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Abstract

This model is the first to solve for the optimal timing of childbirth and
number of children in a continuous time framework simultaneously. The
model depicts how changes in wage at different stages of an individual’s
life influence the timing decision of childbirth and the optimal number
of children. When a woman wants to have more children, she decides to
have them at a younger age. Medical research that extends the fecund life
span induces women to have fewer children. A reduction of the parental
leave due to daycare centers or a reduction in the costs of leave due to
child benefits increase the number of children. Women value labour more,
when they face the risk of an unknown divorce. This paper also shows that
divorce does not change the timing of childbirth directly, it influences the
number of children negatively and the reduced number of children delays
the timing. The model can be used to predict upper bound fertility rates,
when the expected divorce rate continues to increase.
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1 Introduction

Three of the most significant socioeconomic developments in virtually all the
developed economies in the second half of the 20’th century were the large
increases in female labor force participation, the falls in fertility rates and the
increases in divorce rates. A number of exogenous factors clearly have played
an important role in these, for example the growth in demand for female labor,
the availability of the contraceptive pill, and changes in divorce laws that have
made divorce easier and less costly to obtain. It seems also clear however that
there are several possible interrelationships among these three developments:
child care and work in the market are alternative uses of a mother’s time and
increasing wage rates raise the opportunity cost of children; the attempt to
build a career could lead to postponing childbirth and having fewer children
as a result of this; the perception of an increased chance that the marriage
might end in divorce could lead to a decision to have fewer children. At the
same time, there is considerable heterogeneity across households in respect of
female market labor supply, even after controlling for wage rates and number
and ages of children, and it does not seem adequate simply to regard this as
due to preference heterogeneity.1

In this paper we develop a new theoretical framework to try to explore
some of these interrelationships, and to consider possible explanations for them,
that are rooted in optimal intertemporal decision taking over the life cycle. A
woman’s human capital, and therefore her wage rate, is endogenous and depends
first on the choice of how much formal education to acquire, and secondly on
how much work experience to gain in the labor market. Both these decisions
affect the timing and number of births, and in turn are affected by them because
of the demands on time made by child care. We first set out a model which
allows these interacting decisions to be formally analyzed. We then extend it
by analyzing the effect on the timing and number of births of perceptions of the
likelihood of divorce.
There is a large literature that asks how children affect such economic vari-

ables as demand patterns and consumption. In that context they examine in-
tertemporal decisions and equality questions. For an overview of this literature
see Browning (1992) and (Becker 1993). Most of the literature that deals with
the effect of children on labor supply concentrates on female labor participation,
because the effect on male labor market participation has so far been quite low.2

Ward and Butz (1980) show empirically that couples time their births to avoid
periods when the female’s income is high. Heckman and Walker (1990) show
that the negative (positive) relation between the optimal number of children
(fertility timing) and female wages is robust across a variety of empirical spec-
ifications, while they cannot prove that the same holds for male wages. Based
on this literature we focus on the female as the utility maximizing individual
throughout this paper.

1See Apps and Rees (2009), chapters 1 and 5, where this is discussed at some length.
2Browning (1992) pp. 1449-1464
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In order to assess the costs of raising children, one has to take account of
the timing of births. Labor market earnings depend on work experience. In an
early study Happel et al. (1984) set up a model in which a woman works before
she gives birth and gains labor market experience, and her income increases
with experience. After giving birth a woman takes some time off to raise her
child or children. When she re-enters the labor market, some of her experience
has decayed by some constant factor. It is assumed to be zero for unskilled
workers, in which case there is no timing preference. Otherwise a woman would
want to either have children in the very beginning of her marriage, when she
has not accumulated any labor experience before her marriage or shortly before
her period of fecundity ends. In an empirical paper using Swedish data, Walker
(1995) decomposes the total costs of children into the opportunity costs of not
working, the foregone return for foregone human capital investment and the net
direct. The model in this paper will take account of this decomposition and
solve for the optimal timing in a continuous time framework.
Gustafsson (2001) gives a nice overview of the past theoretical and empirical

research on the optimal timing of childbirth. Cigno (1991) analyses a dynamic
model in discrete time, in which the female’s income depends on her education
level as well as on labor market experience. He derives the optimality condi-
tions that describe an optimal fertility profile, with the value of the number
of children growing at the rate of interest. Along these lines he demonstrates
that postponing childbirth raises the income loss and lowers the human capital
loss of a birth, because income rises with labor experience. In order to go a
step further in this paper we set up a model in continuous time, which allows
us to find an explicit solution for the fertility timing and number of children.
Blackburn et al. (1993) show theoretical linkages between a woman’s fertility
timing and her investments in human capital and income profile. A late child
bearer accumulates more human capital when the discount rate is larger than
the economy-wide growth rate of wages for late child bearers.
In our baseline model in the next section, we examine the effects of the

income level on our two variables of interest: the timing of fertility and the
number of children. We then go on to analyze how the return to labor market
experience within the different life cycle phases affects the timing and number
of births, which is new in this literature. We also have various cost parameters
included for the purpose of deriving some policy implications. Empirically it
can be shown that less educated families decide to have more children (De
la Croix and Doepke, 2003). This model can be extended with an education
phase. Empirically it can be shown that less educated families decide to have
more children (De la Croix and Doepke, 2003). This model can be extended to
include an education phase, where ability plays a role. Individuals that would
benefit from a higher return to education, enter the labor market later, and have
later, fewer children. We waived this addition though as it does not add much
to the existing literature. The major part of the fertility literature is embedded
in a deterministic framework. Exceptions are Newman (1983) and Hotz and
Miller (1986). Drastic simplifications have to be made to keep these models
manageable. As a consequence these models have bang-bang solutions, where
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the probability of giving birth is piled up either at the beginning of marriage
or at the end of a woman’s period of fecundity. Our model introduces some
stochastic elements by introducing the possibility of divorce. We then show
how this possibility influences the optimal timing and number of childbirths,
and this appears to be new to the literature.

2 The Baseline Model

We assume that the working life of a representative woman falls into 3 stages
(Figure: 1):

1. During the first phase t ∈ [t1; t2] she works full-time. A utility function
that accounts for leisure and consumption that can solve for the optimal
control problem is quasilinear in leisure and linear in consumption xi(t).
Total time is assumed to be Ψ, and labor is denoted by li(t), where i
is the subscript for the present phase the representative is in. An indi-
vidual gains utility from consuming the representative good and leisure:
u1 [x1(t), l1(t)] = x1(t) + ln [Ψ− l1(t)]. The price of consumption is nor-
malized to 1. All income is consumed, hence the budget constraint is given
by w(θ, L(t))l1(t) = x1(t), where the income w(θ, L(t)) depends on ability

θ and labor experience gained thus far, L(t) =
R t
t1
l(t)dt. Labor experi-

ence L(t) is the state variable of this problem and to simplify notations
it is denoted L(t) = Lt. L0 is assumed to be zero, hence the the first
income w(θ, 0) depends solely on ability. Education could also be part
of this ability parameter. It can be shown how a proceeding education
phase influences fertility; the timing when she enters the labor market
and her initial income becomes endogenous. This reflects how, flexible
this model setup is, and that it can be used for a wide variety of policy
evaluations that affect fertility. In order to keep the model manageable to
avoid adding more phases, we make the simplifying assumption that all
children are born at the same time t2 and do not require any child-care
after t3. The length of phase 3 has length h(k) and depends on the number
of children k. The decisions, how when to have children and how many
children one wants to have depend on each other in real life. This is also
reflected by this model setup as that t2 and k are derived simultaneously.

2. During phase two, when t ∈ [t2, t3], the woman has children and works
part-time. When she is married and does not get divorced, which we
assume in the baseline model, then time costs for k children that have
been born at t2 are c(k, t2) and the monetary costs are m(k, t2), which are
lower that full costs. The father bears the rest of the costs. For the purpose
of this article, we do not need to model the proportions. After divorce a
woman’s time costs and monetary costs increase to cd(k, t2) and m

d(k, t2),
respectively. cd and md are strictly less than full costs as the father has to
bear some part that can be specified with appropriate parameters. Having
k children introduces not just costs but also benefits from having children
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during phase two and three vi(k); i ∈ (2, 3). The utility function is given
by u2 [x2(t), l2(t)] = x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k). The labor
income is consumed partly by the mother and partly by her children,
the budget constraint is therefore w(Lt)l2(t) = x2(t) + m(k, t2), where
the monetary costs for the mother are smaller than the total monetary
costs of having k children, because the husband is assumed to contribute
his part as well. How much he contributes depends on different aspects
such as his own income, outside options for having k children with this
particular woman, and the intra-household distribution. This model could
be extended to take these complex issues into consideration. They are left
open for further research.

3. During the last phase t ∈ [t3, T ], the individual works full-time again. Af-
ter t3 children are older and do not have to be looked after. A woman con-
sumes the consumption good x3(t), leisure [Ψ− l3(t)] and retrieves utility
from having k children v3(k), thus u3 [x3(t), l3(t)] = x3(t) + ln [Ψ− l3] +
v3(k). The budget constraint in this phase is w(Lt3)l3(t) = x3(t). The
wage depends on the labor experience accumulated until the end of phase
2. We assume that the wage is constant during this phase for simplicity.
We also solved the model for a non-constant wage, but the main results do
not change. Empirically one can observe that wage often even decreases
before retirement, hence labor experience gained then does not pay off.
At time T the planning horizon ends. The retirement shall not play any
role in this analysis.

The Hamiltonian for phase i ∈ [1, 2, 3] is given by H [xi(t), li(t), ηi(t)] =
ui+ηi(t)li(t), where ηi(t) is the costate function of this optimal control problem.
During the last phase η3(t) = 0, because the wage rate is constant then. The

derivative of the income with respect to labor experience is denoted as ∂wi(Lt)
∂Lt

=
αi (, Lt). αi (Lt) is larger during phase 1 than during phase 2 when a mother
works part-time. A possible income scheme is shown by figure 1, where we
show income per time period. There are no discontinuous vertical movements,
because we assume the individual keeps earning the same hourly wage rate,
when she enters a new phase, because experience does not decay overnight.
The planning horizon begins at t = t1 and ends at t = T ; both exogenous.

t2 is determined in the baseline model, t3 shall be equal to t2 plus h(k), which
is time independent and depends on the number of k children; t3 = t2 + h(k).
h(k) characterizes the length of time of parental leave. For simplicity however,
and because we are not interested in the choice of interval between births, we
assume that all children are born at t2. We do not assume that skills deteriorate
during phase two as Happel et al. (1984), but that could be another possible
extension.
We solve the problem for each of the three phases of a woman’s life backward

from the last. We develop necessary conditions for this problem. First we take
t2 ∈ [t1, T ] and k > 0 as given and solve for the optimal consumption and labor
supply. In a next step we characterize the optimal time of childbirth t2. By a
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Figure 1: The per period income over a life-cycle.
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theorem of Hestens, given the problem with t2 and k fixed, we can define ηi(t)
on [ti, ti+1] ; i = 1, 2 as the costate variables of labor experience.

3

2.1 Solving the model

Phase 3: t ∈ [t3, T ]
An individual’s objective is to maximize

R T
t3
{x3(t) + ln [Ψ− l3] + v3(k)} dt sub-

ject to the budget constraint. The Lagrangian is

Γ [x3(t), l3(t)] = x3(t) + ln [Ψ− l3] + v3(k) + λ3(t) [w(Lt3)l3(t)− x3(t)] (1)

where λ3(t) is the Lagrangian multiplier for phase three. For simplicity we
assume no discounting. A positive discount rate complicates the analysis un-
necessarily and leads to a decrease in labor supply, because experience is valued
less. A proof follows the same lines as proposition ?? of Scholz (2009). The
constant labor supply and consumption can be expressed in terms of the wage
rate achieved at t3.

l∗3 = Ψ−
1

w(Lt3)
(2)

x∗3 = Ψw(Lt3)− 1 (3)

Phase 2: t ∈ [t2, t3]
The computations are more refined in this section as that labor experience

obtained within this phase has a future return. The objective here is to maxi-
mize

R t3
t2
{x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)} dt+V ∗3 subject to the budget

constraint w(Lt)l2(t) = x2(t) +m(k, t2) and
·

Lt = l2(t). V ∗3 is the optimally
chosen utility stream from t3 to T , given some labor experience level Lt2 . The
choice of labor in this phase determines Lt3 and thus effects V

∗
3 . The Lagrangian

is

Γ2 [x2(t), l2(t)] = x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k) (4)

+η2(t)l2(t) + λ2(t) [w(Lt)l2(t)− x2(t)−m(k, t2)]

From the first order condition of labor and the general optimal control con-
dition, where the time derivative of the costate is equal to the negative Hamil-
tonian’s derivative with respect to the state variable (labor experience), we
determine the following two expressions after substituting the optimality con-
dition for consumption λ2(t) = 1. Time derivatives are denoted by a dot above
a time dependent function.

l2(t) = Ψ− c(k, t2)−
1

η2(t) + w(Lt)
(5)

3 see Takayama p.658
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·

η2(t) = −
·

w(Lt) (6)

The transversality condition here is an expression of the costate at t3. Work-
ing an additional hour at t3 increases her income and has a future return of

η2(t3) =
∂w(Lt)

∂Lt
|t=t3

Z T

t3

l3dt (7)

Given the transversality condition (7) and the transformation

l2(t)
∂w(θ, Lt)

∂Lt
=

·

w(Lt) (8)

we can transform (6) in a way such that the costate function becomes

η2(t) = w(Lt3)− w(Lt) + α2(t3) [LT − Lt3 ] (9)

where α2(t3) =
∂w(Lt)
∂Lt

|t=t3 . Using (5) and (9) one can solve for the optimal labor
supply, which is time independent and its consumption counterpart, which does
depend on time,

l∗2 = Ψ− c(k, t2)−
1

w(Lt3) + α2(t3) [LT − Lt3 ]
(10)

x∗2(t) = w(Lt)[Ψ− c(k, t2)−
1

w(Lt3) + α2(t3) [LT − Lt3 ]
]−m(k, t2) (11)

The labor supply is also independent from time in phase 1, which we show
next. This result is driven by a decreasing return of experience, as the length
of time between any t and T , when earlier accumulated experience pays off,
decreases. On the other side income increases with experience, which would
increase labor supply. Both effects are equally strong and cancel out. This
result can be compared to the pricing of a monopolist that produces a single
good and learns through production, which is reflected by decreasing unit costs.
At each period it sets an optimal price such that its marginal revenue equals the
marginal costs at the end of its planning horizon. Given a constant elasticity of
demand its price is constant, even though its marginal costs decrease (Spence,
1981). This feature is useful considering the fact that we do not view changes in
labor supply from period to period in reality either. Hence this model is more
realistic owing to a derivable constant labor supply. Furthermore we derive an
increasing consumption function mimicing reality.
Phase 1: t ∈ [t1, t2]
An individual’s objective is to maximize V1 =

R t2
t1
{x1(t) + ln [Ψ− l1(t)]} dt+

V ∗2 dt subject to the budget constraint and
·

Lt = l1(t). The choice of labor in
this phase determines Lt2 and influences the utility stream after t = t2, which
is denoted by V ∗2 . The solution to the problem is

8



l∗1 = Ψ−
1

w(Lt2) + α1(t2) [LT − Lt2 ]
(12)

x∗1(t) = w(Lt)

∙
Ψ− 1

w(Lt2) + α1(t2) [LT − Lt2 ]

¸
(13)

The costate functional for phase 2 has been derived following the same lines
that have led to (7)

η1(t) = w(Lt2)− w(Lt) + α1(t2) [LT − Lt2 ] (14)

Conclusively we are able to determine the labor supplies for each phase and
thus expressions for cumulative labor supplies at the end of phases 1-3. These
expressions are needed, when solving for the timing of fertility. They are given
by the integrals of instantaneous labor supplies (2), (10) and (12). Since the per
period labor supplies are all constants, we can multiply them with the length
of each respective phase and add the experience gained in former phases to find
the labor experience at the end of each phase.

Lt2 =

∙
Ψ− 1

w(Lt2) + α1(t2) [LT − Lt2 ]

¸
(t2 − t1) (15)

Lt3 = Lt2 +

∙
Ψ− c(k, t2)−

1

w(Lt3) + α2(t3) [LT − Lt3 ]

¸
(t3 − t2) (16)

LT = Lt3 +

∙
Ψ− 1

w(Lt3)

¸
(T − t3) (17)

Jumps of Costates

Proposition 1 There is a discontinuous downward jump (upward) jump, when
the return of labor experience is larger (smaller) during the first of the two
phases. Furthermore one can show that the quotient of the two consecutive
phases 1 and 2 is constant at t2, when the experience derivative of income is
constant within each phase.

Proof. For αi(t) 6= const

η1(t2)

η2(t2)
=

α1(t2) [LT − Lt2 ]

w(Lt3)− w(Lt2) + α2(t3) [LT − Lt3 ]
=

α1(t2) [LT − Lt2 ]R t3
t2

α2(t)ltdt+ α2(t3)
R T
t3
Ltdt

(18)
When the experience return is larger at a given point in time during phase 1

(in particular at t2) than during phase 2, then the quotient (18) must be greater
than one. Hence there is a downward jump of labour supply at t2.
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For αi(t) = αi = const

η1(t2)

η2(t2)
=

α1 [LT − Lt2 ]

w(Lt3)− w(Lt2) + α2 [LT − Lt3 ]
=

α1
α2

(19)

If α2(t) decreases with time, then the denominator of (18) is smaller than
that of (19), hence (18) must be larger than (19), which means that the upward
jump is larger when αi(t) 6= const.
In order to simplify the continuative analysis, we assume that a1 and α2 are
independent of time but a1 > α2 as discussed earlier. The income payments at
the end of phase one and two are then equal to the expressions,

w(Lt2) = w(Lt1) + α1Lt2 (20)

w(Lt3) = w(Lt2) + α2 [Lt3 − Lt2 ] (21)

w(LT ) = w(Lt3) (22)

where w(Lt1) = w(0) is the income of an individual who has recently com-
menced working. (22) reminds us that there is no return on experience gained
during phase 3. How results change, when we substitute w(LT ) = w(Lt3) +
α3 [LT − Lt3 ] for (22) where the experience return during phase 3 is α3 6= 0, is
briefly explored later.

2.2 The optimality condition for the timing of childbirth

There is the desire to have children earlier in life; and the probability that a child
has a disability increases with the mother’s age. This is modelled by a change in
the expected cost. To keep things simple, we assume that c(k, t2) and m(k, t2)
increase with certainty, when childbirth is delayed. Advanced medical research
makes it feasible to give birth later in life, but such procedures are expensive.
In addition to which, parents that are wealthier spend more money on raising
their children. Since income increases in this model continuously, monetary costs
m(k, t2) increase with t2. Besides a positive derivative of m(k, t2) with respect
to t2, we argue for a positive relation of time costs c(k, t2) and childbirth. The
same rules that apply on the labor market also apply when people raise children:
younger people can generally adopt better to changing market conditions and
learn faster. A mother in her early 20s might be still able to drop off her children
at the kindergarten, before going to her part-time job and pick them up again
in the afternoon. Furthermore we assume that the length of time required to
raise children is longer, when there are more children; h0(k) > 0. This term can
be used later to evaluate policy implications for schools, where children can stay
all day long. Once children are old enough to go to these schools, both parents
could begin to work full-time again. In the model the individual then enters
phase 3. We included monetary costs for phase 3 in an earlier working paper.
Results shall be briefly discussed below.
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With t2 fixed, one can take the utility stream from t1up to T and differentiate
this expression with respect to t2. This expression must be equal to zero at the
optimal time of childbirth t∗2. Now consider the following three sub-problems:

For t ∈ [t1, t2] t1 and t2 fixed

SP ∗1 = max
x1(t)

Z t2

t1

{x1(t) + ln [Ψ− l1(t)]} dt (23)

s.t.
·

l1(t) = l1(t) and w(Lt)l1(t)− x1(t) = 0

For t ∈ [t2, t2 + h(k)] t2 and h(k) fixed

SP ∗2 = max
x2(t)

Z t2+h(k)

t2

{x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)} dt (24)

s.t.
·

l2(t) = l2(t) and w(Lt)l2(t)− x2(t)−m(k, t2) = 0

For t ∈ [t2 + h(k), T ] t2, h(k) and T fixed

SP ∗3 = max
x3(t)

Z T

t2+h(k)

{x3(t) + ln [Ψ− l3(t)] + v3(k)} dt (25)

s.t.
·

l3(t) = l3(t) and w(Lt)l3(t)− x3(t) = 0

We need to use the Leibniz Rule to derive
∂SP∗i
∂t2

for i = 1, 2 and 3. For each
phase i we receive three terms:

1. The integral of
∂SP∗i
∂t2

with the corresponding phase’s bounds.

2. We subtract the t2 derivative of the lower bound of phase i, which is
multiplied by the Hamiltonian evaluated at the lower bound.

3. Finally we add the derivative of the upper bound with respect to t2, which
is multiplied by the Hamiltonian evaluated at that point.

Phase 1
∂SP ∗1
∂t2

= H∗1 (t2) (26)

Applying the envelope theorem, the first term is zero. The lower bound is
independent of childbirth, hence term two is zero. The third term; H∗1 (t2)
intuitively means that an incremental increase in t2 comes along with additional
per period utility gained during phase one at t2.

Phase 2

11



∂SP ∗2
∂t2

= −∂c(k, t2)
∂t2

h(k)

Ψ− l∗2 − c(k, t2)
−H∗2 (t2) +H2(t3) (27)

One can show that H∗2 (t3)−H∗2 (t2) = 0. This result is due to the fact that
in the presence of learning, the per period utility within each phase is constant.
The change in utility through an increase in consumption is completely offset
by the change of utility through the decrease of the experience value. One can
draw a parallel to the earlier discussion in section 2.1. Hamiltonians within any
phase are of equal value independent of the period in which they are evaluated.

Applying the envelope theorem, the first term is −∂c(k,t2)
∂t2

h(k)
Ψ−l∗

3
−c(k,t2) and

does not vanish here, because the derivative with respect to c(k, t2) is not equal
to zero. However the derivatives of the per period Hamiltonian with respect to
x∗2(t), l

∗
2 and η∗2(t), which have already been chosen optimally are zero. c(k, t2)

depends on the number of children and the timing of childbirth, which are not
optimal at this stage yet. The change of time costs has to be paid for the length
of this phase, h(k). The second term comes from a decrease of phase two’s
utility at the original t2 before the change, the third term from an increase of
phase two’s utility at t3. Phase two can be seen as shifted to the right within
the time interval.
Phase 3

∂SP ∗3
∂t2

= −H∗3 (t3) (28)

The envelope theorem allows the first term to vanish, the third term does
not occur here either, because the upper bound of phase four T is exogenously
given and hence independent of t2. −H∗3 (t3) expresses the fact that phase three
becomes shorter and loses an incremental period at t3.
Adding (26), (27), (28) and setting them equal to zero gives the optimality

condition for the optimal timing of childbirth, where k is still assumed to be
fixed.

H∗1 (t2)−
∂c(k, t2)

∂t2

h(k)

Ψ− l∗3 − c(k, t2)
−H∗3 (t3)

.
= 0 (29)

2.3 The optimality condition for the number of children

Again we use the Leibniz rule and the Envelope theorem with the same method
used to derive the t∗2-optimality condition. The timing of childbirth depends on

phase one’s utility stream, but the number of children k does not, thus
∂SP∗

1

∂k = 0.
The length of phase two and three changes with the number of children.

The terms that affect the number of children are the costs and benefits, while
children are young (phase 2), the benefits when they are older (phase 3), and
the length of phase 2, h(k).
Phase 2

∂SP ∗2
∂k

=

∙
∂v2(k)

∂k
− ∂c(k, t2)

∂k

1

Ψ− l∗2 − c(k, t2)

¸
h(k) +H∗2 (t3)h

0(k) (30)
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Functional form Phase

Time costs c(k, t2) = c1k
β
1 + c−12 t

β
2

2 2
Utility from Children v2(k) = c3k

β
3 2

Utility from Children v3(k) = c4k
β
3 3

Length of phase 2 h(k) = c5k
β
4 2

Monetary costs m(k, t2) = c6k
β
5 + c−12 t

β
2

2 2

Table 1: Functional forms

The first term is the change of the per period utility of phase two from an
increase of benefits from having more children, subtracted by additional costs
multiplied by the length of this phase h(k). The second term is the additional
utility from an increase of length of phase two.
Phase 3

∂SP ∗3
∂k

= (T − t3)
∂v3(k)

∂k
− h0(k)H∗3 (t3) (31)

When more children are born, the additional benefit from having them is ac-
counted for by the first term. Phase 3 becomes shorter through an increase of
length in phase 2 when more children are present (second term) .
The k∗-optimality condition is thus given by

h(k)

∙
∂v2(k)

∂k
− ∂c(k, t2)

∂k

1

Ψ− l∗2 − c(k, t2)

¸
+(T−t3)

∂v3(k)

∂k
+h0(k) [H∗2 (t3)−H∗3 (t3)]

.
= 0

(32)
We derive the optimal number of children and the optimal timing of child-

birth simultaneously. The equation that describes the optimal number of chil-
dren is given by (32), which depends on t2 just in the same way as (29), the
equation that characterizes the optimal date of childbirth.
Given (15), (16), (17), (20), (21), (22), (29) and (32) we can solve for the

optimal number of children and timing of childbirth numerically. Besides these
two variables, we can also solve for cumulative labor experience at t2, t3, and
T and the per period income level at these points. The characterization of an
analytical solution would be extremely tedious, because one would have to apply
the implicit function theorem for eight equations, where each of them depends
on all other seven equations.

2.4 Results

We need to make assumptions regarding the functional forms of the cost func-
tions, utility derived from children and the length of phase two. These are
presented in table 1.4

4We use Matlab to find numerical solutions for the eight conditions; the command “fsolve”
finds solutions for nonlinear systems.
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All functions in table 1 are concave in the number of children k. When they
depend on the timing of childbirth, then they are convex in t2. The parameters
have also been chosen such that the optimal number of children is 2 .2 to reflect
the number of children a woman must have on average to keep the population
at a constant level. In 2006, the average age of a woman receiving her first child
in the 25 European Union member states was approximately 29 years of age.5

The parameters of the baseline model are chosen to have an optimal number
of years spent on the labor market of about 7.4 years, because an average age,
when entering the labor market of 21.6 seems reasonable.6 T , the total number
of years spent on the labor market is assumed to be 40. The age at retirement is
thus 61.6. The parameters α1 and α2 are 5% and 2%, reflecting the observation
that income increases with experience more during phase 1 when no children
are present and less when she works part-time and looks after her children
(phase 2). Empirically one does not observe an increase of real income during
phase 3, hence we set α3 = 0. We start at an exogenously given wage of 10. It
endogenously increases to 13.7 until t∗2, furthermore goes up to 14.1 during phase
2 and remains at this level until T . Comparative static results are summarized
in table 2. To save space we left out how other variables such as labor experience
and the wage rate are affected through a parameter change. Bold (italic) values
represent increasing (decreasing) t∗2’s or k

∗’s due to a 1% increasing parameter.

Changing one of the underlying parameters affects all optimality conditions.
A first observation is that when k∗ increases (decreases) due to a change of
one parameter, then the timing of childbirth t∗2 decreases (increases). Besides
the negative correlation between these variables, there is a negative correlation
between k∗ and all other variables; the optimal number of children increases
only, when the optimal cumulative labor supplies and incomes at the end of
all phases decrease. We interpret the results one for one and concentrate on
the timing of childbirth and the number of children. An increase in the income
level decreases the number of children wanted. The opportunity costs of having
children increases, thus less children are born. An increase in α1 delays the
optimal timing of childbirth, because an individual wants to exploit income
increases during phase 1, which are larger than in any other phase. A delayed
timing of childbirth is automatically connected to fewer children. An increase in
α2 on the other hand increases the number of children wanted, because an early
childbirth is not as expensive, when her wage can still increase sufficiently after
t∗2. In an earlier version, we accounted for α3 > 0; labor experience gained during
phase 3 increases the future income. Increasing α3 has the same comparative
effects on the choice variables as increasing α2 with the same intuition behind
it. Kreyenfeld (2003) examines the difference of fertility rates between East
and West Germany after the reunification in 1990. She shows that the East
German cohort of young people has its first child at a younger age compared to
the West German cohort, even though it has fewer children in total. Kreyenfeld

5Eurostat (2006): Population statistics
6Within the EU-15 countries over 40% of the cohort aged 22 years has entered the labour

force.
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Values of the baseline model

t∗2 7.447 L∗t2 74.200 w(t∗2) 13.710
k∗ 2.189 L∗t3 95.806 w(t∗3) 14.142

LT 345.583 w(T ) 14.142

How a 1% increase of the parameters below affects t∗2 and k∗

Variables wt1 = 10 α1 = 5% α2 = 2% t1 = 0 (+0.1) T = 40
t∗2 7.5035 7.7503 7.4299 7.4192 7.6150

k∗ 2.1604 2.1147 2.1901 2.2030 2.1829

c1 = 4 c2 = 50 c3 = 70 c4 = 70 c5 = 5
t∗2 7.5908 7.5228 7.3385 7.1978 7.4841

k∗ 2.1307 2.1742 2.2309 2.2565 2.1521

c6 = 20 β1 = 5% β2 = 2 β3 = 3% β4 = 3%
t∗2 7.474 7.5896 7.0766 7.1819 7.5548

k∗ 2.1307 2.133 2.2636 2.2854 2.1392

β5 = 5% Ψ = 10
t∗2 7.4619 8.0552

k∗ 2.1831 2.0429

Table 2: How the optimal number of children and the timing is affected by the
underlying parameters.
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(2003) claims that the increase in uncertainty about future income was the main
cause for this observation. Another reason seems compelling; many young East
Germans, who worked in areas for which labor experience mattered, moved to
West Germany after the re-unification, leaving those behind, whose opportunity
costs of having children early were low.
An increasing working-span of an individual (changes in t1, T and Ψ) has a

negative effect on fertility. An increase of the working life raises life-time income
and income per period. Thus the opportunity costs of having children are larger.
An increase of c1 or β1 means that the marginal time cost of an additional child
increases. Not surprisingly, if these costs increase, the number of children goes
down. Governments that offer placements in kindergartens, where children can
stay until the afternoon, give the mother the opportunity to take a longer part-
time job and hence decrease c1. c2 and β2 are parameters that are connected
to the time cost burden of raising children, when children come late. Up to a
number of

√
c2 years, the time costs reflected by the second term of c(k, t2) are

less than one. Since they increase exponentially though, they do matter at some
point and induce her to enter phase 2. When c2 increases or β2 decreases, the
marginal time cost of giving birth late decreases. Therefore women have fewer
children but later. Medical research enabling late childbirth has a negative effect
on fertility. Soares (2005) shows why advances in medical research corresponds
with lower fertility in developing countries. When child mortality is reduced,
the expected costs of large families increase and the marginal benefits decrease.
An increase of benefits from young and old children c3, c4 and β3 increase the
number of children. If the length of phase 2 is long (large c5 and β4), then the
individual’s number of children decreases. The results come from the underlying
structure of the model based on costs mainly occurring due to leaving phase 1
and entering phase 2 (decrease of cumulative experience return), but benefits
also occur during the last phase. A government that offers sufficient placements
of full-day care centres or full-time schools increases its country’s fertility, by
shortening phase 2. β5 and c6 are connected to the monetary costs she has to
encounter, when children are young. An increase of child benefits increases the
number of children. It is straightforward to include monetary costs for phase 3
as well. Changing the parameters of these, when they have the same functional
form as m(k, t2) also has the same effect as changing β5 and c6. Child benefits
are reflected by a lower c6. A financial incentive given to parents in Germany
is the so-called “Elterngeld” (parental benefits). Parents receive up to 2/3 of
one of the partner’s last net income for one year, if one parent stays at home
during that time and looks after the child. Parents can choose between a one-
year-parental-leave and a day-care centre. In our model this would be reflected
by the choice between a positive c6 and a lower c(k, t2) if the parental leave
is rejected and a negative c6 and a very large c(k, t2) such that l

∗
2 = 0 if it

is accepted. Apps and Rees (2004) also show how specific government policies
affect fertility choices.
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3 Extension A: Divorce

Marriage may not last until the end of a woman’s planning horizon T . 7

When the probability of divorce increases through an exogenous change, then
Grossbard-Shechtman (1984) argues that women have more outside options and
reduce their supply of household goods which includes the number of children.
In our setup divorce causes the number of children to be reduced as well, but
for a different reason. Divorce is more costly for a woman when she has more
children. A woman with many children has less labor experience and hence
a lower income. At the same time the costs of having children increase after
divorce, because she has to raise them by herself cd(k, t2) > c(k, t2) and receives
less monetary support from the father, hence her monetary contribution to chil-
dren increases md(k, t2) > m(k, t2). Benefits from children for the mother do
not change after divorce. A divorce solely effects the woman’s utility, when it
occurs during phase 2, therefore we also restrict it to that phase.
Phase 2 t ∈ [t2, t3] is solved in two steps

1. The date of divorce d is known and d ∈ [t2, t3]

2. The date of divorce is uncertain.

3.1 Step 1: The Optimal Plan before and after Divorce

known to occur at time d.

Optimal Plan after d We begin to solve the problem by finding the indi-
vidual’s optimal plan after divorce has occurred. Later it is shown, how the
individual acts before the known date d. The objective that needs to be maxi-
mized is
V d
2 =

R t3
d

©
x2(t) + ln

£
Ψ− l2(t)− cd(k, t2)

¤
+ v2(k)

ª
dt+V ∗3 subject to the bud-

get constraint w(Lt)l2(t) = x2(t) + md(k, t2) and as before
·

Lt = l2(t). The
Lagrangian after divorce is

Γd2 [x2(t), l2(t)] = x2(t) + ln
£
Ψ− l2(t)− cd(k, t2)

¤
+ v2(k) (33)

+η2(t)l2(t) + λ2(t)
£
w(Lt)l2(t)− x2(t)−md(k, t2)

¤

Substituting λ2(t) = 1 the equilibrium conditions of this problem are

ld2(t) = Ψ− cd(k, t2)−
1

η2(t) + w(Lt)
(34)

·

η2(t) = −
·

w(Lt) (35)

7Sweden and the United Kingdom have the highest divorce rates in Europe with over 50%.
Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Hungary, Norway
and Switzerland have divorce rates between 40%-50%. Ireland, Italy, Poland and Spain have
the lowest divorce rates of less than 20% according to Eurostat (2006) "Population Statistics".
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The transversality condition here is an expression of the costate at t3. Working
an additional hour at t3 increases her income and has a future return of

ηd2(t3) =
∂w(Lt)

∂Lt
|t=t3

Z T

t3

LTdt =
∂w(Lt)

∂Lt
|t=t3 [LT − Lt3 ] (36)

Given transversality condition (36), equation (35) can be re-written such that
the costate becomes

ηd2(t) = w(Lt3)− w(Lt) + α2(t3) [LT − Lt3 ] (37)

where α2(t3) =
∂w3(Lt)
∂Lt

|t=t3 .
Using (34) and (37) we solve for the optimal labor supply, which is independent
of time and its consumption counterpart, which does depend on time just as in
the absence of divorce,

ld2 = Ψ− cd(k, t2)−
1

w(Lt3) + α2(t3) [LT − Lt3 ]
(38)

xd2(t) = Ψw(Lt)− cd(k, t2)w(Lt)−
w(Lt)

w(Lt3) + α2(t3) [LT − Lt3 ]
−md(k, t2) (39)

The direct utility after divorce V d
2 (d), which is needed to find the optimal num-

ber of children later is

V d
2 (d) =

Z t3

d

©
xd2(t) + ln

£
Ψ− ld2 − cd(k, t2)

¤
+ v2(k)

ª
dt+ V ∗3 (40)

and the per-period direct utility, needed for the same reason, is

V d
2 (t) =

Ψw(Lt)− cd(k, t2)w(Lt)− w(Lt)

w(Lt3 )+α2(t3)[LT−Lt3 ]
−md(k, t2)

+ ln

∙
1

w(Lt3 )+α2(t3)[LT−Lt3 ]

¸
+ v2(k)

(41)

Optimal Plan before d We solve for an optimal plan for a known date of di-

vorce d. The individual maximizes the objective
R d
t2
{x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)} dt

subject to the constraint w(Lt)l2(t) = x2(t) +m(k, t2).

·

η2(t) = −
·

w(Lt) (42)

together with the transversality condition

η2(d) = α2(d)

Z T

d

l(t)dt (43)

yields the costate’s functional equation

η2(t) = w(L(d))− w(Lt) + α2(d) [LT − L(d)] (44)
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Proposition 2 The costate function does not change after a known date of
divorce, when the experience derivative of income is time independent α2(t) =
α2.

Proof. Substituting α2 for α2(t) in (37)

ηd2(t) = w(Lt3)− w(Lt) + α2 [LT − Lt3 ]

= w(L(d)) +

Z t3

d

·

w(Lt)dt− w(Lt) + α2 [LT − Lt3 ]

= w(L(d)) +

Z t3

d

α2l(t)dt− w(Lt) + α2 [LT − Lt3 ]

= w(L(d)) + α2 [Lt3 − L(d)]− w(Lt) + α2 [LT − Lt3 ]

which is equal to (44).

The result here is also due to the utility’s functional form. If it were not
quasi-linear in the consumption good, then λ2(t) 6= 1 and the costate would
depend on per-period labor or consumption.

l2 = Ψ− c(k, t2)−
1

w(Lt3) + α2(t3) [LT − Lt3 ]
(45)

x2(t) = Ψw(Lt)− c(k, t2)w(Lt)−
w(Lt)

w(Lt3) + α2(t3) [LT − Lt3 ]
−m(k, t2) (46)

(46) shows that consumption is larger before than after divorce has occurred,
because c(k, t2) < cd(k, t2) and m(k, t2) < md(k, t2). l2 > ld2 because children
demand more time for their child care. Future benefits of labor remain un-
changed.

3.2 Step 2: The optimal plan before an unknown date of

divorce

Decisions after d are given in the last section; see (38) and (39). They do not
vary, when divorce is uncertain, because after d all uncertainty is cleared. Ex-
pectations about divorce are uniform among all representatives, the subjective
probability that divorce occurs at time t is φ(t). The perceived probability that
the marriage will persist at least until time t is consequently calculated as

G(t) =

Z t3

t

φ(t)dt (47)

The date of divorce is unknown; the individual is obliged to maximize her ex-
pected utility,
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Z t3

t2

φ(d)H(d)dd+

Z t3

t2

φ(d)V d
2 (d)dd (48)

where V d
2 (d) is given by (40) andH(d) =

R d
t2
u2 [x2(t), l2] dt =

R d
t2
{x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)} dt

(48), upon integration by parts may be expressed as

Z t3

t2

©
G(t)u2 [x2(t), l2] + φ(t)V d

2 (t)
ª
dt (49)

where V d
2 (t) is given by (41).

Therefore an individual maximizes

Z t3

t2

©
G(t)u2 [x2(t), l2] + φ(t)V d

2 (t)
ª
dt+ V ∗3 (50)

subject to the known constraints. Consequently, the Lagrangian from which the
socially optimal plan before divorce can be derived is

Γ = G(t) {x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)}+ φ(t)V d
2 (Lt) (51)

+ηbd2 (t)l2(t) + λ2(t) [w(Lt)l2(t)− x2(t)−m(k, t2)]

where the equilibrium conditions are

λ2(t) = G(t) (52)

l2(t) = Ψ− c(k, t2)−
G(t)

ηbd(t) +G(t)w(Lt)
(53)

·

ηbd2 (t) = −φ(t)
∂V d

2

∂Lt
− w(Lt)G(t) (54)

where ηbd2 (t) is the costate of phase 3 before divorce, when divorce is uncertain.
The per period consumption is

x2(t) = Ψw(Lt)− c(k, t2)w(Lt)−
G(t)w(Lt)

ηbd2 (t) + λ2(t)w(Lt)
−m(k, t2) (55)

The expected direct utility in the presence of uncertainty (index U) at t2 for all
future periods of phase 3 is

V U
2 (k, Lt) =

Z t3

t2

©
G(t)u2 [x

∗
2(t), l

∗
2] + φ(t)V d

2 (Lt)
ª
dt+ V ∗3 (56)

The costate’s time derivatives before and after divorce in the absence of

uncertainty (42) and (35) respectively denoted by
·

η2(t) are equal. Comparing
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Figure 2: The co-states of phase two, when a divorce does not occur and when
it does for a known and an unknown d.

these with (54) denoted by
·

ηbd2 (t) indicates the timing of childbirth, when divorce
is uncertain. Both equations are used to derive

·

η2(t) =

·

ηbd2 (t) + φ(t)
∂V d

2

∂Lt

G(t)
(57)

The costates’ time derivative and therefore also the costates themselves are
equal, when the probability of divorce at some time t, φ(t) = 0, and the perceived
probability that marriage will persist at least until time t, G(t) = 1. The second
term in the nominator of (57) is small, because the instantaneous probability
of divorce φ(t) is small. G(t) is the probability that a couple is still married
at time t. In most EU countries except the UK and Sweden this value is at

least 0.5 for all t ∈ [t2, t3]. Thus one can assume that G(t) > φ(t)
∂V d

2

∂Lt
. Both

time derivatives are negative, because within this phase and any other phase,
experience pays off less and less the sooner she reaches her retirement, therefore

·

ηbd2 (t) <
·

η2(t). Both costate functions have the same functional value at t3,
because all uncertainty is resolved at t3. In the case of no divorce η

bd
2 (t) must

lie entirely above η2(t). They coincide at t3. In case a divorce occurs, η
bd
2 (t)

must jump downwards such that both costates can coincide. This is shown in
figure 2.
When the date of divorce is known, then the costate before and after divorce

is unchanged. It is only affected, when d is unknown. This shows that our
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individual values labor more, when she faces the risk of divorce. She therefore
has a higher labor supply in the presence of uncertainty. A known date of
divorce would therefore lead to a lower labor supply and more children due to
the negative correlation between these variables. Next we answer the question
whether a woman reduces the number of children in the presence of divorce and
if she consequently delays the timing of childbirth.

4 Extension B: Divorce, a numerical simulation

After illustrating divorce within this model setup analytically such that there
is a positive probability of divorce in every period of phase 2 (extension A),
we continue to show a simplified method where divorce occurs with a positive
probability at varying points in time between t2 and t3. Derivations from exten-
sion A are needed in this section. The divorce probability is zero for all other
periods as in extension A, because a woman would not be affected by it in this
setup. Again it’s a straightforward extension to include divorce for phase 3,
when there are monetary costs connected to children in that phase. Our main
results do not change, hence we leave it out, however we discuss them briefly
below. Within this framework, we can solve for the timing of fertility and the
number of children numerically as we have done in the baseline model. Exten-
sion A was more general therefore less precise, because it only characterizes the
costate during phase 2 in the presence of divorce, but does not find a solution
for t∗2 and k∗ explicitly, which this section does. With a probability of p < 1
there is a divorce during phase 2. Re-marriages are excluded for simplicity. The
possible date of divorce d during phase 2 is given by

d = t2 +
h(k)

c7
(58)

where c7 ∈ (1,∞). (58) means that divorce occurs after a certain portion
of phase 2 is over, which depends on c7. The longer phase 3 the more children
are present; h0(k) > 0. Divorce occurs then later as it is more costly, when
more children are present. Next we derive the t2 and k- optimality conditions.
Again we differentiate utility streams. The first and third phases’ utilities do
not change through divorce but their utility stream needs to be added to the
two cases: divorce and no-divorce. The utility streams from t1 to T are thus;

1. No divorce: (23)+(24)+(25)

2. Divorce during phase 2: (23)+DP ∗2.1 +DP ∗2.2d+(25).
8

For t ∈ [t2, d], t2 and d fixed

DP ∗2.1 = max
x2(t)

Z d

t2

{x2(t) + ln [Ψ− l2(t)− c(k, t2)] + v2(k)} dt (59)

8The subscript 2.1 is attached to the utility during phase 2 up to d and 2.2d to the utility
during phase 2 after d.
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s.t.
·

l2(t) = l2(t) and w(Lt)l2(t)− x2(t)−m(k, t2) = 0

For t ∈ [d, t2 + h(k)] t2, h(k) and d fixed

DP ∗2.2d = max
x2(t)

Z t2+h(k)

d

©
x2(t) + ln

£
Ψ− l2(t)− cd(k, t2)

¤
+ v2(k)

ª
dt (60)

s.t.
·

l2(t) = l2(t) and w(Lt)l2(t)− x2(t)−md(k, t2) = 0

Case 1, the no divorce case is described by the baseline model. The left
hand side of (29) multiplied by the no-divorce probability is the first part of the
expected utility. Case 2: We have already solved for DP ∗2.1+DP ∗2.2d in extension
A. The t2-optimality conditions can be derived when adding the terms of our
two cases:

1. The expected utility from "no-divorce" case for the t2-optimality condition
is given by

(1− p)

∙
H∗2 (t2)−

∂c(k, t2)

∂t2

h(k)

Ψ− l∗2 − c(k, t2)
−H∗3 (t3)

¸
(61)

2. The part, when divorce occurs at d during phase 3 is

p3

(
H∗2 (t2)−Hd∗

2 (t2 + h(k))− 1
Ψ−l∗

2
−c(t2,k)∗h

h(k)
c7

∂c(k,t2)
∂t2

+ h(k)
¡
1− c−17

¢ ∂cd(k,t2)
∂t2

i
)

(62)

The quotient 1
Ψ−l∗

2
−c(t2,k) is equal after and before divorce, because the

change of the labor supply and the change of the children’s time costs
c(t2, k) cancel. For the not-divorce and for the divorce case, Hamiltoni-
ans of the same phase evaluated at different periods are equal such that
H∗2 (t2 +

h(k)
c7
)−H∗2 (t2) = 0 and Hd∗

2 (t2 + h(k))−Hd∗
2 (t2 +

h(k)
c7
) = 0.

Adding (61) and (62), and setting these terms equal to zero is the t2-optimality
condition, when divorce is a possibility within a marriage. The k-optimality
condition is derived next.

1. Case 1: the probability of no-divorce is multiplied with the LHS of equation
(32);

(1− p)

(
h(k)

h
∂v2(k)
∂k − ∂c(k,t2)

∂k
1

Ψ−l∗
2
−c(k,t2)

i

+(T − t3)
∂v3(k)
∂k + h0(k) [H∗2 (t3)−H∗3 (t3)]

)

(63)
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Parameter increases by 1%

Variables Baseline c7 = 2 c8 = 2 c9 = 1.5 p = 40%
Lt∗

2
75.6536 75.6980 75.6994 75.7193 75.6926

Lt∗
3

98.6950 98.7433 98.7523 98.7553 98.7389

LT 354.0908 354.1627 354.2116 354.1273 354.1630

wt∗
2

13.7827 13.7849 13.7850 13.7860 13.7846

wt∗
3

14.2435 14.2458 14.2460 14.2467 14.2456

wT 14.2435 14.2458 14.2460 14.2467 14.2456

t∗2 7.5928 7.5972 7.5974 7.5994 7.5967

k∗ 1.7887 1.7850 1.7828 1.7865 1.7851

Table 3: The effect of divorce related parameters on the variables of the model

2. Case 2: divorce at d:

p

(
h(k)

h
∂v2(k)
∂k − ∂c(k,t2)

∂k
1

Ψ−l∗
2
−c(k,t2)

i
+ (T − t3)

∂v3(k)
∂k

+h0(k)
c7

£
H∗2 (d)−Hd∗

2 (d)
¤
+ h0(k)

£
Hd∗
2 (t3)−Hd∗

3 (t3)
¤

)

(64)

The first two terms are the same as in case 1. The length of phase 2
increases with k by h0(k), also remember that d is positively dependent
on h(k). When divorce occurs at d, then the first part of phase 2 [t2, d3]
increases, because divorce occurs later (term 3). At the same time phase
2 becomes longer and phase 3 becomes shorter (term 4).

Setting the sum of (63) and (64) equal to zero, is the k- optimality con-
dition in the presence of divorce. We can continue with the numerical
simulation to find k∗ and t∗2. We assume that a woman’s time costs which
occur during phase 2, when raising children increase to c8c(k, t2) after she
had a divorce. Monetary costs during phase 2 change to c9m(k, t2). The
parameters c8 and c9 must all be larger than one. Values of newly intro-
duced parameters, where p is the divorce probability and c7 the timing
when divorce occurs within this phase are given in the second line of ta-
ble 3. The probability of divorce is assumed to be 40%. Divorce occurs
half way through within each phase, time costs are doubled and monetary
costs increase by one half. All other parameters are the same as in the
baseline model. The results for divorce are summarized by table 3.

The number of children in the presence of divorce decreases to k∗ = 1.79 from
around 2.2 in the baseline model, where divorce was excluded from the analysis.
k∗ = 1.79 is closer to the average of the number of children a woman within
the European Union countries gave birth to in 2007. In 2007 the fertility rate
within the 27 European member states was between 1.25 (Slovakia) and 1.98
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(France).9 Not surprisingly, an increase of all divorce related parameters delays
childbirth and yields a decrease of the optimal number of children. The burden
of divorce is largest when children are young. We extended this present model
to allow for divorce during phase 3; children would not need to be looked after,
however they still receive a monetary transfer from their parents: c3(k, t2) = 0
andm3(k, t2) > 0. A change of the divorce probability of phase 3 affects fertility
less than a change of the divorce probability of phase 2, because costs are larger
during phase 2, when time is devoted to raising children c8. If divorce occurs
with certainty, then fertility decreases to 1.38 in this setting. One can further
show that the second derivative of the fertility rate as a function of the divorce
rate is positive. Our results are in line with empirical observations. Bedard
and Deschenes (2003) use data from the 1980 U.S. Census Public-Use Micro
Samples and show that the ever-divorced women have higher wages, which are
reflected by increased labor supply intensities. In table 3, cumulative labor
supplies or experience levels Lt2 , Lt3 and LT and corresponding wage levels are
larger when the divorce probability increases marginally. Our results still hold,
when p would increase to 100%.

5 Conclusions

This model has been the first to solve simultaneously for the optimal timing
of childbirth and number of children in a continuous time framework, where
the wage is determined by work experience in a way that depends on the life
phase in which it is accumulated. It shows that the date of childbirth and the
number of children are negatively related. The marginal value of labor jumps
when labor experience influences income differently, which is most likely to be
the case when one changes from a full-time to a part-time job. A steep income
profile right after leaving school has a negative effect on fertility, while a steep
income profile when raising children and afterwards affects fertility positively.
We have shown the effects of the different types of cost of raising children,

time costs and money costs. Individuals with high returns from education spend
more time in education and have fewer children. Women value market work
more when they face the risk of divorce, and so fertility is delayed and fewer
children are born. The largest impact of divorce is when the probability of
divorce during the phase in which the children are at home is large. Then a
woman has to bear larger monetary costs, but even more importantly she has
to devote more of her time towards child care. This has two negative effects:
her current and future income decrease, because she is forced to work less on
the labor market. Overall, the results of our model appear to be consistent with
what empirical evidence is available on these relationships.

9European Commission, Eurostat: Statistics in focus 81/2008, Population and social con-
ditions.
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