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Abstract We present the novel implementation of a non-
differentiable metric approximation and a corresponding
loss-scheduling aimed at the search for new particles of
unknown mass in high energy physics experiments. We call
the loss-scheduling, based on the minimisation of a figure-
of-merit related function typical of particle physics, a Punzi-
loss function, and the neural network that utilises this loss
function a Punzi-net. We show that the Punzi-net outper-
forms standard multivariate analysis techniques and gener-
alises well to mass hypotheses for which it was not trained.
This is achieved by training a single classifier that provides a
coherent and optimal classification of all signal hypotheses
over the whole search space. Our result constitutes a comple-
mentary approach to fully differentiable analyses in particle

a e-mail: paul.feichtinger@oeaw.ac.at (corresponding author)

physics. We implemented this work using PyTorch and pro-
vide users full access to a public repository containing all the
codes and a training example.

1 Introduction

The standard model (SM) of particle physics is the theoret-
ical framework that describes fundamental interactions and
the fundamental constituents of matter. Although success-
ful in predicting phenomena, there is a general consensus
that this framework is not a complete description of nature,
and new physics (NP) has to exist. Searches for NP beyond
the SM can be grouped into two main categories: searches
for direct production and decays of new, unknown particles;
and searches for deviations from the theoretical predictions
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in precision measurements. When searching for new parti-
cles, for example, in a collider experiment, one of the main
challenges is correctly reconstructing and identifying the
new particles (the signal) and rejecting any (or most) con-
tributions from potential background sources. This is a com-
mon problem referred to as event classification. A common
approach to correctly classify a signal with respect to back-
ground uses Monte Carlo (MC) simulation to generate signal-
and background-like event distributions. MC simulation can
help find underlying features or patterns in the signal and the
background distributions that allow one to disentangle the
two (possibly) unambiguously. In the last decade, advanced
data analysis methodologies, such as multivariate analysis
(MVA) methods, have often improved analysis signal selec-
tion power, allowing for more precise analyses, usually per-
formed in a shorter time. Typical MVA methods in use in
the field of particle physics include, but are not limited to,
decision trees, boosted decision trees (BDTs) [1], or shallow
and deep neural networks (NNs) [2]. This paper focuses on
the implementation of NNs. We propose and describe how to
implement a new loss function, called Punzi-loss, based on
the so-called Punzi figure-of-merit (FOM) [3]. We henceforth
refer to a neural network trained with the Punzi-loss function
as a Punzi-net. As a benchmark study to test the performance
of the Punzi-loss and compare it to other techniques, we con-
sider the search for invisible decays of the hypothetical Z ′
boson produced in the reaction e+e− → μ+μ−Z ′ at the
Belle II experiment [4,5] at the SuperKEKB collider [6],
based on MC simulations.

2 Neural networks

There exist many implementations of neural networks (e.g.
convolutional neural networks (CNNs), transformers, etc.)
that are used in various applications ranging from image
classification in the case of CNNs to natural language pro-
cessing with transformers. In this work, we focus on a fully
connected feed-forward neural network for our experiments.
We nonetheless emphasise that the concepts outlined in this
work apply to all neural network implementations that use
backpropagation.

A neural network comprises a collection of connected neu-
rons. In a fully connected neural network, these constitute a
series of layers in which each neuron is connected to all
those in both the previous and subsequent layers. Each neu-
ron describes a mathematical function that produces an out-
put dependent on those input connections and a unique bias,
defined as

alj = σ

(∑
k

wl
jka

l−1
k + blj

)
. (1)

Here wl
jk is the weighting of the connection to the kth neuron

in the previous (l − 1) layer, blj is the bias and σ is the acti-
vation function. A variety of different activation functions
can be applied here, and most have specific traits that may
be desirable depending on the application. Commonly used
examples include sigmoid, rectified linear activation (ReLU),
or hyperbolic tangent functions. The key requirements are
that they are non-linear and have a derivative defined every-
where.

Using Eq. (1), a network of individual neurons is able
to map input variables to some desired output. For this to
be possible, however, the weight and bias parameters must
be optimised. In the implementation we present here, this
is done via supervised training, whereby training data, x , is
passed to the network along with the set of corresponding
labels, y. The actual output of the network, f (x) = ŷ, can
then be compared with this desired output to measure how
well it maps input data. This comparison is quantified by way
of a loss function, a commonly used example of which is the
Binary Cross Entropy loss,

L = −y ln ŷ − (1 − y) ln(1 − ŷ), (2)

where y ∈ {0, 1} and ŷ ∈ [0, 1]. With this measure of the
error, the training process becomes a minimisation problem:
what weights and biases will minimise the loss and there-
fore provide the most effective network? This is solved by
employing a method such as gradient descent, by which the
parameters can be iteratively adjusted in the direction oppo-
site that of the loss function’s gradient,

wn+1 = wn − η
δL

δwn
and (3)

bn+1 = bn − η
δL

δbn
, (4)

where η is the learning rate, the step size by which the
parameters are adjusted at each iteration of the learning pro-
cess. Each of these iteration steps constitutes a complete pass
through a randomly sampled batch from the full training data
set, a pass through the entirety of which is referred to as an
epoch. The derivatives δL

δw j
and δL

δb j
are calculated through use

of the backpropagation algorithm. This starts from the final
layer and utilises the chain rule to incrementally calculate all
derivatives through one full backward pass to the first layer.
The key is carefully selecting a loss function whose minimum
solves the given task while remaining differentiable across
all possible neural network outputs.

3 Figure of merit

As highlighted in Sect. 1, one of the main challenges when
performing a precision test of the SM, or in the search for NP,
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is the fact that some background processes may mimic the
signal and therefore contaminate the results. In the search
for a new particle, for example, one is often performing a
counting experiment which is described by the Poisson dis-
tribution. As discussed in [3], the number of events n in a
counting experiment in the case of a background (B) only
hypothesis (HB), and in the case of a signal (S) in the pres-
ence of the same background (HS+B) follows the Poisson
distributions

p(n | HB) = Bne−B

n! (5)

and

p(n | HS+B) = (S + B)ne−(S+B)

n! . (6)

When MC simulations for both the signal and the back-
ground are available, it is possible to identify quantities or
features in the data to separate and classify them correctly by
applying specific selection criteria. This would eventually
enable one to choose between the (null) background only
and the signal plus background hypotheses. In general, how-
ever, applying some selection criteria to reduce the back-
ground contamination will also remove some of the signal. It
is, therefore, fundamental to define some additional criteria
that would indicate the best balance between reducing the
background without compromising the signal. This is done
via the implementation of a FOM. One can define S(t) and
B(t) as the number of signal and background events that pass
some selection criteria (e.g. particles having a momentum or
energy larger than a specified threshold t). In that case, stan-
dard FOMs used in particle physics are:

FOM = S(t)√
B(t)

and (7)

FOM = S(t)√
S(t) + B(t)

. (8)

Neither of the above is usable in the search for new parti-
cles since the number of expected signal events depends on
the cross-section of the process, and this is not known a pri-
ori. An alternative FOM for this specific case was proposed
in [3], often referred to as the Punzi FOM after the author, and
is now in widespread use. The Punzi FOM to maximise is the
inverse of the minimum detectable cross-section σmin, which
defines a sensitivity region for which the experiment will cer-
tainly give conclusive results: it either will be excluded, or
a discovery will be claimed. An analytic formula for σmin is
given by

σmin(t) =
b2

2 + a
√
B(t) + b

2

√
b2 + 4a

√
B(t) + 4B(t)

ε(t) · L , (9)

where L is the target luminosity, ε(t) is the signal efficiency
and B(t) is the number of background events after the selec-

tion defined by t . The constants a and b are the number of
sigmas corresponding to one-sided Gaussian tests at some
predefined significance level, α and β. Here α is the prob-
ability of rejecting HB when it is true (type I error), and β

is the probability of not rejecting HB when instead HS+B is
true (type II error). Since we are interested in cases where
the signal hypothesis depends on a free parameter, β will
change with this parameter. The sensitivity region for a given
experiment is obtained for the parameter space that fulfils
1 − β > CL , where CL is the confidence level for setting
limits in case of no discovery. So for example when choos-
ing α to correspond to a significance of 5σ and a desired
confidence level of 90 %, a and b would be set to 5 and 1.28.

4 Punzi-loss

We propose here a quantity approximating the Punzi FOM,
appropriate for optimising neural networks for physics selec-
tions.

This loss function is based on the equation for the Punzi
sensitivity region (Eq. 9). However, Eq. (9) can not be used
directly because the number of background events B and
the signal efficiency ε are discrete functions of the network
parameters for any given fixed cut on the classifier output,
whereas the loss function must be differentiable. We can build
a differentiable function by replacing the fixed cut on the
output with a sum over all events, weighted with the respec-
tive value of the output. If events classified as signal cluster
around an output of 1 and events classified as background at
0, this quantity will closely approximate the original func-
tion. In Eq. (9) this weighting can be captured by performing
the replacements

ε(t) → ε(w, b) =
∑
x

yi · ŷi (w, b) · ssig

Ngen
and (10)

B(t) → B(w, b) =
∑
x

(1 − yi ) · ŷi (w, b) · s ibkg, (11)

where the sum is over all training inputs x and the index i
denotes the i th training event. The collection of weights and
biases that constitute the free parameters of the network are
denoted as w and b. Ngen is the total number of generated
signal events, ssig is a scale factor for the signal and s ibkg
is a scale factor for the background, which can include a
weight factor to scale the luminosity for the individual simu-
lated background samples to the target luminosity. The scale
factors can also include correction factors such as trigger effi-
ciencies and should account for the sample size when only
a subset of the generated data is used to compute the loss.
A similar approach of building a differentiable metric based
on a FOM was taken by Elwood and Krücker [7], with a loss
function based on the discovery significance.
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The Punzi-loss function is given by the arithmetic mean
of this continuous Punzi sensitivity calculated for all signal
hypotheses (mZ ′) that are used in training,

CPunzi = 1

NZ ′

∑
mZ ′

σmin(w, b), (12)

with NZ ′ being the total number of hypotheses that were
considered. Here we present an implementation in which all
mass hypotheses are treated equally since they have equal
weights in the calculation. However, one could introduce
some weightings in the case of an analysis where the hypothe-
ses do not have flat priors. Note that this loss function can
no longer be calculated using single training events but is
instead based on a set of training data.

To test the Punzi-loss function, we implemented a simple
fully-connected network in PyTorch [8] with four input
neurons, one output neuron, and two hidden layers with 8 and
4 neurons, respectively. The size of the net was determined
empirically to give good results while keeping the network
relatively small.1

5 Training strategy

For the Punzi-loss training to converge, we found that the
parameters of the network should already be initialised in a
way that defines some separation between signal and back-
ground (similar to the loss scheduling scheme described in
[9]). This can be achieved by pretraining the network using a
conventional loss function and subsequently fine-tuning this
through the use of the Punzi-loss function.

For the activation function of the neurons in the hidden lay-
ers, a hyperbolic tangent is used while the output neuron uses
a sigmoid function. Before training, the input variables were
scaled to lie between 0 and 1, and the network parameters
were randomly initialised. A weighted binary cross-entropy
(BCE) loss function was used for the pretraining. A weight-
ing was attributed to the signal events such that their weighted
sum was equal to the weighted sum of all background events.
An outline of the network architecture is given in Fig. 1.

Initially, using the BCE loss function, the network was
trained with a batch size of 2048 and a learning rate (LR)
of 1. When the loss did not decrease for 10 epochs, the LR
was reduced by a factor of 0.5. The pretraining was stopped
after 200 epochs. Training is then continued using the Punzi-
loss function with a = 3 and b = 1.28. Here we used a
learning rate of 0.0001 and again reduced it upon plateau-
ing. This training was stopped after 1000 epochs. The gradi-
ent descent algorithm was used for optimisation for both of
these trainings. All hyperparameters were optimised to give

1 The network size and architecture is not relevant for our approach.

Fig. 1 An outline of the network architecture. The first training with
the BCE loss function was used to set the weights and biases of the net
for the second training with the custom loss function based on the Punzi
FOM

Fig. 2 Evolution of Punzi-loss during training with batch sizes of 5 ×
104, 1 × 105, 4 × 105 and 1.2 × 106 and mono-batched

the best results for the training methods. One particularly
important hyperparameter is the batch size, the variation of
which presents some unique aspects of the Punzi-loss func-
tion that must be considered.

Due to the nature of the Punzi-loss function concerning
the optimisation for a desired luminosity, utilising training
data in excess of this requires the addition of weightings
in the loss calculation. The background data used for train-
ing contained 1000 fb−1, 450 fb−1 and 3000 fb−1 worth of
events from three main background processes; however, in
this study, we wish to optimise the classifier for just 50 fb−1

of real-world data. Naturally, it is preferred that all back-
ground data is utilised, and thus we introduce a background
scaling factors of 0.05, 0.111 and 0.0167 respectively. Addi-
tionally, dividing the training data into batches brings about
the additional requirement of multiplying both ε(w, b) and
B(w, b) by the number of batches used.

Figure 2 shows the evolution of loss during training with
batch sizes of 5 × 104, 1 × 105, 4 × 105 and 1.2 × 106, and
also mono-batched (where the whole data set is passed as
a single batch). These correspond to batch sizes of between
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roughly 0.5% and 13% of the total dataset. A batch size of
1 × 105 was chosen for the following experiment. We note
that small batch sizes bring a degree of instability to the loss,
as can be seen in the line representing a batch size of 5 × 104

in Fig. 2. It was found that batches smaller than those shown
in Fig. 2 led to increasing loss values over the training, with a
batch size of 1 × 104 leading to training regularly failing with
the Punzi-loss increasing and plateauing at a value above the
initial loss. This can be understood as a result of the limited
number of signal events present in any given batch of small
size, leading to large statistical fluctuations in the calculated
loss values. This lower limit is, of course, study dependent.
Similarly, we note large instability in the mono-batched case.
The batching introduces an additional stochastic component
during training, making the training more robust and helping
the algorithm escape local minima.

6 Results

In this section, we present the results of utilising a Punzi-net
in a search for e+e− → μ+μ−Z ′ signals amongst various
common backgrounds found in e+e− collider experiments.
At the Belle II experiment, this search was performed with the
commissioning data for the specific case of invisible decays
of the Z ′ boson [10], a final state in which only the two muons
produced by the electron-positron annihilation can be recon-
structed. Therefore, all information about the production and
decay of the Z ′ boson is to be inferred by the two-muon
system. The signal events are generated with MadGraph
5 [11] for a range of candidate Z ′ masses, spanning 0.1
GeV/c2 to 8.9 GeV/c2 in steps of 0.1 GeV/c2 with 20000
events produced at each. Additionally, MC samples for the
background process e+e− → e+e−μ+μ−, e+e− → τ+τ−
and e+e− → μ+μ−(γ ) corresponding to 1000 fb−1, 450
fb−1 and 3000 fb−1 respectively were used, since these can
mimic the signal. The simulation and reconstruction of the
events were done using GEANT4 [12], and the Belle II Anal-
ysis Software Framework [13]. The analysis is carried out
via the search for a peak in the distribution of the squared
mass recoiling against the two-muon system. An excess of
entries beyond that of the expected background at a given
mass would indicate the presence of such a Z ′ particle of
that mass. This distribution is divided into (potentially over-
lapping) bins with bin widths corresponding to ±2σ of the
fitted Z ′ signal distributions.

During both the initial BCE and subsequent Punzi-loss
training, only every second generated Z ′ mass was used. For
the calculation of σmin in Eq. (12) only signal and background
events that lie within the respective ±2σ mass windows are
considered, using only signal events that were generated for
the corresponding mass. Thus, events that are not contained
in any of the mass windows of the used signal samples are

not taken for the training. This results in a data set of approx-
imately 9 million total events, of which ∼ 2.5% are signal
and the rest background. This is then split by using 80% of
the events for training and the remaining 20% for valida-
tion. The unused signal hypotheses are utilised for valida-
tion and to check the trained networks ability to generalise
to signals unseen in training. The network was trained with
four carefully selected features related to the event kinemat-
ics that showed a good discrimination power when using a
boosted decision tree classifier. These features are described
in Table 1. A more detailed description of these features and
the analysis can be found in [14].

The resulting maximum achievable Punzi FOM spanning
the range of generated Z ′ signals is shown in Fig. 3. Included
in this figure are the Punzi-net along with the BCE pretrained
network. These values are calculated using the background
data contained within the ±2σ bin around each generated
mass point. The maximum achievable Punzi FOM in each
bin is found using the cut to the network output that provides
the highest FOM for that respective bin. In addition to this,
the resulting Punzi FOM after applying a single cut value to
the output of the Punzi-net across the full recoil mass spec-
trum is shown. The plot shows the average result found over
ten independently trained networks, along with the associ-
ated standard error. This serves to demonstrate that not only
can the Punzi-loss function produce better FOMs, but can do
so consistently. The Punzi-loss function shows greater effec-
tiveness through the lower half of the recoil mass spectrum,
providing clear improvements to the FOM below approx-
imately 5 GeV/c2. For mass hypotheses above this point,
there is some slight degradation of the maximum achievable
FOM with the Punzi-net. It is important to note that the single
cut applied to the Punzi-net output can still provide a FOM
near to that of the maximum achievable with the BCE trained
network in this region.

This means that even when compared to an optimal varied
cut applied to the BCE network output, interpolated over
the recoil mass spectrum, the Punzi-net provides comparable
or even improved results. As discussed previously, this cut
interpolation can lead to discontinuities in the final recoil
mass distribution. So the ability to achieve comparable results
with a single cut to the Punzi-net output is much preferable,
meaning that even in the higher recoil mass region where the
BCE network appears to outperform the Punzi-net, it may not
be a preferable method due to the need for cut interpolation.

The generated Z ′ masses used for training the network
are shown with circles, and those not used in training are
shown with triangles. The figures show little to no difference
in the network’s ability between these training and validation
masses, indicating that the model generalises well to unseen
signals. In the region between approximately 4.5 GeV/c2

and 5.5 GeV/c2 some dependence on whether or not a mass
was used in training does appear. This could be combated
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Table 1 The most important features found after training BDTs with many variables. All variables are computed in the centre-of-mass system of
the e+e− collisions. These features are used for training the NN

Variable Description

p∗
t,thrust(μ) The transverse momentum component of the muons with respect to the thrust axis

p∗
t,μmin

(μmax) The transverse momentum component of the higher energetic muon with respect to the lower energetic muon

p∗
l,μmin

(μmax) The longitudinal momentum component of the higher energetic muon with respect to the lower energetic muon

p∗
t (μ

+μ−) The transverse momentum of the dimuon system

Fig. 3 The average maximum Punzi FOM achievable in each bin
across range of generated Z ′ signals, with standard error spread taken
from 10 independently trained networks. Triangles indicates those
masses which were left out of training while circles indicates those
used

by generating a larger set of Z ′ signals covering more mass
points in that region.

Figure 4 shows the output of the Punzi-trained network
for all signal events and Fig. 5 shows the same for all back-
ground events. Here the variable on the x-axis shows the
NN output before applying the last sigmoid activation func-
tion to resolve the distribution of events better. The y-axis
corresponds to the reconstructed recoil mass (Mrec), which
discriminates between the different signal hypotheses. The
classified signal and background events are separated into
two clusters, corresponding to an output of 0 and 1. The over-
laid line shows the cut value that would give the maximum
achievable Punzi FOM for each Z ′ mass. The line separates
the two clusters, showing that the training using the approx-
imations in Eqs. (10) and (11) worked as expected.

The events are separated so that when only the events clas-
sified as signal are selected (for example, by applying a cut
at a NN output of 0.5), this gives the optimal Punzi FOM

Fig. 4 The output distribution of all signal events using the Punzi-
loss trained NN, overlaid with the the optimal decision threshold for
each signal hypothesis. The classification variable shows the NN output
before applying the last sigmoid function in order to better see the
separation. The optimal cut value can be replaced by a uniform cut
without any significant difference in the resulting selection

Fig. 5 The output distribution of all background events using the
Punzi-net, overlaid with the optimal decision threshold for each sig-
nal hypothesis

for the whole mass range. This is a significant advantage for
an analysis since no additional interpolation between output
values is required, which can introduce discontinuities in the
final recoil mass distribution. Additionally, since the selec-
tion generalises to all signal hypotheses, it gives also the best
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Fig. 6 The output distribution of all signal events after the BCE pre-
training, overlaid with the optimal decision threshold for each signal
hypothesis. The optimal cut value varies significantly across the mass
spectrum

Fig. 7 The output distribution of all background events after the BCE
pretraining, overlaid with the optimal decision threshold for each signal
signal hypothesis

possible FOM for a signal in-between trained masses, which
would otherwise have non-optimal results.

For comparison we also show the output distribution of the
BCE pretrained network in Fig. 6 for the signal and Fig. 7
for the background. Again, the optimal cut that gives the
highest Punzi FOM at each mass hypothesis is shown. While
a separation between signal and background is also achieved
here, the division is not as pronounced as with the Punzi-net
and the best cut value varies significantly with the mass.

An understanding of why the model successfully gener-
alises, and one network can be utilised for the full squared
recoil mass spectrum, can be inferred from Fig. 8, which
shows a 3D scatter plot of the p∗

t,thrust(μ), p∗
t,μmin

(μmax)

and p∗
l,μmin

(μmax) variables (after being normalised to val-
ues between 0 and 1) for three of the mass bins at a region
of p∗

t (μ
+μ−) = (2.2 ± 0.5) GeV/c. The green plane is the

chosen signal/background classification boundary obtained

Fig. 8 A 3D scatter plot showing the input space of the NN with
p∗

t (μ
+μ−) fixed around 2.2 GeV/c. The separation boundary defined

by the final selection (green sheet) separates the planes corresponding
to different recoil masses in a way that optimises the selection for all
signal hypotheses

with a single cut. One can see the masses describing three
respective planes in the parameter space which occupy dis-
tinct regions. This partitioning allows the network to adapt
between the different mass regions and so negates any need
for multiple classifiers for different regions.

7 Conclusions

In this work, we have demonstrated that it is possible to
implement a non-differentiable metric approximation and a
corresponding loss-scheduling, combining the approach of
particle physics and that of machine learning. Our proposed
method applies to the search for new particles with unknown
parameters in high energy physics experiments.

We designed a new loss function directly related to the
Punzi figure-of-merit, intended to be calculated on a set of
training events at once. Training instabilities could be solved
by a batched training that helps in the algorithm’s conver-
gence. We showed that this loss function can be used to
achieve an optimal selection for all signal hypotheses with a
single cut on the classifier output, also achieving overall bet-
ter performance than standard methods. The main advantage
of this method is that it simplifies the analysis since it does
not require any further optimisation of the selection or train-
ing of multiple classifiers for subsets of signal hypotheses.
We implemented the Punzi-loss in the training of a simple
neural network and made the code publicly available [15].
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However, the method is general and not restricted to the use
of the presented architecture.

A universal approach to this problem would be to construct
a fully differentiable analysis pipeline that can optimise any
utility function, which is an active area of research [16]. Such
analysis frameworks can also take into account systematic
effects during the optimisation of the signal selection [17,
18]. Another interesting approach to incorporate systematic
effects is to introduce an adversarial discriminator in addition
to a classifier. This provides a handle for robust inference
by learning a pivotal quantity – a predictive function that
is insensitive against the unknown values of the nuisance
parameters that model the systematic effects. [19]
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