic data and the identification of the genetic cause for 
rare diseases linked to dyslipidaemias has prompted spectacular ad-
vances in the identification of pharmacological targets for the treatment 
of dyslipidaemias (Figure 3). The most recent advances in lipid-lowering 
relate to the inhibition of proprotein convertase subtilisin kexin 9 
(PCSK9), angiopoietin-like 3 (ANGPTL3) and lipoprotein (a) (Lp(a)). 
Besides monoclonal antibodies, additional options to inhibit PCSK9 
are emerging, including gene silencing with an siRNA or gene-editing em-
ploying the CRISPR/Cas system. Inclisiran, a siRNA conjugated with 
N-acetylgalactosamine residues ensuring hepatic selectivity, decreases 
PCSK9 production by promoting the degradation of its mRNA. This ap-
proach allows for twice-yearly dosing, with long-term lowering of 
LDL-cholesterol (LDL-C) (∼50%), potentially enhancing patient compli-
ance compared with other cholesterol-lowering drugs.50,51 Along the 
same line of RNA interference, Lp(a)-reducing drugs are being investi-
gated in Phase 2–3 trials.52 At earlier stages of development are 
gene-editing technologies, which introduce permanent genomic changes 
to alter gene function. A single treatment with PCSK9 gene or base edi-
tors has been shown to confer durable LDL-C reduction in primates.53

Evinacumab is a monoclonal antibody targeting ANGPTL3. It reduces 
significantly triglycerides by up to 80% in hypertriglyceridaemic sub-
jects54 and it is highly effective in reducing LDL-C levels in patients 
with homozygous FH carrying null LDLR mutations55 providing a new 
pharmacological tool. In a recent study, membrane Type 1 matrix metal-
loproteinase (MT1-MMP), in addition to activating MMP-2, was shown 
to regulate LDL-receptor (LDLR) shedding, affecting circulating lipid 
concentrations and atherosclerosis.56

The past year has further blurred the borders between traditional risk 
factors and the role of inflammation in atherosclerosis as their connec-
tions and interplay become more evident. Diabetes mellitus elevates car-
diovascular risk, and hyperglycaemia contributes strongly to metabolic 
syndrome. Besides these known effects, Edgar et al. elucidated a 
pro-inflammatory and pro-atherogenic switch in macrophages from dia-
betic mice persisting even when cultured under normoglycaemic 
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conditions.57 This persevering effect of earlier hyperglycaemia may ex-
plain the relatively low degree of risk reduction upon glucose level nor-
malization in diabetics. The inseparable connection between cholesterol 
and inflammation and atherosclerosis is further supported by a recent 
study that showed how sensing of cholesterol crystals by macrophages 
induces complement component C5aR1 signalling on mitochondrial 
membranes and results in interleukin (IL)-1β production and sterile in-
flammation.58 Hence, intracellular C5aR1 targeting may be used to nor-
malize mitochondrial function and reduce IL-1β release. This has 
translational relevance since inhibition of IL-1β production through tar-
geting the inflammasome has been identified as a target in cardiovascular 
disease previously. Another old acquaintance in cardiovascular disease 
therapy, rivaroxaban, a direct oral anticoagulant, not only targets factor 
Xa activity, but may also reduce inflammasome formation. In mice treated 
with rivaroxaban, macrophage autophagocytic activity increased signifi-
cantly, which the authors were able to trace back to the Xa-PAR2 axis.59

Recent studies show the complex intertwinement between tradition-
al risk factors, vascular biology and immunology. Cardiovascular risk fac-
tors can affect haematopoiesis through defective angiogenesis in the 
bone marrow towards generation of inflammatory leukocytes, thereby 
creating a self-energizing circle of cardiovascular risk factors—defective 
angiogenesis—release of inflammatory cells—cardiovascular disease ex-
acerbation.60 Sakic et al. emphasized crosstalk between vSMCs and vas-
cular inflammation by demonstrating that S100A4 induces vSMC change 
towards a pro-inflammatory phenotype to drive features of plaque in-
stability.61 Together, these studies call for an integrated and 

unprejudiced approach in atherosclerosis research to link traditional 
risk factors with novel molecular mechanisms.

4.3 Inflammation in atherosclerosis
The immune response is critical throughout the development of athero-
sclerotic lesions, during disease initiation, as a trigger for episodic plaque 
progression, and a contributor to thrombotic complications.62 A failure 
in the resolution of inflammation can prevent healing and repair of the 
vascular wall.62–64 This concept was advanced by Arnardottir et al. 
who found that lipid-specialized, pro-resolving mediators signalling 
through G-protein-coupled receptor-32, is critical for inflammatory 
resolution and atheroprotection.64

The proposal that macrophage uptake mechanisms are decisive for 
the turning point that leads either to inflammation resolution or to 
chronic inflammation and plaque progression has received further 
support from analysis pro-resolving pathways64 or phagocytic immune 
checkpoints in murine models.65 Focussing on the CD47- signal-regulatory 
protein (SIRP)α immune checkpoint, loss of SIRPα in macrophages 
stimulated efferocytosis, attenuated oxidized LDL-induced inflammation 
and induced an M2 macrophage phenotype.65 These findings may pave 
the way for novel interventions to promote inflammatory resolution 
through macrophage uptake mechanisms and phenotypic transitions 
to protect the vasculature.

Adaptive immune responses are critical regulators of atherosclerosis. 
On a systemic level, pro-inflammatory and cytotoxic T-lymphocytes 
prevail in atherosclerosis, as demonstrated by a preferential expansion 

Figure 2 Recent findings on cardiovascular mechanosensing. Newly discovered flow-stimulated mechanosensitive signalling pathways. Flow-activated 
PIEZO1 was shown to activate the PKN2 via PKD1, resulting in phosphorylation of Akt and eNOS, with subsequent vascular tone regulation via 
NO.45 The glycocalyx component sialic acid, was shown to activate NRF2 antioxidant signalling, via phosphorylation of AKT46, whereby modulating 
the endothelial redox state in response to shear stress. The pathways are likely to be interconnected as both result in phosphorylation of AKT and 
eNOS and as NRF2-induced antioxidant signalling is likely to affect NO bioavailability.
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and function of CD28null T-lymphocytes after ex vivo IL-7 and IL-15 
stimulation of high-purity sorted CD4+ cells isolated from patients 
with acute coronary syndrome.66 The local recruitment of regulatory 
T-lymphocytes (Treg) is critical for the control of atherosclerotic lesion 
inflammation and is, in part, regulated by cellular metabolism.67 As an ap-
proach to use Treg recruitment as a therapeutic strategy to selectively 
target adaptive immune regulation in the atherosclerotic plaque, adop-
tive transfer of the fractalkine receptor CX3CR1 overexpressing Treg 

was shown to increase their recruitment to atherosclerotic lesions 
and decreased atherosclerosis burden.68

However, inhibition of some immune checkpoints can lead to en-
hanced atherosclerosis. This isi exemplified by Poels et al. who found 
that short-term immune checkpoint inhibitors (ICIs) therapy aggravates 
T-cell-mediated plaque inflammation and drives plaque progression in 
mice.69 Also, ICIs used to treat cancer, such as monoclonal antibodies 
targeting CTLA-4, PD-1, and PD-L1, have been associated with adverse 
cardiovascular events.70 For example, Michel et al. discovered that 
anti-PD1 therapy in a mouse model of melanoma led to impaired left 
ventricular function and promoted myocardial infiltration with CD4+ 
and CD8+ T cells via a TNF-dependent mechanism.71,72 Therefore, 
the use of ICIs in the treatment of cancer provides exciting new oppor-
tunities for therapies but should be pursued with caution.

4.4 Haematopoiesis of indeterminate 
potential
Clonal haematopoiesis of indeterminate potential (CHIP) has recently 
emerged as an exciting topic in cardiovascular medicine and biology. 

CHIP is defined as positive selection of specific somatic mutations in 
haematopoietic stem cells that provide a proliferative advantage and fi-
nally result in a clonal population carrying the mutation. Besides being 
associated with a 0.5–1% risk per year to develop leukaemia, CHIP is 
also associated with aging, smoking, obesity and Type 2 diabetes mellitus, 
chronic inflammation, infections, sleep deprivation, stress, hyperlipid-
aemia and atherosclerosis. Most mutations identified in CHIP affect 
the epigenetic regulators DNA (cytosine-5)-methyltransferase 3A 
(DNMT3A), tet methylcytosine dioxygenase 2 (TET2) and ASXL tran-
scriptional regulator 1 (ASXL1) and the tyrosine kinase janus kinase 2 
(JAK2) which result in a pro-inflammatory state that offers a possible ex-
planation for the association of CHIP with a two-fold increase in risk to 
develop cardiovascular disease.73,74 Using mice that express the 
JAK2V617F variant exclusively in macrophages, Fidler et al. reported in-
creased proliferation of macrophages in atherosclerotic lesions and 
greater necrotic cores. These effects were ameliorated when 
Caspases 1 and 11, which are key components of the inflammasome 
or gasdermin D, which plays a major role in pyroptosis, were deleted. 
The authors also noted increased lesional expression of absent in mel-
anoma 2 (AIM2) and found that atherosclerosis was reduced in mice de-
ficient in Aim2. The authors concluded that enhanced proliferative stress 
caused by JAK2V617F leads to DNA damage and to activation of the AIM2 
inflammasome resulting in IL-1β activation, which then in turn starts a 
feed forward loop resulting in even more macrophage proliferation 
thereby aggravating atherosclerosis.75

A new perspective to the field added Heyde et al. who recently 
showed by mathematical modelling and murine models that increased 
proliferation of haematopoietic stem cells occurs in individuals suffering 
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from atherosclerosis thereby increasing the risk to develop clonal haem-
atopoiesis by the age of 70 years by 3.5-fold. Based on their findings the 
authors propose a vicious cycle in which atherosclerosis leads to clonal 
haematopoiesis, which in turn aggravates atherosclerosis.76

5. Cardiac disease and repair
5.1 Extracellular vesicles and nanoparticles
2021 was another exciting year in the field of extracellular vesicle (EV) 
biology for regenerative medicine, including cardiac repair and regener-
ation (Figure 4). There was increasing interest in understanding the 
mechanism of EV-based intercellular communication within the myocar-
dium during ventricular remodelling after acute MI. In terms of the role 
of EVs in cardiac fibrosis after MI, however, findings differ. For example, 
Li et al. showed that miR-30d is mainly secreted in EVs by cardiomyocytes 
and inhibits fibroblast proliferation by acting on integrin α5 via paracrine 
signalling.77 Counterbalancing this view, Wang et al. evidenced, in a mouse 
model of MI, that EVs released by myocardial M2 macrophages exacer-
bate migration, proliferation and myofibroblastic transformation of cardi-
ofibroblasts.78 By performing mechanistic studies in cocultured primary 
cardiofibroblasts and M2 macrophages, the authors linked these effects 
to activation of miR-138-5p/RhoC signalling after delivery of the M2 
macrophage-derived EVs containing circular RNAcirCUbe3a into the car-
diofibroblasts.78 These findings may offer an additional therapeutic target 
to optimize the endogenous mechanism of cardiac repair but suggest that 
EV function may depend on cell of origin.

There is great interest in the potential for EVs prepared from stem or 
progenitor cells to enhance cardiac repair. Increasing evidence suggests 
the mechanism may involve the resolution of inflammation. For example, 

Correa et al. reported that EVs secreted from human iPSC-derived car-
diovascular progenitor cells can trigger a pro-resolving immune re-
sponse in preclinical murine models of either chronic or acute heart 
failure. Similar results were confirmed in vitro on human inflammatory 
cells, suggesting that this EV formulation can instruct the immune cell re-
sponse towards a pro-resolving phenotype.79 Patil et al. showed a similar 
pro-resolving effect of mesenchymal stem cell (MSC)-derived small EVs, 
which they attributed to the EVs both enhancing opsonization of dead 
cells and activating phagocytic signalling, thereby augmenting removal 
of apoptotic cells, resolution of inflammation, and improving cardiac re-
covery after injury.80

In order to investigate a clinically feasible translational approach, Katsur 
et al. assessed whether cardioprotection could be achieved using a repro-
ducible, clinical-grade preparation of small EVs obtained from the 
CTX0E03 human neural stem cell line. Systemic administration of small 
EVs from differentiating CTX0E03 reduced infarct size in mice and pre-
vented in vitro cardiomyocyte mitochondrial permeability transition pore 
opening, which is responsible for cardiomyocyte death during reperfusion 
injury. These findings provide evidence for considering non-cardiovascular, 
yet stabilized, cell lines as additional candidate source of therapeutic EVs.81

Interestingly, however, EVs from proliferating CTX0E03 cells were not car-
dioprotective, which suggests that the status of cells of origin can impact 
their secreted EV activity.81 Further evidence of this is provided by a study 
showing that systemic administration of serum small EVs from young rats 
into aged ischaemic rats improved functional outcomes after ischaemic 
stroke, in contrast to small EVs from aged rats that worsened outcome.82

This provides further evidence that EV function is altered in disease, and fur-
ther suggests that EV-mIR-mediated vascular intercellular communication is 
altered in patients with chronic kidney disease and coronary artery disease.

A major goal in cardiac regenerative medicine is to identify novel 
methods to reinstate cardiomyocyte renewal. In such a scenario, EVs re-
leased from cardiac progenitors have been widely investigated, given the 
role of cardiac stromal cells such as the epicardium-derived progenitor 
cells play in cardiac muscle growth during embryonic development, and 
in heart regeneration in zebrafish and in neonatal mice. Villa del Campo 
et al. reported that epicardial EVs isolated from the secretome of 
both mouse and human progenitors enhanced the proliferative activity 
of neonatal murine cardiomyocytes in vitro and promoted cell cycle re- 
entry when injected into the injured area of infarcted neonatal hearts. 
These EVs also enhanced regeneration in cryoinjured engineered human 
myocardium constructs, as a novel model of human myocardial injury. 
Notably, the epicardial EV cargo was found enriched with specific 
miRNAs, including miR-30a, miR-100, miR-27a, and miR-30e, which re-
capitulated the EV regenerative influence on human stem cell-derived 
cardiomyocytes and cryoinjured cardiac constructs in vitro.83

The relevance of the content of cardiovascular cell-derived EVs was high-
lighted by publications showing that miRNAs of the miR-106a-363 clus-
ter,84 periostin85 and mitochondrial cargoes86 can act as effectors of 
cardiac repair. While such encouraging evidence supports the exploitation 
of stem/progenitor cell-EVs as candidate therapeutics to promote adult car-
diomyocyte proliferation, a general consensus has not been reached yet on 
their mechanism of action. In fact, Lima Correa et al. recently showed that 
EVs obtained from human iPSC-derived cardiac progenitor cells failed to 
trigger the generation of new cardiomyocytes in chronically infarcted hearts 
in mouse models. Despite this negative result, the authors confirmed that 
EVs from cardiac progenitor cells remained capable of significantly improv-
ing cardiac function by non-regenerative mechanisms.87

These findings suggest that further analyses and accurate lineage tra-
cing are required to better understand the regenerative potential of 
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cardiac EVs. At present, the rapid clearance of EVs from circulation is a 
limitation for their clinical application. During 2021, a number of studies 
aimed to overcome this barrier by constructing specific nanoparticles 
and genetically modifying cells to improve retention time of the cell- 
derived EVs. Thus, Wei et al. demonstrated that intravenously injected 
EV derived from modified mouse bone marrow MSC overexpressing 
CD47, a transmembrane protein known to elicit blockade of the mono-
nuclear cell phagocytosis, have prolonged retention in the circulation 
and accumulate at greater levels in the ischaemic heart.88

5.2 Cardiotoxicity and regeneration
A wide range of drugs, including but not limited to antineoplastic che-
motherapeutic agents, can cause heart electrophysiology dysfunction, 
muscle damage and other cardiovascular pathologies. For example, an-
thracyclines such as doxorubicin (DOX) are a cornerstone for the treat-
ment of many cancers, but their use is complicated by cardiotoxicity, 
especially left ventricular dysfunction.

An interesting 2021 paper reported that transcutaneous vagal nerve 
stimulation prevented DOX-induced cardiotoxicity in rats by rebalan-
cing autonomic tone, ameliorating cardiac dysfunction and remodelling. 
It was hypothesized that the mechanism involved crosstalk between 
autonomic neuromodulation, innate immune cells such as macrophages 
and chemokines.89 Indeed, there are multiple mechanisms responsible 
for anthracycline cardiotoxicity.70,90,91 Chan et al. found that two orally 
available MMP inhibitors ameliorated DOX cardiotoxicity by attenuating 
intracellular and extracellular matrix remodelling, suggesting that they 
may be a potential prophylactic strategy to prevent heart injury during 
chemotherapy.90 Remote ischaemic preconditioning can ameliorate 
DOX-induced cardiotoxicity by preserving mitochondrial integrity92

and this is currently the subject of the RESILIENCE clinical trial.93

Other recent studies (discussed in94) have identified harmful effects of 
anticancer therapies on the ability of stem/progenitor cells to repair car-
diac damage, through a reduction of stem cell viability and paracrine ac-
tivity. Thus numerous animal and clinical studies have demonstrated that 
local or systemic administration of mesenchymal stem cells significantly 
improve cardiac function, through a reduction in inflammatory re-
sponses and myocardial fibrosis.95 Antivirals can also induce cardiotoxi-
city, including the only FDA-approved treatment for hospitalized 
COVID-19 patients, remdesivir which can induce toxicity in human 
iPSC-derived cardiomyocytes through mitochondrial fragmentation, 
electrophysiological alterations and sarcomere disarray.96

5.3 Cardiac arrhythmias
Several key insights into fibrillation and re-entrant arrhythmias were ob-
tained in 2021 (Figure 5). Handa et al. revealed that the degree of gap 
junction coupling as well as the pattern of fibrosis influences mechanisms 
sustaining ventricular fibrillation.97 Differentiating between these under-
lying mechanisms of maintenance of fibrillation may help to guide ther-
apy. Re-entrant arrhythmias may also initiate in the absence of structural 
abnormalities, shown recently in a study on the spatiotemporal inter-
action between trigger and electrical substrate in the context of unex-
plained sudden cardiac arrest (SCA).98 Analysis of explanted hearts 
and observations in survivors of unexplained SCA, identified key ele-
ments required for re-entry initiation including the occurrence of an 
early premature beat from an early repolarizing region of the ventricles, 
which may block against a steep repolarization time (RT) gradient to 
start re-entry. They also showed that detection of the origin of prema-
ture beats and their relation to RT gradients in patients is possible with 
non-invasive electrocardiographic imaging (ECGI) and may provide 

targets for therapy. ECGI was also employed by Leong et al. in survivors 
of SCA to show that not only repolarization abnormalities, but also 
underlying conduction abnormalities play a role in the initiation of 
SCA.99 A similar mechanistic reasoning extends to atrial arrhythmias.100

Bringing these studies together highlights that any cause of steep excit-
ability dispersion—whether resulting from local changes in gap junction 
coupling, fibrosis, local conduction slowing, or inherent repolarization 
duration heterogeneity—play a critical role in the initiation and mainten-
ance of re-entry and fibrillation.

New tools are essential to obtain mechanistic insights and recent reports 
highlight how the field of atrial fibrillation research should transition from a 
translational approach to an integrative research approach101 and how per-
sonalized computer models may provide more individualized insights into 
disease and guide therapy.102 Application of novel therapeutic tools also 
brings new mechanistic insights. Non-invasive radiation therapy for car-
diac arrhythmias was initially thought to induce fibrosis, similar to invasive 
catheter-based therapy.103 However, Zhang et al. found that transmural 
fibrosis does not develop in the hearts of patients receiving radiation ther-
apy within the timeframe of its ventricular tachycardia-reducing effects.104

Interestingly, they showed that irradiating murine hearts results in a per-
sistent supraphysiologic electrical phenotype, mediated by increases in so-
dium channel function and gap junction function. This functional 
restoration was confirmed by a shortening of QRS duration in patients 
receiving radiation therapy, highlighting that radiation-induced repro-
gramming of cardiac conduction is the potential mechanism beyond the 
initial success of radiation therapy for refractory ventricular tachycardia. 
This holds promise for extending the use of non-invasive radiation ther-
apy to other applications, as for example recently demonstrated in heart 
failure with reduced ejection fraction.105

6. Cardiovascular precision 
medicine and iPSC
Precision medicine aims to improve risk stratification and customize the 
management and therapy of patients based on their clinical and genetic 
characteristics, on datasets of large populations and the use of advanced 
technologies.106 Genome-wide association studies (GWAS) have pro-
gressed through advances in genome-wide genotyping technology and 
large population and patient datasets to explore the role of common 
variants on phenotypic traits and disease susceptibility. According to 
the GWAS catalogue database, there are known to be 1329 
polymorphism-cardiovascular trait associations. This growing catalogue 
of genome-wide and nominally significant variants has also opened the 
door to creating polygenic risk scores that could identify individuals at 
risk of developing specific cardiovascular diseases or sub-groups of pa-
tients with a more severe prognosis.107 However, this approach must 
consider numerous confounding factors such as epigenetic and tran-
scriptomic data that may correlate with genetic variants. Boix et al. 
undertook a tour de force to create EpiMap, a compendium comprising 
10 000 epigenomic maps across 800 samples, which were used to define 
chromatin states, high-resolution enhancers, enhancer modules, up-
stream regulators, and downstream target genes.108 This resource al-
lowed the annotation of 30 000 genetic loci associated with 540 traits, 
predicting trait-relevant tissues, putative causal nucleotide variants in en-
riched tissue enhancers and candidate tissue-specific target genes for 
each of them. These different data integration layers could be essential 
for understanding the genetic architecture underlying the broad pheno-
typic traits encountered in common and complex cardiovascular 
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diseases such as coronary artery disease. For instance, while ‘only’ 56 
‘unifactorial’ traits were enriched in the case of long-QT syndrome 
(LQTS), a total of 192 ‘multifactorial’ traits were enriched in an average 
of five different tissues, and in the case of coronary artery disease, 26 
‘polyfactorial’ traits were enriched in 14 tissues. The study by Boix 
et al. is at the same time a rich scientific resource, but also a lesson re-
garding the profound and magnificent complexity of the human genome 
and the causal basis of common diseases like coronary artery disease.

The GENMED consortium conducted a large GWAS study focused 
on dilated cardiomyopathy (DCM), enrolling 2719 cases and 4440 con-
trols.109 They identified and replicated two new DCM-associated loci on 
chromosome 3p25.1 and chromosome 22q11.23. In silico annotation 
and functional 4C-sequencing analyses on cardiomyocytes derived 
from iPSC-derived cardiomyocytes identified SLC6A6, a gene encoding 
a taurine, as the most likely DCM candidate at the 3p25.1 locus, and 
SMARCB1 as the candidate culprit gene at the 22q11.23 locus. The con-
sortium also constructed a genetic risk score for DCM.

In another important study, exome sequencing data from 811 pro-
bands with tetralogy of Fallot (TOF) were used to identify rare 

loss-of-function and other likely pathogenic variants in genes associated 
with congenital heart disease.110 The role of some likely pathogenic var-
iants was confirmed and multiple loss-of-function variants provided sup-
port for 3 emerging congenital heart disease/TOF candidate genes: KDR, 
IQGAP1, and GDF1. Moreover, using composite genes in a STRING pro-
tein interaction enrichment analysis, a biologically relevant network was 
revealed, with vascular endothelial growth factor receptor 2 and 
NOTCH1 representing central nodes.

The use of iPSC technology for disease modelling and drug testing is 
increasingly used for cardiovascular precision medicine. Last year, for the 
first time, the combination of patient-specific iPSC-derived cardiomyo-
cytes, genetics and genome editing unveiled the mechanisms of action of 
modifier genes in subsets of patients affected by LQTS.111,112 By com-
paring patient-specific iPSC-CMs derived from symptomatic and asymp-
tomatic LQT1 carriers of the same mutation, it was shown that genetic 
variants of MTMR4, an upstream regulator of neural precursor cell ex-
pressed developmentally downregulated gene 4-like (NEDD4L), control 
potassium channel turnover, thus influencing the clinical manifestations 
of the disease. iPSC technology has also been used to gain insights into 

Figure 5 Novel mechanisms of arrhythmia. Recent publications (top left) and accepted concepts (top right) on the mechanisms leading to re-entry may 
be combined to arrive at a generalized theory of the spatiotemporal interaction between triggers and substrate leading to re-entry arrhythmias (bottom). 
The generalized hypothesis highlights that re-entry can only initiate when there is a local dispersion of excitability, with some tissue excitable whereas other 
tissue is (still, or always) refractory at the time when the trigger occurs. The trigger should originate from the excitable tissue, may block and travel around 
(relatively large) refractory tissue before it arrives at the previously excited tissue again.
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the molecular mechanisms of atrial septum defect, a form of congenital 
heart disease, by implicating a mutation in GATA4 that modifies FGF16 
induction.113

Pioneering work from Srivastava and collaborators developed a 
machine-learning approach to identify small molecules that broadly cor-
rect gene networks dysregulated in an iPSC model of aortic valve (AV) 
disease.114 Correction of the gene network by the most effective thera-
peutic candidate, XCT790, was sufficient to prevent and treat AV dis-
ease in vivo in a mouse model. This strategy, made possible by 
combining iPSC technology, network analytics and machine-learning, 
may can represent an effective path to discovering new therapies.

7. COVID-19
7.1 Cardiovascular tropism and molecular 
markers
The aetiology of myocarditis caused by cardiotropic viruses has become 
a major topic of interest during the COVID-19 pandemic.115,116 A com-
parative study revealed that while myocardial injury occurred with a 
similar frequency in infection with influenza and SARS-CoV-2, the mor-
tality was almost 4-fold higher in COVID-19 compared with influ-
enza.117 Evidence of viral infection was seen mainly in endothelium 
and rarely in cardiomyocytes,118 however, evidence for stromal cells in-
fection by SARS-CoV-2 has been found.119 Endothelial-dependent dila-
tion in human arterioles is impaired for months after SARS-CoV-2 
exposure, and could contribute to long-lasting symptoms of 
post-COVID-19 infection.120 Consistently, Bräuninger et al. performed 
massive analysis of cDNA ends–RNAseq in myocardial tissue from fatal 
COVID-19 cases with and without cardiac infection to reveal potential 
SARS-CoV-2-related pro-inflammatory transcriptomic alterations in 
EC, while no differences were detected in immune cell infiltrations.118

Interestingly, the levels of several known cardiometabolic biomarkers 
are associated with COVID-19 severity and mortality, particularly 
myocyte-derived miR-133a and liver-derived miR-122.121 The potential 
for the use of cardiovascular RNA markers and artificial intelligence in 
the setting of COVID-19 has been reviewed in.122 In a study of 95 
SARS-CoV-2-positive autopsy tissue, cardiac SARS-CoV-2 infection 
was shown to increase transcription of interferon pathways, originating 
predominantly from EC.118 The ESC has provided guidance for the diag-
nosis and management of cardiovascular disease during the COVID-19 
pandemic123,124 and recommendations for future research.125

7.2 Virus- and vaccine-induced thrombotic 
complications and COVID-19
Accumulating evidence suggests that patients suffering from COVID-19 
have an increased risk to experience thrombotic events such as micro-
thrombosis, venous thromboembolism, and ischaemic stroke (for a re-
view see126). Two recent studies have found microthrombi in the hearts 
of patients who succumbed to SARS-CoV-2 infections. Pellegrini et al. 
identified microthrombi as a cause of myocyte necrosis. Interestingly 
these microthrombi contained more fibrin and more of the complement 
components C5b-9 than thrombi isolated from the myocardium of pa-
tients of COVID-19-negative patients and coronary thrombi aspirated 
from COVID-19-negative and COVID-19-positive patients with 
ST-elevation MI.127 Bois et al. found non-occlusive microthrombi in myo-
cardial arterioles in 12 out of 15 patients who died from SARS-CoV-2 
infections. However, no evidence of acute ischaemic injury of the heart 
was detected in this study.128 When tissue factor (TF)-bearing 

microvesicles isolated from the plasma of 100 patients with moderate 
and severe COVID-19 and from the plasma of 28 healthy subjects 
were studied, the authors found that TF-activity on such microvesicles, 
which is indicative of a procoagulatory state, was increased in patients 
suffering from COVID-19 and is significantly linked to disease severity 
and mortality.129

Thrombotic complications have been reported in 1 per 100 000 
adenoviral COVID-19 vaccinated irrespective of age, rising to 1 in 
50 000 above 50 years vaccinated with ChAdOx1.130 This is referred 
to as vaccine-induced immune thrombotic thrombocytopenia 
(VITT).130,131 Fibrinogen, Age, Platelet count, and the presence of 
Intracranial haemorrhage, and Cerebral venous sinus thrombosis (the 
FAPIC score) are significantly associated with mortality in cases of 
VITT.132 Increased levels of anti-PF4 antibodies post-vaccination unre-
lated to previous heparin exposure implicates an augmentation of the 
antibody response by unknown PF4 co-factors.131 The antigenic compo-
nent with PF4 may be vaccine constituents but remains an unsolved crit-
ical question in VITT pathophysiology.131 The immune complexes 
transduce platelet activation through the Fcγ receptor IIA (FcγRIIA) re-
sulting in thrombosis with concomitant thrombocytopenia accompan-
ied by a fulminant immune activation.133 Among novel therapeutic 
options for VITT, inhibitors of Bruton tyrosine kinase (Btk), which is 
used for B-cell malignancies, have been explored for their ability to block 
FcyRIIA for preventing the downstream platelet activation and aggrega-
tion. The Btk inhibitors ibrutinib and fenebrutinib prevented platelet ag-
gregation induced by serum obtained from patients with VITT.134

Additional possibly favourable effects of Btk inhibition in VITT are block-
ing of neutrophil-platelet complexes and reduced NET release,135 which 
are part of the massive immune activation during VITT.133

7.3 Cardiovascular drugs and COVID-19
In the beginning of the COVID-19 pandemic, the interactions with cardio-
vascular drugs were focused on ACE-inhibition and anti-thrombotic treat-
ments136 and more recently extended to lipid-modulating agents.137 In the 
latter context, omega-3 fatty acids may provide beneficial cardiovascular ef-
fects through immunomodulation, anti-thrombosis and improved endothe-
lial function.138 Specific cytokine antibodies to dampen the inflammatory 
storm in COVID-19 exhibit anti-inflammatory strategies explored for car-
diovascular prevention and have shown some success in improving survival 
and clinical outcomes.139 The RECOVERY trial tested multiple different 
therapeutic approaches including anti-viral, immunomodulatory and 
anti-thrombotic treatments, in a multi-arm factorial design inspired by 
the International Study of Infarct Survival trials of the 1980s, and demon-
strated benefit with tocilizumab and dexamethasone, but not hydroxy-
chloroquine, convalescent plasma or other tested approaches.140 In a 
separate study, anticoagulation with low-molecular-weight heparin may 
curtail viral persistence and reduce mortality.141

7.4 Perspectives
The substantial progress of basic cardiovascular science during the past 
year has revealed a plethora of novel therapeutic and diagnostic possibil-
ities. Non-codíng RNA, scRNAseq, and iPSC are examples of discovery 
tools to widen the understanding of cardiac and vascular pathophysi-
ology. Through the integration cardiovascular risk factors, genetics, 
and biomarkers, the basic cardiovascular science field is expanding to-
wards applications in precision medicine. The year was still marked by 
the COVID-19 pandemic and several important contributions have in-
creased our knowledge of the cardiac and thrombotic effects of 
SARS-CoV-2, and the underlying pathways behind reported vaccinal 
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complications. Finally, the mechanistic insights from in vitro and in vivo ba-
sic science models have deepened our understanding of inflammation, 
CHIP, EVs, regeneration, and mechanosensing in cardiovascular disease.
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personal fees from VivaLyfe, and is listed as an inventor on two heart fail-
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