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Random Forests with Missing Values in the Covariates

Anna Rieger · Torsten Hothorn · Carolin Strobl

Abstract In Random Forests [2] several trees are constructed from bootstrap- or subsam-
ples of the original data. Random Forests have become very popular, e.g., in the fields of ge-
netics and bioinformatics, because they can deal with high-dimensional problems including
complex interaction effects. Conditional Inference Forests [8] provide an implementation of
Random Forests with unbiased variable selection. Like the original Random Forests, they
employ surrogate variables to handle missing values in the predictor variables.

In this paper we report the results of an extensive simulation study covering both clas-
sification and regression problems under a variety of scenarios, including different missing
value generating processes as well as different correlation structures between the variables.
Moreover, a high dimensional setting with a high number of noise variables was considered
in each case. The results compare the performance of Conditional Inference Forests with
surrogate variables to that of knn imputation prior to fitting.

The results show that while in some settings one or the other approach is slightly supe-
rior, there is no overall difference in the performance of Conditional Inference Forests with
surrogate variables and with prior knn-imputation.
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1 Introduction

In Random Forests [2] a forest of classification or regression trees is constructed from
bootstrap- or subsamples of the original data, and the prediction rule is based on the ma-
jority vote or average over all trees. Random Forests are particularly popular in the fields of
genetics and bioinformatics [11,1,4,5], because they can deal with high-dimensional prob-
lems involving complex interaction effects.

As an advancement of the original method, Conditional Inference Forests were devel-
oped [8]. Conditional Inference Forests follow the construction principle of Random Forests,
but employ different splitting criteria in the tree building process to avoid the problem of
variable selection bias [6,13,14], that can affect the original Random Forests when predic-
tor variables of different types are compared [15].

The aim of this work is to illustrate how Conditional Inference Forests deal with missing
values in the predictor variables: Conditional Inference Forests adopt the principle of sur-
rogate variables suggested by [3], so that observations with missing values can be directly
processed by the forest. As an alternative approach, k-nearest-neighbors- (knn-)imputation
[17] of missing values before the construction of the forest is considered.

While both approaches are popular and easy to use, it has not yet been investigated
whether they are comparable with respect to prediction accuracy, or whether one approach
is clearly superior to the other. Therefore the two approaches are compared in this paper.

The principle of surrogate splits in tree-based methods is the following: Once a predictor
variable is selected for the next split in a tree, observations that have a missing value in this
variable are processed further down the tree by means of a surrogate variable, that is not
missing. The surrogate variable is selected such that it is the best predictor for the split
in the originally chosen variable. Advantages of this approach are that observations with
missing values need not be excluded from the data set or treated prior to model fitting.

As opposed to that, imputation approaches like knn-imputation are used in a prelim-
inary step to fill in missing values in the data set before the model fitting stage. In knn-
imputation, each observation with a missing value receives the weighted mean value that
the k-nearest-neighbors have in this variable. The proximity of the neighbors is computed
from the remaining variables by Euclidian distance (see also section 3).

In the following, an extensive simulation study covering classification and regression
problems as well as a variety of missing data mechanisms is presented in order to com-
pare the two approaches. In the case of missing values, the advantage of simulations studies
is that the missing values can be induced “on purpose”, so that the “true” values are still
known. This allows for quantifying the prediction error of each method by means of gener-
ating learning and test samples. All simulations and calculations were conducted with the R
system for statistical computing [12].

2 Simulation design

The data sets are generated in two ways, depending on the type of the response variable. All
details of the data generating processes and simulation designs are given in the following.
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2.1 Data generating processes

The first data generating process (dgp) is for categorial response, i.e. classification; the sec-
ond is for continuous response, i.e. regression.

2.1.1 Process for classification

The response is a binary factor with two values: y = 1 and y = 2. It is calculated by modelling
the logits:

P(y = 2|X) = π(X) =
exp(X>β )

1+ exp(X>β )
(1)

In doing so, X contains x j, j = 1, . . . ,5, where x j are multivariate nomally distributed
with mean 0 and with variance Σ j, that can be varied.

The influence of the single covariates x j is set to β = (1,2,3,4,5)>. With the resulting
probability vector π(X), the response is assigned class 1 or 2 at random.

In order to simulate high-dimensional settings, 45 noise variables, that are multivariate
normally distributed with mean 0 and the identity matrix as covariance, are added as possible
predictors.

2.1.2 Process for regression

For generating a continous response, the model “Friedman1” [7, formula (61)] was applied.
In the original reference, ten independent uniformly distributed variables are used, but only
five of them have influence on the response:

y = 10 · sin(πx1x2)+20 · (x3−0.5)2 +10 · x4 +5 · x5 (2)

Here, we again add 45 noise variables to simulate a high-dimensional setting. These
noise variables are identically and independently distributed. However, in our dgp the vari-
ables that have an influence are correlated.

In order to simulate uniformly distributed correlated variables, the variables are first
sampled from a multivariate normal distribution with variance 1 and the desired correlation
(that is equal to the covariance if the variance is 1). In a second step, the distribution func-
tion of the standard normal distribution is applied to each random variable. The resulting
marginal distributions are uniform on [0,1].

X ∼ F(x)

⇒ F(X) ∼ U(0,1)

2.2 Correlation matrices

For each of the two dgps, three different correlation (or respectively covariance) matrices
were used.
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The first correlation matrix (termed s1 in the results section) contains a high correlation
of 0.9 for all pairs or variables:

Σ 1 =


1 0.9 0.9 0.9 0.9

0.9 1 0.9 0.9 0.9
0.9 0.9 1 0.9 0.9
0.9 0.9 0.9 1 0.9
0.9 0.9 0.9 0.9 1


The second correlation matrix (s2) also contains high correlations of 0.9. However, the vari-
ables are correlated only in two separate blocks, so that x1 trough x3 form one block and x4
and x5 form another block:

Σ 2 =


1 0.9 0.9 0 0

0.9 1 0.9 0 0
0.9 0.9 1 0 0
0 0 0 1 0.9
0 0 0 0.9 1


The third correlation matrix (s3) again contains one constant correlation for all pairs or
variables. However, now the value of the correlation is 0.1, i. e. we simulate low correlations:

Σ 3 =


1 0.1 0.1 0.1 0.1

0.1 1 0.1 0.1 0.1
0.1 0.1 1 0.1 0.1
0.1 0.1 0.1 1 0.1
0.1 0.1 0.1 0.1 1



2.3 Methods for creating missing values

Different methods were implemented for creating missing values in the predictor variables.
The missing values were generated to be either missing completely at random (MCAR) or
missing at random (MAR) [10].

2.3.1 Missing completely at random (MCAR)

The simplest method for inducing missing values completely at random is to choose a given
number of locations with a random number generator and eliminate the values in this lo-
cations from the vector representing the variable. By this approach, as many locations as
desired can be sampled out of the n observations and replaced by NA.

2.3.2 Missing at random

Methods for generating values missing at random (no longer completely at random) are
more complicated: The choice of the locations that are replaced by missing values in the
“missing” variable now depends on the value of a second variable, that we will term “deter-
mining” variable. Therefore, the values of the “determining” variable now have an influence
on whether a value in the “missing” variable is missing or not.
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Table 1 Coefficients for missings by logit modelling

response γi,0 γi,k

categorial −2.25 1
continous −0.5 1

Creation of ranks (MAR1) The first procedure for MAR constructs a vector with the ranks
of the “determining” variable. The probability for a missing value in a certain location in
the “missing” variable is computed by dividing the rank of the location in the “determining”
variable by the sum of all ranks. Because the minimum observation gets the lowest rank 1,
the minimum observation produces the lowest probability to get a NA. The locations for NA
in the “missing” variable are then sampled with the resulting probability vector.

Creation of two groups (MAR2) The second approach for creating values MAR divides the
data set in two groups. These two groups are defined by the “determining” variable. An
observation belongs to the first group if the value in the “determining” variable is greater
than or equal to the median of the “determining” variable, otherwise it belongs to the second
group. The probability vector has the mass 1, which is distributed between the two groups
in the proportion 9:1. If an observation belongs to the first group, its probability for NA is
9 times higher than the probability for NA in the second group below the median. A single
observation in the respective group has missing value probability of 0.9 or respectively 0.1
divided by the number of members in this group. The locations for NA are sampled with the
resulting probability vector again.

Dexter truncation (MAR3) With this method, it is simply the observations with the biggest
values in the “determining” variable that are replaced by NA in the “missing” variable, until
the desired fraction of NA (see section 2.3.3) has been achieved.

Symmetric truncation (MAR4) This method is similar to the previous method. However,
instead of deleting all values of the “missing” variable that correspond to the biggest values
in the “determining” variable, the fraction of missings is cut in half and the method also
cancels the observations with the smallest values in the “determining” variable.

Logit modelling (LOG) In this method for missing values, the probability for NA no longer
depends on a single “determining” variable. It is modelled by logits:

P(xi missing) = logit

γi,0 +
5

∑
k=1
k 6=i

γi,k · xk


i. e. it depends on the values of five other variables and on the coefficients γi,k. For each

variable with missings desired, one needs an intercept and five coefficients. The utilised
coefficients, achieved by trial and error such that the fraction of missing values in each
variable approximately reached the desired value, are given in table 1. When the sum is
calculated, one gets the probability vector by computing the logits. The locations for NA are
sampled with the resulting probability vector.
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Table 2 “Determining” variables and fractions of missingness.

missings in by creation of ranks/of two groups by dexter/symmetric truncation fraction

x1 x2 x2 20%
x3 x4 x5 10%
x4 x5 x5 20%

summary 50%

Missings depending on y (DEPy) For missing values depending on the value of the response
y, the probability is 0.1, if the response is categorial and has value y = 1. Otherwise it is 0.3.

For continuous response, i. e. in the second dgp, the probability is 0.1 for values y≥ 13,
otherwise it is 0.4. The values have been chosen by trial and error, until the desired fractions
of NA (see section 2.3.3) had been achieved.

2.3.3 Fraction of missingness

The fraction of missing values is the same in each simulation: In the first variable x1 20% of
data are missing in the learning sample respectively in the test sample. In the third variable
x3 the amount is 10% of missings, in the forth variable there are again 20% missing. We used
a maximum of 20% missing values, because [17] also worked with this upper bound. One
gets altogether at the maximum 50% observations with missing data with this distribution
of fractions.

Additionally, for the MAR-functions “determining” variables are needed. For missings
in x1 the “determining” variable was x2, because they belong together to one correlation
block in the high correlated block design matrix Σ 2. The variable x5 is used as the “deter-
mining” variable for x4 because they are correlated in each design, too. So in each block of
the correlation matrix Σ 2 there is one variable with missing values (x1 and x4 respectively).

For variable x3, however, x4 was chosen as the “determining” variable just in the first two
methods, because in this way one can test the assignment quality of the cforest-function
with uncorrelated variables (in design Σ 2).
For the third and forth method (dexter truncation and symmetric truncation) of MAR one
needs complete cases in the “determining” variable because of the design of the function
quantile() used in R. So, for these methods the “determining” variable for x3 is x5, because
x4 has missings and is thus not applicable as “determining” variable. Since x3 and x5 not
correlated either in the original setting, one can use x5 as “determining” variable instead of
x4. Table 2gives a summary of this.

3 Imputation method

The missing values were imputed by means of knn-imputation. The procedure searches the
k nearest neighbors with respect to Euklidian distance and replaces the missing value by a
weighted mean over the neighbors’ values. In this case, k = 10 is chosen. For more details
on knn-imputation see [17].
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4 Computation of Random Forests

For computation of the Conditional Inference Forests, the function cforest from R package
party was used. The following arguments were used:

As the splitting criterion, the maximum value of the linear statistic (default to be used
if all predictors are of the same type as here) was used. The minimum value of the criterion
necessary for splitting mincriterion was also set to the default value 0.1. Within each
forest ntree = 50 trees were produced. (This low number of trees is sufficient because is the
dgps used here the number of relevant predictor variable is low.) The maximum number of
surrogate variables was 3. As an extra stopping criterion, the number of observations left in
a node for splitting, minsplit, was set to 30.

5 Simulation

In total, all possible combinations of

– the two data generating processes,
– the three correlation/covariance matrices,
– the seven methods for inserting NA and

– imputation with subsequent fitting of the cforest or
– directly fitting the cforest with surrogate splits

were investigated in the simulation study. Additionally, the high-dimensional analogons for
each setting (including 45 noise variable) were investigated to mimic screening studies, e.g.,
for gene expression data.

In order to evaluate the performance in each szenario, there are two possibilities for
missing values:

– Missing values only in the learning sample and
– in both the learning and test sample.

Two test samples were generated – one for each data generating function. Each test
sample contained 5000 observations to be able to reliably estimate the prediction error. The
learning samples were newly generated for each simulation and contained 200 observations
each. For each simulation, 100 different learning samples were generated.

The criterion for assessing the prediction accuracy for categorial response was the out-
of-sample mean binomial log likelihood

LL =
1
n

n

∑
i=1

yi · log(p̂i)+(1− yi) · log(1− p̂i) (3)

where p̂i is the probability for yi = 2 in the test sample, which was estimated on the learning
sample. The binomial log likelihood has only non-positive values.

For data sets with continous response, the out-of-sample mean squared error was used
as criterion for assessing the prediction accuracy

MSE =
1
n

n

∑
i=1

(yi− ŷi)2 (4)

where ŷi is the predicted value for the responses in the test sample, which was estimated on
the learning sample.
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6 Results

The results of the simulation studies will be displayed in the following way: The distribution
of the respective criterion for assessing the prediction accuracy (binomial log-Likelihood or
MSE termed “risk”) is displayed by means of boxplots. For better comparison, the negative
binomial log-Likelihood is plotted, so that the orientation is the same as for the MSE. Thus,
a high value on the y-axis always indicates a poor prediction accuracy.

To increase the readability, not all combination of experimantal factors are presented
at the same time, but the results are displayed separately for classification vs. regression
problems, for missing values in the learning data only vs. missing values in both learning
and test data, and for low vs. high dimensional data sets.

The experimental factors that vary within each display are the missing value generating
processes and the correlation structures.

6.1 Classification problems

6.1.1 Low dimensional problems

Missing values in the learning data only In the low dimensional classification problems
with missing values in the learning data only, Conditional Inference Forests with prior knn-
imputation (termed knn in the display) in average show a slightly higher risk (i.e. a slightly
worse performance) than Conditional Inference Forests with surrogate variables (termed sur
in the display).

However, this effect is mediated by the higher-order interactions between the imputation
approach, the missing value generating processes and the correlation structures: In the case
of high correlations (s1) and missing values inserted by truncation depending on the deter-
mining variable (MAR3), in the case of high correlations (s1) and missing values inserted
by a logistic model depending on five determining variables (LOG) and in the case of block
correlations (s2) and missing values inserted by truncation depending on the determining
variable (MAR3) the effect is reversed, such that knn-imputation shows a slightly lower risk
(i.e. a slightly better performance) than surrogate variables, as illustrated in Figure 1.

However, in a linear model including all main effects and interaction terms, besides the
significant main effect of knn-imputation vs. surrogate variables, only the first of these three
third-order interactions reversing the effect in favor of knn-imputation was significant.

Missing values in both learning and test data In the low dimensional classification problems
with missing values in the learning and test data, the pattern is essentially the same as before,
as illustrated in Figure 2, but the effects are less pronounced.

Accordingly, there are again some significant third-order interactions (including the ones
described above), but the main effect of knn-imputation vs. surrogate variables no longer
significant.

6.1.2 High dimensional problems

In the high dimensional classification problems with missing values in the learning or learn-
ing and test data, the effects are even less pronounced (Figure not shown). Overall, there
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Fig. 1 Distributions of negative binomial log-Likelihood for low dimensional classification problems with
missing values in the learning data only.

is no difference between the performance of Conditional Inference Forests with prior knn-
imputation and with surrogate variables.

The only significant interaction effect, that may be worth mentioning, is again that in the
case of high correlations (s1) and missing values inserted by a logistic model depending on
five determining variables (LOG) knn-imputation shows a slightly lower risk (i.e. a slightly
better performance). Apart from that, there is no significant difference for any factor com-
bination, but again the tendency that in most cases knn-imputation shows a slightly higher
risk (i.e. a slightly worse performance) than surrogate variables.
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Fig. 2 Distributions of negative binomial log-Likelihood for low dimensional classification problems with
missing values in the learning and test data.

6.2 Regression problems

6.2.1 Low dimensional problems

Missing values in the learning data only As opposed to the classification problems, in the
low dimensional regression problems with missing values in the learning data only, knn-
imputation shows a slightly lower risk (i.e. a slightly better performance) than surrogate
variables over all factor combinations, as illustrated in Figure 3.

The main effect as well as several higher-order interactions (including the ones already
found in the classification problems above) are significant. However, now the interaction
effects are in the direction of the main effect, so that they increase the effect that knn-
imputation shows a slightly lower risk (i.e. a slightly better performance) than surrogate
variables in cases with high or blockwise correlations and missing values inserted depend-
ing determining variables.
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Fig. 3 Distributions of MSE for low dimensional regression problems with missing values in the learning
data only.

Missing values in both learning and test data Essentially the same pattern results for low
dimensional regression problems with missing values in the learning and test data (Figure
not shown).

6.2.2 High dimensional problems

In the high dimensional regression problems, the effects are again less pronounced (Figure
not shown). There is again no significant difference between the performance of Conditional
Inference Forests with prior knn-imputation and with surrogate variables.

6.3 Real data set: The Los Angeles ozone pollution data

Besides the simulation results, we would like to illustrate the performance of the two meth-
ods by means of a real data set on ozone pollution.
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Fig. 4 Distributions of MSE over 100 bootstrap samples for Conditional Inference Forests with with surro-
gate splits and with prior knn-imputation.

The data set has 366 observations and 13 variables, including the response (V4). It is
available in the R-package “mlbench” [9]. Originally there are five missing values in the
response, but these observations were removed from the data set. The response is numerical,
so regression trees were employed.

To again compare the two analysis approaches – Conditional Inference Forests with
surrogate splits or with prior knn-imputation – and illustrate the variability of the results
due to random sampling, we drew 100 bootstrap samples from the original data for each
approach. The MSE was calculated based on the respective out-of-bag samples.

The results illustrated in Figure 4 show that in this particular example imputation leads
to slightly lower prediction error in the median. However, the variability is very high in both
cases and the difference is not significant.
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7 Discussion and Conclusion

In summary, our results show that there is no clear advantage for either knn-imputation or
surrogate variables for dealing with missing values in the predictor variables.

While in our simulation setup surrogate variables show a slightly better perfomance in
most settings for classification problems and knn-imputation shows a slightly better per-
formance in most settings for regression problems, these results may not be generalizable
due to our particular choice of the parameters used for generating the data. Moreover, no
significant differences could be found in high dimensional problems.

Our results do support the general understanding that the potential of imputation ap-
proaches depends on the correlation structure of the data in combination with the missing
value generating process: As shown in the results section, knn-imputation has an advantage
for those combinations with high correlations and missing values inserted depending de-
termining variables (i.e., missing at random (MAR) as opposed to missing completely at
random (MCAR)).

However, since in practice neither the missing value generating process nor the true
correlation structure (of the original variables without missing values) is known, this result
cannot aid the decision whether to use an imputation approach or rely on surrogate variables.
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