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Abstract

In recent years a lot of people came up with several biclustering algorithms, which
perform simultaneous clustering on rows and columns of a data matrix. These
methods are especially popular when analysing gene expression data, but can
be applied in several other fields of two way data analysis as well. However,
this thesis deals with the application of the plaid biclustering model to real gene
expression data. Since the method has got some restrictions, that is mainly its
sensitiveness against different parameter settings and repeated runs an ensem-
ble method is introduced. The proposed ensemble method aims to overcome
these limitations through repeatedly applying the plaid model with a different
parametrisation. Out of these results the biclusters which were observed the
most are said to be the best according to the introduced method. Based on these
results conclusions on the parameter settings of the plaid model are drawn.

Keywords: Biclustering, Plaid Model, Ensemble Method, Jaccard Index,
TCGA, Gene Expression Data, biclust
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1. Introduction

The analysis of gene expression data (often also referred to as genomics data)
has become a highly popular technique for studying the biological structure of
human beings, or rather all kind of creatures. For example, one is able to discover
groups of genes which share similar functions and characteristics under a specific
condition. In other words, with the aid of genetic data scientists aim to achieve
biologically relevant insights into the transcriptional network of different organ-
ism. Nowadays these data are routinely measured by so called DNA microarrays,
which are able to monitor the activity of thousands of genes simultaneously. The
gene expression data is then mostly given in a n by m data matrix, where the
genes are arranged in rows and the conditions in columns. That means, element
aij represents the expression level of gene i under condition j. Whereas the level
of a certain gene can vary between sample groups (e.g diseased vs. normal) as
well as different individuals.

Traditionally the analysis of those expression matrices can be done by applying
standard clustering algorithms, such as K-means or hierarchical to the data.
However, this approach has got a number of limitations. First, common cluster
methods usually seek a disjoint cover of the set of elements, requiring that no gene
or sample belongs to more than one cluster [Tanay et al., 2005]. In fact, genes can
participate in more than one biological function and should therefore be included
in several clusters. Another drawback is, that these algorithms classify genes on
the basis of their expression under all experimental conditions, whereas cellular
processes are generally affected only by a small subset of conditions [Ihmels et al.,
2003]. Further, cluster algorithms can only be applied on either rows (genes) or
columns (conditions), which leads to an very biased analysis of the genomic data.
Yet another aspect is, that the clusters should not be exhaustive, that means the
algorithm should allow some genes or samples not to be in a cluster at all.

To overcome all those limits bicluster (or two-way-cluster) algorithms have be-
come more and more popular in recent years. A bicluster algorithm performs
simultaneous clustering on rows and columns of an expression matrix or a data
matrix in general. Hence, a bicluster is defined as a submatrix consisting of a
subgroup of genes and a subgroup of conditions which are as different as possible
to the rest and as similar as possible to each other. Thus, biclustering algorithms
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Figure 1.1.: A levelplot of a small section of the BicatYeast gene expression data
set [Barkow et al., 2006], which shows the different expression levels
of genes and samples.

are able to identify groups of genes that show similar expression pattern under a
specific subset of the experimental conditions [Madeira and Oliveira, 2004]. How-
ever, most approaches which have been proposed over the last decade differ in
their definition of a bicluster and therefore use quite different methods.

Biclustering is not only appropriate for the analysis of gene expression data, but
also for several other research areas. E.g. in marketing biclusters can be used to
identify a subgroup of consumers with similar preferences regarding a subset of
products. This technique is often used to supply recommendation systems with
proper information. Namely, to predict the consumers preferences and make
suitable recommendations [Madeira and Oliveira, 2004]. Another application
field is in the area of text mining, where one wants to derive information from a
text, more precisely wants to obtain information about the structure of a text.
In addition, one can think about more research areas where bicluster algorithm
could be applied. However, this work focuses on the bioinformatics field, hence
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Figure 1.2.: Illustration of the difference between common cluster methods, which
obtain cluster in only one direction (either rows respectively genes or
columns respectively samples) and modern bicluster methods which
are able to find subsets of rows and columns simultaneously.

on gene expression data.

In chapter 2 an overview of some of the most common bicluster algorithms is
given. Based on some a priori requirements which are necessary when dealing with
gene expression data the plaid algorithm is chosen to fit them best and is described
in more detail. Chapter 3 introduces the R [R Development Core Team, 2009]
package biclust [Kaiser and Leisch, 2008], which contains, amongst other things,
a function to compute bicluster based on the plaid algorithm. Because it turned
out that plaid is very sensitive against different parameters and independent runs
two ensemble methods are proposed in chapter 4 which aim to overcome these
limitations. In chapter 5 the introduced ensemble methods are applied on real
gene expression data and conclusions based on their results are drawn. Finally
in chapter 6 a discussion of this thesis and a prospect for further research in this
context are presented.
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2. Bicluster Algorithm

Below, different types and structures of biclusters are presented. Moreover an
overview over some of the recently developed bicluster models and algorithms is
given. Each of them is judged based on their capability to analyse gene expression
data. Because this work especially deals with plaid bicluster model it is described
in detail in section 2.3. Since there are plenty of different methods this survey,
as a matter of course is not exhaustive.

2.1. Requirements on a Bicluster Algorithm

As already mentioned, most of the bicluster algorithms which have been proposed
have got quite a different idea of what a bicluster actually is and how it should
look like. And therefore they differ in their appropriate application area in which
they could be applied. Due to the huge amount of different methods one needs
to classify the algorithms on the basis of some criteria.

First of all, there are so called two-way clustering methods which use a com-
bination of traditional row-wise and column-wise cluster results. Whereby this
results are produced by applying standard clustering methods such as K-means
or hierarchical on the rows and columns dimensions of the data matrix separately.
In addition to that there are plenty algorithms which perform clustering on both
dimensions simultaneously. The divide-and-conquer approach for example breaks
the problem into multiple subproblems which are smaller in size but similar to
the original problem. Other methods follow a greedy iterative search approach
which are based on the idea of adding/removing rows or columns to a biclus-
ter in order to maximise a local criterion. The exhaustive bicluster enumeration
methods seek to identify the best biclusters by using an exhaustive enumeration
of all possible biclusters in the data matrix. Certainly this methods can only
be applied by assuming restrictions on the size of the biclusters. Moreover there
are some model-based approaches whereas the distribution parameter have to be
identified. Those methods assume a given statistical model and try to minimise
a certain criterion by identifying the parameters that fit the data best.
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Another criteria to distinguish bicluster methods is the type of bicluster the algo-
rithm is able to find. The specialist literature gives four different types (examples
are given in Figure 2.1) [Madeira and Oliveira, 2004]:

1. Biclusters with constant values.

2. Biclusters with constant values on rows or columns.

3. Biclusters with coherent values.

4. Biclusters with coherent evolutions.

In the simplest case the algorithm is able to find subsets of rows and columns with
constant values, which indeed is not applicable on gene expression data. Slightly
enhanced methods can identify bicluster with either constant values on the rows
or constant values on the columns. Again this methods are not suitable for the use
on genomics data. Other approaches look for coherent values on the columns or
rows of the expression matrix. This means, each column or row can be calculated
by simply adding or multiplying a constant to each other. A further type aims
to find biclusters with coherent evolutions. In other words, the exact numeric
value of the matrix elements does not matter. Instead the algorithm searches
for subsets of columns and rows with coherent behaviors. Obviously, this only
comes along with a loss of information as the matrix has to be discretized since
the exact numeric values of the matrix does not matter.

constant values − overall

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

constant values − rows

1.0 1.0 1.0 1.0

2.0 2.0 2.0 2.0

3.0 3.0 3.0 3.0

4.0 4.0 4.0 4.0

constant values − columns

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

coherent values − additive

1.0 2.0 5.0 0.0

2.0 3.0 6.0 1.0

4.0 5.0 8.0 3.0

5.0 6.0 9.0 4.0

coherent values − multiplicative

1.0 2.0 0.5 1.5

2.0 4.0 1.0 3.0

4.0 8.0 2.0 6.0

3.0 6.0 1.5 4.5

coherent evolution − overall

S1 S1 S1 S1

S1 S1 S1 S1

S1 S1 S1 S1

S1 S1 S1 S1

coherent evolution − rows

S1 S1 S1 S1

S2 S2 S2 S2

S3 S3 S3 S3

S4 S4 S4 S4

coherent evolution − columns

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

Figure 2.1.: Examples of the different types of bicluster. The figure is based on
Madeira and Oliveira [2004].

5



Additionally one can differ the methods on the basis of the bicluster structure
a algorithm is able to identify. Here, the structure describes how the observed
biclusters can potentially be arranged, whereas the following structures are sup-
ported by the different models (again, examples are given in Figure 2.2) [Madeira
and Oliveira, 2004]:

1. Single bicluster.

2. Exclusive row and column biclusters.

3. Exclusive-rows or exclusive-columns biclusters.

4. Non-overlapping non-exclusive biclusters.

5. Arbitrarily positioned overlapping biclusters.

Structure type 1 is self-explanatory as the method is just able to find one single
bicluster at a time. In type 2 every bicluster consists of an exclusive subset of
rows and columns. Although this can be the first approach to extract relevant
knowledge from gene expression data, it has long been recognized that such an
structure will seldom exist in real data [Madeira and Oliveira, 2004]. As men-
tioned in the last chapter genes are very likely to participate in more than just
one biological function and therefore should be included in more than one bi-
cluster. The same of course holds for the conditions. That is, where it comes to
biclusters of type 3. Improvements of this structures are the non-overlapping and
non-exclusive biclusters, which exhaustively splits the matrix in biclusters which
overlap in just one dimension. But still, this methods have some restrictions, such
as every row and column in the data has to belong to at least one bicluster. How-
ever, in the context of gene expression it is very likely that some rows or columns
do not belong to any bicluster at all. Thus, there are algorithms which are able
to observe arbitrarily positioned overlapping biclusters. This sophisticated meth-
ods allow bicluster to be non-exclusive, non-exhaustive and overlapping in both
dimensions.

When it comes to the analysis of gene expression data one - in the ideal case
- wants to be able to observe overlapping, non-exclusive and non-exhaustive bi-
clusters with coherent values (either additive or multiplicative). The reasons:
genes participate in more than one biological function and some conditions share
certain gene expression alterations (non-exclusive and overlapping), some genes
are not relevant at all (non-exhaustive) in an certain experiment and at last, gene
expression level varies between different genes and samples and one does not want
to lose information (coherent values), have already been mentioned above.
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Figure 2.2.: Examples of the different bicluster structures. Note, that rows and
columns of a single bicluster typically are not together in a block,
they rather have to be reordered in order to be displayed in a ”nice”
block structure. Again the figure is based on Madeira and Oliveira
[2004].

2.2. Overview over some Methods

In this section some of the most important and sophisticated algorithms for bi-
cluster analysis are described in short and rated based on the requirements men-
tioned in the last section. In addition to that a table summarizing more methods
is given in appendix B.

One of the first who introduced a basic idea of biclustering to the research com-
munity was Hartigan [1972]. His approach is an example of a divide-and-conquer
method, which aims to minimize the overall variance within a cluster (sum of
squares) by splitting a given partition into two cluster. The split which max-
imizes the sum of squares reduction is chosen. The splitting of the matrix is
stopped when a further splitting reduces the sum of squares less than expected
by chance. However, this method just can handle constant bicluster and only
allows overlapping in one dimension. In addition to that the observed biclusters
cover the data matrix completely.
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Pioniers in applying bicluster algorithms to gene expression data were Cheng
and Church [2000]. The basic idea behind their greedy iterative search approach
called the δ-method is, that there are specific row, column and submatrix effects
within a bicluster. Thus, each bicluster has got a residual score

H(I, J) =
1

|I||J |
∑

i∈I,j∈J
(aij − aiJ − aIj + aIJ)2, (2.1)

where aiJ is the mean of row i (row effect), aIj is the mean of column j (column
effect) and aIJ is the overall mean of the bicluster (submatrix effect). If the
score of a certain submatrix AIJ is below a threshold δ the submatrix is called
a bicluster. The algorithm starts from the entire matrix A and deletes rows and
columns with the highest score as long as H(I, J) > δ. In a second step rows
and columns with the lowest score are being added as long as H(I, J) < δ. The
described process is repeated until an appropriate number of biclusters is found.
Cheng and Church suggested to mask previously detected bicluster by random
numbers, which makes it unlikely to identify overlapping biclusters.

An example for a two-way clustering method is the Coupled Two-Way Clustering
(CTWC) described by Getz et al. [2000]. As noted in the last section two-way
cluster methods apply standard clustering techniques on the row and column
dimension of a data matrix. The biclusters are then a combination of both results.
First, the data matrix is clustered into subsets of genes and subsets of columns
separately. After this, CTWC applies one dimensional clustering methods twice
(on the row and column dimension) of each submatrix defined by all possible
combinations of the row and column subsets obtained in the first step.

Yet another biclustering method is the Iterative Signature Algorithm (ISA) in-
troduced by Bergmann et al. [2003]. This algorithm assumes that in a bicluster
the average gene expression over all genes for each sample and the average gene
expression over all samples for each gene should be unusually high or low. In or-
der to obtain such biclusters the algorithm generates two normalized copies of the
gene expression matrix, one with normalized rows AG and one with normalized
columns AC . A bicluster AI′J ′ is then defined by

I ′ = {i ∈ I : |aCI′j| > TCσC}, J ′ = {j ∈ J : |aGiJ ′| > TGσG} (2.2)

where aCI′j is the mean expression level of genes from I ′ in the condition j and by

aGiJ ′ the mean expression level of gene i in conditions from J ′. TG and TC are the
threshold parameters and σC , σG are the standard deviations of the correspond-
ing means aCI′j and aGiJ ′ . This implies that the z-score of each gene, measured
with respect to the bicluster conditions should exceed a certain threshold TG.
Similarly, the z-score of each condition, measured with respect to the bicluster
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genes should exceed the threshold TC . In other words, the average expression
of genes/conditions over the conditions/genes should be significantly far apart
from its expacted value on random matrices. The algorithm itself starts with
a random set of genes I ′ and then repeatedly applies the equation (2.2) on the
samples and genes alternately until it converges to a fixed point. ISA meets all
of the necessary requirements which have been discussed in section 2.1.

The bicluster algorithm proposed by Kluger et al. [2003] uses a totally different
approach. Their Spectral biclustering method suggests to use singular value
decomposition (in short, SVD a technique from linear algebra which factorizes a
matrix A in the form A = UΣV , where U and V are orthonormal matrices and Σ
is a diagonal matrix) to get eigenvalues and eigenvectors. After normalizing the
matrix A one is able to observe the biclusters by solving the coupled eigenvalue
problem ATAx = λ2x and AATy = λ2y. The column clusters are then found
by sorting the eigenvectors x to a step-like structure. Row clusters are found
similar by sorting the eigenvectors y. The biclusters are built beginning from the
largest eigenvalue. However, this model assumes a checkerboard-like structure
which implies that no real overlapping of the biclusters is possible.

An example for a method which searches for coherent evolution within a bicluster
is the algorithm of Murali and Kasif [2003] called xMotifs. As the coherent
evolution structure implies, the data matrix has to be discretized first. After this
the method looks for groups of columns in which a subset of the rows is in the
same state. Starting by n randomly selected columns the algorithm chooses a
subset of all samples for each selected column uniformly at random. For each of
this sets of columns the algorithm then collects rows with equal state across this
subset of columns. In a further step columns are collected where this subset of
rows have the same state. The obtained set of rows and columns is then called a
bicluster if it contains more than a α fraction of all samples.

As already mentioned at the beginning of this section, an summarizing table
regarding the requirements on biclusters for this and several more methods is
given in appendix B

2.3. Plaid Method

The plaid model, originally proposed by Lazzeroni and Owen [2000] is a very
flexible and powerful model-based bicluster method which meets all the necessary
requirements. Each element of the data matrix can be viewed as a sum of terms,
whereas the terms are called layers and correspond to biclusters in our case.

9



2.3.1. Model

The idea behind the plaid model is, that a data matrix can be described as a
linear function of layers. That means, the expression level of a matrix is the sum
of K biclusters and a uniform background noise term. To specify, the matrix
entries can be written as

aij =
K∑

k=0

θijkρikκjk (2.3)

where ρik ∈ {0, 1} and κjk ∈ {0, 1} are indicator variables indicating whether
a gene i or condition j belongs to the k-th bicluster or not. Note, by setting
some constraints on ρ and κ one is able to allow or prohibit overlapping or
exhaustiveness. For example, by allowing

∑
k ρik = 0 and

∑
k κjk = 0 for some i

and j there could be some genes/conditions which do not belong to any bicluster
at all. Also θijk, which specifies the contribution of each element to the matrix
can be defined very flexible according to identify different types of biclusters. In
this case θijk is defined as µk + αik + βjk, where µk is the background noise term
of bicluster k and αik and βjk describes the row and column specific effects in
a bicluster k. Which is quite similar to the method introduced by Cheng and
Church [2000]. Thus, the model may then also be written as

aij = µ0 +
K∑

k=1

(µk + αik + βjk)ρikκjk (2.4)

where µ0 is the background noise term of the whole data matrix.

2.3.2. Estimation

The model described above can now be formulated as the minimization problem

argmin

[
1

2

n∑

i=1

m∑

j=1

(aij − θij0 −
K∑

k=1

θijkρikκjk)2

]
. (2.5)

Suppose we already found K − 1 layers and want to observe the K-th layer. The
minimization problem can then be rewritten as

argmin

[
Q(K) =

1

2

n∑

i=1

m∑

j=1

(Z
(K−1)
ij − θijkρikκjk)2

]
, (2.6)
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with

Z
(K−1)
ij = aij − θij0 −

K−1∑

k=1

θijkρikκjk. (2.7)

To solve this equation an iterative approach is proposed which updates θ, ρ and
κ values in each cycle alternately. Given a priori defined number of iterations S
and initial parameters ρ(0) and κ(0) the algorithm proceeds as follows: At each
iteration s, optimal values for the θ(s) parameters are computed given fixed ρ(s−1)

and κ(s−1) values, afterwards the optimal value for ρ(s) is computed given new θ(s)

and old κ(s−1) values, and finally κ(s) is updated by using θ(s) and ρ(s−1) values.
Whereas the following estimations for the iteratively update of the θ parame-
ters, given ρ and κ values can be obtained by using straightforward Lagrange
multipliers:

µK =

∑
i

∑
j ρiKκjKZ

(K−1)
ij

(
∑

i ρ
2
iK)(

∑
j κ

2
jK)

(2.8)

αiK =

∑
j(Z

(K−1)
ij − µKρiKκjK)κjK

ρiK
∑

jK κ
2
jK

(2.9)

βjK =

∑
i(Z

(K−1)
ij − µKρiKκjK)ρiK

κjK
∑

iK ρ
2
iK

(2.10)

The optimal parameter values for the row and column membership indicators ρ
and κ, which minimises the equation (2.6) are given by:

ρiK =

∑
j θijKκjKZ

(K−1)
ij∑

j θ
2
ijKκ

2
jK

(2.11)

κjK =

∑
i θijKρiKZ

(K−1)
ij∑

i θ
2
ijKρ

2
iK

(2.12)

After repeating the above described cycle predefined S times the algorithm ac-
cepts a bicluster if its importance is significantly larger than one obtained in noise.
Whereas the importance of a layer k is defined by σ2

k =
∑n

i=1

∑m
j=1 ρikκjkθ

2
ijk. The

procedure described above is repeated until a bicluster is rejected due to his small
importance. A short pseudo code of this algorithm is outlined in figure 2.3.

As mentioned above the algorithm requires initial values of ρ and κ. Reasonable
values can be obtained by finding singular vectors u and v and a real value λ
such that λuvT is the closest rank one approximation of Z [Tanay et al., 2005].
However, to obtain such singular vectors one again needs release values for each
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ρ and κ. For more details see the original paper by Lazzeroni and Owen [2000].

Set number of cycles S
Set K = 0
Compute new bicluster:

K = K + 1
Set s = 1
Compute initial values of ρ(0) and κ(0).
While (s ≤ S) do:

Compute µ
(s)
K , α

(s)
K and β

(s)
K using equations (2.8)-(2.10).

Compute κ
(s)
K using equation (2.11).

Compute ρ
(s)
K using equation (2.12).

Set s = s+ 1
Compute the importance σ2

K .
If the importance is larger than by random save bicluster and repeat.
Else exit.

Return biclusters.

Figure 2.3.: A pseudo code of the Plaid algorithm following Tanay et al. [2005].
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3. R package biclust

A slightly adapted version (ordinary least square estimation is replaced by an bi-
nary least square algorithm) of the plaid algorithm was implemented in the statis-
tical computing environment R [R Development Core Team, 2009] by Kaiser and
Leisch [2008]. More precisely, they developed a general framework for biclustering
within R, which besides the plaid model also contains several other bicluster algo-
rithms. For example: Spectral, xMotifs, or the δ-method proposed by Cheng and
Church. However, their package biclust not only provides methods to compute
biclusters, but also a few other useful functions for the preprocessing (binariza-
tion, discretization and normalization) of the data matrix and the validation and
visualization of bicluster results. The package is freely available in version 0.91
on R-Forge [Theußl and Zeileis, 2009].

The function to compute biclusters based on the plaid model, which was used in
this work can be called by the following command (all arguments are set to their
default value):

biclust(x, method=BCPlaid(), cluster="b", fit.model = y ∼ m + a + b,

background = TRUE, row.release = 0.7, col.release = 0.7,

shuffle = 3, back.fit = 0, max.layers = 20, iter.startup = 5,

iter.layer = 10, verbose = TRUE)

Table 3.1 gives a short description of all the arguments which are included in the
function above. After running the function on a data matrix it returns an object
of the class Biclust which contains, among other things, the obtained bicluster.
An overview over all returned slots is given in table 3.2.

3.1. Influence of the Parameters

An earlier thesis written by Felix Herzog dealt with the issue of applying the plaid
model to simulated data. The aim was to figure out how the results differ when
changes in the parameters are made and which parameter settings are the best,
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Parameter Details
x The data matrix in which biclusters should be found.
method Choice of the method. The argument BCPlaid()

performs the plaid algorithm.
cluster "r" clusters rows, "c" columns and "b" (default) both.
fit.model Linear model to be fit. The formular is similar to the

θ parameter in the model description. m is the overall
bicluster constant µ, a the row constant α and b the
column constant β.

background If TRUE the function will allow an overall background
layer in the data matrix.

row.release Threshold to prune rows in the layers. Scalar in [0,1]

with recommended interval [0.5,0.7]
col.release Same as row.release, but for columns.
shuffle Number of random layers to compute the significance

of an observed layer. Default is set to 3.
back.fit Additional iterations to refine the fitting, after a layer

was found (default set to 0).
max.layers Maximum number of bicluster to be found.
iter.startup Number of iterations to find starting values.
iter.layer Number of iterations to find a bicluster.
verbose If TRUE extra information on progress is printed.

Table 3.1.: Overview over the parameters of the biclust function.

Slot Details
Parameters Contains a list of the input parameters.
RowxNumber Logical Matrix which gives the row bicluster membership.

TRUE in [i, j] if row i is in bicluster j.
NumberxCol Same as RowxNumber, but for columns.

TRUE in [i, j] if column j is in bicluster i.
Number Number of observed bicluster.
info Additional information on the bicluster. For example

Sum of Squares (SS) and Mean Sum of Squares (MS)

Table 3.2.: Overview over the return values of the class Biclust.
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given specific data sets. As a result, it can be stated that there is no such thing
like an optimal parameter setting for all possible types of data. Furthermore
it is still not totally clear which parameter settings to use given a specific data
set. In fact, the results are highly dependent on the selected row.release and
col.release values. In contrast, changes in the parameters shuffle, back.fit,
iter.startup and iter.layer do not seem to have a huge effect on the results.
Another important insight is the fact that even with identical parameter settings
the algorithm is likely to observe different biclusters in different runs. However,
given appropriate parameter settings and repeated runs the plaid model is pow-
erful enough to find the real biclusters when applied on simulated data.
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4. Ensemble Methods

As mentioned before, it is not totally clear which parameter settings are the best
for a given data set. Furthermore, it turned out that the plaid method is very
sensitive, also for exactly the same settings (i.e. release levels) the results diver
in an not irrelevant way. All in all these of course are not the ideal conditions
for working with real data sets. However, besides it also turned out that given
appropriate parameter settings and repeated runs the plaid model in fact is able
to find the real biclusters. For these reasons one has to think about a method
which overcomes the disadvantages of unknown parameter settings and differing
results within a particular parametrisation. After all, the plaid model should be
able to obtain the real biclusters without carrying about the settings and different
runs.

Given the fact, that the algorithm indeed is able to observe the real biclusters
one may assume that the real biclusters will be obtained more often than ran-
dom biclusters when the method is applied several times. In contrast, biclusters
which were found at random may occur just once or a very few times, depending
on the number of cycles. These assumptions brings us to the basic idea behind
the proposed ensemble method, which works like follows: After repeatedly ap-
plying the biclust function with different parameter settings several times the
obtained results are merged to an overall result. That are matrices R, indicat-
ing the row bicluster membership of all observed biclusters and C indicating the
column bicluster membership (after transposing the original column-membership
matrices). Since only the row.- and col.release levels seem to have a relevant
influence on the bicluster results only these two values should vary (within its
recommended interval of [0.5, 0.7]) between the different runs, the rest of the pa-
rameters can be set to its default values. Whereas each parametrisation should
be applied multiple times (e.g. 100 times) on the data. In a next step the as-
sembled results are compared with the help of some similarity measure. After
choosing a threshold for the similarity one is able to rate the biclusters according
to their frequency. Following the biclusters which do not share any or a prede-
fined number of similar biclusters are cut off, because they are not likely to be
the real ones. In addition, due to the distribution of the frequency values one
also can decide to cut off a certain quantile of the biclusters which occurred the
least. For example the lower 75%-quantile, so that only a quarter (the 25% of
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biclusters which occurred the most) are kept and said to be the best, in other
words real biclusters according to the proposed ensemble method. Of course,
this value can be modified and one can cut off a larger or smaller quantile of the
biclusters. Following, one has to decide which bicluster per similar biclusters to
keep since one does not want to keep the whole amount of similar biclusters, but
only one. An obvious way is to pursue one of the following approaches: Keep the
biggest bicluster, keep the smallest bicluster or an more sophisticated approach
would include rows respectively columns which are represented in more than a
certain percentage (for example 50%) of the similar biclusters. Here, however,
only a method which keeps the first obtained bicluster per similar biclusters was
implemented.

In order to get the number of similar biclusters one has to think about a method to
compare the whole amount of obtained biclusters. There are two obvious ways to
face this problem, one of which would be, to compare the row and column vectors
of two different biclusters separately. The other way would be to see a bicluster
as a subset and therefore to compare the subsets instead of comparing each
bicluster dimension separately as suggested before. In the following subsections
two approaches are presented and described. In addition, the R-Code of the
introduced methods is given in Appendix D as well as on the attached CD.

4.1. Correlation Approach

The first method which is going to be proposed here is based on the correlation
between the biclusters. More precisely on the separate correlations between each
pairwise row- and column-membership vector combination of the biclusters.

In other words two correlation matrices RCor and CCor, where the elements rCor
ij

and cCor
ij are representing the correlation between the vectors R·j and R·i and the

vectors C·j and C·i respectively are computed. Since the vectors are binary the
correlation had to be calculated with the Φ-coefficient. However, the Φ-coefficient
is in fact equal to the pearson correlation, when applied on two binary variables.
As two biclusters should not only be marked as similar with a match of a hundred
percent (correlation of 1) but also with a small variation in genes or samples one
has to think about appropriate values at which correlation the biclusters should
be marked as similar. An adequate divergence in each dimension is for example
5%, however, one can think of other values as well. Since correlation can not
be equated with percentage divergence one has to figure out which correlation
threshold leads to the desired allowed tolerance. In most cases the dimensions of
the data matrix are extremely different, therefore it is suggested to choose thresh-
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old values tR and tC for each dimension separately. Hence two row, respectively
column vectors i and j are marked as similar when:

rCor
ij ≥ tR (4.1)

cCor
ij ≥ tC (4.2)

Finally, biclusters are set to be similar if both, the row- and column-membership
vectors were marked as similar. Thus, one is able to get the number of similar
biclusters for each obtained bicluster. Following, one can proceed as described in
the section above. That is, cutting of biclusters which occurred just a few times
and deleting similar biclusters in order to get the best ones.

4.2. Jaccard Index Approach

Another method, which follows the approach of looking at a bicluster as a subset
is based on the Jaccard Index [Jaccard, 1901], which is also implemented in the
biclust package. However, a slightly adapted version of the proposed code was
used in this thesis. The Jaccard Index measures the similarity of sample sets and
is defined as the amount of similar elements divided by the size of the union of
two sample sets. Thus, given two biclusters A and B the Jaccard Index is defined
by

JAC(A,B) =
|A ∩B|
|A ∪B| . (4.3)

Hence, two biclusters with one hundred percent similarity have got a jaccard
index of 1 and two biclusters with no similar elements have got a jaccard index of
0. After computing the Jaccard Index for all observed bicluster combinations the
elements jacij of the matrix JAC are representing the Jaccard Index between
bicluster i and j and can be compared with a threshold value tJAC . In other
words, two bicluster i and j are marked as similar when:

jacij ≥ tJAC (4.4)

Again, one has to think about a appropriate threshold value. Since the correlation
approach described in the last section suggests a divergence in each dimension of
about 5%, which is in fact equal to a similarity in elements of around 0.95∗0.95 =
0.9025 ≈ 90% the threshold for this approach could be set to 0.9. However, other
threshold values are worth thinking about. Finally, again one is able to get
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the best biclusters by following the steps proposed in the main section of this
chapter.

4.3. Score

In many situations one might want to know which of the resulting biclusters
(after applying the ensemble method) is the best or whether there are differences
in the quality of the biclusters. In other words, the order of the goodness of the
bicluster could be of interest. In order to rank the resulting biclusters according
to their goodness a simple score could be set up for each bicluster. As mentioned
at the beginning of this chapter the real biclusters will be obtained more often
than random ones. According to that, a bicluster which was found more often is
more likely to be a real bicluster, thus more likely to be a better one. Hence the
score which is proposed here represents how often a specific bicluster was found.
In order to make biclusters obtained with different runs (i.e. different amount
of in total computed models) comparable the score has to be standardised. An
obvious standardisation method is to divide by the number of total runs. Hence,
the score of a resulting bicluster i is defined as

Si =
x

yz
, (4.5)

where x is the number of biclusters which were marked as similar to bicluster i,
y is the number of different parametrisations used in the ensemble method and
z is the number of runs per parametrisation. Since each bicluster could only be
found once per run the score is defined in the interval [0, 1].
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5. Application on real Gene
Expression Data

In this chapter the plaid algorithm alone as well as in combination with the
introduced ensemble methods is applied on real gene expression data. Further-
more, the results obtained with both methods are compared and conclusions on
the right release levels are drawn. Again, the complete R-Code of the following
analyses is given in Appendix D as well as on the attached CD.

5.1. TCGA Data

The TCGA gene expression data contains the RNA expression for cancer samples
of The Cancer Genome Atlas1 project and is so far one of the biggest expression
datasets in the world. ”The Cancer Genome Atlas aims to catalogue and dis-
cover major cancer causing genome alterations in large cohorts of human tumours
through integrated multi-dimensional analysis.”[McLendon et al., 2008] To pro-
vide the data to the research community, all TCGA data are available for the
public at the Data Coordinating Center (DCC)2.

The experiments were performed by the Broad Institute of MIT and Harvard
using the Affymetrix (a manufacturer of DNA microarrays) microarrays in seven
different institutes which are spread all over the United States. However, the
TCGA data set this thesis deals with was already preprocessed by Nicholas D.
Socci from the Computational Group of Memorial Sloan-Kettering Cancer Center
(MSKCC - http://cbio.mskcc.org) in New York City. The Sloan-Kettering Cancer
Center is one of the most important cancer researching and treatment institution
worldwide.

The data consists of the RNA expression level of n = 12042 different human
genes G = (G1, G2, ..., Gn) (genes were given in symbols names) and m = 202

1http://cancergenome.nih.gov/
2http://tcga-data.nci.nih.gov
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samples. Whereas the vector S = (S1, S2, ..., Sm) represents the different types
of brain cancer (type C with 50 samples, M with 63 samples, N with 33 samples
and P with 56 samples). The expression data was transformed with the natural
logarithm, which is a common procedure when dealing with RNA data. Hence
the gene expression matrix looks like the following:

S1 S2 . . . Sm

G1

G2
...
Gn




g11 g12 . . . g1m
g21 g22 . . . g2m
...

...
. . .

...
gn1 gn2 . . . gnm




5.2. Problems with real Data

For testing purposes the plaid algorithm was applied with three different row.-

and col.release settings (0.5, 0.6 and 0.7) on the TCGA data set. Whereas the
model was calculated twice for each release level in order to see whether there
in fact appear different results within a similar parametrisation. The rest of the
parameter were set to the following values:

Parameter value
cluster "b"

fit.model y ∼ m + a + b

background TRUE

shuffle 3

back.fit 1

max.layers 100

iter.startup 3

iter.layer 5

Table 5.1.: Used parameter settings for testing purposes.

To summarize, it can be stated that not only the number of observed biclusters
is quite different within a release level, but also the biclusters seem to be pretty
different as there sizes are unequal. For example, by applying the model with a
release level of 0.6 the algorithm obtained four bicluster in the first run and
two in the second. Corresponding heatmaps of the observed biclusters can be
found in figure 5.1 and 5.2. Indeed there were huge differences in the obtained
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biclusters and obviously there were no bicluster which were found in both runs.
That means, by looking at the observed bicluster results the conclusions outlined
in section 3.1 can be validated. This certainly is a very unsatisfying result for
working with gene expression data and again strengthen the need for a method
which overcomes these limitations.

Bicluster  1  (size  130 x 32 )

4 4 4 4 4 4 4 4 4 3 3 3 1 4 1 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 1 4

orf38ARPC1BFUCA1SLC39A8COL8A2TLR2PLAUSQRDLAPOL6TAPBPLSTEAP3CASP8KCNMB1CCL20CCL2S100A11LOC26010SP100S100A4CTSL1RAB27AANXA4ZMYM6

Bicluster  2  (size  33 x 35 )

3 4 4 4 4 4 4 4 4 4 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

HRH1
FHL3

SOAT1
PLA2G5

TPP1
AHNAK2

TFPI2
TMEM140

MYO1E
TRADD

SLC22A18
COPZ2
STBD1
DRAM

TNFSF4
GSTK1

SLC16A3
YAP1
BCL3

MMP1
MDFIC
FOSL1

PCOLCE
NNMT
TRIP6

C21orf7
SH3BGRL3

SQSTM1
SWAP70

CCDC109B
SERPINB6

F11R
REXO2

Bicluster  3  (size  162 x 41 )

2 2 2 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

SAMSN1SDC2MAN2B1CD53LRRFIP1SLC25A24FPR1ARHGDIBANXA2FCGR2AALOX5APLGALS3ACSL1IL10RAFNDC3BFER1L3C1QACASP4DYNLT3LY96IL1R1RBMS1GPNMBOSTF1MGAT1LPXNSERPINA1LTBP2CAPGHEXBITGAMP4HA2CAPZA1KIAA0247SERPINB1IQGAP1TNFRSF1BRHBDF2TGFBR2HLA−DRB1TLR1LAIR1HLA−DRAFN1CSTACTSBDSEGNSPLS3CD86PTPRCCLEC7ACD74CYBBMAFBLCP2IL4RLYZLCP1WIPF1FCER1GPLAURPYCARDDOCK2NRP1FAM129ANAGAMNDACTSSGLT25D1KYNUTBXAS1GNA15ZNF217MAN2A1CMTM6TYROBPDAB2SCPEP1IFI30TNFAIP8SLC16A3TGOLN2TCIRG1GRNSERPINE1CEBPBTGFBICD44ITGA5NCF4LHFPL2C5AR1GFPT2DPYDEMR2CD93ITGB2IL10RBSLC11A1F13A1STAB1FLJ20273PTPN6HEXACD4MOBKL1BMS4A6ASYNGR2AIM1IFNGR2SRGNSTAT6MFSD1MVPCD163SYKWIPI1TMEM109C1QBGLIPR1HLA−DMAHLA−BADAM12LILRB2SHC1CHI3L1ANXA2P2HCKTIMP1PTGER4CD14MS4A4AEMP3C1orf38ARPC1BRABGAP1LCD164CTSAADPGKTLR2VAMP8CYBAANXA1PTPN18ALOX5RNASE6LGALS1CLEC2BC3AR1MYH9BNIP2MPP1CD2APSMPDL3AVSIG4S100A11SH2B3LAPTM5RAB27AHCLS1CTSC

Bicluster  4  (size  102 x 41 )

4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

HNRPDARHGEF9FBXO11CAMSAP1DCXDPYSL4TMSL8AMOTL2TCEAL2TAGLN3TARDBPHMG2L1TLK2UGT8SAFBZNF85SFPQKIAA1166EHMT2ASRGL1PELI1MAGEH1RBM12NUDT11DGKIHNRPA3BEX1MAP2FAM77CKIF21BWASF1FXYD6RBPJHNRNPRPHF16CBX1TEX10REEP1NOL4PGAP1CAMSAP1L1CRMP1RUFY3TOP2BMLLT11SNX26HMGB3SDCCAG8RBM4RAB33AHNRPDLHDAC2FAM125BSART3GRIA2RP11−35N6.1TOX3SETBCL7AYPEL1FSD1CHD7ELMO1MARCKSL1NOVA1TMEM118RNF144APAK3ERBB3CDK5R1DBN1TMEFF1STMN4ZBTB5TAF5CEP170ALCAMPOGZTCF4SCN3AEPHB1FHOD3RBM14CPSF6DPF1OLIG2SATB1C6orf134BASP1KLHL23GSTA4PODXL2TRODUSP26MYT1RAF1ZNF281GNG4CTCFCLASP2DNM3CXXC4

Figure 5.1.: Bicluster obtained with the first run.

Bicluster  1  (size  61 x 47 )

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

ARHGEF9
FBXO11

CAMSAP1
DCX

DPYSL4
AMOTL2

TLK2
SFPQ

KIAA1166
ASRGL1

RBM12
DGKI
BEX1

FAM77C
KIF21B
WASF1
FXYD6

HNRNPR
PHF16
NOL4

CRMP1
TOP2B

MLLT11
HMGB3

SDCCAG8
RBM4

RAB33A
HNRPDL

SART3
GRIA2

RP11−35N6.1
TOX3

BCL7A
FSD1

MARCKSL1
TMEM118

PAK3
CDK5R1
TMEFF1
STMN4

CEP170
ALCAM

TCF4
SCN3A
FHOD3
RBM14

DPF1
OLIG2
SATB1

C6orf134
KLHL23
GSTA4

PODXL2
TRO

DUSP26
MYT1
GNG4
CTCF

CLASP2
DNM3

CXXC4

Bicluster  2  (size  29 x 40 )

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

HNRPD

STMN1

CSNK1E

TAGLN3

HMG2L1

UGT8

ZNF85

CSE1L

MAP2

RALGPS1

CBX1

TEX10

REEP1

SNX26

ACTR1A

BCOR

FAM125B

SET

YPEL1

IKBKAP

CHD7

RNF144A

TTF1

DBN1

ZBTB5

TAF5

EPHB1

CPSF6

BASP1

Figure 5.2.: Bicluster obtained with the second run.
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5.3. Ensemble Methods

In order to apply the proposed ensemble methods in practice, the plaid algorithm
was applied for row.- and col.release levels varying from 0.51 up to 0.71 in
steps of 0.02 and the settings given in table 5.2. Whereas both release levels
were set equal in each run. Each model was computed 100 independent times on
a cluster computer setup with 50 simultaneous processes, which makes in total
1100 different results of the class Biclust. As mentioned at the beginning of this
chapter the R-Code can be found in Appendix D. Altogether there were T = 6567
biclusters found. Afterwards the different results, which are presented through
the slots RowxNumber and NumberxCol were combined to an overall results matrix.
Thus, as mentioned in chapter 4 one got two new matrices indicating the row
and column bicluster membership of all 6567 results at the same time. Hence,
the new matrix R indicating row membership is of the dimension 12042 by 6567
(n by T ) and the new column membership matrix C is of the dimension 202 by
6567 (m by T ).

Parameter value
cluster "b"

fit.model y ∼ m + a + b

background TRUE

shuffle 3

back.fit 0

max.layers 100

iter.startup 15

iter.layer 30

Table 5.2.: Used parameter settings for the ensemble method.

In the following subsections the two approaches described in chapter 4 are applied
on the 6567 biclusters mentioned above. Besides, their results are compared and
conclusions on the release levels are drawn.

5.3.1. Correlation Approach

First of all, (as described in section 4.1) one has to choose threshold values for the
row- and column-correlation matrices. Due to the extremely different row and
column sizes of the expression matrix the threshold should be chosen different in
each dimension. Examples of different threshold values and their corresponding
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allowed tolerance in rows respectively columns is shown in table 5.3. Obviously,
since small thresholds allow to much variation in big biclusters and large thresh-
olds allow too less variation in small biclusters there is no such thing like a perfect
threshold for all situations. The ideal case would be to have threshold values de-
pending on the size of the expression matrix as well as the size of the bicluster.
But this issue needs further studies, for the moment one needs to strike a balance
between those two extremes. By looking at table 5.3 the row threshold was set to
0.95 and the column threshold to 0.9 since those two values allow the proposed
divergence in each dimension of about 5%. That means, row vectors with a cor-
relation greater than 0.95 and column vectors with a correlation greater than 0.9
are marked as similar. Thus, one is able to get the number of similar biclusters
for each of the 6567 obtained biclusters.

gene threshold
size 0.8 0.85 0.9 0.95

25 0.2 0.16 0.08 0.04
50 0.2 0.14 0.1 0.04
100 0.2 0.14 0.1 0.05
150 0.2 0.14 0.1 0.05
200 0.2 0.15 0.1 0.05
400 0.2 0.15 0.1 0.05

sample threshold
size 0.8 0.85 0.9 0.95

25 0.16 0.12 0.07 0.04
30 0.16 0.14 0.06 0.03
40 0.15 0.13 0.06 0.02
50 0.14 0.12 0.07 0.03
80 0.13 0.09 0.05 0.02
100 0.1 0.08 0.04 0.03

Table 5.3.: The table shows the allowed approximate percentage tolerance in
genes, respectively samples depending on the correlation thresholds
and biclusters sizes. Due to the different row (length = 12042) and
column (length = 202) sizes of the expression matrix the biclusters
sizes are also different in each dimension. Based on this values the
row threshold was set to 0.95 and the column threshold to 0.9, which
allows an variation in each dimension of around 5%.

The numbers of similar biclusters in this data set is shown in figure 5.3. In fact,
the majority of the biclusters was just found once or a few times. However, there
are also a lot of biclusters which were found several times, in some cases up to
124 times. Due to this distribution only the upper 25%-quantile of biclusters (the
ones which occurred the most) were kept. After applying the whole procedure
described in chapter 4 there were 58 out of the 6567 biclusters left and said to be
the real underlying biclusters in the data. The size of the biclusters varied in the
gene dimension between 2 and 450 (median = 139; mean = 153.6) and in the
sample dimension from 28 to 52 (median = 41; mean = 39.3). The biclusters
were found between 25 and 94 times (median = 41; mean = 35.9). In total
8909 genes were included in any bicluster, thereof 1026 of them were unique.
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Which makes an unique-gene-rate (# unique genes /# total genes) of 11.52%.
There were 15 different genes which were included in 29 different biclusters. The
distribution of the bicluster scores is shown in figure 5.5. The positive skewed
distribution again indicates, that there are some biclusters which seem to be
better than the rest, since they have a higher score, hence were found more often.
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Figure 5.3.: Number of biclusters marked as similar for each observed bicluster.
min = 0; 25% − quantile = 0; median = 3; mean = 13.74; 75% −
quantile = 23; max = 124

5.3.2. Jaccard Index Approach

The threshold for the Jaccard Index was set to 0.9 as it allows nearly the same
divergence between two biclusters as with the correlation approach (see section
4.2). Thus biclusters with a Jaccard Index greater than 0.9 were marked as
similar. The quantity of similar biclusters according to this threshold is shown in
figure 5.4, the extremely positively skewed distribution again implies that there
are some biclusters which were found above average.

Again, only the upper 25%−quantile of biclusters were kept, which this time leads
to 63 remaining biclusters. The size of the biclusters varied in the gene dimension
between 2 and 443 (median = 141; mean = 147.8) and in the sample dimension
from 28 to 52 (median = 41; mean = 40.4) which is in fact quite similar to
the results obtained from the correlation approach. The biclusters were found
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Figure 5.4.: Number of biclusters marked as similar for each observed bicluster.
min = 0; 25% − quantile = 0; median = 2; mean = 11.14; 75% −
quantile = 17; max = 99

between 19 and 89 times (median = 25; mean = 29.60). Furthermore the unique-
gene-rate mentioned in the last section is also nearly the same (10.88%). Here
too, the bicluster-score distribution can be found in figure 5.5. By comparing
both scores obtained with the different methods it seems that they have a pretty
similar, although shifted distribution. Which brings us to the question if there
are any differences in the results of both approaches? This issue will be discussed
in the next section.

5.3.3. Results in Comparison

Since both methods described above aim to obtain the best biclusters, it is of
great interest whether they really lead to the same results or not. That is to
the same biclusters. In order to get the similarity between the two results the
obtained biclusters were again compared with the Jaccard Index and a threshold
value of 0.9.

In total there were 43 biclusters which were found in each method. Which makes
a similarity of 68.25% with reference to the results obtained by the Jaccard Index
approach and a similarity of 74.14% with reference to the correlation approach
results. When looking at the biclusters which were not observed with both meth-
ods it turned out that their average score of 0.021 (Jaccard Index approach) is
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Figure 5.5.: Distribution of the bicluster scores. Correlation approach: min =
0.023; 25% − quantile = 0.025; median = 0.028; mean = 0.033;
75% − quantile = 0.034; max = 0.085. Jaccard Index approach:
min = 0.017; 25% − quantile = 0.020; median = 0.023; mean =
0.027; 75%− quantile = 0.028; max = 0.81.

beneath the median (0.023) and the mean (0.027) total score. In contrast, the
average score of biclusters which were obtained with each method is with 0.029
even above the 75%−quantile (0.028) of the total score. In other words, the pro-
posed score indeed seem to provide information about the quality of a obtained
bicluster. Figure 5.6 shows a comparison of the two different score distributions
which indeed indicates that biclusters found with both methods have a higher
score than biclusters just found with one method.

It can be concluded that both methods, for the most part, seem to have marked
the same biclusters as the best ones since their results overlap in a huge way.
Second, the introduced score holds information about the goodness of an observed
bicluster. However, based on these analyses it could not be concluded which of
the introduced methods works better, thus is more powerful.
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Figure 5.6.: Score of biclusters observed with only one method: min = 0.017;
25% − quantile = 0.018; median = 0.019; mean = 0.022;
75% − quantile = 0.021; max = 0.057. Observed with both meth-
ods: min = 0.017; 25% − quantile = 0.021; median = 0.025;
mean = 0.029; 75%− quantile = 0.030; max = 0.81.

5.3.4. Conclusion on the right Release Levels

Even though the proposed ensemble methods appear to be able to find good bi-
clusters without carrying about the row.release and col.release levels there
might still be the question whether there is an optimal release level for all possi-
ble situations. Or rather, if all observed biclusters (after applying the ensemble
method) were generated by the same release level or if they were generated by
different levels. Maybe a certain level is only be able to find a particular type
of bicluster, so that the observed biclusters vary in some specific attributes (e.g.
the bicluster size). Besides, the proposed method requires an high computational
demand since the plaid model has to be computed several times, which could be
avoided in the case one knows optimal release levels. Given these observed biclus-
ters it is therefore from great interest to draw conclusions on their row.release
and col.release levels.
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All the following analyses are only based on the results generated by the Jaccard
Index approach. The correlation approach results are disregarded. Again, the R-
Code is given in Appendix D as well as on the attached CD. An obvious start in
analysing the release levels is to figure out which release settings have generated
the remaining 63 biclusters. It turned out, that every release level has contributed
some biclusters to the final result. However, small values tend to appear more
often than large values. Indeed, this could be just a matter of the fact that small
levels in general seem to obtain more biclusters than large levels. That means,
just by looking at how often a certain release level appears in the results one is
not able to get deeper information about appropriate values. Figure 5.7 shows
the number of observed biclusters for each release after the ensemble method had
been applied and figure 5.8 illustrates the total number of biclusters obtained by
the different release levels. As already mentioned, both graphs illustrate, that
less biclusters have been observed, the larger the release value is.
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Figure 5.7.: Number of resulting
(after applying the
ensemble method) bi-
clusters obtained by
each row.release and
col.release level.
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row.release and
col.release level in
total.

In a next step one might want to know how the proposed score behaves amongst
the different row.- and col.release level. In other words, whether there is a
particular level with a significant high score or not. However, no conclusions
could be drawn from considering the distribution of the score. It rather appears,
that the different score values are randomly spread over the release levels.
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Since it seems that every release level has contributed its part to the result the
question arises whether there are any differences in biclusters obtained with dif-
ferent release values or not. For this reason, one can look at the size of the
biclusters, that is the row, the column and the total (rows∗columns) size. Look-
ing at figure 5.9 suggests, that there are no differences in the column sizes, but in
the row sizes as well as in the total sizes. Whereas the variation in size decreases
with increasing release values. Although the median is highest in the middle
and lower at the ends the mean size also decreases as soon as the release level
increases. Which of course is due to the extremely right skewed distribution at
smaller release levels. This finding implies, that there are indeed differences in
the kind of biclusters a certain release value is able to find.
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Figure 5.9.: The size of the biclusters against the different release levels separate
for rows, columns and the total (rows∗columns) size. The red points
in the right graph symbolises the mean total size.

In order to verify the assumption that each release level finds a different kind of
biclusters one can look at the consistence of the observed biclusters within and
between the release levels. More precisely, at the number of similarly marked
biclusters relative to their row.release and col.release values. In fact, the
diagonal structure of table 5.4 very clearly shows that a bicluster obtained with
a particular release level is besides only obtained by values close to this certain
value (i.e. the one above or below). In other words, a bicluster observed with
a certain release is very unlikely to be observed with a totally different value.
One could wonder if this still holds true when looking at the similarity of each
dimension separately (therefore the Jaccard Index had to be computed for each
dimension separately). It turned out that the similarity amongst bicluster rows
obtained with different release levels behaves the same. That is, bicluster genes
observed with a certain value are unlikely to be observed with an other value.
By contrast, however, the similarity of the bicluster columns does not depend on
the row.release and col.release level. Although the probability of obtaining
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similar bicluster samples decreases the further the release levels are apart (the
corresponding tables can be found in appendix C). The completely different genes
(rows) and samples (columns) sizes of the data matrix might be a explanation
for this effect, since there are way more possibilities to form a cluster in a vector
of the length 12042 (row size) than in a vector of the length 202 (column size).

0.51 0.53 0.55 0.57 0.59 0.61 0.63 0.65 0.67 0.69 0.71

0.51 11124 73 0 0 0 2 0 0 0 0 0
0.53 73 10634 666 0 0 0 0 0 0 0 0
0.55 0 666 6672 16 0 0 0 0 0 0 0
0.57 0 0 16 7954 78 0 0 0 0 0 0
0.59 0 0 0 78 5926 3 0 0 0 0 0
0.61 2 0 0 0 3 4348 47 0 0 0 0
0.63 0 0 0 0 0 47 4932 24 1 0 0
0.65 0 0 0 0 0 0 24 5728 497 0 0
0.67 0 0 0 0 0 0 1 497 5530 178 0
0.69 0 0 0 0 0 0 0 0 178 3572 158
0.71 0 0 0 0 0 0 0 0 0 158 3246

Table 5.4.: The table shows the number of similar marked biclusters between
each release level combination. For example 73 biclusters found with
a row.- and col.release level of 0.51 (0.53 respectively) were also
obtained with a release value of 0.53 (0.51 respectively).

There is the possibility, that two biclusters have not been marked as similar
according to one of the proposed similarity measures although either of them
contains all elements of the other bicluster. Consider the case that a bicluster is
a small subset (i.e. submatrix) of another bicluster but their Jaccard Index has
not exceeded the threshold value. Under this circumstances, these two biclusters
are not marked as similar although they are obviously similar even though with
different dimensions. That means, although there are no biclusters marked as
similar between two release levels which are far apart, nevertheless there could
be potentially similar biclusters between these two values. To see whether biclus-
ter results obtained with large release levels (which in fact tend to find smaller
bicluster) are subsets of biclusters observed with smaller values one has to apply
an slightly modified Jaccard Index. Given two bicluster A, B and |A| > |B| the
index is defined as follows:

J̃(A,B) =
|A ∩B|
|B| . (5.1)
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Hence, a value of 1 means that bicluster B is completely included in bicluster
A. Results obtained with release levels of 0.59, 0.61 and 0.69 were then again
compared with this adjusted Jaccard Index. But in this case only biclusters with
an adjusted Jaccard value of 1 were marked as similar. As one can see from table
5.5 there is indeed a huge amount of biclusters observed with a level of 0.69 which
are submatrices of biclusters obtained with a level of 0.59 or 0.61. Bear in mind,
by applying the normal Jaccard Index to these biclusters there were no biclusters
marked as similar between 0.69 and 0.59 or 0.61 and just 3 between 0.59 and 0.61
(see table 5.4). This suggests, nevertheless there are no accordances between two
release levels which are far apart with the original Jaccard Index, there are still
similar biclusters within these levels. That means, different release levels do not
obtain totally different biclusters, in fact most biclusters obtained by large release
values seem to form submatrices of biclusters observed with smaller values since
they tend to be smaller in size.

0.59 0.61 0.69

0.59 3742 2502 1239
0.61 2502 3686 953
0.69 1239 953 3602

Table 5.5.: The table shows the number of similar marked biclusters between the
three release levels according to a adjusted Jaccard Index of 1.

In summary one can say that each row.release and col.release level has
contributed a part to the final bicluster results. In addition, it appeared that the
size of the observed biclusters is dependent on the release level. More precisely,
the larger the release level, the smaller the observed bicluster. To specify the less
genes are included in a bicluster, since the number of included samples does not
seem to be dependent on the release level. However, it also turned out that there
is a huge ratio of biclusters which are submatrices of biclusters obtained with a
different release value. That means, the different levels do not obtain completely
divers biclusters, for the most part the results just vary in size.
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6. Conclusions and Discussion

This thesis deals with the application of bicluster algorithms on real gene ex-
pression data. Several different methods were studied and validated based on
the bicluster algorithm, the bicluster structure (exclusive rows/columns, non-
overlapping non exclusive, arbitrarily positioned) and the bicluster type (con-
stant values/rows/columns, coherent values and coherent evolution) each method
is able to find. Given these facts, the plaid algorithm was chosen to fit the re-
quirements for the application to genomics data best.

The plaid algorithm, however, has some parameters, which values are free to
choose. Through applying the method to simulated, as well as real data has
been shown, that the results are highly depending on the input parameters, more
precisely on the chosen row.release and col.release levels. Moreover, opti-
mal release values are not known and even with identical parameter settings the
algorithm is likely to observe different biclusters in different runs. To overcome
these restrictions an ensemble method has been proposed in this work.

The introduced ensemble methods are based on the idea that when applying
the plaid algorithm several times with varying release values the real bicluster
are more likely to be found more often than random bicluster. To compare
two biclusters regarding their similarity two methods have been proposed. One
of which makes use of the Jaccard Index and one of the pairwise correlation
between these biclusters. In order to get the number of similar biclusters, thus the
best bicluster one has to set threshold values for the Jaccard Index, respectively
correlation. To figure out which threshold values lead to the best results could
be interest of further studies. For example, it would be good if the correlation
threshold would depend on the size of the data matrix as well as the size of the
bicluster since these two values have an influence on the correlation. However,
this goes beyond this thesis, here the thresholds were set to fixed values. In
addition to the ensemble methods a score is proposed which rates the resulting
bicluster based on their frequency.

By looking at the results (i.e. the obtained bicluster) it turned out that both
methods have found to a large extent the same bicluster. However, based on these
results no conclusions on the optimal row.release and col.release values could
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be drawn. Instead, it appeared that different levels do obtain similar bicluster,
although the size of the biclusters varies amongst the different values. Large
release levels tend to obtain smaller biclusters than smaller values. It might be
meaningful to present the obtained biclusters to biologists in order to see whether
the method has lead to already known and/or biological relevant results.

As mentioned above, further research is required on the choice of optimal thresh-
old values for the similarity measures (i.e. Jaccard Index, respectively correla-
tion). Furthermore, it might be of interest to see how the results change when
row.release and col.release are not set equal in each run but rather vary.
That means when a combination of small and large release values is applied to
the data. All in all in the area of biclustering is still a tremendous need for further
and deeper studies as it is a relatively new field.
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B. Algorithms Summary

Algorithm Type of Bicluster Structure excl.
noise

1 Block Clustering Constant Exclusive Rows or Columns No
2 δ-Method Coherent Values Overlapping (but not likely) Yes
3 CTWC Constant Columns Arbitrarily positioned Yes
4 ISA Coherent Values Arbitrarily positioned Yes
5 Spectral Coherent Values Checkerboard like No
6 xMotifs Coherent Evolution Arbitrarily positioned Yes
7 Plaid Models Coherent Values Arbitrarily positioned Yes
8 GRASP Coherent Values Overlapping (but not likely) Yes
9 pClusters Coherent Values Exclusive Rows or Columns No
10 FLOC Coherent Values Arbitrarily positioned Yes
11 ITWC Coherent Values Exclusive Rows or Columns No
12 Gibbs Constant Columns Exclusive Rows or Columns No
13 PRMs Coherent Values Arbitrarily positioned Yes
14 Enigma Coherent Evolution Arbitrarily positioned Yes
15 VOTE Coherent Values Arbitrarily positioned Yes
16 DCC Constant Checkerboard like No
17 OPSMs Coherent Evolution Arbitrarily positioned Yes
18 δ-Patterns Constant Rows Arbitrarily positioned Yes
19 BBC Coherent Values Exclusive Rows or Columns Yes
20 QUIBIC Coherent Evolution Arbitrarily positioned Yes
21 SAMBA Coherent Evolution Arbitrarily positioned Yes
22 OP-Clusters Coherent Evolution Arbitrarily positioned No
23 LAS Constant Arbitrarily positioned Yes
24 MSB Coherent Values Arbitrarily positioned Yes
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C. Similarity of Biclusters

0.51 0.53 0.55 0.57 0.59 0.61 0.63 0.65 0.67 0.69 0.71

0.51 13546 1280 0 0 0 3 1 1 1 0 0
0.53 1280 13274 1202 0 0 0 0 0 0 0 0
0.55 0 1202 9206 426 0 0 0 0 0 0 0
0.57 0 0 426 8792 191 0 0 0 0 0 0
0.59 0 0 0 191 6742 53 0 0 0 0 0
0.61 3 0 0 0 53 5072 142 7 3 0 0
0.63 1 0 0 0 0 142 6282 25 2 0 0
0.65 1 0 0 0 0 7 25 6134 922 470 0
0.67 1 0 0 0 0 3 2 922 5786 798 10
0.69 0 0 0 0 0 0 0 470 798 4622 239
0.71 0 0 0 0 0 0 0 0 10 239 4200

Table C.1.: The table shows the number of similar marked bicluster rows between
each release level combination.

0.51 0.53 0.55 0.57 0.59 0.61 0.63 0.65 0.67 0.69 0.71

0.51 22492 20524 17025 11444 9800 7999 8194 8084 4745 3603 939
0.53 20524 20774 17933 11971 10041 8109 8407 8154 5174 4073 1280
0.55 17025 17933 17730 14021 11523 7742 7742 7544 4414 3018 158
0.57 11444 11971 14021 16276 13366 10836 9919 9912 5862 4018 1329
0.59 9800 10041 11523 13366 12296 10961 9058 9218 6943 4065 1698
0.61 7999 8109 7742 10836 10961 12572 11278 10768 10115 6436 1956
0.63 8194 8407 7742 9919 9058 11278 11740 11395 9761 6085 1944
0.65 8084 8154 7544 9912 9218 10768 11395 13508 12123 5904 2262
0.67 4745 5174 4414 5862 6943 10115 9761 12123 14618 8159 3939
0.69 3603 4073 3018 4018 4065 6436 6085 5904 8159 7660 4954
0.71 939 1280 158 1329 1698 1956 1944 2262 3939 4954 6750

Table C.2.: The table shows the number of similar marked bicluster columns be-
tween each release level combination.
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D. R-Code and Bash-Script

D.1. jobNewR

The following bash script has been running on a cluster computer setup for each
release level 100 times. Whereas the script below shows an example for a release
value of 0.51. The script had to be adjusted for each release level in order that
the resulting files do not overwrite each other. See attached CD for all files.

#!/bin/bash

#

#$ -clear

#$ -q bigMem.q ,default.q

#

# Set shell for job

#$ -S /bin/bash

#

# Execute job from current working directory

#$ -cwd

#

# merge std error and std out into one file

#$ -j y

#

R="/home/socci/bin/R"

hostname

pwd

logfile="runlogTCGA051__"$SGE_TASK_ID

echo $logfile

time $R CMD BATCH --vanilla $1 $logfile

echo $SGE_TASK_ID , "DONE"
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D.2. runPlaid.r

The R file below has been applied in combination with the bash script mentioned
above in order to run the plaid model on the data. Again, the file is just an
example for the release level 0.51 and had to be adjusted for the rest.

install.packages("biclust")

library(biclust)

# read data and set gene and sample vectors

daNO <- read.table("data/TCGAdata_continues.txt",

header=FALSE , row.names=1, nrows =1)

sample.types <- daNO[1,]

daNO <- read.table("data/TCGAdata_continues.txt",

header=TRUE , row.names =1)

daNO <- as.matrix(daNO)

gene.names <- row.names(daNO)

# set row and col release levels

ROWR <- COLR <- 0.51

# get running number of the computer cluster system

taskID <- as.numeric(Sys.getenv ()[["SGE_TASK_ID"]])

# apply plaid model on the data

RE <- biclust(x=daNO , method=BCPlaid(), cluster="b",

fit.model=y~m+a+b, background=TRUE ,

row.release=ROWR , col.release=COLR ,

shuffle =3, back.fit=0, max.layers =100,

iter.startup =15, iter.layer =30, verbose=TRUE)

#save the results

save(RE , file=paste("out",ROWR ,"_", taskID , ".Rdata",

sep= ""))
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D.3. combine biclust.r

The functions below combine the results in order to make further computations
easier and to reduce the required hard disc space. The combination had to be
split in two functions due to a too large RAM usage.

# function to combine objects of the class biclust

##################################################

combine.results <- function(wd, thr=11, sim =100) {

# set wd to directory which includes the results

setwd(wd)

files <- dir()

ll <- thr

l <- sim

RES <- vector("list", length = ll)

helper <- vector("list", length = l)

# loop through the biclust results

for (mm in (1:ll)) {

rowr <- 0.51 + 0.02 * (mm - 1)

RES[[mm]] <- helper

for (m in (1:l)) {

load(paste(files[mm], "/out", rowr , "_", m,

".Rdata", sep= ""))

# to reduce required disc space

RE@Parameters$Data <- NULL

RES[[mm]][[m]] <- RE

}

}

comb.RES <- RES

save(comb.RES , file="combined_results.RData")

comb.RES

}

# function to combine all obtained biclusters

# after applying the function above in order to

# get an overall result matrix as well as

# vectors including the size of the biclusters

##################################################
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combine.clust <- function(comb.RES) {

rl <- length(comb.RES)

rowsnew <- c()

colsnew <- c()

rsize <- c()

csize <- c()

# loop through results

for (i in 1:rl) {

rll <- length(comb.RES [[i]])

for (j in 1:rll) {

# check if biclusters have been found

if(comb.RES [[i]][[j]]@Number >0) {

# combine biclusters

lee <- nrow(comb.RES [[i]][[j]] @NumberxCol)

rowsnew <- cbind(rowsnew , comb.RES [[i]]

[[j]] @RowxNumber)

colsnew <- cbind(colsnew , t(comb.RES [[i]]

[[j]] @NumberxCol ))

for(t in 1:lee) {

# get dimension of biclusters

rsize <- c(rsize , sum(comb.RES [[i]][[j]]

@RowxNumber[,t]))

csize <- c(csize , sum(comb.RES [[i]][[j]]

@NumberxCol[t,]))

}

}

}

}

comb.clust <- list(rowsnew , colsnew , rsize , csize)

save(comb.clust , file="combined_clust.RData")

comb.clust

}
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D.4. jaccard.r

The following functions are partly based on the Jaccard Index function jaccardind

of the package biclust by Kaiser and Leisch [2008].

# function to compute the original jaccard index

##################################################

jaccard <- function(resr , resc){

jaccardmat <- matrix(nrow=ncol(resr), ncol=ncol(resr))

# loop through all pairwise bicluster combinations

for(i in 1:ncol(resr)) {

# get bicluster 1

alle1 <-resr[,i] %*% t(resc[,i])

for(j in i:ncol(resr)) {

# get bicluster 2

alle2 <-resr[,j] %*% t(resc[,j])

# get union

alle <-alle1 + alle2

loalle <-alle >0

loalle1 <-alle1 >0

loalle2 <-alle2 >0

jaccardmat[i,j]<- (sum(loalle1 )+sum(loalle2)-

sum(loalle ))/sum(loalle)

}

print(paste("Bicluster", i, "done!"))

}

jaccardmat

}

# function to compute the jaccard index separate

# for the rows and columns

##################################################

jaccard.sep <- function(resr , resc){

matrow <- matrix(nrow=ncol(resr), ncol=ncol(resr))

matcol <- matrix(nrow=ncol(resr), ncol=ncol(resr))

# loop through all pairwise bicluster combinations

for(i in 1:ncol(resr)) {
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alle1 <- resr[,i]>0

alle11 <- resc[,i]>0

for(j in i:ncol(resr)) {

alle2 <- resr[,j]>0

alle22 <- resc[,j]>0

alle <- alle1 + alle2

alle12 <- alle11 + alle22

loalle <- alle >0

loalle12 <- alle12 >0

# calculate jaccard index for rows and cols

matrow[i,j] <- ((sum(alle1)+sum(alle2)-sum(loalle ))

/sum(loalle ))

matcol[i,j] <- ((sum(alle11 )+sum(alle22)-

sum(loalle12 ))/sum(loalle12 ))

}

print(paste("Bicluster", i, "done!"))

}

list(matrow , matcol)

}

# function to compute the adjusted jaccard index

##################################################

jaccard.adj <- function(resr , resc) {

jaccardmat <- matrix(nrow=ncol(resr), ncol=ncol(resr))

# loop through all pairwise bicluster combinations

for(i in 1:ncol(resr)) {

# get bicluster 1

clust1 <- resr[,i] %*% t(resc[,i])

for(j in i:ncol(resr)) {

# get bicluster 2

clust2 <- resr[,j] %*% t(resc[,j])

# check which bicluster is smaller

if(sum(clust1)>sum(clust2 )) {

jaccardmat[i,j] <- (sum(clust2[clust1 == clust2 ]>0)

/sum(clust2 ))

}

else {

jaccardmat[i,j] <- (sum(clust1[clust1 == clust2 ]>0)

/sum(clust1 ))

}

}
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print(paste("Bicluster", i, "done!"))

}

jaccardmat

}
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D.5. correlation.r

# function to calculate the correlation between

# the biclusters separate for each dimension

##################################################

get.cor <- function(RES) {

rowsnew <- RES [[1]]

colsnew <- RES [[2]]

rsize <- RES [[3]]

csize <- RES [[4]]

cmr <- cor(rowsnew)

cmc <- cor(colsnew)

diag(cmr) <- 0

diag(cmc) <- 0

ClustCor <- list(rowsnew=rowsnew , colsnew=colsnew ,

rsize=rsize , csize=csize , cmr , cmc)

save(ClustCor , file="ClustCor.RData")

ClustCor

}
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D.6. ensemble method.r

The functions below provide a way to apply the proposed ensemble methods to
pre-computed correlation-, respectively Jaccard Index matrices.

# function to get and plot the number of similar

# biclusters with the Jaccard Index method

##################################################

get.rowsum.jac <- function(rsize , csize , jac , thr=0.9 ,

pdf=FALSE) {

# check if bicluster should be marked as similar

uni <- jac >thr

# count number of similarly marked bicluster

rowsum <- rowSums(uni)

# plot number of similarly marked bicluster

if(pdf==TRUE) {

pdf("SimBox_jac.pdf")

boxplot(rowsum , ylab="Similar Biclusters")

dev.off ()

pdf("SimHist_jac.pdf")

hist(rowsum , xlab="Similar Biclusters", main="")

dev.off ()

}

list(rowsum , uni)

}

# function to get and plot the number of similar

# bicluster with the correlation method

##################################################

get.rowsum.cor <- function(rsize , csize , cmr , cmc ,

thr=c(0.95 ,0.9), pdf=FALSE) {

# check if bicluster should be marked as similar

uni.r <- cmr >thr[1]

uni.c <- cmc >thr[2]

unihelp <- uni.r+uni.c

uni <- unihelp ==2

# count number of similarly marked bicluster
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rowsum <- rowSums(uni)

# plot number of similarly marked bicluster

if(pdf==TRUE) {

pdf("SimBox_cor.pdf")

boxplot(rowsum , ylab="Similar Biclusters")

dev.off ()

pdf("SimHist_cor.pdf")

hist(rowsum , xlab="Similar Biclusters", main="")

dev.off ()

}

list(rowsum , uni)

}

# function to get the best bicluster according

# to the proposed ensemble method and their score

##################################################

excl.bicluster <- function(rowsum , uni , rowsnew ,

quant =0.75) {

# excl. a certain quantile of bicluster

excl <- quantile(rowsum , quant)

for (y in 0:excl) {

rowsum[rowsum ==y] <- FALSE

}

rowsum[rowsum!=FALSE] <- TRUE

clustind <- rowsum

# excl. similar bicluster

for (m in 1: length(rowsum )) {

if (clustind[m]==1) {

helpind <- which(uni[m,]== TRUE)

clustind[helpind] <- FALSE

}

}

# get index of results

clustindtotal <- as.logical(clustind)

# compute bicluster score

score <- (rowSums(uni[clustindtotal , ])+1)/1100
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print(paste("No. of remaining cluster:",

sum(clustindtotal )))

return(list(clustindtotal , score))

}

# function to print and get the results in a

# proper way

##################################################

print.bicluster <- function(clustindtotal , score , rowsnew ,

colsnew , gene.names ,

sample.types , print=TRUE) {

helpind <- which(clustindtotal ==TRUE)

ll <- length(helpind)

genes <- vector(mode="list", length=ll)

gsize <- c()

samples <- vector(mode="list", length=ll)

ssize <- c()

gene.vector <- c()

# loop through results

for (i in 1:ll) {

# get genes/samples/size of resulting bicluster

gene.ind <- rowsnew[,helpind[i]]

sample.ind <- colsnew[,helpind[i]]

gene.help <- gene.names[gene.ind]

gene.vector <- c(gene.vector , gene.help)

sample.help <- sample.types[sample.ind]

gsizehelp <- colSums(rowsnew[,clustindtotal ])[i]

ssizehelp <- colSums(colsnew[,clustindtotal ])[i]

gsize <- c(gsize , gsizehelp)

ssize <- c(ssize , ssizehelp)

genes [[i]] <- gene.help

samples [[i]] <- sample.help

# print resulting bicluster

if(print==TRUE) {

print(" ")

print(paste("CLUSTER",i))

print(" ")

print(paste("Score:", score[i]))
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print(" ")

print(paste(gsizehelp , "genes and", ssizehelp ,

"samples"))

print(" ")

print("Genes:")

print(genes[[i]])

print(" ")

print("Samples:")

print(samples [[i]])

print(" ")

print("----------------------------------------

----------------------")

}

}

# print highest/lowest score and summary

if(print==TRUE) {

print(" ")

print("Cluster with the highest score:")

print(which(score ==max(score )))

print("Cluster with the lowest score:")

print(which(score ==min(score )))

print("Score summary:")

print(summary(score ))

print(" ")

print("------------------------------------------

--------------------")

}

list(gsize , ssize , genes , samples)

}

# final function which combines the functions

# above , for the correlation method

##################################################

get.bicluster.cor <- function(ClustCor , gene.names ,

sample.types , quant=0.75 ,

thr=c(0.95 ,0.9),

print=TRUE , boxplot=FALSE) {

rowsnew <- ClustCor [[1]]

colsnew <- ClustCor [[2]]

rsize <- ClustCor [[3]]
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csize <- ClustCor [[4]]

cmr <- ClustCor [[5]]

cmc <- ClustCor [[6]]

# get number of similar bicluster

help <- get.rowsum.cor(rsize , csize , cmr , cmc ,

thr , pdf=boxplot)

rowsumhelp <- help [[1]]

uni <- help [[2]]

# excl. bad and similar bicluster

Clusterhelp <- excl.bicluster(rowsumhelp , uni ,

rowsnew=rowsnew , quant=quant)

clustindtotal <- Clusterhelp [[1]]

score <- Clusterhelp [[2]]

# print and get results

Print <- print.bicluster(clustindtotal , score , rowsnew ,

colsnew , gene.names , sample.types ,

print=print)

list(genes=Print [[3]], samples=Print [[4]], score=score ,

clustindtotal=clustindtotal , rowsumhelp=rowsumhelp ,

gsize=Print [[1]] , ssize=Print [[2]])

}

# final function which combines the functions

# above , for the Jaccard Index method

##################################################

get.bicluster.jac <- function(ClustJac , gene.names ,

sample.types , quant=0.75 ,

thr=0.9 , print=TRUE ,

boxplot=FALSE) {

rowsnew <- ClustJac [[1]]

colsnew <- ClustJac [[2]]

rsize <- ClustJac [[3]]

csize <- ClustJac [[4]]

jac <- ClustJac [[5]]

# get number of similar bicluster

help <- get.rowsum.jac(rsize , csize , jac , thr ,

pdf=boxplot)

rowsumhelp <- help [[1]]
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uni <- help [[2]]

# excl. bad and similar bicluster

Clusterhelp <- excl.bicluster(rowsumhelp , uni ,

rowsnew=rowsnew , quant=quant)

clustindtotal <- Clusterhelp [[1]]

score <- Clusterhelp [[2]]

# print and get results

Print <- print.bicluster(clustindtotal , score , rowsnew ,

colsnew , gene.names , sample.types ,

print=print)

list(genes=Print [[3]], samples=Print [[4]], score=score ,

clustindtotal=clustindtotal , rowsumhelp=rowsumhelp ,

gsize=Print [[1]] , ssize=Print [[2]])

}
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D.7. calculations.r

In this R-code the TCGA data set is applied to the ensemble method. In addi-
tion, the resulting biclusters are analysed and compared between the proposed
methods.

# computing the best bicluster

##################################################

# load necessary functions

source("combine_biclust.r")

source("jaccard.r")

source("correlation.r")

source("ensemble_method.r")

# set setwd to the directory which includes the

# biclust results ’051’ to ’071’ and combine results

comb.RES <- combine.results("setwd", thr=11, sim =100)

RES <- combine.clust(comb.RES)

# compute the correlation and

# Jaccard Index between the bicluster

ClustCor <- get.cor(RES)

ClustJac_help <- jaccard(RES$rowsnew , RES$colsnew)

# make diagonal matrix

lower <- lower.tri(ClustJac_help , diag=FALSE)

ClustJac_help[lower] <- t(ClustJac_help)[lower]

diag(ClustJac_help) <- 0

ClustJac <- list(RES$rowsnew , RES$colsnew , RES$rsize ,

RES$csize , ClustJac_help)

save(ClustCor , file="RData/ClustCor.RData")

save(ClustJac , file="RData/ClustJac.RData")

# read data and set gene and sample vectors

daNO <- read.table("data/TCGAdata_continues.txt",

header=FALSE , row.names=1, nrows =1)

sample.types <- daNO[1,]

daNO <- read.table("data/TCGAdata_continues.txt",

header=TRUE , row.names =1)

daNO <- as.matrix(daNO)

gene.names <- row.names(daNO)

53



# get best bicluster according to the proposed methods

ResCor <- get.bicluster.cor(ClustCor , gene.names ,

sample.types , quant=0.75 ,

thr=c(0.95 ,0.9), print=TRUE ,

boxplot=TRUE)

ResJac <- get.bicluster.jac(ClustJac , gene.names ,

sample.types , quant=0.75 ,

thr=0.9 , print=TRUE ,

boxplot=TRUE)

save(ResCor , ResJac , file="RData/Results.RData")

# comparing both results

##################################################

# bicluster dimensions

summary(ResCor$gsize)

summary(ResCor$ssize)

summary(ResJac$gsize)

summary(ResJac$ssize)

# number of biclusters marked as similar

summary(ResCor$rowsumhelp)

summary(ResJac$rowsumhelp)

# score of the bicluster

Score <- c(ResCor$score , ResJac$score)

Approach <- c(rep("Correlation Approach",

length(ResCor$score)),

rep("Jaccard Index Approach",

length(ResJac$score )))

score <- data.frame(Score , Approach)

pdf("images/score.pdf")

boxplot(score$Score~score$Approach , ylab="Score")

dev.off ()

summary(ResCor$score)

summary(ResJac$score)

# unique gene rate

helpCor <- do.call("c", ResCor$genes)

ngenesCor <- length(helpCor)

ugenesCor <- length(unique(helpCor ))

rateCor <- ugenesCor/ngenesCor
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rateCor

helpJac <- do.call("c", ResJac$genes)

ngenesJac <- length(helpJac)

ugenesJac <- length(unique(helpJac ))

rateJac <- ugenesJac/ngenesJac

rateJac

# most represented gene

nCor <- rep(NA ,ugenesCor)

for (ii in 1: ugenesCor) {

help <- which(helpCor == unique(helpCor )[ii])

nCor[ii] <- length(help)

}

mnCor <- max(nCor)

help2 <- which(nCor==mnCor)

gnameCor <- unique(helpCor )[help2]

mnCor

gnameCor

nJac <- rep(NA ,ugenesJac)

for (ii in 1: ugenesJac) {

help <- which(helpJac == unique(helpJac )[ii])

nJac[ii] <- length(help)

}

mnJac <- max(nJac)

help2 <- which(nJac==mnJac)

gnameJac <- unique(helpJac )[help2]

mnJac

gnameJac

# comparing the results with the Jaccard Index

rowsnew <- comb.clust [[1]]

colsnew <- comb.clust [[2]]

rsize <- comb.clust [[3]]

csize <- comb.clust [[4]]

rowsnewtotal <- cbind(rowsnew[,ResJac$clustindtotal],

rowsnew[,ResCor$clustindtotal ])

colsnewtotal <- cbind(colsnew[,ResJac$clustindtotal],

colsnew[,ResCor$clustindtotal ])

JacCompare <- jaccard(rowsnewtotal , colsnewtotal)

lower <- lower.tri(JacCompare , diag=FALSE)

JacCompare[lower] <- t(JacCompare )[lower]

diag(JacCompare) <- 0
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save(JacCompare , file="RData/JacCompare.RData")

unitotal <- JacCompare >0.9

unitotal12 <- unitotal [1:63 ,64:121]

unitotal21 <- unitotal [64:121 ,1:63]

rowsumhelp12 <- rowSums(unitotal12)

rowsumhelp21 <- rowSums(unitotal21)

rowsumhelp12[rowsumhelp12!=0] <- 1

rowsumhelp21[rowsumhelp21!=0] <- 1

sum(rowsumhelp12)

sum(rowsumhelp21)

# compare score of biclusters found with both

# and just found with one method

summary(ResJac$score[which(rowsumhelp12 ==0)])

summary(ResJac$score[which(rowsumhelp12 ==1)])

ScoreC <- c(ResJac$score[which(rowsumhelp12 ==0)],

ResJac$score[which(rowsumhelp12 ==1)])

Kind <- c(rep("one method",

length(ResJac$score[which(rowsumhelp12 ==0)])) ,

rep("both methods",

length(ResJac$score[which(rowsumhelp12 ==1)])))

scorec <- data.frame(ScoreC , Kind)

pdf("images/score_compare.pdf")

boxplot(scorec$ScoreC~scorec$Kind , ylab="Score")

dev.off ()

# conclusions on the right release level

# with results obtained by the Jaccard Index

##################################################

# number of observed biclusters for each run

nb <- matrix(nrow=11,ncol =100)

nbv <- c()

for (i in 1:11) {

for (j in 1:100) {

nbv <- c(nbv , RES[[i]][[j]] @Number)

}

}

# vector of release level belonging to each result
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thr <- sort(rep(seq(0.51 ,0.71 ,0.02), 100))

thr.total <- rep(thr , nbv)

# observed bicluster vs. release level

pdf("images/release2.pdf")

boxplot(nbv~thr , xlab="Release Level",

ylab="Obtained bicluster")

dev.off ()

# run number of resulting bicluster

br <- rep (1:1100 , nbv)

nr <- br[ResJac$clustindtotal]

# bicluster number of resulting bicluster

ind2 <- which(ResJac$clustindtotal ==TRUE)

# amount of resulting biclusters per release

table(thr[nr])

pdf("images/release.pdf")

barplot(table(thr[nr]), ylim=c(0,10),

xlab="Release level", ylab="Frequency")

dev.off ()

# score vs. release level

scoreJac <- ResJac$score

pdf("images/score_release.pdf")

plot(scoreJac~thr.total[ind2], xlab="Release level",

ylab="Score")

dev.off ()

# bicluster -size vs. release level

gr <- rsize*csize

m051 <- mean(gr[thr.total ==0 .51])

m053 <- mean(gr[thr.total ==0 .53])

m055 <- mean(gr[thr.total ==0 .55])

m057 <- mean(gr[thr.total ==0 .57])

m059 <- mean(gr[thr.total ==0 .59])

m061 <- mean(gr[thr.total ==0 .61])

m063 <- mean(gr[thr.total ==0 .63])

m065 <- mean(gr[thr.total ==0 .65])

m067 <- mean(gr[thr.total ==0 .67])

m069 <- mean(gr[thr.total ==0 .69])

m071 <- mean(gr[thr.total ==0 .71])

par(mfrow=c(1,3))
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pdf("images/size.pdf")

boxplot(rsize~thr.total ,xlab="Release level",

ylab="row size")

boxplot(csize~thr.total ,xlab="Release level",

ylab="column size")

boxplot(gr~thr.total ,xlab="Release level",

ylab="total size")

points (1:11, c(m051 , m053 , m055 , m057 , m059 , m061 ,

m063 , m065 , m067 , m069 , m071), type="b", col="red")

dev.off ()

# similar biclusters between each release level

JAC01 <- ClustJac [[5]] >0.9

similar.thr <- c()

for (y in seq(0.51 ,0.71 ,0.02)) {

for (x in seq(0.51 ,0.71 ,0.02)) {

yhelpindex <- thr.total ==y

xhelpindex <- thr.total ==x

similar.thr <- c(similar.thr , sum(

c(JAC01[yhelpindex , xhelpindex ])))

}

}

similar_total <- matrix(similar.thr , ncol =11)

similar_total

# separate for rows and columns

Jac_sep <-jaccard.sep(rowsnew , colsnew)

jacr <- Jac_sep [[1]]

jacc <- Jac_sep [[2]]

lower <- lower.tri(jacr , diag=FALSE)

jacr[lower] <- t(jacr)[ lower]

diag(jacr) <- 0

lower <- lower.tri(jacc , diag=FALSE)

jacc[lower] <- t(jacc)[ lower]

diag(jacc) <- 0

save(jacr , jacc , file="RData/JacSeparate.RData")

jacr01 <- jacr >0.9

jacc01 <- jacc >0.9

similar.thr <- c()

for (y in seq(0.51 ,0.71 ,0.02)) {

for (x in seq(0.51 ,0.71 ,0.02)) {

yhelpindex <- thr.total ==y
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xhelpindex <- thr.total ==x

similar.thr <- c(similar.thr , sum(

c(jacr01[yhelpindex , xhelpindex ])))

}

}

similar_sepr <- matrix(similar.thr , ncol =11)

similar.thr <- c()

for (y in seq(0.51 ,0.71 ,0.02)) {

for (x in seq(0.51 ,0.71 ,0.02)) {

yhelpindex <- thr.total ==y

xhelpindex <- thr.total ==x

similar.thr <- c(similar.thr , sum(

c(jacc01[yhelpindex , xhelpindex ])))

}

}

similar_sepc <- matrix(similar.thr , ncol =11)

similar_sepr

similar_sepc

# adjusted jaccard index on results

# with an level of 0.59 , 0.61 , 0.69

subrows1 <- rowsnew[,thr.total ==0.59]

subrows2 <- rowsnew[,thr.total ==0.61]

subrows3 <- rowsnew[,thr.total ==0.69]

subrows <- cbind(subrows1 , subrows2 , subrows3)

subcols1 <- colsnew[,thr.total ==0.59]

subcols2 <- colsnew[,thr.total ==0.61]

subcols3 <- colsnew[,thr.total ==0.69]

subcols <- cbind(subcols1 , subcols2 , subcols3)

Jac_adj <- jaccard.adj(subrows , subcols)

save(Jac_adj , file="RData/JacAdj.RData")

Jac_adj1 <- Jac_adj==1

thr.new <- rep(c(0.59 , 0.61 , 0.69), c(sum(thr.total ==0 .59),

sum(thr.total ==0.61), sum(thr.total ==0.69)))

similar.thr <- c()

for (y in c(0.59 , 0.61 , 0.69)) {

for (x in c(0.59 , 0.61 , 0.69)) {

yhelpindex <- thr.new ==y
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xhelpindex <- thr.new ==x

similar.thr <- c(similar.thr , sum(c(

Jac_adj1[yhelpindex , xhelpindex ])))

}

}

similar_adj <- matrix(similar.thr , ncol =3)

similar_adj
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E. CD-ROM

The attached CD-ROM contains the whole R-Code and Bash-Script described
above, as well as the TCGA data set, the resulting .RData files, the generated
graphics and a digital version of the thesis in hand. An small overview over the
content of the included folders is given below:

I biclust: R files and bash scripts to run the plaid model for all release levels.

I data: TCGA data set in .txt format.

I images: All generated graphics in .pdf format.

I RData: R workspace files in .RData format.

. R files in .r format.

. Readme file in .txt format.

. This thesis in .pdf format.
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