
Ludwig-Maximilians-Universität München

Institut für Statistik

Prediction Inference with Ensemble Methods

Prognoseinferenz mit Ensemble-Methoden

Diplomarbeit
von

Andreas Mayr

Betreuung: Dipl. Stat. Nora Fenske
Prof. Dr. Torsten Hothorn

Abgabetermin: 15. Januar 2010

Acknowledgements

I am deeply grateful for the support of many people that helped me during these
last months while I worked on this project. A special thank you to....

• Dipl. Stat. Nora Fenske for her excellent supervision, her accurate proof-
reading, her support, her commitment and her patience. I also want to thank
her for making all her R code about quantile regression available to me.

• Prof. Dr. Torsten Hothorn for his excellent supervision and for the trust
he put in me by offering me this thesis. I also want to thank him for looking
through much of the R code that led to the simulations and for the essen-
tial input around the questions of how to interpret and evaluate prediction
intervals.

• Prof. Dr. Helmut Küchenhoff and his team of the statistical consulting
unit (especially Juliane Manitz and André Klima) for giving me the great
opportunity to test our methods in practice with the movie data.

• Elisabeth Waldmann and Juliane Manitz for proofreading and their fair
comments.

• Dipl. Stat. Michael Obermeier and Birgit Oppolzer for important
LATEX tips and for sharing the office with me while I worked on this thesis.

• Dr. Rebecca Schennach-Wolff and Dr. Florian Seemüller for the 3 pm
coffee therapy every day and their moral support.

• Dipl. Stat. Benjamin Hofner for encouraging me to select this topic and
mailing me his thesis which I allowed me to use as a guideline concerning many
aspects.

• My friends, my family and Belén for their constant support and encour-
agement.

Andreas Mayr
Munich, January 2010

3

Contents

1 Introduction 7

2 Prediction Intervals 13
2.1 Parametric and nonparametric intervals 13

2.1.1 The classical linear model . 14
2.1.2 Parametric prediction intervals 15
2.1.3 Nonparametric prediction intervals 16

2.2 Prediction vs. confidence intervals . 18
2.2.1 Intervals for Y . 18
2.2.2 Conditional intervals for Y |X = x 19
2.2.3 Simulated toy example . 20

2.3 Interpretation . 22
2.3.1 The conditional interpretation 22
2.3.2 The heuristic sample interpretation 23

3 Quantile Regression 27
3.1 From the conditional mean to conditional quantiles 27

3.1.1 The classical linear model . 28
3.1.2 Quantiles . 29
3.1.3 Conditional quantiles . 29

3.2 Basic estimation . 31
3.2.1 Minimizing the check function 31
3.2.2 Quasi-Likelihood approach . 34
3.2.3 Bayesian approach . 35

3.3 Simulated toy examples . 36
3.4 Conclusions on quantile regression . 38

4 Quantile Regression Forests 41
4.1 Classification and regression trees . 41

4.1.1 Basic idea . 42
4.1.2 Compute trees by rpart . 44
4.1.3 Compute trees by party . 45

4.2 Random forests . 47
4.2.1 Ensemble methods . 47

5

6

4.2.2 Bagging . 48
4.2.3 Random forests . 49

4.3 Quantile regression forests . 52
4.3.1 From random forests to quantile regression forests 53
4.3.2 The algorithm for quantile regression forests 55
4.3.3 Consistency . 57
4.3.4 Advantages of quantile regression forests 58

5 Boosting for Quantile Regression 59
5.1 AdaBoost . 60

5.1.1 Ensembles with re-weighted data 60
5.1.2 The AdaBoost algorithm . 62

5.2 Boosting as functional gradient descent 64
5.2.1 Generic FGD algorithm . 64
5.2.2 L2 boosting . 67
5.2.3 Example: The cars data . 68
5.2.4 Why do we need boosting? . 68

5.3 Quantile regression with boosting . 71
5.3.1 Linear quantile regression . 71
5.3.2 Additive quantile regression with nonlinear effects 74
5.3.3 Tuning parameters for boosting with P-spline base learners . . 78

6 Simulation Studies 83
6.1 Conditional coverage . 87

6.1.1 One predictor variable with linear effect 89
6.1.2 Multiple predictor variables with linear effect 93
6.1.3 Multiple predictor variables with linear effect, including vari-

able selection . 96
6.1.4 High dimensional data with linear effects, including p > n . . 100
6.1.5 One predictor variable with nonlinear effect 104
6.1.6 Multiple predictor variables with additive linear and nonlinear

effects . 108
6.2 Sample coverage . 110

6.2.1 Linear setups . 112
6.2.2 Nonlinear setups . 116

6.3 Conclusions from the simulation studies 119

7 Prediction inference in practice 121

8 Conclusion 123

Chapter 1

Introduction

Prediction is very difficult, especially about the future.

Niels Bohr (1885-1962)

This famous quotation by the Danish physicist who won the Nobel Prize in 1922
reflects the widespread disbelief in predictions concerning future events. Yet one
important goal of modern statistics is not only the analysis of relationships between
certain variables but also to quantify and to use the predictive power of data for
future or unobserved observations. Nevertheless, these two aspects of data analysis
are often highly linked and can hardly be discussed separately.

The question of relationship between variables is surely the most common problem
in data analysis. Does the new medical treatment have a significant influence on the
patient’s blood pressure? One of the most common ways to answer these questions
is the usage of regression analysis. Typically, the aim of a regression model is to
explain a response variable Y (blood pressure) by one or more predictor variables
X (treatment). One advantage of a regression model is the possibility to adjust for
differences between treatment groups (verum vs. placebo) in other variables (age,
weight). The result in the standard form is a linear additive model explaining the
conditional mean of the response variable Y given the observed X = x as follows:

E(Y |X = x) = x>β = β0 + β1 · treatment + β2 · age + β3 · weight

In this case, let us assume that we have data of a clinical trial including 100 patients:
y = (y1, ..., y100)

> and the explaining variables respectively. As the conditional mean
minimizes the expected squared error loss, the vector β of all parameters can be
estimated by ordinary least squares (OLS) as:

β̂ = (X>X)−1X>y,

with the design matrix X containing the values of treatment, age and weight of
all 100 patients.

7

8 CHAPTER 1. INTRODUCTION

The effect of the treatment can now be interpreted via β1, adjusted for age and
weight of the patient. The test of the hypothesis H0 : β1 = 0 answers the question
about the relationship between the new treatment and the health of the patient in
terms of his blood pressure. Once this effect is clear, another question arises: How is
the predictive power of this model based on the clinical trial including 100 patients?
Can we give an estimation about a new patient’s blood pressure after treatment,
given only his data at admission to hospital? This is obviously the case, one only
needs the β̂ and the patients treatment, age and weight. Hence, we do make pre-
dictions about the future. Nevertheless, how reliable is this prediction?

The best way to answer this question are prediction intervals instead of a single
point estimator. The estimated response E(Y |X = xnew) for a new observation is
of obvious interest, but the accuracy of the procedure can be better shown by a
prediction interval PI(xnew) = [a, b], where a denotes the lower boundary for new
observations with the observed predictor variables xnew and b the upper one. The
size of the prediction interval already includes information about the reliability of
the point estimator.

The standard form to do this would be to calculate a standard regression model for
the conditional mean, and use the assumption of an underlying distribution function
to calculate a symmetric prediction interval for this point estimator. This works fine
as long as the assumption about the distribution is correct and we have valid infor-
mation about the variance of the estimation method.

In this thesis, we want to focus on another nonparametric approach, which can be
used for every continuous variable Y , without assuming any distribution and with-
out having to estimate the variance of Ŷ :

Meinshausen (2006) came up with the idea of using quantile regression to construct
prediction intervals for new observations. In contrast to standard regression anal-
ysis, quantile regression (Koenker, 2005) does not estimate the conditional mean
E(Y |X = x) of the response variable, but the conditional τ -quantile Qτ (Y |X = x)
for a given possible multidimensional X = x. Following the definition of quantiles,
the probability of the response being smaller than Qτ (Y |X = x) is τ . Meinshausen
proposed using this to construct 95% prediction intervals depending on xnew. In the
following, the conditional quantiles are treated as functions in x, given as:

Qτ (Y |X = x) := qτ (x)

A new observation xnew is then plugged-in in the conditional quantiles qτ (·) that
work as boundaries :

PI(xnew) = [q0.025(xnew), q0.975(xnew)]

9

The main advantage toward classical prediction intervals focusing on the conditional
mean is the fact that we do not have to assume anything about Y , especially no un-
derlying distribution function as we estimate the boundaries by quantile regression.

Going back to the example above, this means that one can compute an interval for
the prediction of a new patient’s blood pressure based on his data at admission and
the proposed treatment. The relevance of this information is obvious. Instead of a
single point predictor as the conditional mean, this procedure gives an interval for
the patient’s blood pressure after treatment. Hence, we do not only make a predic-
tion, but also include information about this predictions accuracy and therefore its
reliability.

In this thesis, we want to focus on prediction inference using ensemble methods.
Ensemble methods combine multiple models into one final prediction in order to
achieve a better predictive performance. Those methods have their roots in the ma-
chine learning community. The idea is that an algorithm can improve a prediction
technique by iteratively applying it and combining the single results at the end. The
final combination tends to be more precise than using the technique just once. The
algorithm therefore is learning from the data step by step, as the performance is
improving.

Meinshausen’s approach was based on combinations of regression trees which he
succeeded to adopted to estimate the conditional distribution function, and there-
fore the quantiles. We will further analyze this magnificent idea and focus also on
different approaches to estimate the conditional quantiles.

In a further step we analyze the coverage of the resulting prediction intervals esti-
mated by different ensemble methods. We will focus on component-wise boosting for
quantile regression (Fenske et al., 2009; Bühlmann and Hothorn, 2007) and compare
it to Meinshausen’s approach of quantile regression forests.

This thesis will be structured as follows:

Chapter 2 compares prediction intervals with confidence intervals, and fo-
cuses on adequate interpretations. This chapter is essential, as also a seem-
ingly standard procedure as prediction intervals bears some severe pitfalls in
its correct interpretation and usage that can be easily overlooked.

Chapter 3 gives an overview on some theoretical aspects of quantile regression
and basic estimation schemes.

Chapter 4 focuses on random forests as one tool to estimate the conditional
distribution function and, therefore, the quantiles.

Chapter 5 presents component-wise boosting as a powerful algorithm to es-
timate linear and additive nonlinear quantile regression, including variable

10 CHAPTER 1. INTRODUCTION

selection for high dimensional data.

Chapter 6 uses various simulation studies to analyze the coverage of the
proposed intervals in different setups for both estimation techniques.

Chapter 7 presents an interesting application how ensemble methods can be
used for prediction inference. The task is to forecast the amount of people
going to the movies in the first week after the release of a new film.

Notation

In this thesis we will stick to a rather unusual notation that in our view combines
the advantages of more common approaches.

We will denote random variables as capital letters. In regression settings the re-
sponse variable is Y and the possibly multidimensional predictor variable is X.
We use therefore X for a random variable with possible multiple components (e.g.
treatment, age, sex as in the example used in the introduction).

If we look at a future or unobserved realization of a random variable, we use a
capital letter to emphasize that it is still a random variable. In a regression setting
the realizations Yi of Y are still random variables, and are therefore denoted with
capital letters.

Only when we analyze a given sample of observed realizations, they are not ran-
dom but fixed. Therefore we go over to the vector notation y = (y1, ..., yn)> or
xi = (x1, ..., xp)

> where n is the sample size and p the dimensionality of X. There-
fore, in a regression setting an observed sample of the random variables (Y,X) is
denoted as (y1,x1), ..., (yn,xn).

This distinction between unobserved realizations (Y1, ..., Yn) of a random variable
Y , and observations y = (y1, ..., yn)> has the advantage that one can clearly distin-
guish if we refer to a fixed value or to a random variable. Let us assume a gaussian
distributed response with Y ∼ N(µ, σ2). If we look at the variance V(Yi) of a real-
ization, as a result of Yi being identical distributed as the response V(Yi) = σ2 . If
the realization is part of an observed sample V(yi) = 0, as yi is fixed.

When we want to condition the response on a given observation of X, we denote
this with Y |X = x. This may look unappropriate at first glance, as it combines
a random variable with a vector. But in fact it is just a result of the described
definitions above, as X can also be multidimensional. Only in setups with only one
predictor variable we will use the much more common notation Y |X = x.

11

As for the conditional mean E(Y |X = x) := µ(x) we also use a short form for condi-
tional quantiles Qτ (Y |X = x) := qτ (x) which not only reduces the notational effort
but also emphasizes more the interpretation of conditional quantiles as functions in
x.

Unless stated differently, we will therefore stick to following notation:

Basic notations

variables x, y, ν, α
scalars p,l,n ∈ R
vectors x = (x1, ..., xn)>

matrices X = (x1, ...,xn)

Statistics notations

random variables Y,X
future or unobserved realizations (Y1, ..., Yn)
observations y = (y1, ..., yn)>

probability density function f(y)
distribution function FY (y)
expected mean E(Y)
variance V(Y)
τ -quantile Qτ (Y)

Conditional notations
(multidimensional X)

expected conditional mean E(Y |X = x)
expected conditional mean short form µ(x)
conditional quantile Qτ (Y |X = x)
conditional quantile short form qτ (x)
conditional density function f(y|x)
conditional distribution function FY |X(y|x)

Software

All analyses in this thesis are carried out using the statistical programming en-
vironment R (R Development Core Team, 2009) in its version 2.9.1. This soft-
ware and every add-on package used and described in this thesis is available at
http://www.cran.r-project.org/.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Prediction Intervals

In this thesis, the main aspect will be the estimation of nonparametric prediction
intervals for future or unobserved values of a continuous variable. We therefore will
present quantile regression as a powerful statistical tool to model more than the
expected mean of a conditional distribution. The target of quantile regression is to
model the conditional quantiles.

We will then focus on ensemble methods that can be adopted to estimate quantile
regression, and will use them to construct prediction intervals. Before we start to
present different estimation algorithms and analyze the coverage of such intervals in
simulation studies, we want to repeat some major properties of general prediction
intervals that can be easily overlooked.

In Section 2.1. we will shortly repeat the difference between a classical parametric
approach to estimate prediction intervals and a nonparametric approach. In Section
2.2 we focus on the difference between prediction intervals and confidence intervals.

Another important point is the correct interpretation of prediction intervals, which
is linked to the problem of finding adequate ways to prove their consistency. In stan-
dard literature it is simply noted that the probability of a new observation falling in
a correctly specified PI1−α(·) is 1−α (Fahrmeir et al., 2007). This sounds reasonable
and is certainly correct. Yet we also discovered a severe pitfall in the interpretation
of prediction intervals for new observations. In Section 2.3, we therefore will present
a conditional as well as a heuristic interpretation of PI1−α(xnew).

2.1 Parametric and nonparametric intervals

We already mentioned that in this thesis we will present nonparametric tools to
estimate prediction intervals. The term nonparametric in this case refers to the
fact that these tools do not assume any underlying distribution for the variables of
interest. But the classical way is to model parametric prediction intervals, based on
standard regression analysis.

13

14 CHAPTER 2. PREDICTION INTERVALS

2.1.1 The classical linear model

In regression analysis, if the influence of a predictor variable X on the response Y
is modeled as a linear effect, and the error term is assumed to be normally dis-
tributed, we call this the classical linear model. We therefore have random variables
(X1, Y1), ..., (Xn, Yn) that are related following the model:

Yi = β0 + β1Xi + εi

If we now go over to observed values of this random variables with X being possibly
multidimensional (x1, y1), ..., (xn, yn) we can formulate the model as:

y = Xβ + ε

where X has the form:

X =

 1 x11 · · · x1p
...

...
...

1 xn1 · · · xnp

 =

 x>1
...
x>n


Hence, the dimension of X is (n× (p + 1)) where n is the number of observations,
and p the number of explaining variables.

Then the parameter vector β has the form:

β =


β0

β1
...
βp


The vector β therefore reflects the linear influence of the predictor variables on the
conditional mean. As the expected mean of the error term is zero, one can conclude:

E(Y |X = x) = β0 + β1 · x1 + ...+ βp · xp

β0 is the expected Y for an observation with x1 = ... = xp = 0. βj for j = 1, ..., p
is the difference in the expected response level for two observations xj = x∗j and
xj = x∗j + 1.

Hence, estimating β means estimating E(Y |X = x). We will also use the abbre-
viation E(Y |X = x) := µ(x) which reflects more the idea that the result of the
estimation will be some kind of regression curve, depending on x.

Assumptions for the classical linear model:

2.1. PARAMETRIC AND NONPARAMETRIC INTERVALS 15

1. The matrix X has full rank, therefore the columns of X are linearly indepen-
dent.

2. E(ε) = 0

3. Cov(ε) = E(εε>) = σ2I

4. ε ∼ N(0, σ2I)

Where I denotes the identity matrix. The third assumption (Cov(ε) = σ2I) means
nothing less than that the observations are independent from one another and that
the variance of the error term is the same for all observations. It therefore may
not depend on neither the predictor variables nor the value of the response. This is
called homoscedasticity.

2.1.2 Parametric prediction intervals

The estimation of parametric prediction intervals always follows the same scheme:

• Predict the new observation Ynew by using a point-estimator Ê(Ynew|X = xnew)

• Construct a prediction interval around the point estimator by using informa-
tion about the distribution of Ynew and V(Ynew − Ŷnew)

For a new observation xnew one can use β̂ that was estimated based on a previous
sample, for a prediction:

Ŷnew = β̂0 + β̂1 · x1new + ...+ β̂p · xpnew

We estimate the unobserved new realization of Y by using the information of a pre-
vious observed sample (x1, y1), ..., (xn, yn) to estimate β̂ and therefore µ̂(x). We
then plug in the observed predictor variables xnew to estimate Ŷ = µ̂(xnew). If the
assumptions are fulfilled, the expected bias E(Ynew − Ŷnew) is 0.

To construct a prediction interval around Ŷnew we do also need an estimation for
V(Ynew−Ŷnew) and an underlying distribution function. For V(Y) = σ2, the variance
of the bias can be estimated depending on xnew and the predictor variables X of
the original data (Fahrmeir et al., 1996):

V̂(Ynew − Ŷnew) = σ2(1 + x>new(X>X)−1xnew)

If the error term ε is normally distributed, it holds true that the standardized bias
is distributed as Students’s t distribution with (n− p) degrees of freedom:

Ŷnew − Ynew√
V̂(Ynew − Ŷnew)

∼ t(n− p)

16 CHAPTER 2. PREDICTION INTERVALS

We can now use the information of the underlying distribution function and the
variance of the bias to construct a prediction interval for Ŷnew.

For a new observation, we can therefore conclude that the prediction interval

PI(xnew) =

[
Ŷnew ± t1−α/2(n− p) ·

√
V̂(Ynew − Ŷnew)

]
covers the true Ynew in (1−α) ·100% of the cases. The information of xnew is hidden

inside the estimation of Ŷnew and V̂(Ynew − Ŷnew).

This is the classical form to construct prediction intervals of Ŷnew|xnew. It is mainly
focusing on the bias of the model, and depends on the assumed distribution function
and the correct estimation of the variance.

For a more flexible approach, we will concentrate on conditional quantiles that can
be specified without assuming a distribution.

2.1.3 Nonparametric prediction intervals

The basic idea of parametric prediction intervals was to model the expected mean
of a new observation, and then use the information of uncertainty of the assumed
underlying distribution function to construct intervals around this point estimator.
There is nothing wrong with that, as long as the assumed distribution is at least
asymptotically correct.

If we cannot assume any distribution function, we will need more flexible methods to
estimate prediction intervals. The solution presented in this thesis is to use quantile
regression to model the boundaries of the intervals directly. Instead of making a
point prediction and account for the uncertainty by adding and subtracting some-
thing on both sides, we will directly estimate the points of the response where most
of the future observations should lie between.

The difference can be made clear in a small example: Imagine we want to estimate
a 95% prediction interval for the weight of a female baby 12 weeks after birth in a
certain country. The parametric way to do this is to estimate the expected mean
of the babies weight based on a sample. Afterwards we assume that the weight in
some form should be at least asymptotically normaly distributed and therefore use
this information and an estimation of the prediction error to build an symmetric
interval around this point estimator.

But let us imagine that in this country there are groups of the population in which
families cannot afford enough food for their children. Most of the babies are well
fed, but some suffer from underweight following malnutrition. This sad fact has to
be taken into account in the estimation process. The assumed symmetric normal

2.1. PARAMETRIC AND NONPARAMETRIC INTERVALS 17

distribution seems to be unlikely. One solution is to chose another distribution.
Another one is to use the empirical distribution given by the sample to estimate
directly the boundaries. For a sample of 1000 babies we therefore could use the
quantiles, hence the weight of the 25th and the 975th baby of the ordered sample
as boundaries. Therefore, we do not assume anything about the distribution, and
base our interval only on the information given in the sample.

If we want to include predictor variables in the estimation, we can use conditional
quantiles instead and estimate the boundaries based on quantile regression. We will
introduce quantile regression and conditional quantiles in detail in Chapter 3.

In this thesis, we will present two major tools to estimate conditional quantiles by
ensemble methods. Quantile regression forests (Chapter 4) as well as component-
wise boosting for quantile regression (Chapter 5) are high performing prediction
tools based on the aggregation of single base learners.

Ergo, we do have two algorithms to model the influence of one or more predictor
variables X on the conditional quantiles Qτ (Y |X = x) of the response variable Y .
We are able to include predictor variables in the estimation of the intervals, this
way we condition and adjust our prediction on variables that have an effect on the
response.

We therefore utilize the definition of quantiles: The probability of a random variable
Y being smaller than the corresponding τ -quantile is τ :

P (Y < Qτ (Y |X = x)|X = x) = FY |X(Qτ (Y |X = x)) = τ

For a new observation xnew we interpret the conditional quantiles as functions of x
which results in the following prediction interval of the level 1− α:

PI1−α(xnew) = [qα/2(xnew), q1−α/2(xnew)]

This idea was already presented by Meinshausen (2006), who estimated the bound-
aries based on quantile regression forests. To our knowledge this was the first
approach toward prediction intervals based on quantile regression by ensemble-
methods. The main advantage of this approach is that it does not depend on
any assumed distribution of Y . It therefore is a nonparametric tool to estimate
prediction intervals.

18 CHAPTER 2. PREDICTION INTERVALS

2.2 On the difference between prediction and con-

fidence intervals

Although we are generally interested in constructing nonparametric intervals based
on conditional quantiles, the following remarks hold true basically for all kinds of
correctly specified prediction intervals. In the following sections we will denote
prediction intervals as PI(·) whereas confidence intervals are CI(·).

2.2.1 Intervals for Y

Prediction intervals and confidence intervals have one important thing in common:
As they depend on a sample, their boundaries should be seen as random variables.
Though the main difference is that confidence intervals are constructed to cover a
fixed but unknown value or parameter, whereas prediction intervals should cover a
new observation of Y that therefore itself is a random variable.

Assume we have a realizations of a continuous random variable Y with E(Y) = µ
and V(Y) = σ2:

(Y1, ..., Yn) distributed as Y

In case of a CI we are interested in an unknown but fixed value like µ that could be
estimated by the mean.

µ̂ =

∑n
i=1 Yi
n

The size of the corresponding confidence interval will depend on the assumed dis-
tribution of Y and on the variance of the estimation:

V(µ̂) = V
(∑n

i=1 Yi
n

)
=
σ2

n
.

If we want to construct a prediction interval on the same sample, the aim is to cover
Ynew that itself is a realization of Y . A good prediction of Ŷnew certainly is µ̂, but the
PI must not only include the uncertainty of estimating µ̂, but has also to account
for the variance that Y implies. Hence, the size of the parametric prediction interval
depends on the distribution of Y and on

V(Ynew − µ̂) = σ2 +
σ2

n
.

This result does not only imply a larger size of a PI for Ŷnew compared to a CI for
µ, it also gives kind of a threshold for the size of the prediction interval.

If we could increase the size of the sample n → ∞, we could reduce the size of the
confidence interval for µ̂ as

2.2. PREDICTION VS. CONFIDENCE INTERVALS 19

V(µ− µ̂) =
σ2

n

n→∞−→ 0.

Yet the variance of the prediction error we make by estimating Ŷnew = µ̂ will not
vanish if we increase the sample size n:

V(Ynew − µ̂) = σ2 +
σ2

n

n→∞−→ σ2.

This implies one important difference between confidence intervals and prediction
intervals: the size of a PI even for big n will always depend heavily on V(Y). This
also holds true for nonparametric PI based on quantiles:

[Q̂α/2(Y), Q̂1−α/2(Y)]

For large n the estimation of this quantiles will get better, but as the distance
between the true quantiles is given by the distribution and the variance of Y the
size of the PI, from a certain point on, cannot be further reduced by a bigger sample
size.

2.2.2 Conditional intervals for Y |X = x

If we now pass on to conditional intervals, we enter the regression framework again,
with one or more predictor variables X and a continuous response Y . We want to
construct intervals for Y |X = x that not only depend on the samples of Y and X,
but also on the observation x. We will denote the resulting intervals as functions of
x: PI(x) and CI(x).

If all assumptions of the standard linear model are fulfilled, we can construct a
CI(xnew) for the fixed E(Y |X = xnew) (Fahrmeir et al., 2007):

CI(xnew) =

[
x>newβ̂ ± t1−α/2(n− p) ·

√
V̂(x>newβ̂)

]
For a new observation of the random variable Y the corresponding parametric
PI(xnew) is:

PI(xnew) =

[
x>newβ̂ ± t1−α/2(n− p) ·

√
V̂(Ynew − x>newβ̂)

]
Those two intervals look quite similar, the main difference is the estimated variance.
As in the unconditional case, the size of the PI is always bigger than the size of the
CI:

2 · t1−α/2(n− p) ·
√

V̂(Ynew − x>newβ̂) > 2 · t1−α/2(n− p) ·
√

V̂(x>newβ̂)

For large sample sizes it holds true that

20 CHAPTER 2. PREDICTION INTERVALS

2 · t1−α/2(n− p) ·
√

V̂(x>newβ̂)
n→∞−→ 0,

while

2 · t1−α/2(n− p) ·
√

V̂(Ynew − x>newβ̂)
n→∞−→ 2 · t1−α/2(n− p) · σ2.

That means that even for a perfectly specified model, with β̂ = β and therefore
a confidence level of 100% in estimating the conditional mean for a new observa-
tion xnew, we cannot expect the size of the prediction interval to become arbitrarily
small. As long as there exists variance of Y that is not explained by X, the predic-
tion interval cannot be reduced to a size of 0.

The same has to be made clear for nonparametric intervals based on quantile regres-
sion: Even if the conditional quantiles are perfectly specified, the resulting intervals
will have a certain size that mainly depends on the variance of Y |X. Of course it
is true that for good predictor variables X we will get smaller intervals. It is also
true that it will depend heavily on the new observation xnew how big the resulting
PI(xnew) is. Hence, we do agree with Meinshausen who stated that a varying length
of prediction intervals indicates that some observations can be predicted more ac-
curately than others (Meinshausen, 2006).

But we should never expect for a response variable Y with high variance that the
boundaries of the prediction intervals are anywhere near the expected mean of an
observation. If σ is high, even the best method can never return a prediction interval
that covers (1−α) ·100% of new observations for a given xnew and has a comparable
size to the corresponding CI(xnew) for the conditional mean.

To sum up:

• The boundaries of prediction intervals and confidence intervals are random
variables.

• Confidence intervals cover unknown but fixed values or parameters.

• Prediction intervals cover a new realization of a random variable.

• The size of a prediction interval therefore always is bigger and does not reduce
to 0 - even for infinitely big sample sizes.

2.2.3 Simulated toy example

To further illustrate the difference between prediction intervals and confidence in-
tervals, we simulated data for a toy example:

Yi = 1 + 3 · xi + log(1 + xi) · εi ∀i = 1, ..., n

2.2. PREDICTION VS. CONFIDENCE INTERVALS 21

where xi is an observed realization of X ∼ U(0, 10) and ε ∼ N(0, 2).

By log(1+xi) ·εi we added moderate heteroscedasticity for the error term and there-
fore on purpose violated a key assumption of the standard linear regression model
to point out the difference between parametric and nonparametric intervals.

We then constructed CI0.95(x) for µ and PI0.95(x) for Ynew (once based on the para-
metric model assumptions, and once based on quantile regression), for two different
sample sizes (n = 300 and n = 3000) for all observed realizations of X. Results are
presented in Figure 2.1.

Figure 2.1: Example to compare 95% prediction intervals and confidence intervals for
different sample sizes. Solid lines are confidence intervals for µ, the dashed line the
corresponding parametric prediction interval for Ynew. The dotted line represents
a nonparametric prediction interval based on conditional quantiles estimated by
boosting. Left: n = 300 , Right: n = 3000

The theoretically derived results can clearly be confirmed. The confidence interval
is of much smaller size, which is further reduced with an increased n. The resulting
prediction intervals do not change much when the sample size is increased. Addi-
tionally, we can notice the big advantage of the nonparametric approach based on
quantiles, as it adopts to the heteroscedasticity of the data and gives a much smaller
interval for smaller x.

22 CHAPTER 2. PREDICTION INTERVALS

2.3 Interpretation of prediction intervals for fu-

ture observations

In the preceding section we illustrated the important differences between confidence
intervals CI(·) and prediction intervals PI(·). For prediction intervals we distin-
guished between parametric intervals that use the assumed distribution function of
Y |X = x and nonparametric intervals based on quantiles Qτ (Y |X = x). In this
section we will assume a setup with only one predictor variable, but of course the
same holds true for intervals based on multiple predictors.

In the following sections we will go into more detail concerning the correct inter-
pretation of a PI1−α(x). We will assume that based on an observed training sample
y∗ = (y∗1, ..., y

∗
n)> and corresponding x∗ = (x∗1, ..., x

∗
n)> some kind of parametric or

nonparametric prediction interval was computed. Its boundaries are random vari-
ables as they depend on the sample. For a new observation xnew, PI1−α(xnew) should
cover the corresponding Ynew of a random variable Y with a probability of 1− α.

Yet, what does this mean from a frequentistic point of view? There exist at least
two separate ways to interpret the coverage of a prediction interval for future obser-
vations:

• Conditional interpretation: For any xnew and a corresponding sample y =
(y1, ..., yn)>, about (1 − α) · 100% of the observations that all have the same
observed value of the predictor variable xnew will fall inside the prediction
interval PI(xnew). The coverage therefore refers to the observations belonging
to this xnew.

• Heuristic sample interpretation: For any new sample y = (y1, ..., yn)>

and corresponding prediction variables x = (x1, ..., xn)> about (1− α) · 100%
of the new sample y will fall inside the prediction intervals PI(x1),...,PI(xn).
The coverage therefore refers to the whole sample.

This is not only a question of interpretation as it also implies different ways how the
consistency of such intervals should be investigated by simulations.

In this section, we will justify why the conditional interpretation is the only one
adequate when it comes to conditional prediction intervals. Yet we also acknowledge
that for testing prediction intervals in real world problems, in most cases only the
heuristic sample interpretation is feasible. In Chapter 6 we therefore analyze both
interpretations in simulation studies.

2.3.1 The conditional interpretation

Following the conditional interpretation, the proposed coverage of the PI1−α(xnew)
refers to every observation with this specific xnew. Hence, a new observation with

2.3. INTERPRETATION 23

exactly this xnew lies inside the prediction interval with a probability of 1− α :

P (Y ∈ PI(xnew)|X = xnew) = 1− α

Therefore, with f(y|xnew) being the conditional density of Y |X at the point (Y = y
and X = xnew) and I{·} the indicator function we can conclude:

1− α =

∫
y∈PI(xnew)

f(y|xnew)dy

=

∫
Y

I {y ∈ PI(xnew)} f(y|xnew)dy

= E (Y ∈ PI(xnew)|X = xnew) ∀xnew

For observed realizations of (Y,X) with X = xnew we can estimate the conditional
probability that Y falls into PI(xnew). Hence, to proof the consistency of the interval
we would need many observations for one specific xnew.

For (y, xnew) with y = (y1, ..., yn)>:

P̂ (Y ∈ PI(xnew)|X = xnew) = Ê (Y ∈ PI(xnew)|X = xnew)

=
{y ∈ PI(xnew)}

n

Where #{·} counts the cases where the condition inside the curly brackets is true.

2.3.2 The heuristic sample interpretation

If we want to try our intervals in a real world problem, in many cases it will be im-
possible to get for one specific xnew enough observations to show that the coverage
of the interval is correct. But as the conditional interpretation holds true for every
xnew, it seems obvious that we therefore can also directly interpret the prediction
interval for a new sample with different x:

As

1− α =

∫
y∈PI(x)

f(y|x)dy ∀x,

we can also integrate over x:

24 CHAPTER 2. PREDICTION INTERVALS

1− α =

∫
X

∫
Y

I {y ∈ PI(x)} f(y|x)f(x)dydx

=

∫
X

∫
Y

I {y ∈ PI(x)} f(y, x)dydx

=

∫
Y

∫
X

I {y ∈ PI(x)} f(y, x)dxdy

=

∫
Y

I {y ∈ PI(x)} f(y)dy

= E(Y ∈ PI(x))

To proof the consistency, we can now use a new observed sample of (y,x) with
y = (y1, ..., yn)> and x = (x1, ..., xn)>.

P̂ (Y ∈ PI(x)) = Ê(Y ∈ PI(x))

=

∑n
i=1 I {yi ∈ PI(xi)}

n

Meinshausen (2006) focused on the heuristic sample interpretation to show that the
proposed prediction intervals based on quantile regression forest work in some typi-
cal benchmark data sets. In order to avoid using the same data points for estimating
and testing the intervals, cross validation was used. Yet his intention was clearly to
show that (1− α) · 100% of the data lies inside the intervals.

By plugging in ∫
y∈PI(x)

f(y|x)dy = E(Y ∈ PI(x)|X = x) = 1− α ∀x

into the expectation of X

E (E(Y ∈ PI(x)|X = x)) =

∫
X

∫
y∈PI(x)

f(y|x)f(x)dydx

= E(Y ∈ PI(x))

= 1− α

we have shown that the conclusion

E (Y ∈ PI(xnew)|X = xnew) = 1− α ∀xnew

⇒ E(Y ∈ PI(x)) = 1− α

2.3. INTERPRETATION 25

Figure 2.2: Example to compare the conditional interpretation from the heuristic
sample interpretation. The dashed line represents a 80% conditional prediction
interval PI(x) that gives for every x an adequate coverage. The solid line represents
a ‘naive’ 80% prediction interval. Although it is no adequate interval for every x, it
holds the 80% coverage over the whole sample.

in fact is correct. An interval that works for the conditional interpretation also
should maintain the coverage for the whole sample. So, why do we argue that only
the conditional interpretation is adequate?

The answer is that the backward conclusion is not possible. From E(Y ∈ PI(x)) =
1− α we cannot conclude that E (Y ∈ PI(xnew)|X = xnew) = 1− α ∀xnew.

We are interested in prediction intervals that for a new observation xnew yield an
interval which covers a corresponding new realization of Y |X = xnew.

E(Y ∈ PI) = 1 − α can be easily fulfilled by ‘naive’ intervals that have nothing to
do with x. An example could be the empirical quantiles of the training sample y∗

(Figure 5.2. illustrates this for the simulated example of Section 2.2.3.):

PI = [Q̂α/2(y
∗), Q̂1−α/2(y

∗)]

This ‘naive’ interval will cover (1 − α) · 100% of the data points of a new sample.
But it completely omits the variance of Y explained by X. Therefore it will never
fulfill the stronger definition of E (Y ∈ PI(xnew)|X = xnew) = 1− α ∀xnew. Hence,
this interval is the example why the backward conclusion is not correct. We have
found an interval that holds the sample coverage, but does not fulfill the conditional
intepretation for every x: In the middle of the distribution of x we will cover 100%
of future observation while at the outer limits of x the coverage will be lower than
(1− α) · 100%.

26 CHAPTER 2. PREDICTION INTERVALS

We therefore conclude that using the heuristic sample interpretation of course can
give an indication if the coverage of the intervals is correct. In many practical situa-
tions it may be the only solution feasible. Correctly specified conditional prediction
intervals should also give the right coverage over the whole sample. Yet, one should
always have the correct interpretation in mind as also intervals which do not depend
on x could cover much of the sample.

Chapter 3

Quantile Regression

We already presented the basic idea of nonparametric prediction intervals based on
quantiles. They do not depend on any assumption about the distribution of the
variable of interest, but do rely only on the information in the sample. For con-
ditional prediction intervals for new observations we estimate the boundaries using
conditional quantiles. These intervals therefore do not only depend on the sample,
but also on the information of the predictor variables xnew of the new observation.
The key to this approach is quantile regression.

One of the most important aspects of this thesis is to introduce and compare dif-
ferent ensemble methods to estimate conditional quantiles. But before we get to
ensemble methods, it is necessary to have an idea of how quantile regression works,
and how the parameters are estimated classically.

This chapter presents a short introduction to quantile regression. We first con-
centrate on theoretical aspects and the path from standard regression analysis to
quantile regression before examples and basic estimation methods are presented. In
the last section we will focus on some interesting properties of conditional quantiles.

3.1 From the conditional mean to conditional quan-

tiles

What the regression curve does is give a grand summary for the aver-
ages of the distributions corresponding to the set of x’s. We could go
further and compute several different regression curves corresponding to
the various percentage points of the distributions and thus get a more
complete picture of the set. Ordinarily this is not done, and so regres-
sion often gives a rather incomplete picture. Just as the mean gives an
incomplete picture of a single distribution, so the regression curve gives
a corresponding incomplete picture for a set of distributions.

27

28 CHAPTER 3. QUANTILE REGRESSION

(Mosteller and Tukey (1977, p. 266), cited in Koenker and Hallock
(2001))

In standard regression analysis, the focus lies on the conditional mean of a response
variable Y given one or more predictors X. The influence of the predictor variables
can be modeled as additive linear parametric effects µ̂(x) = E(Y |X = x) = x>β,
or also in an additive nonparametric form µ̂(x) =

∑p
j=1 fj(xj).

3.1.1 The classical linear model

We already presented the classical linear model and its main assumptions in Section
2.1.1. We used it to model the conditional mean of the response variable, in order
to get a prediction based on Ê(Ynew|X = xnew).

Yi = x>i β + εi

Based on a observed sample (y1,x1),, (yn,xn) of realizations of the random vari-
ables Y and X we can compute the parameter vector β. In standard regression
analysis estimation of the parameters is performed by minimizing the sum of squared
residuals which yields in the ordinary least squares (OLS) estimator.

β̂OLS = argmin
β

OLS(β)

= argmin
β

{
n∑
i=1

(yi − x>i β)2

}
= argmin

β
(y −Xβ)>(y −Xβ)

= argmin
β

{
y>y − 2y>Xβ + β>X>Xβ

}
The idea of this method goes back to Carl Friedrich Gauß (1777-1855) who used it
in his pioneering work to predict the path of asteroid Ceres in 1801 (Forbes, 1996).
The resulting β̂OLS that minimizes this sum returns the best model fit.

∂OLS(β)

∂β
= −2X>y + 2X>Xβ

!
= 0

As the matrix X has full rank, and X>X therefore is invertible, one can conclude:

β̂OLS = (X>X)−1X>y.

3.1. FROM THE CONDITIONAL MEAN TO CONDITIONAL QUANTILES 29

3.1.2 Quantiles

The best known quantile is the 0.5-quantile, the median. By definition, the median
splits an ordered sample into two parts of equal size. Therefore 50% of the obser-
vations have higher values than the median, and 50% lower, respectively. The main
advantage of the median over the arithmetic mean is its robustness towards very
extreme values or outliers.

Let us assume that we have a company where 99 workers earn 2000 EUR a month.
At the head of the company the chief executive officer (CEO) has a monthly salary
of 22000 EUR. The arithmetic mean yields a mean income of 2200 EUR whereas the
median is 2000 EUR which stronger reflects the situation of 99% of the company’s
employees.

Yet the median is just a special term for the 0.5-quantile. As the median splits an
ordered sample into two parts of equal size, similarly the quartiles divide the sample
into four parts with equal proportion of the observations in each segment. Quintiles
divide the sample in five parts whereas deciles in ten parts.

The τ -quantile refers to the general case. In a population the proportion τ achieves
smaller values than the τ -quantile and (1 − τ) higher ones. By using different
τ , quantiles are an descriptive approach to report more than just the mean of a
variable, but also some aspects about its distribution. Plotting boxplots of dif-
ferent measurements includes more information than plotting means, as they can
also show if the variance or the shape (symmetric or not) of the distribution changes.

The distribution function of a real valued random variable Y can be described by
its quantiles Qτ (Y), which for 0 < τ < 1 are defined as those y for which the
distribution function FY (y) yields τ :

P (Y ≤ Qτ (Y)) = FY (Qτ (Y)) = τ

If the distribution function in invertible, we can use the quantile function as the
inverse of the distribution function. Then we can also define the τ -quantile more
directly as a function of τ :

Qτ (Y) = F−1
Y (τ)

3.1.3 Conditional quantiles

As we have seen, standard regression focuses on the conditional mean of the response
variable. The underlying question is the influence of predictor variables X on the
expected mean of the response variable Y .

Yi = x>i β + εi

30 CHAPTER 3. QUANTILE REGRESSION

For ε ∼ N(0, σ2I) we conclude that

(Y |X = x) ∼ N(x>β, σ2I).

For every data point X = x we therefore assume that the response follows a gaus-
sian distribution. In fact by modeling the expected mean we always model a whole
conditional distribution function, only in expecting that ε ∼ N(0, σ2I). We expect
that in every point X = x the response follows the same distribution, with the same
variance only shifted by the expected mean in this point.

By classical quantile regression we want to use a much more flexible approach that
also will be more accurate as it in fact does not estimate the distribution parameter
for a normal distribution, but estimates directly the conditional quantiles without
assuming a distribution.

The conditional distribution function FY |X(y|x) is defined by the probability that
Y is smaller than y ∈ R conditional on X = x.

FY |X(y|x) = P (Y ≤ y|X = x)

The basic idea of quantile regression is, in contrast to standard regression, not to
model the expected mean but the τ−quantile Qτ (Y |X = x) of the conditional dis-
tribution function.

Therefore, for every τ with 0 < τ < 1 the τ -quantile Qτ (Y |X = x) is defined as:

Qτ (Y |X = x) = F−1
Y |X(τ) = inf{y : FY |X(y|x) ≥ τ}

Assume that we have a real valued response variable Y and the one-dimensional
predictor X with a linear influence on Y following the standard gaussian model:

Yi = β0 + β1xi + εi, εi
iid∼ N(0, σ2)

If this model is assumed to be correct, it can be easily linked to the conditional
distribution function.

FY |X(y|xi) = P (Yi ≤ y|X = xi)

= P

(
Yi − β0 − β1xi

σ
≤ y − β0 − β1xi

σ

)
= Φ

(
y − β0 − β1xi

σ

)
= τ

⇐⇒ Qτ (Y |X = xi)− β0 − β1xi
σ

= Φ−1(τ)

Now we can model the τ -quantile of the response variable as a linear function of x.

3.2. BASIC ESTIMATION 31

qτ (x) = Qτ (Y |X = x) = β0 + σ · Φ−1(τ) + β1x

= β0τ + β1x

where
β0τ = β0 + σ · Φ−1(τ).

We can conclude that the parameter β1 in this case remains the same, whether
we use standard (conditional mean) or quantile regression (conditional quantiles).
Therefore, β1 does not depend on τ . For the median (τ = 0.5) not even the intercept
changes as Φ−1(0.5) = 0:

q0.5(x) = Q0.5(Y |X = x) = β0 + β1x

Of course, this all holds true due to the assumption of symmetric i.i.d. gaussian ε.
In a heteroscedastic setup, the results for β1 would heavily depend on τ . We will
demonstrate this in a simple simulated example in Section 3.3.

3.2 Basic estimation

As we have already seen, in standard regression analysis parameters are calculated
by minimizing the sum of squared residuals, which leads to following equation:

β̂OLS = (X>X)−1X>y

From a decision theoretic point of view, this estimator minimizes the quadratic loss.

It is obvious that for estimating the τ quantiles a symmetric loss function is only
appropriate for the median. For every τ 6= 0.5, as we do not want to have on both
sides of the regression curve the same proportion of data points, we have to penalize
the distance from the expected quantile unsymmetrically. The weight of each resid-
ual therefore has to depend on τ .

3.2.1 Minimizing the check function

In practice the estimation of the quantiles from a sample y1, ..., yn is calculated based
on the ordered list of variables y[1], ..., y[n].

The median can now be estimated by y[(n+1)/2] given n is odd or
y[n/2]+y[n/2+1]

2
for

even n.

Regarding this process of ordering and sorting the sample, it therefore is at least
surprising that quantiles can be linked to an optimization problem. But in the same

32 CHAPTER 3. QUANTILE REGRESSION

way as the mean is the solution to the problem of minimizing a sum of squared
residuals of an observed sample,

min

{
n∑
i=1

(yi − Ŷ)2

}
⇒ Ŷ = ȳ

the median is the solution to the problem of minimizing a sum of absolute residuals:

min

{
n∑
i=1

|yi − Ŷ |

}
⇒ Ŷ = Q̂0.5(y)

For the other quantiles, we now have to weight the absolute residuals asymmetrically
(depending on τ). It can be shown that the coefficients for a linear quantile regression
can be estimated by minimizing the check function (Koenker, 2005):

argmin
βτ

n∑
i=1

ρτ (yi − x>i βτ) where ρτ (u) =

{
u · τ u ≥ 0
u · (τ − 1) u < 0.

As x>βτ = Ŷ the expected loss is therefore

E[ρτ (y − Ŷ)] = (τ − 1) ·
∫ Ŷ

−∞
(y − Ŷ)f(y)dy + τ ·

∫ ∞
Ŷ

(y − Ŷ)f(y)dy.

Minimizing the expected loss with respect to Ŷ (compare to Fenske (2008))

∂

∂Ŷ
EFY [ρτ (y − Ŷ)] = −(τ − 1) ·

∫ Ŷ

−∞
f(y)dy − τ ·

∫ ∞
Ŷ

f(y)dy

= −τ +

∫ Ŷ

−∞
f(y)dy

= FY (Ŷ)− τ !
= 0

reveals the τ -quantile:

Ŷ = Qτ (Y) = F−1
Y (τ)

Quantile regression parameters can therefore be estimated similarly to the standard
regression parameters by minimizing the expected loss. The difference in the two
loss functions and the dependency of the check function on τ is demonstrated in
Figure 3.1.

In the standard regression model, the quadratic loss is symmetric and penalizes es-
pecially high distances to the regression line or Ŷ . The loss function for quantile
regression for the median (τ = 0.5) is also symmetric but less sensitive to extreme
observations as outliers as it refers to the absolute residuals. For small τ , the check

3.2. BASIC ESTIMATION 33

−2 −1 0 1 2

0

1

2

3

4

u

Le
as

t−
sq

ua
re

 lo
ss

: L
S

(u
)

−2 −1 0 1 2

0.0

0.5

1.0

1.5

u

C
he

ck
−

fu
nc

tio
n

ρρ ττ
(u

)

ττ=0.5
ττ=0.2
ττ=0.9

Figure 3.1: Loss function of the standard regression model (left) and the check
function for quantile regression (right) for different values of τ .

function gives little weight for observations where (yi − x>i βτ) ≥ 0 or u ≥ 0 which
means the expected quantile is smaller than the observed response. On the other
hand, if u < 0 and therefore the expected quantile is bigger than the observed out-
come, the loss function yields much higher values. Thus, by minimizing the loss,
τ · 100% of the observations will be smaller than Ŷ and (1− τ) · 100% bigger.

Yet as the check-function is not differentiable in 0, the solution to this minimization
problem can not be written down by a single formula, as in the ordinary least squares
(OLS) case. The standard solution is the usage of mathematical optimization tech-
niques provided by linear programming. An implementation using this techniques
is available through the function rq() in the quantreg package (Koenker, 2009b,a).

In this thesis we will focus on the estimation of conditional quantiles by ensemble
methods, rather than linear programming. Fenske et al. (2009) showed that mini-
mization of the check-function by boosting measures is more than competitive and
implies some favorable properties. We will focus on this in detail in Chapter 5.
A completely different way to estimate conditional quantiles will be presented in
Chapter 4, where the approach of Meinshausen (2006) to combine random forests
with quantile regression is laid out.

But before we get to ensemble methods, in order to give a more complete picture,
we will shortly touch two rather unusual approaches based on quasi-likelihood and
bayesian inference respectively.

34 CHAPTER 3. QUANTILE REGRESSION

3.2.2 Quasi-Likelihood approach

As an alternative estimation method we present another approach based on maxi-
mum likelihood inference. As in classical quantile regression we do not have assump-
tions about the distribution of the error term, in this case one also uses the term
quasi-maximum likelihood inference. Geraci and Bottai (2007) employ a likelihood
function that is based on the asymmetric Laplace distribution (ALD)

Y ∼ ALD(µ, σ, τ)

where −∞ < y <∞, µ ∈ R and τ ∈ (0, 1). The density is

f(y) =
τ(1− τ)

σ
· exp

{
−ρτ

(
y − µ
σ

)}
,

where ρτ (·) denotes the check-function. The shape of this density for different τ is
demonstrated in Figure 3.2.

−15 −10 −5 0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

y −µµ

A
sy

m
m

et
ric

 L
ap

la
ce

 d
is

tr
ib

ut
io

n
f ττ(

u)

ττ=0.5
ττ=0.2
ττ=0.9

Figure 3.2: The density of the asymmetric Laplace distribution for different τ .

If we (contradictory to the classical approach for quantile regression) assume the
ALD as the distribution of the error terms ετ , this yields the following Quasi-
Likelihood to maximize

1

σ
exp

{
−

n∑
i=1

ρτ

(
yi − x>i βτ

σ

)}
−→ max

which equals the minimization of the check-function.

⇐⇒
n∑
i=1

ρτ (yi − x>i βτ) −→ min

3.2. BASIC ESTIMATION 35

3.2.3 Bayesian approach

Bayesian inference in generalized linear or also additive models has become more
and more feasible through Markov chain Monte Carlo (MCMC) methods which can
be used to obtain samples of the posterior distribution even in very complex situa-
tions. The obvious advantage of the bayesian framework is the benefit of having the
entire posterior distribution of the parameter of interest. This distribution includes
information about the estimation uncertainty which can be taken into account when
making predictions.

For quantile regression, Yue and Moyeed (2001) proposed to use, in absence of any
realistic information, an improper uniform distribution p(βτ) ∝ 1 as a prior for βτ .
They show that the resulting joint posterior distribution is proper. The posterior
distributions of the parameters are obtained using MCMC methods. Credible inter-
vals around the parameters are computed using the MCMC samples of βτ (p).

The posteriori distribution of βτ , π(βτ |y) for given observations y = (y1, ..., yn) is
given by

π(βτ |y) ∝ L(y|βτ)p(βτ),

where p(βτ) denotes the prior distribution of βτ and L(y|βτ) the quasi-likelihood
function, based on the ALD with σ = 1 which must be seen as a rather strong
assumption:

L(y|βτ) = τn(1− τ)n exp

{
−

n∑
i=1

ρτ (yi − x>i βτ)

}
If one takes the maximum of the posterior distribution in this setup as a point
estimator for βτ , it maximizes the ALD-Likelihood if the improper prior p(βτ) ∝ 1
was used.

π(βτ |y) ∝ L(y|βτ)p(βτ)
∝ L(y|βτ)

∝ exp

{
−

n∑
i=1

ρτ (yi − x>i βτ)

}
−→ max

This yields in the same value as minimizing the check-function:

⇐⇒
n∑
i=1

ρτ (yi − x>i βτ) −→ min

This approach was analyzed in a diploma-thesis by Cieczynski (2009).

36 CHAPTER 3. QUANTILE REGRESSION

To sum up, the Quasi-Likelihood approach in this case equals the point estimator
in the bayesian framework and also results in the same parameters as the decision
theory based way of minimizing the check function as the expected loss. All three
different basic approaches may have their advantages, often linked to the framework
they are based on. But in the end, when it comes to a point estimator for βτ they
do all result in minimizing the check-function.

3.3 Simulated toy examples

To show some of the basic differences but also similarities of quantile regression and
standard linear models, we will present some toy examples (compare to Fenske et al.
(2009)). Those examples will illustrate some properties of quantile regression which
will be summarized in the following section.

We simulated random variables xi
iid∼ U(0, 1) and εi

iid∼ N(0, 1) for i = 1, ..., 1000 for
two different linear setups:

• Homoscedastic setup: Yi = 2 + 3xi + εi

• Heteroscedastic setup: Yi = 2 + 3xi + xiεi

Figure 3.3: Example for quantile regression in simulated data (εi ∼ N(0, 1)). Ho-
moscedastic setup on the left and heteroscedastic setup on the right side. The solid
lines represent the results of a standard regression model, the dotted lines represent
the results of quantile regression with τ = (0.1, 0.5, 0.9)>.

For both setups, both a standard regression and three quantile regression models
for τ = (0.1, 0.5, 0.9)> were fitted. The results are illustrated in Figure 3.3. In the

3.3. SIMULATED TOY EXAMPLES 37

homoscedastic setup, both quantile lines are parallel shifted to the standard regres-
sion line. As the εi are i.i.d., β1 (the slope of the regression line) remains the same.

In the heteroscedastic setup the slopes of the regression lines differ clearly. It can
even be noticed that for a small section of the x-grid, quantile crossing appears.
This means that the regression line of a lower quantile crosses the line of a higher
quantile and therefore its model yields higher values for a given x:

Quantile-crossing: x>β̂τ < x
>β̂τ ′ for τ > τ ′

As the distribution of the residuals remains symmetric (ε ∼ N(0, 1)), the standard
regression toward the conditional mean and the quantile regression with τ = 0.5
focusing on the median result in nearly the same parameter estimations and, there-
fore, the same regression line.

In the next example, the same setup as in the first example is used. Only the dis-
tribution of the error terms is changed into a non symmetric Gamma distribution
G(2,2). The results are illustrated in Figure 3.4.

For the homoscedastic setup, the quantile regression lines once again are parallel
shifted to the standard regression line. Therefore, β1 remains the same. But this
time, due to the unsymmetric error term distribution (εi ∼ G(2, 2)), the intercept
of the standard regression and the τ = 0.5 (median) quantile differ for both setups.

Figure 3.4: Example for quantile regression in simulated data (εi ∼ G(2, 2)). Ho-
moscedastic setup on the left and heteroscedastic setup on the right side. The solid
lines represent the results of a standard regression model, dotted lines represent the
results of quantile regression with τ = (0.1, 0.5, 0.9)>.

38 CHAPTER 3. QUANTILE REGRESSION

3.4 Conclusions on some properties of quantile

regression

These examples underline some basic aspects about the relation between standard
regression and quantile regression:

• For symmetric error terms, modeling the median or the mean yields the same
intercept.

• If the setup is even homoscedastic, also the slope of the regression line is the
same for all quantiles.

• If the distribution of the error term is assumed correctly, standard regression
in fact does also estimate the quantiles, based on this assumption and less
flexible than the classical nonparametric approach (Fenske, 2008).

Using quantile regression is also a way to detect misspecification and violations of as-
sumptions of the standard linear model. This is not surprising as we already pointed
out that by quantile regression more information can be gained about the conditional
distribution function as with standard regression. If one goes on modeling a grid of
quantiles, it is obviously possible to describe more facets of the underlying distribu-
tion function and, therefore, structural aspects as symmetry and homoscedasticity
can be identified.

In comparison to standard regression quantile regression is based only on low-level
assumptions.

Yi = x>i βτ + ετi

• The ετi must be independent, but do not have to be homoscedastic.

• There is no distribution assumption for ετi, they only have to fulfill F−1
ετi

(τ) = 0.

As a conclusion, this means for nonparametric prediction intervals which borders
are conditional quantiles that they are in much more situations applyable than stan-
dard methods. The main advantage is the absence of an assumed distribution of
ετi. Furthermore, they also do not depend on homoscedastic error terms. In fact,
as can be seen in the toy examples, the conditional quantiles adopt very precisely
to the heteroscedastic setup, and yield different slopes for different τ . The resulting
intervals therefore will get broader for big xnew, if heteroscedasticity was detected.

Quantile regression is more robust to outliers or high-leverage points. As the median
is a more robust measure than the arithmetic mean, this property is also passed on
to the other quantiles.

3.4. CONCLUSIONS ON QUANTILE REGRESSION 39

Before estimating the coefficients βτ by minimizing the check-function, τ has to be
fixed. The estimation process for different τ is carried out separately even though
they are correlated. This independent estimation is the reason why quantile crossing
can occur.

This is one of the most important handicaps of classical methods to estimate quantile-
regression by minimizing the check-function. Yet as we are interested in conditional
quantiles to use as borders for prediction intervals, in our case we will model only
two quantiles q̂τ (xnew) and q̂τ ′(xnew) with |τ ′−τ | = 1−α. For a small α the quantiles
should therefore differ enough to prevent quantile crossing.

The standard form to minimize the check-function by linear programming is imple-
mented in the function rq() in the pache quantreg (Koenker, 2009b,a).

In the following chapter, a nonparametric approach based on ensembles of classifica-
tion and regression trees is presented which in fact holds a solution to the problem
of separate estimation.

40 CHAPTER 3. QUANTILE REGRESSION

Chapter 4

Quantile Regression Forests

In Chapter 3 we introduced quantile regression as a powerful and flexible tool to
investigate more aspects about the conditional distribution than with standard re-
gression, focusing on the conditional mean. Some basic concepts for estimating the
parameters βτ were presented, in the end always aiming to minimize the check-
function.

In this chapter we want to focus on quantile regression forests (Meinshausen, 2006)
as a nonparametric approach for estimating conditional quantiles. This further de-
velopment of random forests is designed to estimate conditional quantiles without
using the check-function. This approach is situated in the field of ensemble-methods
where roughly speaking a better predictive performance is achieved by combining
different models. Therefore subsamples of the given data sets are analyzed, often
by using bootstrap methods. We will focus on this later in detail.

To understand the concept of quantile regression forests, it is essential to under-
stand in principle the idea of classification and regression trees (CART) which are
the basis for random forests. We will especially focus on the aspects of trees and
forests that are essential for the usage of quantile regression forests.

This chapter will be structured as follows: In Section 4.1 we will focus on the
basic idea of CARTs also by presenting some standard examples. In Section 4.2 we
will present random forests as a ensemble-method tool with high predictive validity
that is based on CARTs. In Section 4.3 we will finally introduce quantile regression
forests, which will later be extensively used as one of the main algorithms to estimate
prediction intervals by ensemble methods.

4.1 Classification and regression trees

Classification and regression trees (CART) refer to a nonparametric statistical tool
based on recursive partitioning.

41

42 CHAPTER 4. QUANTILE REGRESSION FORESTS

The term nonparametric is often used as a general description for methods that
do not rely on assumptions about the probability distribution, where the data was
drawn from. We already used this term in the context of quantile regression where
we did not assume any distribution for the model’s error term. Hence also prediction
intervals based on quantile regressions are nonparametric as no assumptions about
underlying distributions are needed.

In fact, CART fits in the scope of this definition. Trees can be used for all kinds of
data without assuming any distribution. But in this case the term nonparametric in
its literally meaning can also point to an important difference to other approaches:
We do not estimate β as in classical regression or βτ for quantile regression. We
give predictions for regression and classification problems without using a paramet-
ric model of the form x>β.

4.1.1 Basic idea

We are still in the regression framework as we try to explain and predict the influence
of one or more predictor variables X on the response Y . If Y is continuous, we use
CART to grow trees that are called regression trees. If Y is binary or categorical,
we call them classification trees. Trees normally only make sense for multidimen-
sional X, and favor setups with interactions. In the following X is a set of predictor
variables X1, ..., Xp .

The idea of growing trees goes back to the Automatic Interaction Detection (AID)
program developed at the Institute for Social Research in Michigan by Morgan and
Sonquist (1963). In the statistical community it later attracted attention as a tool
for nonparametric classification (Friedman, 1977) before it finally got its name as
Classification and Regression Trees by Breiman et al. (1984). The basic structure
of a tree and the terms used to describe its components is presented in Figure 4.1.

There exist a whole bunch of different approaches of how to construct a classification
or regression tree. But most of them can be linked to a general rule (compare to
Everitt and Hothorn (2006)):

1. Partition the observations by binary splits in a recursive way.

2. Predict by a constant term in each cell.

The first part can be divided into two separate steps. For a response Y and a given
set of predictor variables X1, ..., Xp, one variable Xj (1 ≤ j ≤ p) has to be selected
which splits the response into two optimal groups. If this variable Xj is categorical,
the set of categories A has to be chosen that performs the split: Xj ∈ A or Xj /∈ A.
If Xj is continuous, a cut point ξ has to be selected that also performs a binary split

4.1. CLASSIFICATION AND REGRESSION TREES 43

Figure 4.1: Basic structure of a classification or regression tree.

by Xj > ξ or Xj ≤ ξ.

Difficulties in understanding this first point still often do not arise by the selection
of the variable or the cut point. Those questions are familiar to data analysts. But
the recursive way these steps are carried out often sounds odd at first sight. Though
the idea can be easily explained by an example:

Let us assume a doctor arrives as a first responder to a car accident with several
victims. As he cannot help everyone at the same time, the doctor will intuitively
decide whom to help first by a few questions which can be answered by yes or no:
Which victims are still alive? Have the victims alive stable pulse and breathing?
Are the victims in a life threatening situation? He therefore classifies the victims
with every question into two separate groups before asking the next one. We can
see this classification procedure as a simple classification tree with binary splits in
each node. In the final cell there will be the decision if the victim falls in the group
which should be attended immediately. The doctor has learned those questions by
his daily routine and experience as a professional.

When statisticians want to build a tree, they first need training data. In this training
data a tree is grown that best classifies the given observations in its known cate-
gories. For a new observation one will now go down the whole tree node by node
until the final cell is reached, and classify the new observation with the category the
majority of the observations in the training data has in just this cell.

44 CHAPTER 4. QUANTILE REGRESSION FORESTS

If Y is continuous, the prediction is based on the mean or median value of the ob-
servations in the final cell where the new observation has dropped.

As we have already mentioned different algorithm exist to construct regression and
classification trees. Those algorithm mainly differ in three points (compare to Everitt
and Hothorn (2006)):

• How is the predictor variable Xj to split on selected from X1, ..., Xp?

• How is the cut point ξ or the splitting set of categories A chosen in Xj?

• Which stopping criteria is applied?

The last point is essential as too early stopping would mean to omit important
covariates and splits, while no early stopping would lead directly into overfitting by
constructing too many nodes with too small cells (or leaves) as endpoints.

4.1.2 Compute trees by rpart

One of the best known algorithms for growing trees is based on the description in
the book ‘Classification and Regression Trees‘ by Breiman et al. (1984). It is imple-
mented in the R package rpart by Therneau et al. (2009).

The selection of the predicting variables and the cut point for the splits are cho-
sen in an integrated form: The algorithm first checks all possible splits in all given
variables X1, ..., Xp before selecting the split that leads to the most homogeneous
groups with respect to the response Y . The homogeneity or ’purity’ is measured by
default with the Gini criterion, but alternatives can be chosen.

The problem of stopping the recursion is solved in retrospect by the so called prun-
ing-method. First, a very large tree is grown and afterward one begins to cut back
some branches until the tree has reached its optimal size. The decision which was
the optimal size for the given tree can be based on cross validation.

As an example, we use the well known iris data which gives the measurements in
centimeters of the variables sepal length and width and petal length and width,
respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa,
versicolor, and virginica (Fisher, 1936). Figure 4.2 presents the plot of an classifica-
tion tree computed by rpart with default settings.

The tree consists of two nodes and therefore three final cells or leafs. Every iris
with Petal.Length > 2.45 will be classified as the species setosa. For the rest of
the flowers the variable Petal.Length is deciding with a splitpoint of 1.75 if the iris
belongs to the species versicolor or virginica.

4.1. CLASSIFICATION AND REGRESSION TREES 45

|
Petal.Length< 2.45

Petal.Width< 1.75
setosa

versicolor virginica

Figure 4.2: Example for a simple classification tree for the iris data computed by
rpart with default settings. The prediction for a species can be seen in the final
leaves.

4.1.3 Compute trees by party

Another approach for growing trees is implemented in the package party (Hothorn
et al., 2009, 2006). This algorithm combines the recursive partitioning idea with a
concept of conditional inference.

The aim of the algorithm is to deal with two mayor problems of the classical ap-
proaches:

• Overfitting

• Variable selection biased towards covariates with many possible splits

Overfitting can be handled through pruning in the rpart package. But the selection
bias still stays a problem and can be easily explained:

The classical algorithm checks every possible split in all given predictor variables
X1, ..., Xp before selecting the split that leads to the most homogeneous groups.
This implies that a binary variable that has only one possible split is for example
less probably selected compared to a variable with two or more possible splits.

46 CHAPTER 4. QUANTILE REGRESSION FORESTS

The proposed solution is to include permutation tests in the search for the variable
to split on. By using resampling methods it is possible to construct general indepen-
dence tests that work for different scale levels without assuming any distribution.
They are based on the conditional distribution of test statistics measuring the asso-
ciation of the given covariates X1, ..., Xp with the response Y . The theory for this
approach of conditional inference is based on the work of Strasser and Weber (1999).

In every step, multiple testing is applied to decide if another split is justified. There-
fore in the given subset of observations, independence tests are applied, testing to
the level of α if there are any significant effects for any predictor variable with the
response. If the test reveals significant effects, the variable Xj with the strongest
effect is chosen for the next split. If the H0 of independence is not rejected, the
partitioning procedure is stopped. Therefore all variables are treated equally, no
matter what scale level or how many categories they have.

Afterward also the selection of the split point ξ for Xj is based on the conditional
distribution generated by resampling methods. As an example, we again use the iris
data (Fisher, 1936) for classification. The resulting tree is presented in Figure 4.3.

Petal.Length
p < 0.001

1

≤≤ 1.9 >> 1.9

n = 50
y = (1, 0, 0)

2
Petal.Width
p < 0.001

3

≤≤ 1.7 >> 1.7

Petal.Length
p < 0.001

4

≤≤ 4.8 >> 4.8

n = 46
y = (0, 0.978, 0.022)

5
n = 8

y = (0, 0.5, 0.5)

6

n = 46
y = (0, 0.022, 0.978)

7

Figure 4.3: Example for a simple classification tree for the iris data computed by
party with default settings. The proportion for each species in the final leaves is
noted in brackets.

If we compare the resulting trees of both algorithms (Figure 4.2 and Figure 4.3) we

4.2. RANDOM FORESTS 47

can note that both algorithms chose the the same variables for the first two splits,
although the cut points differ. The tree computed by party also includes a third
split using the variable Petal.Length that was already chosen for the first split.

Additionally to the last split and cut points there is another obvious difference in
the two resulting figures: In Figure 4.3 there is also information about the p-values
of each split included. In the classical algorithm significance in the statistical sense
was never taken into account. But as the stopping criteria now are linked to general
independence tests the underlying p-values can also be reported to the user.

Hence, the parameter α that is used for the early stopping criteria in the form of a
tuning parameter (a high α leads to large trees with many splits while a small α will
lead to relatively small trees, as the H0 of independence is more often rejected), can
also be interpreted as a global significance level. For a given α = 0.05 no variables
will be included in a tree that do not at least show an effect with a p-value < 0.05
for the actual subset of variables.

Although this algorithm also includes statistical tests and significance levels, the
resulting trees still fit in the definition of a nonparametric statistical method. For
the selection of the variables, permutation tests are used. The resulting p-values do
not depend on any asymptotic probability distribution of a test statistic but on its
conditional distribution computed by resampling methods.

4.2 Random forests

As we now got to know the idea of classification and regression trees, we can go on to
what we are really interested in: Ensemble methods that combine different trees to
random forests and the resulting estimation of the conditional distribution function.
Therefore, we shortly explain what is meant by the term ensemble methods before
we go on over bagging to random forests.

4.2.1 Ensemble methods

Ensemble methods were first introduced in the machine-learning community for so
called supervised-learning problems (‘classification‘ in statistical language). A good
summary is given in Dietterich (2000). Ensemble methods follow the idea that even
with simple prediction techniques a powerful tool for prediction can be computed,
if they are aggregated in a useful manner. This may sound odd in the first place,
but can be explained in a short example:

Let us assume that a prisoner in his cell has no window and therefore no information
about the weather outside. One indication of the weather outside could be the boots

48 CHAPTER 4. QUANTILE REGRESSION FORESTS

of the prison guard when he enters the cell in the morning for control. If they seem
wet or the guard even leaves a wet trail, this can be a clear indication of a rainy
day outside. Of course it is possible that he just crossed a recently cleaned floor,
although this seems unlikely. But on the other hand, if the boots are dry, one can
not that easily conclude that there must be a sunny day outside. It is also possible
that the officer arrived by car, or is already on duty for hours and the boots are
dry again. All in all, the boot-procedure does not seem to give a very accurate pre-
diction about the unknown status of the weather outside. But if we could combine
many such perhaps weak prediction techniques, the performance could rise. Let us
imagine the prisoner meets 100 other prisoners for lunch. By sharing the informa-
tion about their guard’s boots, they could develop a much more accurate and better
performing prediction.

When we now go back from this constructed example to real world statistical prob-
lems, we can use this approach to combine different prediction methods (base learn-
ers) into one more accurate predictive tool. Therefore, we use one base learner many
times for a slightly different data set. For a new observation, we use an aggregated
predictor of all base learners by averaging the results.

The term ensemble-methods reflects this general idea, in practice approaches differ
in three points:

• Base learners

• Ways to aggregate (Majority voting vs. weighted voting)

• Ways to generate subsamples or re-weighted data in each iteration

4.2.2 Bagging

Bagging (≡ bootstrap aggregation) was introduced by Breiman (1996) as a tech-
nique for generating multiple versions of a base learner and combine them to get an
aggregated predictor. Classification and regression trees are used as base learners. If
the outcome is continuous, aggregation is done by averaging. For a class prediction,
majority voting (in the publication called plurality voting) is used. The multiple
versions of the predictor are constructed by generating bootstrap samples of the
data (drawing n out of n observations with replacement).

The gain of accuracy by this method comes from the instability of the base learners.
As trees always include binary splits, they are by its construction quite dependent
on the given data set. Lets go back to the iris data set and the tree in Figure 4.3.
The first split is performed by the variable Petal.Length and divides perfectly the
50 irises of the species iris setosa from the rest. The cut point is 1.9 as the iris from
this species with the biggest Petal.Length has the exact value of 1.9. But if we
now leave this observation out, the cut point shifts to the next lower observed value

4.2. RANDOM FORESTS 49

of 1.7. Hence small modification of the data set can have a strong impact on the
tree and therefore on future predictions. When we now modify the data set various
times and save all the trees, our future prediction can be based on all the trees and
will be less dependent on the original data set.

We can present the bagging procedure as following algorithm (compare to Everitt
and Hothorn (2006)):

1. Draw B bootstrap samples from the original training data

2. For each of this bootstrap samples grow a very large tree

3. For prediction of a new observation pass it through all B trees and average
their predictions.

Concerning accuracy, aggregated trees by the bagging method nearly always per-
form better than single trees. As explained ,the prediction rules get more stable as
they less depend on the original data set. But also the chosen set of variables will
get bigger, as also less important variables that do not enter the original tree may
contribute to the aggregation.

The main tuning parameter for bagging is the number of bootstrap samples B
that are used for the aggregation. Breiman (1996) in the original publication used
50 iterations but also showed in a simulated classification setup that for a grid of
{1, 10, 25, 50, 100} bootstrap replicates the main improvement concerning the miss-
classification rate was already achieved with 10 iterations. ”More than 25 bootstrap
replicates is love’s labor lost” (Breiman, 1996). Well, with today’s computational
power we can imagine much higher numbers of iterations without loosing too much
time.

It makes sense to choose a reasonable high B as bagging should tend to increase
stability and predictive accuracy by the number of replicates used.

4.2.3 Random forests

Random forest is a further developed ensemble method based on trees, but still has
many similarities to bagging. In fact bagging can be seen as a special case of random
forests.

Random forests was introduced as an ensemble method five years after bagging by
the same author (Breiman, 2001). Like in bagging, classification and regression trees
are used as base learners. For the modification of the data sets in each iteration
bootstrap samples are drawn. The single predictors of the bootstrap samples are
aggregated by averaging for regression trees and by majority voting for classification
trees.

50 CHAPTER 4. QUANTILE REGRESSION FORESTS

Yet, there is one further important step which helps to increase accuracy: In con-
trast to bagging, not every variable of X1, ..., Xp can enter in each base learner. For
random forests randomness is not only included in selecting the observations for
each iteration by bootstrap, but also for selecting the variables to grow the trees. In
every iteration only a certain subset of covariates is randomly included. As a result,
the single base learner trees differ more than with the bagging method, as there is
more variation in the set of selected variables. Variables that have a relatively low
effect on the response have a bigger chance to enter in the final prediction scheme
in random forests than with the usual bagging method.

The amount of candidate variables that are selected for each iteration step is an
additional tuning parameter. It is often called mtry, and usually it makes sense to
choose mtry < p , where p is the number of predictor variables. To choose mtry= p
yields in bagging, which therefore can be seen as a special case of random forests.

One side-effect of choosing mtry< p is also a less time consuming algorithm, as the
computing time for trees with less variables to split on is reduced compared to trees
with the full set of covariates.

Until now we tried to spare the reader too much detailed notation as the point was
to get an idea about the usage of trees and ensemble methods. But as the estimation
of conditional quantiles based on random forest is linked to one important step that
can only be explained by a formula, we have to take a more mathematical path in
the following pages.

For a better understanding how the prediction for a continuous response Y is calcu-
lated, some notations are introduced following the publications of Breiman (2001)
and Meinshausen (2006):

• θ is the random parameter vector that determines how a tree is grown

• The resulting tree is denoted as T (θ)

• B is the space of X, so X : Ω→ B ⊆ Rp

• p ∈ N+ is the dimensionality of the predictor variable x

• Every leaf l = 1, ..., L of a tree corresponds to a rectangular subspace of B :
Rl ⊆ B

• Every x ∈ B falls in only on leaf l, and so x ∈ Rl

• This leaf is denoted l(x,θ) for tree T (θ)

One has now a sample of n observations of the predictor variables X and the con-
tinuous response Y

4.2. RANDOM FORESTS 51

(yi,xi), i = 1, ..., n

and fits with them a regression tree T (θ). For a new data point X = xnew, the
prediction of this single tree µ̂(xnew) is obtained by weighted averaging over the
vector of observed values y in the corresponding leaf l(xnew,θ).

As one only wants to include the observations that are lying in this leaf, the weight
vector wi(xnew,θ) will be defined as 0 if the corresponding xi does not fall in the
same leaf as the new data point xnew:

wi(xnew,θ) = 0 ∀i : xi /∈ Rl(xnew,θ)

Furthermore, the weights should sum up to 1 over all observations:

n∑
i=1

wi(xnew,θ) = 1.

Hence, we define the weights as

wi(xnew,θ) =
I
{
xi ∈ Rl(xnew,θ)

}
#
{
j : xj ∈ Rl(xnew,θ

} ,
where I {·} denotes the indicator function and # {·} counts the observations where
the condition is fulfilled.

Hence, for a x∗new that falls in a leaf where three observations of the original training
data are included, these three observations will all get a weight of 1

3
whereas all

other observations have the weight 0.

Now these weights are used for the prediction of E(Y |X = xnew) based on the tree
T (θ):

µ̂(xnew) =
n∑
i=1

wi(xnew,θ)yi

For the case of the x∗new that falls in a leaf with three original observations this
means that µ̂(x∗new) is just the arithmetic mean over the yi of these three observa-
tions. This sounds reasonable, and also for random forests the averaging process is
straight-forward.

For random forests one has an ensemble of k single trees T (θt), with an i.i.d. vector
θt, t = 1, ..., k. For every single tree we can compute the weights wi(xnew,θt) for all
observations. Hence for k = 1000 trees and n = 100 observations one has 1000×100
weights for every new observation xnew.

52 CHAPTER 4. QUANTILE REGRESSION FORESTS

As in the end one wants to average over the yi, it makes sense to define the mean
weight w̃i(xnew) over the k trees:

w̃i(xnew) =
1

k

k∑
t=1

wi(xnew,θt)

With those, one can now compute the prediction µ̂(xnew) as the weighted mean over
the observed response variables, similar to the averaging in a single tree:

µ̂(xnew) =
n∑
i=1

w̃i(xnew)yi

Like in the standard regression model, random forests do estimate the conditional
mean µ(x) = E(Y |X = x) of the response variable Y . Unlike in standard re-
gression, no assumptions about any underlying probability distributions are needed.
Additionally no additive linear effect of the form x>β has to be expected. One can
conclude that this approach is a very flexible and powerful nonparametric solution
to a regression or classification problem if the main goal of the analysis is a good
prediction.

But if one wants to interpret the effect of single variables or even to say something
about the significance of an effect, this approach bears some problems. Single trees
are easy to interpret and therefore also easy to communicate to subject-matter sci-
entists. But the accuracy one gains by using random forests is payed by the lack
of interpretability. Random forest do work more like a black box method: We put
some training data in, and the box yields a powerful prediction for new observations.
Yet the explanation of the form how X affects Y is more or less impossible.

Although we can not say anything about significance or appearance on an effect,
there is a form to estimate the importance of single variables for the prediction called
permutation importance (Strobl et al., 2007). This procedure is based on computing
the difference in accuracy of the prediction if the variable of interest is permuted
or not. If the accuracy is reduced dramatically, one can conclude that this variable
had an important effect on the prediction. If the accuracy does stay unchanged, this
indicates that there is no solid effect of this variable on the response.

4.3 Quantile regression forests

In the precedent section random forests were presented as a powerful ensemble
method to predict the conditional mean Ê(Y |X = xnew). The final estimation
was carried out using the mean weights w̃i(xnew) to average over all yi of the origi-
nal data set:

4.3. QUANTILE REGRESSION FORESTS 53

Ê(Y |X = xnew) =
n∑
i=1

w̃i(xnew)yi

Meinshausen (2006) showed that these w̃i(xnew) can also be used to estimate the
conditional distribution function F̂Y |X(y|xnew).

This is a very meaningful discovery as only this step makes it possible to use ran-
dom forest for the estimation of conditional quantiles, and therefore prediction inter-
vals. Once we have an estimation for F̂Y |X(y|xnew) it can be plugged-in to estimate

Q̂τ (Y |X = xnew):

q̂τ (xnew) = inf
{
y : F̂Y |X(y|xnew) ≥ τ

}
The algorithm that leads to this final result is called Quantile Regression Forests
(Meinshausen, 2006). Based on quantile regression forests we can construct predic-
tion intervals of the form

PI(x) = [q̂0.025(x), q̂0.975(x)],

without the usual assumptions and limitations of classical prediction intervals.

With an ensemble of trees like random forest we can therefore not only estimate the
conditional mean, but also the conditional quantiles. In the following section we
present similar to the path from standard to quantile regression in Chapter 3 the
path from random forest to quantile regression forests.

4.3.1 From random forests to quantile regression forests

To understand the concept of the usage of w̃i(xnew) to estimate FY |X(y|xnew) we
first repeat shortly where these weights come from:

• For every single tree we computed the weight wi(xnew,θt) for t = 1, ..., k

• Those wi(xnew,θt) are 0 for every observation i that does not lie in the same
leaf as xnew, for the rest it sums up to 1

• w̃i(xnew) are the mean wi(xnew,θt) over the k trees

• They therefore still sum up to 1:

54 CHAPTER 4. QUANTILE REGRESSION FORESTS

n∑
i=1

wi(xnew,θ) = 1 =⇒
n∑
i=1

1

k

k∑
t=1

wi(xnew,θt) = 1

=⇒
n∑
i=1

w̃i(xnew) = 1

For every new observation xnew, we can compute n w̃i(xnew) by dropping xnew down
the k trees. Depending on xnew, the weights will be big for an observation i which
was often included in the same leaf as xnew, and 0 for an observation that never got
in contact with xnew in any leaf.

We therefore can call the w̃i(xnew) roughly an indicator for the similarity of xnew

and xi. It is big for xi that are similar to xnew as both will often fall in the same leaf.
For observations xi that are very different from xnew, the w̃i(xnew) will be small as
they are 0 in every tree where both observations did not follow the same splits.

For general random forests this information about the similarity is used to compute
the weighted mean over the yi for the prediction of E(Y |X = xnew). The obser-
vations yi that belong to a set of predictor variables xi similar to xnew will play a
higher role as yi that have a very different xi.

To use this measure of similarity also as a tool to estimate the conditional distribu-
tion function, we denote FY |X(y|xnew) slightly different from the original definition:

FY |X(y|xnew) = P (Y ≤ y|X = xnew) = E(I {Y ≤ y} |X = xnew)

Here one can already see analogies towards the expected conditional mean E(Y |X =
xnew) that will be used in the estimation.

As random forests approximate the conditional mean by summing up the weighted
observations

Ê(Y |X = xnew) =
n∑
i=1

w̃i(xnew)yi,

quantile regression forests sum up the weights itself, for every observation with
yi ≤ y:

Ê(I {Y ≤ y} |X = xnew) =
n∑
i=1

w̃i(xnew)I {yi ≤ y}

= F̂Y |X(y|xnew)

4.3. QUANTILE REGRESSION FORESTS 55

This step is the core of quantile regression forests (Meinshausen, 2006). For a simple
estimation of an empirical unconditional distribution function, one just takes the
proportion of yi ≤ y:

F̂Y (y) = P̂ (Y ≤ y) =
1

n

n∑
i=1

I {yi ≤ y}

By adding the weights for each observation, the estimation is now conditioned on
xnew, as the w̃i(xnew) will give more importance to observations with xi similar to
xnew.

As a simple example let us imagine an dichotomous univariate covariate X =sex

and the continuous outcome Y = body height. If one now computes k = 100
random forests with mtry= 1, it is quite probable that for nearly all forests results
one split by sex. For a new observation with x =female, the w̃i(xnew) will therefore
give weight 0 to every male observation. Hence, the resulting estimated conditional
distribution F̂Y |X(y|x = female) will only depend on female observations.

4.3.2 The algorithm for quantile regression forests

As already presented in the precedent sections, the quantile regression forest algo-
rithm falls in the class of ensemble methods and is based on random forests. For a
given sample y1, ..., yn of the continuous response Y and potential more-dimensional
predictor variables x1, ...,xn we can summarize:

1. Draw k bootstrap samples of the original data set.

2. Grow trees T (θt) for every bootstrap sample t = 1, ..., k as in random forest.

3. For a given X = xnew drop xnew down all trees.

4. Compute the weights for every observation in every tree:

wi(xnew,θt) =
I
{
xi ∈ Rl(xnew,θt)

}
#
{
j : xj ∈ Rl(xnew,θt)

}
5. Compute the the averaged weights for every observation:

w̃i(xnew) =
1

k

k∑
t=1

wi(xnew,θt)

6. Compute the estimation of the distribution function:

F̂ (y|X = xnew) =
n∑
i=1

w̃i(xnew)I {yi ≤ y}

56 CHAPTER 4. QUANTILE REGRESSION FORESTS

7. Compute the conditional quantiles as:

Q̂τ (Y |X = xnew) = inf
{
y : F̂Y |X(y|xnew) ≥ τ

}
The presented algorithm is a powerful extension to random forests as it not only
uses the averaged observations to approximate the conditional mean but provides
measures to approximate the full conditional distribution function.

This aspect is used for a prediction of conditional quantiles qτ (x). The method
does not depend on the assumption of any underlying probability distribution and
therefore is nonparametric. It further does not expect a linear additive effect of the
form x>β.

The algorithm is made available for users with the package quantregForest (Mein-
shausen, 2007) that depends on the randomForest (Liaw and Wiener, 2002) package.
The random forest depend therefore on regression trees as proposed by Breiman et al.
(1984).

The main tuning parameters in this approach are:

• the number of trees to be grown (k or ntree as in quantregForest)

• the number of variables considered in each iteration (mtry).

The default settings are ntree = 1000 and mtry = p
3
, where p denotes the number

of predictor variables X1,, Xp. Node-sizes are restricted to have more than 10
observations in each node. Meinshausen (2006) points out that the latter parameter
seems not to change much, but also refers to Lin and Jeon (2002) who have shown
that growing each tree until the nodes are pure leads to overfitting.

The most influential tuning parameters are ntree and mtry. It is possible to opti-
mize mtry by using the out-of-bag predictions. This is a special feature for ensemble
methods that use bagging to draw different random subsamples:

In every iteration, the bootstrap procedure draws n out of n observations randomly
with replacement. The replacement obviously leads to observations that are more
than once in the bootstrap sample and others that do not enter at all. It can be
shown that asymptotically about 63.2% of the original observations are not included
in the bootstrap sample. That is an important fact, as only by this variation the
ensembles differ enough to give a more stable prediction in the aggregated form.
But one can now use the observations not included in this iteration (out-of-bag) to
test the prediction accuracy.

It is very important that the accuracy is not tested with the same data points as the
method was fitted on. The best way to do this is an independent test data set, what

4.3. QUANTILE REGRESSION FORESTS 57

nevertheless in practice often is not available. Another solution are cross validation
methods, where parts of the data are randomly chosen not to be included in the fit,
and then used to evaluate the method on. This is repeated until every data point
once was excluded from fitting, the results are averaged.

In ensemble methods which use bagging, this is already possible with the out-of-
bag data points and no additional cross-validation is necessary. In every iteration
the base learner can be evaluated on the out-of-bag data. In our case we can now
compute the trees for a grid of different mtry = (p,

√
p, p

2
, p

3
, p

4
, p

5
) and evaluate the

accuracy on the data points not included in this iteration step. At the end, one can
choose the value of the mtry-grid that achieved the best results.

4.3.3 Consistency

Meinshausen (2006) proofs the consistency of the proposed method under various
assumptions. In this thesis, we will focus mainly on the coverage of prediction in-
tervals computed by quantile regression forests in simulation studies, which can also
be seen as a way to proof the consistency without using too many mathematical
tricks. But nevertheless we will report the results here shortly, for details we refer
to the original publication.

Assumptions:

A1: B = [0, 1]p and X uniform on [0, 1]p

A2: The proportion of observations in a node relative to all observations is
vanishing for large n, maxl,θ kθ(l) = o(n), for n → ∞. The minimal number
of observations in a node is growing for large n that is 1/minl,θ kθ(l) = o(n),
for n→∞.

A3: When finding a variable for a splitpoint, the probability that variable
m = 1, ..., p is chosen for the splitpoint is bounded from below for every node
by a positive constant. If a node is split, the split is chosen so that each of the
resulting sub-nodes contains at least a proportion γ of the observations in the
original node, for some 0 < γ ≤ 0.5.

A4: There exists a constant L so that FY |X(y|x) is Lipschitz continuous with
parameter L that is for all x, x′ ∈ B,

sup
x
|FY |X(y|x)− FY |X(y|x′)| ≤ L||x− x′||1

A5: The conditional distribution function FY |X(y|x) is, for every x ∈ B,
strictly monotonously increasing in y.

58 CHAPTER 4. QUANTILE REGRESSION FORESTS

If the assumptions A1-A5 are fulfilled, Meinshausen (2006) proofs that the error
made by estimation of the conditional distribution converges uniformly in probability
to zero:

sup
y∈R
|F̂Y |X(y|x)− FY |X(y|x)| p→ 0 ∀x ∈ B, n→∞

This result shows that quantile regression forests are a consistent way of estimating
the conditional distributions and quantiles.

4.3.4 Advantages of quantile regression forests

It was already noted that quantile regression forests are a powerful tool to estimate
the conditional quantiles q̂τ (x) = Q̂τ (Y |X = x). They do not depend on assump-
tions about underlying distributions and are not restricted to linear effects of the
form x>β.

The algorithm made available with the package quantregForest is relatively fast
and the usage is easy to understand also for users not familiar with ensemble meth-
ods or other computer-intensive tools.

Meinshausen (2006) proved the consistency and showed in numerical examples that
the algorithm is competitive in terms of predictive power. But he did not mention
at all one important advantage of his procedure:

The estimation of qτ (x) for different τ are not independently computed but can be
made simultaneously. The independently estimated parameters βτ , although they
are of course highly depending, is one important handicap of every method that is
based on minimizing the check-function.

In quantile regression forests, first the conditional distribution function is estimated
and afterwards plugged in to get the conditional quantiles.

q̂τ (x) = inf
{
y : F̂Y |X(y|x) ≥ τ

}
For different τ , one uses the same F̂Y |X(y|xnew) and therefore the estimation is com-
puted simultaneously.

As the distribution function is monotonously increasing in y, quantile crossing can

not occur. It is possible that for different τ , inf
{
y : F̂Y |X(y|x) ≥ τ

}
will lead to the

same value, but it can never happen that q̂τ (x) is bigger than q̂τ ′(x) for τ < τ ′.

Chapter 5

Boosting for Quantile Regression

In the preceding chapter random forests were used to combine ensembles of trees
to a prediction with better performance. It was shown how this technique can be
used to estimate the conditional distribution function and therefore the conditional
quantiles Qτ (Y |X = x). This is our first major tool to estimate prediction intervals
by ensemble methods.

Another major tool will be component-wise boosting. For the estimation of predic-
tion intervals, we will use it to minimize the check-function, which again leads to
conditional quantiles.

Boosting in many aspects is a similar but broader approach than random forests.
As random forests it was first introduced in the machine learning community. It got
popular as a further improved tool for classification using ensembles.

In section 4.2.1. we already lined out the three main differences in ensemble methods:

• Base learners

• Ways to aggregate

• Ways to generate data in each iteration

In random forests we used trees as base learners, majority voting for aggregation
and bootstrap methods to draw data in each iteration.

For boosting we do not assume any specific base learner. Besides trees also stumps
(trees with only one split), regression models or splines are possible. For the ag-
gregation information about the accuracy of the base learners is used. Very strong
predictors get higher weights, whereas weak predictors will contribute less to the
final method.

59

60 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

The main feature though is the data generation: Instead of using bootstrap samples
with equal probability for all observations to enter in the ensemble, boosting se-
lects especially the data points where the preceding predictors failed to show a good
performance. Hence, the main idea is to concentrate from iteration to iteration on
observations which have shown to be problematic in the past, in order to improve
the accuracy of the resulting prediction.

Our focus will be on estimating conditional quantiles by minimizing the check-
function. In the following Section 5.1. we first introduce the original AdaBoost
algorithm which is mainly used as a classification tool. The next step (Section 5.2.)
is the characterization of boosting as a functional gradient descent algorithm, be-
fore we finally present in Section 5.3. the algorithm for additive quantile regression
which will be extensively used in the rest of the thesis.

5.1 AdaBoost

One of the first boosting algorithms was AdaBoost for classification, introduced by
Freund and Schapire (1996a). It is situated in the field of ensemble methods and
combines an ensemble of simple classifiers to a more powerful classification scheme.
But there is an important difference to the methods described until now:

In Bagging and in Random Forest, bootstrap resamples of the observed original data
were used to generate data sets for each iteration step. Therefore, each observation
(yi,xi) for i = 1, ..., n has the same chance to enter the ensemble in every iteration
step.

In the boosting context we do not use bootstrap samples to generate data, but
re-weight the original data points in every iteration.

5.1.1 Ensembles with re-weighted data

In the following sections, in order to achieve constistency, we will use the notation of
Bühlmann and Hothorn (2007), which focused on a statistical perspective of boost-
ing and not the one of the original publication by Freund and Schapire (1996a),
which was more directed to supervised learning (classification) problems:

The base procedure (or base learner) will be denoted as ĝ(.):

(x1, y1), ..., (xn, yn)
base procedure−→ ĝ(.)

With (x1, y1), ..., (xn, yn) being the original data set with observed values of the
random variables X and Y . For every iteration different data sets are generated by
re-weighted data points. The prediction is computed by the base procedure on the
weighted sample:

5.1. ADABOOST 61

re− weighted data 1
base procedure−→ ĝ[1](.)

re− weighted data 2
base procedure−→ ĝ[2](.)

... ...

... ...

re− weighted data mstop
base procedure−→ ĝ[mstop](.)

For random forests and bagging, the weights for each data point depend on random
drawing with replacement. Data points, which are not included in the iteration
steps get the weight 0, the ones which are once or more often in the data set get a
weight ≥ 0. They do therefore not depend on the base procedure.

For boosting the weights of the observations in every step depend on the preceding
base procedures (≡ weak learners), in order to boost the relevance of problematic
data points.

The intuitive idea is to alter the distribution over the domain X in a way
that increases the probability of the ’harder’ parts of the space, thus forc-
ing the weak learner to generate new hypotheses that make less mistakes
on these parts.
(Freund and Schapire, 1996a)

Before the invention of AdaBoost, many boosting algorithms depended on prior in-
formation about the base procedure in order to get the weights. The new concept
of AdaBoost is to adjust adaptively to the errors, the base procedure made in the
preceding iterations. It therefore can be called a sequential ensemble scheme. In
every step the individual weights are updated, giving higher weights for data points
for which the base procedure showed poor results in the previous iteration.

In the end, one aggregates the mstop predictors with a linear combination to a single
method:

f̂A(.) =

mstop∑
m=1

αmĝ
[m](·)

It is of course crucial how the αm are computed:

A gambler, frustrated by persistent horse-racing losses and envious of
his friends’ winnings, decides to allow a group of his fellow gamblers to
make bets on his behalf. He decides he will wager a fixed sum of money in
every race, but that he will apportion his money among his friends based
on how well they are doing. Certainly, if he knew psychically ahead of
time which of his friends would win the most, he would naturally have

62 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

that friend handle all his wagers. Lacking such clairvoyance, however,
he attempts to allocate each race’s wager in such a way that his total
winnings for the season will be reasonably close to what he would have
won had he bet everything with the luckiest of his friends.
(Freund and Schapire, 1996a)

In the gambler example, the protagonist tries to maximize his winnings and therefore
is looking for a weight vector that gives more importance to successful friends, than
to ones out of luck. For a good prediction, the data analyst will try to do the same
with his different base learners: We try to give the base learner of iteration m that
was successful a higher αm, than the one which delivered poor results.

5.1.2 The AdaBoost algorithm

As already mentioned the AdaBoost algorithm came to fame in the machine-learning
community as a procedure to aggregate weak classifiers. Those base learners at least
have to perform a little better than random guessing so that they can be combined
into a powerful predictor. One of the reasons for the success of AdaBoost is that
it is forcing the learning algorithm to concentrate on observations hard to classify
(Freund and Schapire, 1996b).

In the original publication also an application for regression problems is discussed
(algorithm AdaBoost.R), but we will focus on the more intuitive AdaBoost algo-
rithm for binary classification (algorithm AdaBoost.M1):

1. Initialization: For the first iteration set the individual weights wi of the
observations i = 1, ..., n to w

[0]
i = 1

n
, and m = 0.

2. Base Learner: m = m + 1. Compute the base learner for the weighted
data set:

w
[m]
i yi

base procedure−→ ĝ[m](xi) ∀i

3. Update: Compute the weighted error-rate for the data points in the
sample

err[m] =

∑n
i=1w

[m−1]
i I

{
yi 6= ĝ[m](xi)

}∑n
i=1w

[m−1]
i

,

which is the proportion of observations misclassified with regarding their indi-
vidual weight from the previous iteration. Misclassified data points with high
wi will contribute more to the error rate, than observations with low wi.

5.1. ADABOOST 63

The iteration m now gets its weight α[m] for the final aggregation, depending
on its success in the current iteration:

α[m] = log

(
1− err[m]

err[m]

)

Now the individual weights wi can be updated:

w̃i = w
[m−1]
i exp

(
α[m]I

{
yi 6= ĝ[m](xi)

})
If the observation i was misclassified, its weight wi is multiplied by the factor(

1−err[m]

err[m]

)
. Depending on the performance of the iteration, its weight increases

to be of higher relevance in the next iteration.

As the updated weights should sum up to 1, they are normed:

w
[m]
i =

w̃i∑n
j=1 w̃j

4. Iteration: Iterate steps 2 and 3 until m = mstop and compute the final
classifier for a new observation xnew by weighted majority voting, based on
the performance of each iteration in the original data:

f̂AdaBoost(xnew) = argmax
y∈{0,1}

mstop∑
m=1

α[m]I
{
y = ĝ[m](xnew)

}
As

α[m] = log

(
1− err[m]

err[m]

)
> 0 for err[m] < 0.5
= 0 for err[m] = 0.5
< 0 for err[m] > 0.5

,

the algorithm will choose the y ∈ {0, 1} that was most often predicted in
iterations where the error rate was small, and not selected when the error rate
was high.

Let us repeat two main aspects to avoid confusion:

• Observations, which are often misclassified in previous iterations, have higher
weights in the actual one → high w

[m]
i .

• Iterations, in which many observations are correctly specified that normally
make trouble get a high weight in the final aggregation → high α[m].

64 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

Hence, the data points that are hard to classify will get high weights to force the
learning algorithm to lay focus on them. Nevertheless, for a new observation xnew,
the final classification will depend mainly on the base procedures that performed
well.

This algorithm has become the most popular boosting algorithm (Bühlmann and
Hothorn, 2007), often used with classification trees as base learners. The results in
terms of the error rate are much better than for single trees and led Breiman (NIPS
Workshop, 1996) to the statement:

AdaBoost with trees is the best off-the-shelf classifier in the world.
(Citet in Hastie et al. (2001))

5.2 Boosting as functional gradient descent

The success of AdaBoost and its high performance (not only for classification prob-
lems) produced much attention in the machine-learning world. However, it took
some years until statisticians cached up and showed that this algorithm that in fact
has the power to fulfill main statistical tasks, can also be fitted into classic statistical
estimation schemes.

Breiman (1999, 1998) first showed that AdaBoost can be understood as an algo-
rithm of steepest descent in function space. Later Friedman et al. (2000); Friedman
(2001) included boosting in a framework of functional gradient descent for function
estimation. The direct linking of boosting to (forward stagewise) additive modeling
by Friedman et al. (2000) not only explained much of how and why boosting works
for statistical tasks, but can also be seen as the breakthrough for boosting in the
world of statistics (compare to Hofner (2008)).

The application of boosting to minimize a certain loss function, based on models,
will be of major interest in this thesis, as we are interested in forms to minimize the
check-function.

In the following section we will first present the generic functional gradient descent
(FGD) algorithm, before we will show how this can be used for regression problems.

5.2.1 Generic FGD algorithm

In Chapter 2 we already have seen that the parameters in a standard linear regression
model are estimated by minimizing the quadratic loss.

β̂ = argmin
β

{
n∑
i=1

(yi − x>i β)2

}

5.2. BOOSTING AS FUNCTIONAL GRADIENT DESCENT 65

If we now do not want to be restricted to the squared error loss and to additive
linear effects of the form x>β, we can re-formulate the problem also to

f̂(·) = argmin
f(·)

{
n∑
i=1

ρ(yi, f(xi))

}
,

where ρ(·, ·) denotes a differentiable and convex loss function and f(xi) is some
kind of predicting function that the different components of xi often by assuming
an additve structure:

f(xi) = f(xi1, ..., xip) =

p∑
j=1

fj(xij)

Minimizing this loss function can now be carried out through boosting procedures,
by always using the steepest descent in every iteration (compare to Friedman (2001);
Bühlmann and Hothorn (2007); Hofner (2008)):

1. Initialization: m = 0. Initialize the function estimate f̂ [0](·) with an
offset value. This can be a constant value c that minimizes the loss-function

f̂ [0](·) = argmin
c

1

n

n∑
i=1

ρ(yi, c),

which in case of a quadratic loss yields in c = y.

Another possible offset (especially for centered data) is

f̂ [0](·) = 0.

2. Negative gradient: m = m + 1. Compute the negative gradient of the
loss function ρ(yi, f), for every i = 1, ..., n, evaluated at the function values of
the previous iteration f̂ [m−1](xi):

u
[m]
i = − ∂ρ(yi, f)

∂f

∣∣∣∣
f=f̂ [m−1](xi)

3. Estimation: Use the base procedure to fit the negative gradient vector
u[m] = (u

[m]
1 , ..., u

[m]
n) to x1, ...,xn:

u
[m]
i

base procedure−→ ĝ[m](xi) ∀i

ĝ[m](xi) therefore does not estimate Yi but the negative gradient for the data
point i. ĝ[m](·) denotes the function that approximates the negative gradient
vector u[m].

66 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

4. Update: Update our estimation function with a step length factor 0 <
ν ≤ 1.

f̂ [m](·) = f̂ [m−1](·) + ν · ĝ[m](·)

5. Iteration: Iterate steps 2 to 4 until m = mstop.

Although the layout of the algorithm seems to be similar to AdaBoost, on first sight
it is not obvious why functional gradient descent is a boosting algorithm. But let
us repeat the main features of AdaBoost:

• In every iteration, the weight of each observation is adapted. Data points that
are misclassified get higher weights.

• In the end, base learners which did show good results will play a higher role
in the final prediction

In fact, both of these points are also fulfilled in the FGD algorithm:

In every step not only the observations get individual weights, depending on the
previous iteration: The yi are replaced by the gradient u

[m]
i which is the nega-

tive derivate of the loss function evaluated with the yi and the estimated function
f̂ [m−1](xi) of the previous iteration. Hence, data points that do make trouble in the
previous step will get more important. The learning algorithm is forced to concen-
trate on those observations which have high effect on the loss function.

In every iteration the update step f̂ [m−1](·) + ν · ĝ[m](·) makes sure that good base
learners will play a higher role in the final prediction. Only a ĝ[m]() that is good in
approximating the effect of X on U [m] will yield higher values, and therefore lead
the way down the steepest descent of the loss function.

Furthermore, one can also imagine that AdaBoost can be linked to additive model-
ing, as the final prediction is mainly just a linear additive combination of the base
learners:

f̂(·) = f̂ [0](·) +

mstop∑
m=1

ν · ĝ[m](·).

As this may all sound a little bit abstract, we will now focus on a more applied
boosting version, which also fits in the FGD scheme and can be used for standard
regression methods.

5.2. BOOSTING AS FUNCTIONAL GRADIENT DESCENT 67

5.2.2 L2 boosting

L2 boosting is the application of FGD to the quadratic loss ρ(y, f) = (y − f)2. It
therefore yields the estimation for the conditional mean E(Y |X = x).

1. Initialization: m = 0. Initialize the function estimate f̂ [0](x) with an
offset value. For the L2 loss, a typical offset is f̂ [0](x) = y

2. Negative gradient: m = m + 1. Compute the negative gradient of
the loss function ρ(yi, f) for every i = 1, ..., n evaluated at the values of the
regression line of the previous iteration f̂ [m−1](xi). For the L2 loss, this yields
the residuals:

u
[m]
i = − ∂(yi − f)2

∂f

∣∣∣∣
f=f̂ [m−1](xi)

= 2|yi − f̂ [m−1](xi)| ∝ ε̂
[m−1]
i

3. Estimation: Use the base procedure to fit the negative gradient vector
u[m] = ε̂[m−1] to x1, ...,xn:

ε̂
[m−1]
i

base procedure−→ ĝ[m](xi) ∀i

ĝ[m](xi) therefore does not fit yi, but the residual of the data point.

4. Update: Update the estimation function with a step length factor 0 <
ν ≤ 1.

f̂ [m](xi) = f̂ [m−1](xi) + ν · ĝ[m](xi)

5. Iteration: Iterate steps 2 to 4 until m = mstop.

We do not have to specify which base learner we use, though it will influence the
outcome. The natural choice are standard regression models ĝ(x) = x>β which
lead to the residuals εi = (yi − x>i β).

This application now paints a much clearer picture of the similarity to AdaBoost:

The negative gradient vector becomes the residual vector. In every iteration step we
now re-weight our data, based on the previous results by simply using the residuals
as new observations. They do the job of giving more weight to problematic obser-
vations, as this data points obviously do have higher residuals.

Boosting in this case means that we force the learning algorithm to take care of data
points that do have high distance to the current estimation. This is just the same
thing as AdaBoost forced the base learners to focus on the objects misclassified by

68 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

the previous classification.

This way, we will always focus on the most problematic points concerning the loss
function and leave it to the base learner to fit them, while f̂(x) learns in every itera-
tion better how to handle the data. We therefore minimize the loss function

∑n
i=1 ε

2
i

by steepest descent, as we are handing over the εi to a base procedure that by itself
is designed to minimize the distance from ĝ(x) to the corresponding residuals.

In a more visual language, the algorithm walks around in the space of the loss func-
tion and searches the points where the biggest payoff for minimizing the loss could
be. It finally takes the residuals and fits with them the base procedure which is the
tool to go down the steepest path. The iteration of this proceeding leads to a final
estimation that minimizes the corresponding loss function.

For the final prediction of a new data point we use the linear combination of the
base learners fitted on the residuals. It is clear that especially iterations which
showed strong effects of X on the residuals in the original data will have the highest
influence in predicting the new point.

5.2.3 Example: The cars data

As a simple example to show how L2 boosting works we analyze the well known
cars data-set, available in the R package stats (R Development Core Team, 2009).

The task is to model the influence of the speed of a car on the stopping distance.
The data was recorded in the 1920s. The speed was measured in miles per hour
(mph), the distance in feet (ft). The resulting regression line from different iteration
steps is presented in Figure 5.1.

One can clearly see the different steps of the algorithm. In iteration [0] the function
is initialized by the mean stopping distance. In the later iterations the regression line
is updated in every step, until it finally reaches the OLS-regression which minimizes
the quadratic loss. The calculation was carried out by the function glmboost() in
the package mboost (Hothorn et al., 2009).

5.2.4 Why do we need boosting?

This example was only given to illustrate the way L2-boosting works. Nevertheless,
one might ask what sense does it make to use a boosting algorithm that after a few
thousand iterations reaches the regression curve of the standard linear model that
can be computed in one step by (X>X)−1X>y.

5.2. BOOSTING AS FUNCTIONAL GRADIENT DESCENT 69

Figure 5.1: Estimation of the regression curve with L2-boost for the classical cars
data. Left: The dashed line is the result of standard OLS-regression. Solid ines
represent the actual estimated function in different iteration steps of the boosting
algorithm. Right: L2-loss function path

The answer is: In this case it really is as taking a sledgehammer to crack a nut.
But this sledgehammer is highly flexible, and can do a lot more. For motivation
purposes, lets take a look at three points:

1. Different loss functions: Only the L2 loss can be minimized in this
generic form (βOLS = (X>X)−1X>y). Boosting through FGD is much more
flexible and can work with every loss that at least is convex and differentiable.
We will use it to minimize the check-function in the next section.

2. Penalizations or Restrictions: L2 boosting with stopping earlier than
the convergence to the standard regression curve is similar to using the lasso
(Hastie et al., 2001). The lasso (Tibshirani, 1996) penalizes the sum of the
absolute regression parameters with the L1 norm:

β̂(λ) = argmin
β

n∑
i=1

ε̂2
i + λ

p∑
j=1

|βj|

That is basically the same as minimizing the quadratic loss and restricting the
parameters to sum up to something smaller than a bound s:

min
n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 while

p∑
j=1

|βj| ≤ s

70 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

This minimization problem with restriction can be solved by the powerful least
angle regression algorithm LARS (Efron et al., 2002). The bound s is the tun-
ing parameter, for large s the result will be the standard OLS-estimator β̂OLS,
for smaller s the parameters are shrinked toward lower values. The lasso tends
to leave some of βj as 0, and therefore already includes a data driven variable
selection.

When we stop the boosting algorithm early, we can achieve to get similar
solutions by using component-wise boosting algorithms that will be presented
in the next section.

3. p > n: For applications where we have more variables that could predict
the outcome than observations to estimate the parameters, the OLS-method
is not feasible.

Let us imagine a simple situation with one predictor x and two data points.
The regression curve has exact one solution: The line is drawn through the
two points. If we now omit one observation we have to estimate two param-
eters (β0 and β1) by one data point. There are of course solutions to this
problem, but no exclusive one. Every line the passes through this one point
will minimize the quadratic loss.

To get back to a distinct solution one has to include restrictions in the model, as
in the lasso, or reduce the dimension of X by prior variable selection. Another
way out can be component-wise boosting methods.

In the following section we will present how FGD can be used to estimate the βτ
for quantile regression, by introducing a component wise boosting algorithm that
minimizes the check-function.

5.3. QUANTILE REGRESSION WITH BOOSTING 71

5.3 Quantile regression with boosting

In the preceding section we got to know boosting as an approach of functional gra-
dient descent. It can be used to estimate regression lines that minimize any loss
function that at least is convex and differentiable.

It has some nice properties and we already stated that by component-wise boosting
the solutions can include variable selection and estimations are feasible for p > n
problems.

In this section we will finally pass on to use boosting as a tool to estimate condi-
tional quantiles by applying the algorithm to minimize the check-function. Fenske
et al. (2009) showed that this technique is more than competitive to standard opti-
mization algorithms, based on linear programming. We can therefore combine the
advantages of quantile regression for nonparametric prediction intervals with the
advantages of this special estimation scheme.

We will first present a component-wise boosting algorithm to estimate linear quantile
regression, before it is shown how this can be adjusted to fit also nonlinear effects.
In the last section we will focus on tuning parameters.

5.3.1 Linear quantile regression

With L2-boosting we already presented an algorithm to estimate the conditional
mean E(Y |X = x). We did not specify which base learners to use, and therefore
did not restrict to linear modeling of the regression curve. We were just estimating
f̂(x), which implied also a linear model of the form x>β.

To keep it simple, we will now first stick to the linear quantile regression Qτ (Y |X =
x) = x>βτ , as this way the idea of a component wise update is much easier to
explain. Later we will adapt the algorithm also to unspecified additive nonlinear
effects Qτ (Y |X = x) =

∑p
j=1 fj(xj).

To make the notational effort easier, we will omit the index τ for the quantile re-
gression parameters βτ in the following, and call it just β. We will also sometimes
denote the linear predictor just as ηi.

It was already described in Chapter 3 that the conditional quantiles can be estimated
by minimizing the check-function ρτ (·):

ρτ (yi − η̂i) =


(yi − η̂i) · τ (yi − η̂i) > 0
0 (yi − η̂i) = 0
(yi − η̂i) · (τ − 1) (yi − η̂i) < 0.

72 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

The path of the check-function for different values of τ was presented in Figure 3.1.

For applying the FGD-algorithm to the check-function, we will need the negative
gradient:

−∂ρτ (yi, η)

∂η
=


τ (yi − η̂i) > 0
0 (yi − η̂i) = 0
τ − 1 (yi − η̂i) < 0.

Note that the check-function bears a severe pitfall, as it is not differentiable in 0.
In practice, this can not cause too many problems as the event yi = η̂i due to Y
being continuous will occur with zero probability. We can therefore go on with the
definition of ρ>τ (0) = 0 without causing a substantial effect on the algorithm (Fenske
et al., 2009).

With this gradient vector we can now formulate a component wise boosting algo-
rithm for linear quantile regression (compare to Fenske et al. (2009)):

1. Initialization: m = 0. Initialize the β̂
[0]

vector. A common approach is
to set β

[0]
j = 0 for j = 1, ..., p, and β

[0]
0 to the median of y. If we use an offset

value that is subtracted beforehand from y (e.g. the median), one can also set

β
[0]
0 = 0.

2. Negative gradient: m = m + 1. Compute the negative gradient ui of
the check-function ρτ (yi, ηi) for every i = 1, ..., n evaluated at the prediction

of the previous iteration x>i β̂
[m−1]

u
[m]
i =


τ (yi − x>i β̂

[m−1]
) > 0

0 (yi − x>i β̂
[m−1]

) = 0

τ − 1 (yi − x>i β̂
[m−1]

) < 0.

3. Component-wise estimation: Use the base procedure (e.g. OLS) to fit
the negative gradient vector u[m] to every possible predictor variable x1, ...,xp
separately:

u[m] base procedure−→ xj · b̂j
[m]

for every j = 1, ..., p

4. Update one component: Find the best-fitting component that mini-
mizes the L2-loss:

b̂j∗
[m]

= argmin
b̂j

[m]

(u− xj b̂j
[m]

)>(u− xj b̂j
[m]

)

Now only this component j∗ of the previous β̂
[m−1]

vector is updated:

5.3. QUANTILE REGRESSION WITH BOOSTING 73

β̂j∗
[m]

= β̂j∗
[m−1]

+ νb̂j∗
[m]

All the other β̂j, j = 1, ..., p with j 6= j∗ stay the same: β̂j
[m]

= β̂j
[m−1]

.

5. Iteration: Iterate steps 2 to 4 until m = mstop.

There are two main differences to the L2 boosting algorithm presented in section
4.2.2.:

First obviously another loss function is used. This affects the negative gradients
ui: Instead of refitting the residuals as in L2 boosting, for quantile regression we
do refit a vector containing τ and τ − 1. This sounds odd at first glance, but is
just a logic conclusion to one of the main properties of quantile regression: It is
robust toward outliers, therefore the magnitude of the distance from the estimated
quantile in the current iteration is of no further importance. The main thing that
matters is the amount of observations bigger or smaller than the quantile, which
can be sufficiently expressed by the τ and τ − 1 vector. The negative gradients for
L2 boosting and for quantile regression are compared for the cars data in Figure 4.2.

Figure 5.2: Boosting example with the cars data. Negative gradients after 10
iterations, fitted on the predictor speed. The solid line represents the OLS-fit as
the base learner. Left: L2 boosting, Right: Boosting for linear quantile regression
with τ = 0.3

The second difference has got nothing to do with quantile regression, but can be
also implemented for normal L2 boosting: The algorithm searches in every iteration
only one component to update. It selects the predictor variable that can best reduce

74 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

the L2-loss for the gradients. This is only relevant for p > 1. For the example using
the cars data set, component-wise boosting or standard boosting lead to the same
results, as there is only one variable speed to select.

Component-wise boosting leads to some nice properties of this algorithm already
mentioned in the previous section. If we stop early enough, the algorithm includes
variable selection: automatically some components of β̂ stay zero, as they never
were selected as the best fitting component for the gradients. This feature makes
boosting also feasible for p > n problems. As the algorithm always only fits the
gradient component-wise to every j = 1, ..., p, we do not have any problem with
more predictors than observations.

Another problem that can be avoided using component-wise boosting, is multi-
collinearity. This appears when for a multiple regression model (p > 1) two or more
predictor variables are highly correlated. The matrix X>X, which is also necessary
if we fit the u[m] instead of the response, will not be invertible if there are linear
relationships between predictor variables. If we fit only one component at a time,
this problem is avoided. Furthermore both of the highly correlated variables have
the chance to enter the final prediction, depending on their performance to minimize
the loss function in each iteration step.

The algorithm is implemented through the function glmboost() in the mboost pack-
age (Hothorn et al., 2009). As gradient family QuantReg() (Fenske et al., 2009) has
to be specified for quantile regression.

5.3.2 Additive quantile regression with nonlinear effects

As a next step we generalize the boosting algorithm for quantile regression also
to possible nonlinear setups. As in L2 boosting, we do not want to focus only
on influences of the form x>β̂, but also include a more flexible form

∑p
j=1 f̂j(xj).

The only restriction we therefore make is that the effect of different predictors is
additive. Boosting methods for additive models are described in Kneib et al. (2009).

The combination of additive models and quantile regression will allow us to model
also prediction intervals for a given xnew that has a nonlinear effect on the response
and the quantile. This way, we do not only avoid assumptions about underlying
distribution functions of the response or the error term, but also reduce the assump-
tions about the effect of the predictor variables.

To distinguish between linear and nonlinear covariates we will denote in the follow-
ing section observed values of continuous variables with nonlinear influence on the
quantile as zj , with j = 1, ..., q. For observed values of common linear predictors
(e.g. categorical variables) we stay with the common notation xl, with l = 1, ..., L.
The corresponding model function therefore is:

5.3. QUANTILE REGRESSION WITH BOOSTING 75

Qτ (Yi|xi, zi) = ητi = x>i βτ +

q∑
j=1

fτj(zij)

As a result we will have to use different types of base procedures for the different
sets of predictor variables. For predictor variables that will be modeled with a linear
parametric effect, we will use the OLS base procedure:

b̂
[m]
l = (x>l xl)

−1x>l u

with xl = (x1l,, xnl)
>.

For nonlinear effects we will focus on penalized spline (P-splines) with a B-splines
basis as base learners that are proposed for additive models with boosting by Schmid
and Hothorn (2008).

In principle, the smoothed effect of the predictor variable zj = (z1j,, znj)
> is

therefore modeled as a linear combination, based on B-splines of degree D on a
fixed set of equidistant knots K:

gj(zj) =
K∑
k=1

γjkBk(zj)

The estimation of γ̂j could be carried out by simple OLS:

γ̂j = argmin
γj


n∑
i=1

(
ui −

K∑
k=1

γjkBk(zij)

)2


This leads to the best fit of ĝj(zj) on the negative gradient u, but the resulting
functions would be too rough. We therefore penalize the roughness and using a
penalized least squares criterion (Eilers and Marx, 1996).

γ̂j = argmin
γj


n∑
i=1

(
ui −

K∑
k=1

γjkBk(zij)

)2

+ λj

K∑
k=3

(∆2γjk)
2


Where ∆2 is the difference of second order referring to the knots k:

∆2γjk = γjk − 2γjk−1 + γjk−2

The parameter λj controls the amount of smoothness for the effect j. While big
values for λj will lead to very smooth results with a relatively high bias and low
variance, small values or even λj → 0 will lead to a very rough line with low bias
but high variance.

76 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

With the B-spline design matrix Zj , and the penalty matrix K with K = D>2 D2

Zj =

 B1(z1j) · · · BK(z1j)
...

...
B1(znj) · · · BK(znj)

 D2 =


1 −2 1

1 −2 1
.

1 −2 1


the minimization problem can also be formulated as:

γ̂j = argmin
γj

{
(u−Zjγj)>(u−Zjγj) + λjγ

>
j Kγj

}
This can be solved to (Fenske et al., 2009)

ĝ
[m]
j = Zj(Z

>
j Zj + λjK)−1Z>j u

[m],

where u[m] is the negative gradient vector in iteration step m. This is our base
procedure for a nonlinear effect fj(zj).

As we have now defined the base-procedures for linear and nonlinear effects, we can
formulate the algorithm for estimating additive quantile regression by component-
wise boosting:

1. Initialization: m = 0. Initialize the β̂
[0]

vector and the estimated function
f̂

[0]
j for j = 1, ..., q.

2. Negative gradient: m = m + 1. Compute the negative gradient vector
u[m], as in the linear case:

u
[m]
i =


τ (yi − η[m−1]

τi) > 0

0 (yi − η[m−1]
τi) = 0

τ − 1 (yi − η[m−1]
τi) < 0.

3. Component-wise estimation: Use the base procedures to fit the nega-
tive gradient vector u[m] to every possible predictor variable x1, ...,xl, z1, ...,zq
separately:

u[m] base procedure−→
{
b̂ml x1,,xL
ĝmj z1,,zq

4. Update one component: Find the best-fitting component that mini-
mizes the L2-loss

(u[m] − û[m])>(u[m] − û[m])

5.3. QUANTILE REGRESSION WITH BOOSTING 77

inserting xlb̂
m
l = û[m] for linear predictor variables and ĝmj (zj) = û[m] for

nonlinear components.

If the best fitting base learner is a linear effect with index l∗, update the
corresponding coefficient vector:

β̂l∗
[m]

= β̂l∗
[m−1]

+ νb̂l∗
[m]

If the best fitting base learner is a nonlinear effect with index j∗, update the
corresponding regression function:

f̂
[m]
j∗ = f̂

[m−1]
j∗ + νĝ

[m]
j∗

All the other β̂l, l = 1, ..., L with l 6= l∗ or f̂j, j = 1, ..., q with j 6= j∗ stay
constant.

5. Iteration: Iterate steps 2 to 4 until m = mstop.

The algorithm is implemented through the function gamboost() in the mboost pack-
age (Hothorn et al., 2009). To apply it for quantile regression, the gradient family
family=QuantReg() (Fenske et al., 2009) has to be specified.

As for the linear case, the algorithm fits the negative gradients component-wise and
updates only the component that achieves the biggest descent of the check-function
in every iteration. In the nonlinear case we therefore also profit from the nice prop-
erties of a component-wise boosting algorithm as the included variable selection.
The algorithm can deal with high dimensional data sets and p > n problems while
multicollinearity is avoided.

Additive quantile regression based on smoothing splines normally is computed by
linear programming, as implemented in the function rqss() of the quantreg package
(Koenker, 2009b). Fenske et al. (2009) showed in simulation studies that the boost-
ing approach leads to comparable performance results, but noted that it is more
flexible in estimating the nonlinear effects. Furthermore, the currently available
implementation of the boosting technique can handle a larger number of nonlinear
predictor variables.

As an example for applying boosting to estimate quantile regression with a nonlin-
ear effect, we use the already presented cars data set (compare to Section 5.2.3).
We are now interested in modeling the 0.3-quantile curve for the stopping distance
conditioned on the speed of the car. We do not assume a linear effect, and therefore
use the boosting algorithm with P-splines as base learners. Results for different
iteration steps are presented in Figure 5.3.

78 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

Figure 5.3: Estimation of the conditional 0.3-quantile curve with gamboost() for the
classical cars data. Left: Lines represent the actual estimated function in different
iteration steps of the boosting algorithm. Right: Path of the ckeck-function(τ =
0.3) as the adequate loss

As in Figure 5.1. that presented linear L2-boosting for the same data, one can
clearly see that the algorithm needs a certain number of iterations, until it finally
results in a reasonable fit. One can also see that the check-function as the loss is
reduced with every iteration step.

We can now use the conditional quantile Q̂0.3(Y |X = x) = f̂(x) as a one sided 70%
nonparametric prediction interval for a new observation xnew. We therefore interpret
the modeled quantile conditioned on a observed X = x as a function in x. Hence,
the lower boundary for a prediction interval for a new observation can be computed
by simply plugging in xnew:

PI(xnew) = [q̂0.3(xnew),∞[

The correct conditional interpretation (Chapter 2) is that for a new car with the
speed xnew the computed PI(xnew) surrounds its stopping distance with a probability
of 0.7. Hence, in 70% of the cases a new car with exactly this speed xnew will not
stop earlier than q̂0.3(xnew).

5.3.3 Tuning parameters for boosting with P-spline base
learners

With the algorithm for estimating conditional quantiles for boosting with P-spline
base learners one has a powerful tool to estimate prediction intervals based on quan-

5.3. QUANTILE REGRESSION WITH BOOSTING 79

tiles. It combines the advantages of quantile regression by not assuming any un-
derlying distribution function and the properties of the component-wise boosting
approach.

The algorithm already implies data-driven variable selection and model choice and
therefore no a priori specification about the predictor variables has to be carried
out. Categorical variables will enter as nonlinear effects, continuous variables are
candidates for smooth effects. The smoothness of each effect j is controlled by λj
that is automatically determinated in the iteration steps.

Nevertheless, there are tuning and hyper parameters in this approach that have to
be set. We will briefly discuss the possible ways to choose them with laying focus
on the practical relevance. For a more complete view on the subject including the-
oretical implications we refer to Schmid and Hothorn (2008).

There a basically two main tuning parameters for boosting which trade off each
other: The step length factor ν and the number of boosting iterations mstop.

In early boosting algorithms it was proposed to estimate an adequate step-length
ν = ν(m) in every iteration step (Friedman, 2001). But in newer works it was shown
that this time-consuming procedure is of low importance for the predictive accuracy
(Bühlmann and Hothorn, 2007). It was also noted that there is a dependence be-
tween mstop and ν. For the case of early stopping applied based on a stopping
rule (e.q. AIC or evaluation on a test data set), Schmid and Hothorn (2008) give
the theoretical background why the dependence is approximately linear, with mstop

inversely proportional to ν. Hence, a two times bigger ν will result in half of the
necessary iteration steps mstop to reach the same fit. This was also confirmed in
our simulation results. Fenske et al. (2009) therefore argue that one can safely fix
ν = 0.1 as it is the default value in mboost and focus on finding an optimal choice
for mstop. We will follow this approach of a fixed ν, but the question is how this
fixed value should be chosen.

As a small ν is contributing to the shrinkage effect in boosting methods, ν should not
be chosen too big as this could have negative effects on the prediction performance
(Hofner, 2008). Yet, we want to report an important detail for boosting quantile
regression, which could also motivate a slightly higher ν:

The negative gradients for minimizing the check-function by the gradient family
family=QuantReg() in mboost are defined for every m < mstop as:

u
[m]
i =


τ (yi − η[m−1]

τi) > 0

0 (yi − η[m−1]
τi) = 0

τ − 1 (yi − η[m−1]
τi) < 0.

80 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

Hence, modeling the median leads to a vector with entries −0.5 and 0.5. In com-
parison when using family=Laplace(), which focuses on minimizing the L1 loss,
which should also yield the median, the resulting vector consists of −1 and 1. This
eventually leads to the same fit, yet the Laplace() version will be approximately
twice as fast. This can be resolved by using ν = 0.2 instead of ν = 0.1 when apply-
ing family=QuantReg().

One therefore should keep in mind that for quantile regression we already fit rel-
atively small gradients, which also leads to small base learners b̂[m] or ĝ[m](·). A
slightly bigger ν than for normal L2 boosting therefore could decrease the comput-
ing time without having a too big effect on the predictive accuracy. This view is
also supported by our simulation results (Chapter 6).

As we have fixed ν, the selection of an adequate mstop therefore is of even higher
relevance. Early stopping for component-wise boosting implies variable selection
and model choice, and can be linked to successful penalized regression techniques
as the lasso (Tibshirani, 1996). As the algorithm will first pick the most influential
predictor variables in early iterations, stopping at the right time will lead to final
predictions that include the shrinked effects of the most important variables without
touching the irrelevant ones.

In mboost (Hothorn et al., 2009) selecting mstop is implemented by applying AIC
measures. Yet this method is not feasible for nonparametric quantile regression. For
our simulation study, we will select mstop based on a test data set. We then choose
the value which minimizes the empirical risk (regarding the check-function as loss)
on the the test data (compare to Fenske et al. (2009)). For real world problems
where no test data set is available, also cross validation can be used.

Another parameter to be specified is the offset. In mboost the default for quantile
regression is the median of the response. Fenske et al. (2009) discussed that for
quantiles with τ < 0.5 specifying the corresponding τ -quantile itself as offset leads
to the same results in the same amount of iteration steps. Yet for quantiles with
τ > 0.5 the same approach makes the algorithm much slower. That means that
more iteration are needed for the same fit. Therefore, it is reasonable to stick to the
median as default offset for every τ .

For linear quantile regression specifying ν, the offset and a procedure to select mstop

is already sufficient to start boosting. Yet for additive quantile regression with
nonlinear effects using P-splines as base learners additionally two hyper parameters
for the splines can be specified:

• The degrees of freedom of the B-spline basis (df): Bühlmann and Yu (2003)
argued that smooth base learners should have large bias but low variance.
This way, the stagewise adaption of the final prediction function will yield a

5.3. QUANTILE REGRESSION WITH BOOSTING 81

better prediction. They therefore recommend to use a small fixed value of df
for the base learners of every predictor variable. The default setting in mboost

is df= 4. In our analysis we will stick to this setting.

• The number of equidistant knots: As we are using penalized least squares the
impact of the amount of knots should be reduced. Schmid and Hothorn (2008)
showed that choosing 20 − 50 knots is enough to obtain a good boosting fit.
The default value in mboost is 20. In our analysis we will stick to this setting.

To sum up, one can use the default values of mboost for the offset and the hyper
parameters of the splines. For the step-length ν the default value of 0.1 can be used,
but we have noted that especially for linear quantile regression we could reduce the
computing time by increasing ν without achieving negative effects on the predictive
accuracy. The reason are the small negative gradients u resulting from the check-
function that by themselves reduce the step length.

The most important tuning parameter is mstop. We will focus on its impact on the
predictive accuracy in detail in Chapter 6.

82 CHAPTER 5. BOOSTING FOR QUANTILE REGRESSION

Chapter 6

Simulation Studies

After presenting the idea of constructing prediction intervals by applying quantile
regression and two different estimation schemes using ensemble methods, we can
now go over to test this tools concerning consistency and their practical usage. We
will do this in practice by analyzing the visitors to a new movie in Chapter 7, but
the more flexible approach in terms of comparing different data setups and tuning
parameters will be testing the coverage on simulated data sets.

There are two main questions that we want to explore:

1. How do prediction intervals estimated by quantile regression forests and by
boosting perform in different setups concerning the coverage and the correct
estimation of the conditional quantiles:

• Linear effects of one or multiple predictor variables including high-dimensional
situations with more predictors than observations (p > n)

• Additive potential nonlinear effects of one or multiple predictor variables

2. How do the two major tuning parameters of boosting affect the performance
of prediction intervals?

We will explore the first question in various simulation studies based on different
data setups. As we are interested in nonparametric prediction intervals, we will
focus on situations where their parametric counterparts are not available, as fun-
damental assumptions of standard linear regression as homoscedasticity or gaussian
distributed error terms are not fulfilled.

For the second question we will compare for selected setups different settings for the
step length ν and the number of boosting iterations mstop regarding the performance
of resulting intervals.

But how do we measure the performance of prediction intervals? We already in-
troduced in Chapter 2 two different interpretations for prediction intervals for new
observations:

83

84 CHAPTER 6. SIMULATION STUDIES

• The conditional interpretation: A prediction interval PI1−α(xnew) covers
new observations with this specific xnew with a probability of 1−α. To confirm
this coverage we need many observations with the same predictor variables. In
real world data sets this can be impossible. As an example imagine a clinical
study with genetic variables as predictors for a certain continuous response.
The only other observation with exactly the same predictors could be the
patient’s twin. Yet in simulation studies obtaining many observations of Y for
a given X = xnew is no problem. Then the conditional probability of the new
observation falling in the interval can be estimated:

For (y,xnew) with y = (y1, ..., yn)>:

P̂ (Y ∈ PI(xnew)|X = xnew) = Ê (Y ∈ PI(xnew)|X = xnew)

=
{y ∈ PI(xnew)}

n

• The heuristic sample interpretation: Prediction intervals PI1−α(xnew)
cover new observations with the probability of 1− α. The size of the interval
depends on the predicting variables xnew, giving information about the accu-
racy of the estimation. The 1− α level refers to a new sample: (1− α) · 100%
of the new observations in the sample will be covered by the corresponding
intervals. This sample coverage can be confirmed by a sample with different
realizations of X:

For a sample (y,x) with y = (y1, ..., yn)> and x = (x1, ..., xn)>:

P̂ (Y ∈ PI(x)) = Ê(Y ∈ PI(x))

=

∑n
i=1 I {yi ∈ PI(xi)}

n

Those two interpretations imply different ways how simulation studies should be
designed. Let us assume we already estimated a function that yields in some form
a correct specified prediction interval if we plug in the predictor variables of a new
observation xnew:

PI1−α(xnew) = [q̂α/2(xnew), q̂1−α/2(xnew)]

To confirm the sample coverage, we would just take this method and plug in every
x of a new sample. The result is one prediction interval for every new data point.
The observed response vector y of the sample can now be used to check if in fact
the correct amount of observations do fall inside the intervals. We will finally have
the proportion of points lying inside the intervals over the whole sample.

85

For the conditional interpretation, we would select a handful of x and compute the
corresponding intervals. Afterwards we simulate many observations for these specific
X = x in order to estimate the coverage of the interval at these points. Therefore
the result will be a conditional coverage for every single point.

To further illustrate the difference in the two approaches, we simulated another toy
example:

Yi = x>i β + (x>i α)εi where εi
iid∼ N(0, 1) for i = 1, ..., n

The components of xi are observed realizations of the random variable X ∼ U(0, 1).
We chose a heteroscedastic setup with three predictor variables: β = (1, 2, 3, 4)>, α =
(1, 2, 1, 1)>.

For both approaches we simulated training data consisting of 1500 data points. We
modeled the conditional 0.1-quantile and the conditional 0.9-quantile with linear
component-wise boosting on the training data.

For the sample coverage we drew a second data set consisting of 1000 data points
to evaluate the intervals. As explained above, we pluged in the 1000 x in PI(·)
resulting in 1000 intervals. For the conditional coverage we selected five predictor
vectors (x1, ...,x5) and estimated five prediction intervals. Afterwards we simulated
for every one of these predictor vectors 100 new realizations of Y |X = x. Results
are presented in Figure 6.1.

In the plot of the heuristic sample interpretation the multiple predictor variables
and the heteroscedasticity make the borders of the intervals appear not like lin-
ear functions but more like clouds. As the two quantiles were estimated separately,
the size of the intervals can differ very much, even for data points with very similar x.

For the conditional coverage we selected the five x also based on the sample ordered
by the size of the intervals. We took the 100th, 300th, 500th, 700th and 900th
observation of the ordered test data and simulated the additional realizations of
Y |X = x afterwards.

The presented example stands for one simulation step: As the conditional quantiles
for PI1−α(xnew) = [q̂α/2(xnew), q̂1−α/2(xnew)] were estimated based on the informa-
tion of a training data set, it is not sufficient to show that the method works by
evaluating prediction intervals based on this one data set. We will repeat the pre-
sented design for different training data and different variable setups to proof the
consistency of the proposed methods.

We pointed out in Chapter 2 that only the conditional interpretation is adequate
when it comes to prediction intervals conditional on predicting variables as we are

86 CHAPTER 6. SIMULATION STUDIES

Figure 6.1: Example of a simulation step to compare the two interpretations of
prediction intervals. Grey points represent data points in the test data, small dark
points the borders of prediction intervals estimated on the training data. The x-axis
is the index of the observation in the test data, the sample is ordered by the size of
the corresponding prediction interval. Left: Heuristic sample interpretation Right:
Conditional interpretation, horizontal lines represent the borders of the intervals

interested in. Nevertheless, Meinshausen (2006) used the heuristic sample interpre-
tation to confirm the coverage of prediction intervals based on random forests. We
call this interpretation heuristic as we clearly stated that this view is not incorrect,
as of course correct specified intervals should hold the coverage over a whole sample
with different x. Yet we also gave an example how looking only at the sample cov-
erage can be misleading, as also intervals can cover (1− α) · 100% of a new sample
that are completely out of range for many specific xnew.

For the real world data set used in Chapter 7 we will primarily analyze the sample
coverage, as the conditional approach is not feasible. Yet in the simulation studies
in this chapter we will first take a look at the adequate conditional coverage for
different setups (Section 6.1) before we will show that the proposed methods in fact
in most setups also work for the heuristic interpretation (Section 6.2).

6.1. CONDITIONAL COVERAGE 87

6.1 Conditional coverage

We already pointed out several times that the borders of prediction intervals are ran-
dom variables, as they depend on a sample. It is therefore not enough to estimate a
prediction interval on one training data set and proove its consistency on test data.
The resulting coverage still depends on the training data. In simulation studies we
therefore have to repeat the estimation process several times for different training
data sets. Roughly speaking we want to get rid of this dependence on the training
sample. As in probability theory we get rid of a nuisance parameter by integrat-
ing over it, in simulation practice we iterate over it and middle the result afterwards.

For the conditional interpretation we use following simulation design:

1. Test data:

• Choose five realizations xt of X to test the conditional coverage on for
t = 1, ..., 5

• Simulate 10000 realizations ytest of Y |X = xt for each t = 1, ..., 5

2. Simulation step:

• Simulate a training data set consisting of 1000 observations and estimate
the conditional quantiles

• Use the conditional quantiles to construct prediction intervals for Ynew:
on PI(x1), ...,PI(x5)

• Evaluate the prediction intervals on ytest by

Coveragext =
#{ytest,t ∈ PI(xt)}

10000
for t = 1, ...5

3. Iteration:

• Repeat the simulation step 100 times

The results of a simulation following this design will be a set of 500 prediction in-
tervals with 100 independent intervals for each of the five test realizations of X we
want to confirm the conditional coverage on. For every of this five points we have
10000 new test observations to evaluate the coverage. We therefore get 100 estima-
tions for the conditional coverage of PI(xnew) for five different xnew. Every coverage
still depends on a training sample, but by middling afterwards we get rid of this
dependence.

We will focus on nonparametric prediction intervals based on quantile regression
as presented in this thesis. As we want to compare the boosting and the random

88 CHAPTER 6. SIMULATION STUDIES

forest approach for quantile regression, we will test these two methods: Inside each
simulation step we will estimate the PI(x) two times, once with the package mboost

(Hothorn et al., 2009) with family=QuantReg() (Fenske et al., 2009) following the
boosting approach and once with the package quantregForest (Meinshausen, 2007)
following the random forest appoach.

For quantile regression forest we will choose the tuning parameters as proposed by
Meinshausen (2006): The main parameters are the number of trees ntree and the
number of candidate variables considered to split on in every tree mtry. We use an
ensemble of ntree = 1000 trees. In every tree, one third of the available predictor
variables are considered. The size of final nodes is restricted to contain more than
10 observations.

In Section 5.3.3 we already focused on the selection of tuning parameters for the
boosting approach. We will fix the step length ν and optimize mstop. For this pur-
pose we will use an additional data set to evaluate the fit for every boosting iteration
(compare to Fenske et al. (2009)) . In every simulation step another optimization
data set is drawn.

Simulation step for boosting:

• Simulate a training data set consisting of 1000 observations and estimate the
conditional quantiles by mboost with a high fixed mstop.

• Simulate another data set to optimize mstop consisting of 1000 observations
and evaluate the empirical risk (concerning the check-function) for the model
of every boosting iteration of the fit on the training data.

• Select the mstop that minimizes the empirical risk on the optimization data set.

Additionally to the coverage, we will also use two other measures of performance to
compare the two algorithms. We will focus on the goodness of fit of the conditional
quantiles in the test data, by estimating the bias and the mean squared error (MSE):

Bias(τ) =
1

5 · 100

5∑
t=1

100∑
j=1

(
q̂(j)
τ (xt)− qτ (xt)

)

MSE(τ) =
1

5 · 100

5∑
t=1

100∑
j=1

(
q̂(j)
τ (xt)− qτ (xt)

)2
Where q̂

(j)
τ (xt) denotes the estimated conditional quantile of Y |X = xt in simulation

step j.

6.1. CONDITIONAL COVERAGE 89

These two measures as defined here can be seen as monte carlo estimators of the
true bias and MSE of q̂τ (·) (Fenske et al., 2009). The monte carlo estimation in this
conditional setup is limited, as it refers only to five realizations of X. As it will
serve only to compare the two ensemble methods presented here, evaluated at the
same five points, this limitation can be accepted.

6.1.1 One predictor variable with linear effect

For the first data setups we focus on a single predictor variable with a linear effect
on the response:

Yi = β0 + β1xi + (α0 + α1xi)εi

The parameter α = (α1, α2)
> therefore controls the variance and the heteroscedas-

ticity of the error term. As we will focus on nonparametric intervals, we are espe-
cially interested in setups that pose problems to parametric prediction intervals and
therefore will only use setups with heteroscedastic error terms. In this section we
will present results of two setups:

• Gaussian setup: β = (1, 2)>,α = (2, 5)> and εi
iid∼ N(0, 1)

• Gamma setup: β = (1, 2)>,α = (2, 5)> and εi
iid∼ G(2, 5)

xi are observed realizations of a random variable X ∼ U(0, 1).

The task is to model one-sided nonparametric 80% prediction intervals for the re-
sponse Y , we will therefore focus on the estimation of the conditional 0.2-quantile
of Y |X = xnew:

PI0.8(xnew) = [q̂0.2(xnew),∞[

To test the resulting prediction intervals regarding the conditional interpretation,
we will focus on a grid of five realizations of X:

x1 = 0.1, x2 = 0.25, x3 = 0.5, x4 = 0.75, x5 = 0.9.

For the boosting approach we fixed the step length ν = 0.5 and optimized mstop

on an optimization data set separately in every simulation step. As the maximum
mstop we chose a priori 2000 iterations for this setup. Based on the optimization
data the algorithm stopped on average after 935 iterations for the gaussian setup
and after 1610 iterations for the gamma-distributed error term. We also looked at
the models without early stopping which gave nearly exactly the same results. In
this specific setup with only one predictor variable early stopping does not seems to
be of very high relevance.

90 CHAPTER 6. SIMULATION STUDIES

Figure 6.2: Results for the gaussian setup (one predictor variable with linear effect)

Additionally, we also analyzed results on the same data of the gaussian setup with
fixed ν = 0.1 and a maximum mstop of 10000 iterations, in order to investigate
the relationship between the two main tuning parameters of the boosting approach.
Results concerning the conditional coverage are quasi identical, the only difference
is that the mean optimized mstop turns out to be 4403. This is nearly exact five
times as much as for the ν = 0.1 case, confirming the linear relationship between
step length and number of iterations.

Results for the different intervals are presented in Table 6.1. Both approaches give
reasonable results concerning the mean conditional coverage in the test grid. Yet the
boosting results are clearly closer to 0.8 in every single point of the test grid. Also

6.1. CONDITIONAL COVERAGE 91

Figure 6.3: Results for the Gamma setup (one predictor variable with linear effect)

concerning the fit of the conditional quantile boosting performed better. MSE as
well as the Bias show that in this case linear quantile regression by boosting is supe-
rior to quantile regression forests. A reason for that surely can be found in the data
setup. Random forests are an ensemble method based on trees. They gain accuracy
by forcing the algorithm not to choose in every ensemble the same variables to split
on, by always leaving some out. Random forest therefore should perform better for
multiple predictor variables and possible interactions. The boosting approach for
linear quantile regression focuses on estimating q̂τ (x) = β̂0τ + β̂1τ · x, which in this
setup is the superior estimation scheme.

For graphical illustration we will focus on 4 graphics for each setups (Figure 6.2 and

92 CHAPTER 6. SIMULATION STUDIES

Gaussian setup Gamma setup
glmboost quantregForest glmboost quantregForest

Coveragex1
0.7978 0.7740 0.8022 0.7748

Coveragex2
0.8039 0.7946 0.8006 0.7700

Coveragex3
0.7956 0.7770 0.7994 0.7591

Coveragex4
0.7978 0.7679 0.8051 0.7798

Coveragex5
0.8003 0.7563 0.7986 0.7848

Bias(τ = 0.2) 0.2308 1.1397 -0.0208 0.2167
MSE(τ = 0.2) 0.0919 2.5739 0.0484 1.9866

Table 6.1: Results of the simulation studies for both setups, comparing glmboost()

and quantregForest(). In every row the value of the better performing algorithm
for each setup is printed bold.

Figure 6.3.). They compare the conditional coverage of the intervals computed by
both algorithm and analyze the goodness of the estimations for βτ in the linear-
boosting case. We will use these graphics for nearly every setup in the this entire
Section 6.1:

a) For every of the five test points of the X-grid the 10000 observations of
Y |X = xt are plotted as points. Horizontal lines represent the conditional
quantiles estimated by glmmboost() in the different simulation steps. The
longer dashed line is the true conditional quantile.

b) The same as a) but with quantregForest() used to compute the condi-
tional quantiles

c) Boxplots of the conditional coverage in the five points of the test grid
for 100 simulation steps. The grey-colored boxplots represent the results of
the boosting approach whereas the white figures stand for the approach us-
ing quantile regression forests. The dotted line is the proposed coverage the
intervals should hold.

d) Boxplots of the estimated coefficients by the boosting approach in the 100
simulation steps. Dashed lines represent the true βτ

In this setup, we can also observe by looking at Figure 6.2 and Figure 6.3. why
the performance of glmboost is better. The estimated conditional quantiles are for
both setups much closer to the true quantile than with the random forest approach,
which in some simulation steps delivers quite poorly estimated quantiles which also
leads to a too low or too high coverage. One can notice that in some simulation
steps the conditional coverage of selected points falls beyond 40% and sometimes is
close to 100%. For the boosting approach the conditional coverage does not differ
that much from the proposed 80%. This is a result of the very precise estimation of
βτ as can be seen in sector d) of the figures.

6.1. CONDITIONAL COVERAGE 93

6.1.2 Multiple predictor variables with linear effect

For setups with multiple predictors that have a linear effect on the response variable
we generate data following this model, similar to the one in the previous section:

Yi = x>i β + (x>i α)εi

With xi = (1, x1i, x2i, x3i)
> and every component independently drawn as a realiza-

tion of X ∼ U(0, 1).

We will again focus on situations including heteroscedasticity in two different setups:

• Gaussian setup: β = (1, 2, 3, 4)>,α = (1, 1, 2, 1)> and εi
iid∼ N(0, 1)

• Gamma setup: β = (1, 2, 3, 4)>,α = (1, 1, 2, 1)> and εi
iid∼ G(2, 5)

To test the conditional coverage we selected five possible realizations of X:

x1 = (1, 0.1, 0.1, 0.1)> x2 = (1, 0.25, 0.25, 0.25)>

x3 = (1, 0.5, 0.5, 0.5)> x4 = (1, 0.75, 0.75, 0.75)>

x5 = (1, 0.9, 0.9, 0.9)>

In this setup we will focus on constructing one-sided as well as two-sided 80% pre-
diction intervals:

• One-sided PI0.8(xnew) = [q̂0.2(xnew),∞[

• Two-sided PI0.8(xnew) = [q̂0.1(xnew), q̂0.9(xnew)]

For the boosting approach we fixed ν = 0.5 and raised the maximum mstop to 4000
iterations for the one-sided intervals. For estimating q̂0.2(xnew) the optimized mstop

resulted to be 2989 iterations for the gaussian approach and 3196 for the gamma-
setup. For the two-sided intervals the maximum number of iterations was set to
be 10000. For q̂0.1(xnew) the optimal mstop was 5211 in the gamma setup (3257 in
the gaussian) while for q̂0.9(xnew) 8015 iterations were necessary in the gamma case
(4062 for the gaussian).

Results for one-sided intervals are presented in Table 6.2. As in the previous sec-
tion, the boosting approach in this situation leads to much better results. The
conditional coverage for both algorithm and both setups is good in the center of
the X-grid (x2,x3,x4). For x1 and x5 boosting still yields good results, while
quantregForest seems to overestimate the quantiles for small x and underestimate
it for big x in the Gamma setup.

94 CHAPTER 6. SIMULATION STUDIES

Gaussian setup Gamma setup
glmboost quantregForest glmboost quantregForest

One-sided
Coveragex1

0.7864 0.7317 0.7919 0.6310
Coveragex2

0.8011 0.7808 0.7963 0.7810
Coveragex3

0.7977 0.7822 0.7982 0.7976
Coveragex4

0.8022 0.7834 0.8055 0.8152
Coveragex5

0.8051 0.7990 0.8001 0.8561
Bias(τ = 0.2) −0.0152 0.1300 −0.0063 -0.0892
MSE(τ = 0.2) 0.0773 0.4824 0.0490 0.7115

Two-sided
Coveragex1

0.7828 0.8207 0.7890 0.7637
Coveragex2

0.7930 0.7945 0.7967 0.8089
Coveragex3

0.7978 0.7669 0.8044 0.7986
Coveragex4

0.8002 0.7408 0.8021 0.7839
Coveragex5

0.8014 0.7213 0.7973 0.7675
Bias(τ = 0.1) −0.0181 0.1835 −0.0070 -0.1818
MSE(τ = 0.1) 0.1147 0.6382 0.0430 0.5956
Bias(τ = 0.9) −0.0101 -0.2028 0.0164 -0.0493
MSE(τ = 0.9) 0.1118 1.3251 0.2660 3.6071

Table 6.2: Results of the simulation studies concerning one-sided and two sided 80%
prediction intervals for both setups, comparing glmboost() and quantregForest().
In every row the value of the better performing algorithm for each setup is printed
bold.

This view is supported by Figure 6.4, illustrating the results for one sided intervals
in the Gamma setup with the same graphics as in the previous section. We omitted
plotting also the figures for the gaussian setup as the results are similar. We can
clearly see here the problems the random forest approach has to predict observa-
tions with more extreme values of X, as x1 and x5. Even though the estimation
of β̂τ seems to be excellent by the boosting approach, we can also observe that the
coverage for the outer values of the X-grid has a slightly broader range, and in some
simulation steps yielded poorer results than in the one predictor variable setups in
the previous section (Figure 6.3).

Results of the two sided intervals are presented in the lower part of Table 6.2. Of
course, as two sided intervals imply estimation of two conditional quantiles, the re-
sults concerning the coverage get less accurate. Once again the boosting approach
is clearly superiour. Interestingly the random forests seem to have more problems
with the gaussian setup than with the setup of the heavy skewed gamma error term.

6.1. CONDITIONAL COVERAGE 95

Figure 6.4: Results for one-sided intervals in the Gamma setup (multiple predictor
variables with linear effect)

In Figure 6.5 it gets clear that both algorithms do have more problems with the
upper boundary of the intervals, i.e. the 0.9-quantile than with the lower boundary.
The reason for this is probably the heavy right-skewed Gamma distribution for the
error term, which results in many observations lying near the lower boundary than
near the upper. As for the one-sided intervals we can note a tendency for the random
forest approach to overestimate quantiles on the smaller (left) side of the X grid
and underestimate them on the upper (right) side.

96 CHAPTER 6. SIMULATION STUDIES

Figure 6.5: Results for two-sided intervals in the Gamma setup (multiple predictor
variables with linear effect)

6.1.3 Multiple predictor variables with linear effect, includ-
ing variable selection

As a next step we will focus on one of the main features of the component-wise
boosting approach, which is the included data-driven variable selection. As the
algorithm in every iteration only updates the coefficient that achives the steepest
decent concerning the loss function, variables with minor or no effect on the response
should be left out.

Data is generated following the already presented model including heteroscedasticity:

6.1. CONDITIONAL COVERAGE 97

Yi = x>i β + (x>i α)εi

With xi = (1, x1i, ..., x20i)
> and every component independently drawn as a realiza-

tion of X ∼ U(0, 1).

To investigate the variable selection effect we will use following setup including 20
predictor variables of which 10 have no effect on the response:

• β = (0,−5,−4,−3, ..., 3, 4, 5,

10︷ ︸︸ ︷
0, ..., 0)>, α = (1,

10︷ ︸︸ ︷
0.5, ..., 0.5,

10︷ ︸︸ ︷
0, ...0)>

εi
iid∼ N(0, 1) with n = 1000 training observations

It is important that the α vector is also 0 for the 10 predictor variables that should
have no effect on the response. As for the normal distributed error term

βτ = β +αΦ−1(τ)

the resulting component of βτ would not be 0 if the corresponding component of α
is not.

As in the foregoing setups we consider five possible realizations of X to test the
conditional coverage. We try to cover the whole range of X by selecting:

x1 = (1,

20︷ ︸︸ ︷
0.1, ..., 0.1)> x2 = (1, 0.25, ..., 0.25)>

x3 = (1, 0.5, ..., 0.5)> x4 = (1, 0.75, ..., 0.75)>

x5 = (1, 0.9, ..., 0.9)>

glmboost quantregForest

mstop opt. mstop = 15000
Coveragex1

0.7252 0.7252 0.9759
Coveragex2

0.7772 0.7772 0.8926
Coveragex3

0.7959 0.7959 0.7979
Coveragex4

0.8092 0.8092 0.7573
Coveragex5

0.8150 0.8150 0.7663
Bias(τ = 0.2) 0.0064 0.0062 -0.3438
MSE(τ = 0.2) 0.2320 0.2321 1.6138

Table 6.3: Results for the variable selection setup. Results of the two boosting
approaches (once with early stopping and once without) do differ mostly only after
the fourth digit. The values of the best performing algorithm in each row is printed
bold.

98 CHAPTER 6. SIMULATION STUDIES

For the boosting approach we fixed the step length at ν = 0.5 and set the maximum
mstop to 15000. In the simulation the mean optimized mstop was 6609. We compared
results for models with the maximum mstop with the ones with early stopping and
found nearly no difference. Hence, overfitting at least does not seem to kick in very
fast in this setup.

Results for one-sided 80% prediction intervals are presented in Table 6.3. As the
two boosting approaches mostly only differ after the fourth digit, there is hardly
any difference between stopping after 3000 to 10000 iterations and directly taking
15000 itereations as a fixed mstop.

Compared to quantregForest() boosting by glmboost() also in this setup is clearly
better performing. The prediction intervals of both estimation schemes seem to have
problems to hold the conditional coverage for outer values of the X grid as x1 and
x5. But as boosting seems to overestimate the conditional 0.2-quantile for x1, quan-
tile regression forests underestimates it. The result is a too high coverage for random
forests as boosting fails to reach the proposed 0.80 level at this point.

This can also be observed in Figure 6.6 a) and Figure 6.6 b). The resulting intervals
from quantregForest fail to adopt to the different values of x. They yield more
or less the same conditional quantile for x1 to x5, although the true quantiles differ
significantly. If we look only at the conditional coverage at x3, which is better than
for the boosting approach, we did not notice that.

Finally we look at the estimated coefficients from the boosting approach (Figure 6.6
d)): The variable selection seems to work, as the components β11 – β20 are mostly
estimated as 0. Therefore the corresponding predictor variables are correctly identi-
fied to have no effect on the response. The estimations for the non-zero coefficients
seems to be as good as in previous settings.

The only coefficient that apparently makes some trouble is the intercept. As the
true β0 is 0, and α0 is 1 due to the gaussian error term the correct β0τ is Φ−1(τ).
For τ = 0.2 this yields −0.84162. Yet the median of resulting estimations is −0.259.
This is no dramatic bias, yet compared to the well estimated other coefficients this
result makes suspicious. In fact we have seen in different setups with multiple pre-
dictor variables and high variance of the response similar problems concerning the
intercept.

It is possible that the relatively poor results (0.7252) of the boosting approach
concerning the conditional coverage for x1 can be partly explained by this bias.
As for x1 = (1, 0.1, ..., 0.1)> the other coefficients are less important on the es-
timation of the conditional quantile compared to x with bigger components (e.g.
x3 = (1, 0.5, ..., 0.5)>), a small bias in the estimation of the intercept has a stronger
effect for x1 than for x3.

6.1. CONDITIONAL COVERAGE 99

Figure 6.6: Results for the variable-selection setup (multiple predictor variables with
linear effect)

Of course we do not want to negate the overall very accurate estimation of coeffi-
cients by glmboost() for quantile regression, by pointing out these seemingly minor
difficulties for β0. But it is simply the discrepancy between the accuracy of the
estimations for common coefficients and the intercept that makes it unlikely to be
an artifact of no relevance. Another illustration of this intercept problem can be
observed in the high dimensional setups of the following section.

100 CHAPTER 6. SIMULATION STUDIES

6.1.4 High dimensional data with linear effects, including
p > n

Before focusing on nonlinear effects we want to illustrate another advantage of non-
parametric prediction intervals. Ensemble methods as random forests and boosting
can cope with high dimensional data setups, including situations with more predic-
tive variables than observations (p > n). We will focus on one data setup with two
different sample sizes.

Yi = x>i β + (x>i α)εi εi
iid∼ N(0, 1)

With xi = (1, x1i, ..., x200i)
> and every component independently drawn as a real-

ization of X ∼ U(0, 1).

• n = 150, β = (0,−10,−9,−8, ..., 8, 9, 10,

180︷ ︸︸ ︷
0, ..., 0)>, α = (1,

20︷ ︸︸ ︷
2, ..., 2,

180︷ ︸︸ ︷
0, ..., 0)>

• n = 1000, β = (0,−10,−9,−8, ..., 8, 9, 10, 0, ..., 0)>, α = (1, 2, ..., 2, 0, ..., 0)>

Hence we use two times the same data setup, just with different sample sizes. Once
the sample size is reduced to just 150 observations in the training data to construct
a situation with more predictor variables than observations. In a second step we
use n = 1000 as in the other setups so far to investigate the effect of an increased
sample for high dimensional data.

n=150 n = 1000
glmboost quantregForest glmboost quantregForest

Coveragex1
0.6488 0.9991 0.9149 0.9999

Coveragex2
0.7071 0.9256 0.8322 0.9213

Coveragex3
0.7212 0.7463 0.7842 0.7531

Coveragex4
0.7294 0.7117 0.7689 0.7125

Coveragex5
0.7329 0.7180 0.7564 0.7133

Bias(τ = 0.2) 5.1670 -0.1446 1.0350 -0.0385
MSE(τ = 0.2) 39.5668 109.3197 12.0492 97.5515

Table 6.4: Results for the high dimensional data setup with two different sample
sizes. The values of the best performing algorithm in each row is printed bold for
each sample size separately.

To test the conditional coverage we selected five realizations of X:

x1 = (1,

200︷ ︸︸ ︷
0.1, ..., 0.1)> x2 = (1, 0.25, ..., 0.25)>

x3 = (1, 0.5, ..., 0.5)> x4 = (1, 0.75, ..., 0.75)>

x5 = (1, 0.9, ..., 0.9)>

6.1. CONDITIONAL COVERAGE 101

As in previous cases we modeled nonparametric one-sided 80% intervals by esti-
mating the conditional 0.2-quantile q̂0.2(x). For the boosting approach we selected
following tuning parameters:

• n = 150: Maximum mstop = 15000, ν = 0.5. The mean optimum mstop selected
was 6140

• n = 1000: Maximum mstop = 35000, ν = 0.5. The mean optimum mstop

selected was 24630

The size of the optimization data set to select mstop was 1000 in both cases. We also
analyzed the models without early stopping, but did not find any relevant differ-
ences. We conclude that as in previous linear settings, overfitting apparently does
not kick in very fast as it somehow does not downgrade the accuracy of the estima-
tion to set a moderate but fixed mstop.

Looking at the results from the n = 150 case in Table 6.4 for the first time in this
simulation analysis, we can only report a very unsatisfying accuracy. The condi-
tional coverage for none of the two algorithm lies in a reasonable range around the
proposed 80%. The prediction intervals computed by boosting never cover more
than around 73% of the test observations. The conditional quantile is always over-
estimated, as can be seen in Figure 6.7 a).

But also the random forest approach fails to estimate intervals that hold the cov-
erage. As in parts already observed in Section 6.1.3, the quantiles delivered by
quantregForest do not change much for the different x, the algorithm tends to
compute intervals that apparently do not depend much on the predictor variables.
As a result, for x1 and x2 the coverage is much to high, as the corresponding con-
ditional quantiles are underestimated. The opposite happens for the other x, where
the quantiles are overestimated and therefore the intervals cover less than 80% of
the test data.

The reason for the unsatisfying results for the boosting approach can be clearly
found in the imprecise estimation of the coefficients as can be seen in Figure 6.7 d).
For the high dimensional setups we omitted plotting the results for every component
of β̂τ and focused on components β̂0 − β̂30 in order to assure a clear appearance.
The results of the left out β̂31 − β̂200 were similar to the ones for β̂21 − β̂30. We
can clearly see a tendency to estimate the coefficients of predictor variables with no
effect as 0, but the results are much less accurate and homogeneous than in setups
in Section 6.1.3.

For the larger sample size of 1000 observations, results of the boosting approach do
improve considerably (Table 6.4). The conditional coverage is still too high at the
lower end of the X grid (x1) and too low for the upper end x5. Yet for the other x
the results are reasonable, taking into account the complexity of the data situation.

102 CHAPTER 6. SIMULATION STUDIES

Figure 6.7: Results for the high dimensional data setup with n = 150 (p > n). In
sector d) of the figure we omitted to include the boxplots of β̂31–β̂200 in order to
reduce the graphical complexity

In the results of the random forest approach no relevant improvement can be seen
for the higher sample size. The algorithm still fails to deliver a satisfying coverage
for any x but x3. As can be seen in Figure 6.8, the estimated conditional quan-
tiles seems not to depend on x. For x3, which represents the expected mean of X
in every component, this is not that dramatic as for more extreme observations of X.

The conditional quantiles resulting from the boosting approach suffer in some parts
from the same problem, as also the values of q̂0.2(x) are too small for x1 and too
high for x5. But this effect is far less dramatic than for the random forest approach.

6.1. CONDITIONAL COVERAGE 103

Figure 6.8: Results for the high dimensional data setup with n = 1000. In sector d)
of the figure we omitted to include the boxplots of β̂31–β̂200 in order to reduce the
graphical complexity.

The estimation of the coefficients (Figure 6.8 d)) improved significantly towards the
p > n case.

Yet for one component we do observe a remarkable bias: The intercept as already in
Section 6.1.3 seems to cause problems for component-wise boosting. Its estimation
nearly in every simulation step goes wrong, this happened for no other component.
The correct intercept should be Φ−1(0.2) = −0.8416, yet in the mean it is estimated
as −4.0530.

104 CHAPTER 6. SIMULATION STUDIES

This intercept-problem cannot be resolved by selecting the feature center=TRUE

inside the glmboost() function which forces the algorithm to mean center the pre-
dictor variables before fitting. We have not found a solution to this problem, yet we
discovered that it does not appear in the same setup with the components of x inde-
pendently drawn from X ∼ U(−0.5, 0.5) instead of X ∼ U(0, 1). At first glance this
seems to be the same as mean centering the predictor variables. Yet the realizations
of X also enter in (x>i α)εi and therefore have an effect on the heteroscedasticity of
the error term and the variance of the response. Therefore we suspect those two
factors to be of relevance in the challenge to explain when and why this problem
appears. This view is supported by the fact that in earlier less complex setups with
smaller dimensionality the estimation of the intercept was as accurate as for the
other components (Section 6.1.1 and 6.1.2).

6.1.5 One predictor variable with nonlinear effect

Until now, we focused on testing the component-wise boosting algorithm for lin-
ear quantile regression (Section 5.3.1) available with the function glmboost() from
package mboost (Hothorn et al., 2009) and compared it to results from the quan-
tile regression forest approach as provided by the package quantregForest (Mein-
shausen, 2007).

We now pass on to the boosting algorithm for additive quantile regression with possi-
ble nonlinear effects (Section 5.3.2) available with the mboost function gamboost(),
with the gradient family QuantReg() specified. We therefore simulate data with a
predictor variable that has a nonlinear effect on the response:

Yi = β0 + f1(xi) + (α0 + g1(xi)) εi where εi
iid∼ N(0, 1)

xi are observed realizations of random variable X ∼ U(0, 3).

For simulating data with a nonlinear effect of one predictor variable on the response
including heteroscedasticity we used the same two setups as Fenske et al. (2009):

• ‘sin’ setup: β0 = 2, α0 = 0.5, f1(xi) = 3 sin(2
3
xi), g1(xi) = 1.5(xi − 1.5)2

• ‘log’ setup: β0 = 2, α0 = 0.7, f1(xi) = 1.5 log(xi), g1(xi) = 1
2
xi

The sample size for both setups was fixed as n = 1000. We constructed one-sided
and two-sided 80% prediction intervals. As realizations of X to test the conditional
coverage on, we selected x1 = 0.3, x2 = 1.1, x3 = 1.5, x4 = 1.9 and x5 = 2.7.

For the boosting approach we again selected the optimum mstop based on an opti-
mization data set, while the step-length ν was fixed. In order to investigate again
the relationship between the two parameters, we carried out the simulations for the

6.1. CONDITIONAL COVERAGE 105

one-sided intervals once with a fixed ν = 0.5 and maximum mstop = 1000 and once
with a fixed ν = 0.5 and a maximum mstop = 5000 for the ‘sin’ setup. The resulting
quantiles where nearly exactly the same, only the optimal mstop in the mean raised
from 162 (ν = 0.5) to 763 (ν = 0.1). This supports the view of the two main tun-
ing parameters trading of each other with mstop being inversely proportional to ν
(Schmid and Hothorn, 2008). As the results did not differ concerning the conditional
coverage we sticked to the faster version with the step-length raised to 0.5.

‘sin’ setup ‘log’ setup
gamboost quantregForest gamboost quantregForest

One-sided
Coveragex1

0.7808 0.7780 0.7882 0.7561
Coveragex2

0.8044 0.7446 0.8020 0.7699
Coveragex3

0.7879 0.7586 0.7951 0.7557
Coveragex4

0.7938 0.7784 0.7993 0.7839
Coveragex5

0.7937 0.7835 0.8000 0.7783
Bias(τ = 0.2) 0.0480 0.0332 0.0030 0.0830
MSE(τ = 0.2) 0.0307 0.5613 0.0335 0.2674

Two-sided
Coveragex1

0.7838 0.7173 0.7871 0.7098
Coveragex2

0.7964 0.7008 0.7948 0.7257
Coveragex3

0.7832 0.7426 0.7973 0.7409
Coveragex4

0.7921 0.7663 0.7973 0.7409
Coveragex5

0.7807 0.7382 0.7958 0.7545
Bias(τ = 0.1) 0.0662 0.0897 −0.0021 0.0966
MSE(τ = 0.1) 0.0450 0.7180 0.0421 0.3852
Bias(τ = 0.9) −0.0371 -0.1181 −0.0147 -0.1209
MSE(τ = 0.0) 0.0396 0.6663 0.0375 0.3020

Table 6.5: Results for the ‘sin’ as for the ‘log’ setups.

Results for the conditional coverage of the resulting intervals are presented in Ta-
ble 6.5. For both setups both algorithm deliver reasonable results for the one-sides
intervals, with the boosting intervals clearly being closer to the correct coverage of
80% of the test data. For the two-sided intervals only the boosting intervals succeed
in yielding intervals that are at least very close to cover 80% of the test data given
the specific values of X = x.

The graphical illustrations of the resulting intervals and their coverage in Figure 6.8
and Figure 6.9 was changed in sector d) compared to the linear setups, as this times
we do not have any coefficients that were estimated. Instead we present for the two
setups a simple scatter-plot to show the non-linearity of the effect of X on Y . We

106 CHAPTER 6. SIMULATION STUDIES

only plotted results for the two-sided intervals.

Figure 6.9: Results for the two-sided intervals in the ‘sin’ setup. As in this nonlinear
setup no coefficients are estimated, section d) shows a scatterplot of a training data
set to illustrate the shape of the effect.

The results of the ‘sin’ setup in Figure 6.9 show that the conditional quantiles are
estimated quite precisely by gamboost() in almost every single simulation step. As
a result also the conditional coverage does not differ much from the proposed 80%.
The same does not hold true for the intervals provided by quantile regression forest.
The estimation of the conditional quantiles especially for outer values of the X-grid
is not very exact, results differ a lot in every simulation step.

6.1. CONDITIONAL COVERAGE 107

Figure 6.10: Results for the two-sided intervals in the ‘log’ setup. As for the ‘sin’
setup, section d) shows a scatterplot of a training data set to illustrate the shape of
the effect.

For the ‘log’ setup results are illustrated in Figure 6.9. As for the ‘sin’ setup,
results of gamboost() are highly accurate. The conditional quantiles are estimated
correctly and therefore also the conditional coverage in every single point is very close
to 80%. The results from quantregForest() are much less satisfying. Although the
conditional quantiles are not estimated completely out of range, results from single
estimation steps differ vastly. As a result the resulting intervals in some steps fail
to hold a at least reasonable coverage, as sometimes the intervals fail to cover more
than 50% of the test points.

108 CHAPTER 6. SIMULATION STUDIES

6.1.6 Multiple predictor variables with additive linear and
nonlinear effects

As a final setup for conditional coverage we step up further the complexity of the
data situation by combining predictive variables with linear and nonlinear effects
with variables without any effect (compare to Fenske et al. (2009)):

Yi = 2 + 3 sin(
2

3
xi1) +

3

2
log(xi2) + 2xi3 − 2xi4 + 0 · (xi5 + xi6)

+
(
0.7 + 1.5(xi1 − 1.5)2 + 0.5(xi2 + xi3)

)
εi

With εi
iid∼ N(0, 1) and every component of xi = (xi1, ..., xi6)

> being an observed
realization of X ∼ U(0, 3).

To test the conditional coverage of the resulting intervals we selected five data points,
covering the X grid:

x1 = (

6︷ ︸︸ ︷
0.3, ..., 0.3)> x2 = (1.1, ..., 1.1)>

x3 = (1.5, ..., 1.5)> x4 = (1.9, ..., 1.9)>

x5 = (2.7, ..., 2.7)>

In this setup we constructed one-sided 80% prediction intervals by modeling the
conditional 0.2-quantiles.

For the boosting approach following the results of previous setups we set the step
length ν = 0.5 and optimized mstop. In this setup we want to further investigate
when finally overfitting will kick in and what effect it has on the conditional cover-
age of our intervals. We therefore carried out the simulation two times, once with a
maximum mstop of 2000 iterations and once with 10000.

For both settings we also optimized the parameter, which as expected yielded the
same results. The mean mstop selected were 617 iterations. Hence, a maximum
of 2000 iterations was absolutely enough for this setup. Yet the models with
mstop = 10000 gives us the opportunity to analyze if and how overfitting affects
the results of the prediction intervals.

Overfitting means that the estimation focuses too much on the training data, and
therefore the trade-off between bias and variance is shifted towards a very low bias
resulting in a high variance. Small changes in the data can affect the estimation
strongly which reduces the predictive validity of the resulting models. Following
the component-wise boosting approach, stopping the algorithm early enough should
avoid overfitting. In our task to fit prediction intervals to prevent overfitting is
crucial, as we are especially interested in using the modeled intervals not for the

6.1. CONDITIONAL COVERAGE 109

description of the training data, but for predictions of new observations.

Results for both estimation schemes and the different selections of mstop are pre-
sented in Table 6.6. Results for the optimized mstop are illustrated in Figure 6.11.

Figure 6.11: Results for one-sided 80% prediction intervals: Multiple predictor vari-
ables with additive linear and nonlinear effects. The illustrated results for the boost-
ing algorithm refer to the models with optimized mstop

The boosting approach delivers very accurate results. Those are best for intervals
with optimized mstop, for higher iterations the coverage slowly gets lower, yet with
the fixed mstop = 10000 still showing reasonable results. We can therefore conclude

110 CHAPTER 6. SIMULATION STUDIES

gamboost quantregForest

mstop opt. mstop = 2000 mstop = 10000
Coveragex1

0.8000 0.8019 0.7907 0.7082
Coveragex2

0.7978 0.7941 0.7897 0.8355
Coveragex3

0.7895 0.7856 0.7864 0.8619
Coveragex4

0.8034 0.7880 0.7848 0.8570
Coveragex5

0.8072 0.7990 0.7961 0.7796
Bias(τ = 0.2) -0.0374 −0.0003 0.0236 -0.0877
MSE(τ = 0.2) 0.2471 0.4983 0.6913 0.9176

Table 6.6: Results comparing 80% one-sided prediction intervals computed by boost-
ing with different mstop and quantile regression forests.

that our results confirm that early stopping improves the accuracy of predictions.

Yet it gets also clear that we deal with a rather slow overfitting behavior (Bühlmann
and Hothorn, 2007). Optimizing the tuning parameter on an additional data frame
in every simulation step yielded 617 iterations. If we keep on iterating the boosting
algorithm more than 15 times as long as proposed, we still have very reasonable
results. The intervals estimated with a fixed mstop = 10000 still even leave behind
prediction intervals estimated quantile regression forests, concerning their condi-
tional coverage.

6.2 Sample coverage

As we have already extensively analyzed the conditional coverage for nonparametric
prediction intervals based on quantile regression estimated by boosting and quantile
regression forests, we will now pass on to show some selected setups to investigate
the sample coverage by using the heuristic sample interpretation.

This interpretation follows the introduction of quantile regression forests by Mein-
shausen (2006), who noted that his algorithm could be used to compute prediction
intervals and confirmed this idea in some machine-learning benchmark data sets.
He constructed intervals PI(1−α)(x) around each observation of the data sets by us-
ing cross-validation and then checked if more or less (1− α) · 100% of the observed
response values in fact lie inside the proposed borders given by conditional quantiles.

He therefore used the heuristic sample interpretation, by assuming that the correct
specified interval should cover (1−α) · 100% observations of a new sample. We call
this view heuristic, as it in fact is not incorrect and can be very helpful in practical
situations. We will also use it in the real world example in Chapter 7.

6.2. SAMPLE COVERAGE 111

It is true that we can expect from a correct specified PI(1−α)(x) also to cover (1 −
α) · 100% of a new sample of Y |X = x.

E (Y ∈ PI(xnew)|X = xnew) = 1− α ∀xnew

⇒ E(Y ∈ PI(x)) = 1− α

Yet we also showed that this sample coverage is not enough to confirm that these
intervals work for any realization of X by giving an example of an interval that
in fact holds the sample coverage, but is not correctly specified for nearly every
realization of X: The prediction intervals based on unconditional quantiles Qτ (y) of
a training data will cover in many cases the correct proportion of observations in a
test data, while nearly never fulfilling the conditional interpretation. Therefore we
have shown that the backward conclusion is not possible:

E(Y ∈ PI(xnew)) = 1− α
6⇒ E (Y ∈ PI(xnew)|X = xnew) = 1− α ∀xnew

We will focus on the same data situations as in Section 6.1, yet the simulation
design for confirming the sample coverage is quite different from the one to confirm
the conditional coverage, as it has been used in the earlier setups:

1. Training data:

• Simulate 1000 realizations of X and Y |X = x: (y∗j ,x
∗
j) for j = 1, ..., 1000

• Estimate the conditional quantiles Q̂τ (Y |X = x∗) = q̂τ (x
∗) on the train-

ing data

2. Test data:

• Simulate a test data set consisting of 1000 observations (yi,xi) for i =
1, ..., 1000

• Use the conditional quantiles from the training data to construct predic-
tion intervals for every component of y by plugging in the observations
of the predictor variables: PI(xi) for i = 1, ..., 1000

• Evaluate the prediction intervals on y by

Sample-coverage =

∑1000
i=1 I{yi ∈ PI(xi)}

1000

3. Iteration:

• Repeat steps 1. and 2. 100 times

112 CHAPTER 6. SIMULATION STUDIES

Unlike in the conditional case, results therefore will be just one number - the sample
coverage in every simulation step.

We will analyze different linear and nonlinear setups already introduced in Section
6.1. In this section we will not further concentrate on the impact of tuning pa-
rameters as we will always choose the same methods as already presented in the
conditional case. For the boosting approach we therefore will simulate in every sim-
ulation step a third data set to optimize mstop on.

We will focus on two-sided 80% prediction intervals and will therefore estimate the
conditional 0.1-quantile as well as the 0.9-quantile:

PI(xtest) = [q̂0.1(xtest), q̂0.9(xtest)]

As in the conditional case, in every simulation step we will estimate intervals for
the corresponding test data set once with the component-wise boosting approach
and once by using quantile regression forests. Additionally we will also estimate
‘naive’ prediction intervals that do not take into account the information of the
prediction variables, to further illustrate the reason why we prefer the conditional
interpretation:

‘naive’ PI =
[
Q̂0.1(y

∗), Q̂0.9(y
∗)
]

These ‘naive’ quantile intervals just use the unconditional empirical quantiles of the
response in the training data set.

6.2.1 Linear setups

We will present results of some selected linear setups that were already introduced
in Section 6.1. The underlying model for every setup includes heteroscedasticity and
a gaussian distributed error term:

Yi = x>i β + (x>i α)εi with εi
iid∼ N(0, 1)

The components of xi are observed realizations of X ∼ U(0, 1).

We will analyze results of following three data situations:

• Setup 1 One predictor variable:
β = (1, 2)>, α = (2, 5)>

• Setup 2 Multiple predictor variables:
β = (1, 2, 3, 4)>, α = (1, 1, 2, 1)>

• Setup 3 High-dimensional data:

β = (0,−10,−9,−8, ..., 8, 9, 10,

180︷ ︸︸ ︷
0, ..., 0)>, α = (1,

20︷ ︸︸ ︷
2, ..., 2,

180︷ ︸︸ ︷
0, ..., 0)>

6.2. SAMPLE COVERAGE 113

Results concerning the sample coverage of prediction intervals constructed by glmboost(),
quantregForest() as well as the unconditional ‘naive’ intervals are presented in Ta-
ble 6.7.

glmboost quantregForest ‘naive’ intv.
Setup 1
min. sample coverage 0.7590 0.6650 0.7550
mean sample coverage 0.7993 0.7113 0.7981
max. sample coverage 0.8390 0.7740 0.8320
Setup 2
min. sample coverage 0.7390 0.6030 0.7310
mean sample coverage 0.7953 0.6776 0.8005
max. sample coverage 0.8420 0.7320 0.8390
Setup 3
min. sample coverage 0.6740 0.7300 0.7540
mean sample coverage 0.7191 0.7763 0.7980
max. sample coverage 0.7710 0.8090 0.8340

Table 6.7: Results for selected linear data setups concerning sample coverage. The
values of the best performing algorithm in each row is printed bold.

For the low dimensional setups intervals estimated by glmboost() can hold the
proposed coverage of 80% over the whole sample. The random forest approach has
some problems for linear effects with few predictors. This was already observed in
simulations for the conditional coverage. The best performing algorithm concerning
sample coverage seems to be the ‘naive’ intervals.

Of course, we do not propose to use the ‘naive’ intervals as prediction intervals in
practice. We just want to show how misleading focusing only on sample coverage
can be.

In Figure 6.12 we further illustrate results from Setup 2. Figures in all four sectors
are structured as follows:

• The response vector y of the test data is plotted against the sample index
(1-1000) ordered by the size of the response (bold gray points).

• The other symbols represent the estimated conditional quantiles and therefore
the boundaries of the prediction intervals PI0.8(xi). They are plotted in the
same order as the response. They are circles (◦), if they cover the observed yi
of the test data and crosses (+), if they fail to do so.

• Note that the Figures therefore only represent one simulation step.

114 CHAPTER 6. SIMULATION STUDIES

Figure 6.12: Results for Setup 2. Figures in sectors represent only one simulation
step.

The intervals in sector c) are constructed using the expected conditional quantiles
by applying the true βτ to the predictor variables, which already takes into account
the heteroscedasticity of the error term:

Qτ (Y |X = xi) = x>i β + (x>i α)Φ−1(τ)

= x>i βτ
with βτ = β +αΦ−1(τ)

For Setup 2 we observe that glmboost() as well as quantregForest do have prob-
lems covering the extreme observations of Y . Those are the data points on the left

6.2. SAMPLE COVERAGE 115

or the right side of the plots. But also using the expected conditional quantiles in
Figure 6.13 c) leads to similar results.

Figure 6.13: Results for Setup 3. Figures represent only one simulation step.

In the complex high dimensional data situation in Setup 3 we observe an important
aspect about the intervals estimated by quantregForest(). Unlike the boosting in-
tervals they succeed in holding the coverage over the whole sample. Yet they achieve
this by returning similar values than the ‘naive’ intervals. In this high dimensional
setting with many predictors without effect on the response, quantregForest()

tends to estimate the conditional quantiles simply as the empirical sample quan-
tiles. This secures the sample coverage as can be seen in the simulation results, but
is far away from the true expected conditional quantiles presented in sector d).

116 CHAPTER 6. SIMULATION STUDIES

The intervals estimated by glmboost() fail to hold a coverage of 80% over the whole
sample in this special setting. Yet the provided intervals are much more similar to
the intervals constructed by using the true coefficients βτ .

This setups therefore underline the importance of looking also at the conditional
coverage, as focusing on the sample coverage in this case is clearly misleading. The
random forest intervals fail to adopt to the realizations of X, yet show much better
results concerning the sample coverage than the boosting approach.

6.2.2 Nonlinear setups

As for the linear case, we will also present results from simulation studies from three
different setups. Every setup includes heteroscedastic error terms and of course
predictors with nonlinear effects (compare to Fenske et al. (2009)).

• Setup 1 One predictor ‘sin’ effect:

Yi = 2 + 3 sin(1.5xi) +
(
0.5 + 1.5(xi − 1.5)2

)
εi

• Setup 2 One predictor ‘log’ effect:

Yi = 2 + 1.5 log(xi) + (0.7 + 0.5xi) εi

• Setup 3 Multiple predictors additive linear and nonlinear effects:

Yi = 2 + 3 sin(1.5xi1) + 1.5 log(xi2) + 2xi3 − 2xi4 + 0 · (xi5 + xi6)

+
(
0.7 + 1.5(xi1 − 1.5)2 + 0.5(xi2 + xi3)

)
εi

In every setup εi is gaussian distributed εi
iid∼ N(0, 1) and the components of xi are

realizations of X ∼ U(0, 3).

Results concerning the sample coverage of prediction intervals constructed by gamboost(),
quantregForest() as well as the unconditional ‘naive’ intervals are presented in Ta-
ble 6.8.

Once again the intervals estimated by component-wise boosting show very reason-
able results for all three setups. The intervals based on random forest do have
problems with setups consisting of only one predictor variable. They do improve
significantly in Setup 3 which includes 6 predictor variables, compared to the one-
dimensional predictor in the first two setups.

Yet the algorithm that gets closest to covering 80% of the test data set in every
setup is the ‘naive’ interval absolutely ignoring the effect of any predictor variable.

6.2. SAMPLE COVERAGE 117

gamboost quantregForest ‘naive’ intv.
Setup 1
min. sample coverage 0.7400 0.6680 0.7550
mean sample coverage 0.7890 0.7264 0.7964
max. sample coverage 0.8230 0.7800 0.8350
Setup 2
min. sample coverage 0.7490 0.6810 0.7530
mean sample coverage 0.7927 0.7274 0.7981
max. sample coverage 0.8360 0.7760 0.8360
Setup 3
min. sample coverage 0.7400 0.7500 0.7530
mean sample coverage 0.7833 0.7980 0.7985
max. sample coverage 0.8250 0.8360 0.8410

Table 6.8: Results for the three nonlinear data setups concerning sample coverage.
The values of the best performing algorithm in each row is printed bold.

These intervals clearly can hold the sample coverage. Yet for any fixed xnew as for
the conditional interpretation they would fail, as for some xnew they would cover
every realization of Y and for others none.

Results for Setup 3 are presented in Figure 6.14. The expected quantiles for sector
d) are computed using Φ−1(τ) as the inverse of the gaussian distribution function:

Qτ (Y |X = xi) = 2 + 3 sin(1.5xi1) + 1.5 log(xi2) + 2xi3 − 2xi4 + 0 · (xi5 + xi6)

+ Φ−1(τ) ·
(
0.7 + 1.5(xi1 − 1.5)2 + 0.5(xi2 + xi3)

)
In Setup 3 boosting as well as random forest intervals show very good results, similar
to the expected quantiles in sector d).

118 CHAPTER 6. SIMULATION STUDIES

Figure 6.14: Results for Setup 3. Figures represent only one simulation step.

6.3. CONCLUSIONS FROM THE SIMULATION STUDIES 119

6.3 Conclusions from the simulation studies

Let us recall the two major questions from the beginning of this chapter:

1. How do prediction intervals estimated by quantile regression forests and by
boosting perform in different setups concerning the coverage and the correct
estimation of the conditional quantiles?

• Linear effects of one or more predictor variables including high-dimensional
situations with more predictors than observation (p > n).

• Additive potential nonlinear effects of one or more predictor variables.

2. How do the two major tuning parameters of boosting affect the performance
of prediction intervals?

Concerning the first question, we analyzed the performance once based on the con-
ditional coverage and once based on the sample coverage. As already pointed out in
Chapter 2, we believe that the conditional interpretation of prediction intervals is
more appropriate. This view is also supported by the results of Section 6.2, where
the sample coverage failed to show severe problems in the estimation of the condi-
tional quantiles by the random forest approach in the high dimensional linear setup.
Furthermore, ‘naive’ intervals that only refer on the unconditional sample quantiles
of the training data were the best performing algorithm in every single setup - if
one considers only the sample coverage.

Hence, one first result of these simulation studies is the confirmation that the condi-
tional coverage is the one to pay attention for, when it comes to confirm the correct
coverage of prediction intervals.

When we come to the question itself, the answer varies depending on the data
situation. No algorithm showed absolute satisfying results in every setup. Yet we
can sum up the results in a few points:

• glmboost() and gamboost() show excellent results for linear and nonlinear
effects of univariate or low dimensional (p<10) predictor variables. The condi-
tional quantiles are estimated correctly, and therefore the conditional coverage
of the resulting intervals is fulfilled.

• quantregForest() due to its design has some problems when it comes to
setups with only one predictor variable, no matter if the effect is linear or
nonlinear. Results improve with additional predictors.

• When it comes to multiple predictors (p>10) with included variable selection,
glmboost() tends to select the correct variables. Nevertheless, the resulting
intervals have problems to hold the conditional coverage for values at the
border of the X space.

120 CHAPTER 6. SIMULATION STUDIES

• For high dimensional settings with p > n, both algorithm fail to hold the con-
ditional coverage. The results of intervals estimated by glmboost() improve
considerably when the sample size is raised to n > p.

• quantregForest() tends to return the unconditional sample quantiles for high
dimensional settings instead of conditional quantiles. This serves for the sam-
ple coverage, but the intervals cannot hold the conditional coverage. This does
not much improve for a raised sample-size.

• glmboost() showed in two high dimensional setups with severe heteroscedas-
ticity an unprecedented bias in the estimation of the intercept. We did not find
a solution to this problem, yet suspect that the amount of heteroscedasticity
of the error term and the variance of the response have something to do with
the appearance of this bias.

We have to point out that our simulation studies bear some limitations: We only fo-
cused on settings where standard parametric tools to construct prediction intervals
are not feasible. Therefore every model included at least heteroscedastic error terms.
Furthermore, we had no setting with interactions between predictor variables. This
could have been much more favorable for quantile regression forests. We also focused
mainly on settings with a reasonable high sample size of 1000 observations.

Concerning the second question of interest our results indicate that for applying the
boosting approach to quantile regression one can safely fix the step-length ν = 0.5
and optimize mstop. Compared to setting ν = 0.1, as it is the default value in
mboost, the algorithm delivers comparable results while needing only about 20% of
the otherwise necessary boosting iterations.

When it comes to selecting mstop, we were somehow surprised that we found for
most of the settings no relevant impact on the conditional coverage of the result-
ing intervals, when we just used a fixed mstop instead of applying time consuming
measures to optimize this tuning parameter on an additional data set. Yet we do
have to state that we did not try unreasonable high fixed mstop, but values that
were not far from the optimized parameter in most of the settings. Only in the
additive nonlinear setup (Section 6.2.2) we noticed a relevantly reduced coverage for
larger mstop. Therefore we can not conclude that overfitting is no problem. Yet our
findings indicate that overfitting at least kicks in very late for most of the setups
used in this simulation studies.

Chapter 7

Prediction inference in practice

This chapter was deleted due to data privacy.

121

122 CHAPTER 7. PREDICTION INFERENCE IN PRACTICE

Chapter 8

Conclusion

At the beginning of this thesis, we quoted Niels Bohr, the winner of the Nobel Prize
in Physics in 1922:

Prediction is very difficult, especially about the future.

It is a famous quote, and a common saying - we all have heard it several times
before. Now, at the end of a thesis investigating prediction inference with ensemble
methods, what do we answer if we hear it again?

Of course Bohr is right: It is easier to analyze data from a sample in order to describe
the underlying structure instead of making predictions about future observations.
Not because predictions make problems in their computation or are problematic
from a methodological point of view. But simply because of the fact that predic-
tions bear a sincere problem that cannot be solved by any statistical method: They
sooner or later will be confronted by reality.

When we talk about the accuracy and the performance of prediction intervals we
should keep that in mind: Other statistical tools never face this confrontation. Es-
timation methods may have a variance and a bias that trade off each other and
help us to judge their precision. A prediction interval will be judged by a simple
dichotomous variable: Does it cover the new observation or not?

We did ask this question over and over in simulation studies and in the practical
example for the movie data. We focused on quantile regression with boosting with
different base learners and on quantile regression forests.

When we started to work on this project, we soon stepped into a common pitfall
concerning prediction intervals: We tried to see them as confidence intervals, just for
predictions and not for parameters. As we have learned by now, this view may lead
to false conclusions. We are used to judge an estimation procedure by considering
the size of an confidence interval. Prediction intervals do not cover parameters but

123

124 CHAPTER 8. CONCLUSION

random variables. The size of a prediction interval tells us something about the
variance of the observation which is not explained by the predictors. So of course,
the size of the interval gives us an indication of the accuracy of a point-prediction.
However, we cannot expect the interval to become arbitrarily small. As long as the
future observation we want to cover is a random variable, this randomness controls
the size of the interval.

The second pitfall we stepped in at the beginning is also the first important finding of
this thesis: The adequate interpretation of the coverage for prediction intervals does
not refer to a whole new sample. The more correct interpretation is the conditional
one, conditioned on a fixed realization of X. Correct specified intervals should hold
this conditional coverage for every possible realization of X, and therefore also over
a whole sample. Nevertheless, as we showed, looking only at the sample coverage
can be very misleading and should therefore be avoided. The sample coverage can
give an indication if the intervals could be accurate. But it does not prove in any
form that they hold the proposed coverage for every realization of X.

In simulation studies we therefore took a look on the conditional coverage for dif-
ferent limited data points, in different setups. We did only focused on non-standard
situations, as we were interested in setups where parametric intervals based on the
standard linear model do not work. However, as the boosting approach with OLS
base learners eventually leads to the same results as standard regression we can
conclude that they also work in standard situations, where one could also have used
parametric intervals.

We were especially interested in the results of the boosting approach, and therefore
selected setups that seemed to give the algorithm a reasonable chance to get the
intervals right. As a result, in most cases we chose setups with 1000 observations
in the training data and setups that did not include interactions between predictor
variables. Knowing about this limitations, we can state that the results concerning
the conditional coverage for the most relevant setups are more than promising for
both considered ensemble methods.

Boosting with OLS and P-splines as base learners showed excellent results for se-
tups with one to a handful predictor variables. Regression forest by their design
have problems with setups including only one predictor but results improve with
additional predictor variables. For high dimensional setups, both algorithms failed
to hold the correct coverage in the p > n case. Yet, we also have to state that we
used a rather unfavorable setup with high variance and heteroscedasticity in every
predictor. Considering this, it is still notable that at least the intervals of the boost-
ing approach cover around 70 % of the new observations conditioned on different
X, and results improved considerably when the sample size was raised.

We found that the quantile regression approach in high dimensional setups with

125

large amounts of variables without effect on the response tends to return the sam-
ple quantiles rather than correct specified conditional quantiles. That might be an
indication for the algorithm having problems to identify the variables of relevance,
and therefore for a new X all realizations of the original training data get the same
weights. This does not affect the sample coverage but the conditional one. The
reasons for the appearance of this effect should be further investigated.

For the boosting approach, we found in similar setups a seemingly structural bias
in the estimation of the intercept. This may seem like a minor problem, neverthe-
less in our view it could prevent the intervals of showing better results especially
at the borders of the X space in high dimensional linear settings. The reasons for
the appearance of this problem and possible solutions should be further investigated.

Concerning the tuning parameters for the boosting approach, we concluded that the
step length ν can be fixed higher as it is the default for common L2 boosting. The
reason for that are the small gradients with values τ or (1 − τ) resulting from the
check-function. The selection of a reasonable value for the second tuning parameter
mstop is crucial, although in our setups we only found rather slow overfitting behav-
ior.

In the practical example predicting the movie attendance in the first week boosting
with different base learners as well as quantile regression forests showed quite sat-
isfying results. Given the complexity of the data situation, the delivered prediction
intervals seem to hold the coverage at least for movies with not too extreme outcome.
When we also gave a robust point estimator with the conditional median, quantile
regression forests showed their big advantage in preventing quantile crossing, which
in this special case can be seen as a very favorable property of this algorithm. If
the data providers might be interested not only in the intervals itself but also in
the interpretation of the effect their prediction variables have on the attendance of
a new movie, this could be the point that makes boosting the algorithm of choice.

So, what do we do answer to Niels Bohr?

Of course it is difficult to make predictions concerning the future. But especially
with today’s computational power, there are ways to construct reliable intervals for
future observations based on a combination of multiple predictions. The resulting
intervals work well in many practical situations. They hold the proposed coverage,
are very flexible and do not need any assumptions about underlying distribution
functions. Of course we found setups where the results were not as satisfying as we
would have wished. Also, there are aspects which we still cannot fully explain, as
the problems with the intercept. Finally there is still work to be done which gives
us the chance to conclude: We are on a good way. But as usual, further research is
warranted.

126 CHAPTER 8. CONCLUSION

Bibliography

Bühlmann, P. and T. Hothorn (2007). Boosting algorithms: regularization, predic-
tion and model fitting. Journal of Statistical Science 22(4), 477–505.

Bühlmann, P. and B. Yu (2003). Boosting with the l2 loss: Regression and classifi-
cation. Journal of the American Statistical Association 98, 324–339.

Breiman, L. (1996). Bagging predictors. Machine Learning 24, 123–140.

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics 26 (3), 801–824.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computa-
tion 11 (7), 1493–1517.

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classification
and Regression Tress. Boca Ration, Florida: Chapman and Hall/CRC.

Cieczynski, S. (2009). Bayesianische Quantilregression. Diploma-thesis, Ludwig-
Maximilians-Universität München, Institut für Statistik.

Dietterich, T. G. (2000). Ensemble methods in machine learning. Multiple Classifier
Systems 1857-2000, 1–15.

Efron, B., T. Hastie, L. Johnstone, and R. Tibshirani (2002). Least angle regression.
Annals of Statistics 32, 407–499.

Eilers, P. and B. Marx (1996). Flexible smoothing with b-splines and penalties.
Journal for the History of Astronomy 2.

Everitt, B. S. and T. Hothorn (2006). A Handbook of Statistical Analyses Using R.
Boca Ration, Florida: Chapman and Hall/CRC.

Fahrmeir, L., T. Kneib, and S. Lang (2007). Regression: Modelle, Methoden und
Anwendungen. Berlin: Springer Verlag.

Fahrmeir, L., R. Künstler, I. Pigeot, and G.Tutz (1996). Statistik: Der Weg zur
Datenanalyse. Berlin: Springer Verlag.

127

128 BIBLIOGRAPHY

Fenske, N. (2008). Flexible Longitudinaldaten-Regression mit Anwendungen auf Adi-
positas. Diploma-thesis, Ludwig-Maximilians-Universität München, Institut für
Statistik.

Fenske, N., T. Kneib, and T. Hothorn (2009). Identifying risk factors for severe
childhood malnutrition by boosting additive quantile regression. Technical Report,
Department of Statistics, University of Munich 052.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Annals of Eugenics 7, 143–156.

Forbes, E. (1996). Gauss and the discovery of ceres. Statistical Science 11(2),
89–121.

Freund, Y. and R. E. Schapire (1996a). A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences 55(1), 119–139.

Freund, Y. and R. E. Schapire (1996b). Experiments with a new boosting algorithm.
Machine Learning: Proceedings of the Thirteenth International Conference, 148–
156.

Friedman, J. (1977). A recursive partitioning decision rule for nonparametric clas-
sification. IEEE Trans. Computers C-26, 404–408.

Friedman, J., T. Hastie, and R. Tibshirani (2000). Additive logistic regression: a
statistical view of boosting. Annals of Statistics 28.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting ma-
chine. Annals of Statistics 29, 1189–1232.

Geraci, M. and M. Bottai (2007). Quantile regression for longitudinal data using
the asymmetric laplace distribution. Biostatistics 8, 140–154.

Hastie, T. and R. Tibshirani (1986). Generalized additive models. Journal of Sta-
tistical Science 1, 297–318.

Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical
Learning. Springer Series in Statistics. New York, NY, USA: Springer New York
Inc.

Hofner, B. (2008). Variable Selection and Model Choice in Survival Models
with Time-Varying Effects. Diploma-thesis, Ludwig-Maximilians-Universität
München, Institut für Statistik.

Hothorn, T., P. Bühlmann, T. Kneib, M. Schmid, and B. Hofner (2009). mboost:
Model-Based Boosting. R package version 1.1-2.

BIBLIOGRAPHY 129

Hothorn, T., K. Hornik, C. Strobl, and A. Zeileis (2009). party: A Laboratory for
Recursive Partytioning. R package version 0.9-999.

Hothorn, T., K. Hornik, and A. Zeileis (2006). Unbiased recursive partitioning: A
conditional inference framework. Journal of Computational and Graphical Statis-
tics 15(3), 651–674.

Kneib, T., T. Hothorn, and G. Tutz (2009). Variable selection and model choice in
geoadditive regression models. Technical Report, Department of Statistics, Uni-
versity of Munich 03.

Koenker, R. (2005). Quantile Regression. New York: Cambridge University Press.

Koenker, R. (2009a). Quantile Regression in R: A vignette. http://cran.at.r-
project.org/web/packages/quantreg/vignettes/rq.pdf.

Koenker, R. (2009b). quantreg: Quantile Regression. R package version 4.30.

Koenker, R. and K. Hallock (2001). Quantile regression. The Journal of Economic
Perspectives 15, 143–156.

Liaw, A. and M. Wiener (2002). Classification and regression by randomforest. R
News 2 (3), 18–22.

Lin, Y. and Y. Jeon (2002). Random forests and adaptive nearest neighbors. Tech-
nical Report, Department of Statistics University of Wisconsin 1055.

Meinshausen, N. (2006). Quantile regression forests. Journal Machine Learning
Research 7, 983–999.

Meinshausen, N. (2007). quantregForest: Quantile Regression Forests. R package
version 0.2-2.

Morgan, J. and J. Sonquist (1963). Problems in the analysis of survey data, and a
proposal. The Journal of the American Statistical Association 58, 415–434.

Mosteller, F. and J. Tukey (1977). Data Analysis and Regression: A second Course
in Statistics. Reading, Mass.: Addison-Wesley.

R Development Core Team (2009). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN
3-900051-07-0.

Schmid, M. and T. Hothorn (2008). Boosting additive models using component-wise
p-splines as base-learners. Computational Statistics and Data Analysis 53(2), 298–
311.

Strasser, H. and C. Weber (1999). On the asymptotic theory of permutation statis-
tics. Mathematical Methods of Statistics 8, 220–250.

130 BIBLIOGRAPHY

Strobl, C., A.-L. Boulesteix, and T. Hothorn (2007). Bias in random forest variable
importance measures: Illustrations, sources and a solution. BMC Bioinformat-
ics 1, 8–25.

Therneau, T. M., B. Atkinson, and B. Ripley. (2009). rpart: Recursive Partitioning.
R package version 3.1-44.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy.
Statist. Soc. Ser. B 58 (1), 267–288.

Yue, K. and R. A. Moyeed (2001). Bayesian quantile regression. Statstics & Proba-
bility Letters 54, 437–447.

List of Figures

2.1 Example: Prediction intervals vs. confidence intervals for different
sample sizes . 21

2.2 Example: Conditional vs. sample interpretation of prediction intervals 25

3.1 Loss function for standard regression and the check function for dif-
ferent values of τ . 33

3.2 The density of the asymmetric Laplace distribution for different τ . . . 34
3.3 Example for quantile regression in simulated data set (εi ∼ N(0, 1)) . 36
3.4 Example for quantile regression in simulated data set (εi ∼ G(2, 2)) . 37

4.1 Basic structure of a classification or regression tree. 43
4.2 CART example with the iris data: rpart 45
4.3 CART example with the iris data: party 46

5.1 Boosting example with the cars data: OLS base learner 69
5.2 Boosting example with the cars data: Negative gradients 73
5.3 Boosting example with the cars data: P-splines as base learners . . . 78

6.1 Example of a simulation step: Conditional coverage vs. sample coverage 86
6.2 Simulation results, conditional coverage: One predictor variable with

linear effect, gaussian setup. 90
6.3 Simulation results, conditional coverage: One predictor variable with

linear effect, gaussian setup. 91
6.4 Simulation results, conditional coverage: Multiple predictor variables

with linear effect, one-sided intervals for the gamma setup. 95
6.5 Simulation results, conditional coverage: Multiple predictor variables

with linear effect, two sided intervals for the gamma setup. 96
6.6 Simulation results, conditional coverage: Multiple predictor variables

with linear effect, variable selection. 99
6.7 Simulation results, conditional coverage: High dimensional linear setup,n =

150. 102
6.8 Simulation results, conditional coverage: High dimensional linear setup,n =

1000. 103
6.9 Simulation results, conditional coverage: One predictor with nonlin-

ear effect, ‘sin’ setup. 106

131

132 LIST OF FIGURES

6.10 Simulation results, conditional coverage: One predictor with nonlin-
ear effect, ‘log’ setup. 107

6.11 Simulation results, conditional coverage: Nonlinear setup with mul-
tiple predictors . 109

6.12 Simulation step, sample coverage: Multiple predictor variables with
linear effect. 114

6.13 Simulation step, sample coverage: High dimensional linear setup. . . . 115
6.14 Simulation step, sample coverage: Nonlinear setup with multiple pre-

dictors. 118

List of Tables

6.1 Simulation results, conditional coverage: One predictor variable with
linear effect . 92

6.2 Simulation results, conditional coverage: Multiple predictor variables
with linear effect . 94

6.3 Simulation results, conditional coverage: Multiple predictor variables
with linear effect, including variable selection 97

6.4 Simulation results, conditional coverage: High dimensional linear setup100
6.5 Simulation results, conditional coverage: One predictor variable with

nonlinear effect . 105
6.6 Simulation results, conditional coverage: Multiple predictor variables

with nonlinear effect . 110
6.7 Simulation results, sample coverage: Linear setups 113
6.8 Simulation results, sample coverage: Nonlinear setups 117

133

134 LIST OF TABLES

Erklärung

Hiermit versichere ich, dass ich die Diplomarbeit selbstständig angefertigt und nur
die angegebenen Quellen verwendet habe.

München, den 15. Januar 2010

(Andreas Mayr)

