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Single-cell multiomics in neuroinflammation 
Florian Ingelfinger1,2, Eduardo Beltrán3,4,5 ,  
Lisa A Gerdes3,4,5 and Burkhard Becher1   

The central nervous system (CNS) is, more than other organs, 
particularly vulnerable to inflammation and immune responses 
must be tightly controlled in order to maintain host protection. 
Accordingly, neuroinflammation is an orchestrated process 
involving various cell types that may dramatically change their 
phenotypic and functional properties upon entering the CNS. 
Recent advances in single-cell multiomics offer the unique 
opportunity to resolve this cellular heterogeneity in a holistic 
fashion and reshape our understanding of the molecular and 
cellular processes during neuroinflammation. Here, we provide 
an overview of technical advances in single-cell multiomics and 
the tremendous impact on our basic understanding of 
neuroinflammation. We discuss insights obtained in 
neuroinflammatory diseases and elaborate to which extent 
these tool sets could be applied in a clinical setting. 
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Introduction 
Advances in multiomics have provided a rich selection of 
tools that can be applied to retrieve various cellular 
properties involved in heterogenous cellular networks 
during neuroinflammation. Multimodal single-cell 

technologies can, for example, simultaneously retrieve 
the surface proteome, the transcriptome and the chro-
matin accessibility of individual cells [1]. This highly 
parallelised approach, therefore, provides a unique op-
portunity to construct a reference framework of inter-
connected modalities across single cells that can be used 
to infer causality [2] or to predict one modality by 
measuring another one as demonstrated in individual 
studies before [3,4]. Accordingly, single-cell multimodal 
omics have been elected method of the year in 2019 [5]. 
Application of those tools holds great promise to tackle 
some of the largest unsolved challenges in basic neu-
roimmunology as well as provide critical insights about 
neuroinflammatory diseases in patients. In the following 
sections, we will introduce recent developments in 
single-cell multiomics technologies and assess to which 
extent these developments have already transformed the 
field of neuroinflammation. 

Technical advances in single-cell multiomics 
Flow cytometry was the first technology that could re-
liably quantify features among thousands of individual 
cells when it was introduced in 1965 [6]. The advantage 
of resolving cellular heterogeneity in biological systems 
by studying single cells during the following decades 
prompted omics technologies to adapt to the demand for 
single-cell resolution. Nowadays, single-cell RNA se-
quencing (scRNA-seq) has become the gold standard in 
single-cell profiling and is commercially available for a 
broad range of applications [7]. Yet, multiple additional 
omics technologies have reached single-cell resolution, 
each capturing a different modality of cellular function. 
For instance, scDNA-seq has been introduced to capture 
genome information of individual cells and has demon-
strated its full potential by tracing clonal trajectories in 
acute myeloid leukaemia patients [8,9]. Epigenetic in-
formation of single cells has been obtained by single-cell 
assays for transposase-accessible chromatin sequencing  
[10], single-cell DNA methylation profiling [11] and the 
assessment of chromosome conformation [12] or histone 
modifications [13]. Additionally, assays detecting inter-
actions between RNA and RNA-binding proteins and 
profiling of ribosomes in individual cells provided an 
unprecedented measure of single-cell translation [14,15]. 
Direct single-cell proteomics using mass spectrometry 
has greatly benefited from novel protocols and technical 
advances [16] but remains largely limited by the low 
protein coverage and sensitivity due to the absence of 
signal amplification compared to oligonucleotide-based 
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technologies. Thus, proteins are currently quantified 
using indirect measurements derived from fluorophore- 
tagged, heavy metal-tagged or oligonucleotide-tagged 
antibodies [17]. To circumvent spill and spread errors of 
conventional flow cytometry while retrieving the surface 
proteome of a cell, Infinity Flow combines flow cyto-
metry and machine learning. Using repetitive measure-
ments of a common backbone panel and one variable 
infinity marker, Infinity Flow generates a predicted 
single-cell dataset of 100s of proteins [18] (Figure 1). 

Albeit still at its infancy, metabolomics benefitted from 
exciting novel approaches to retrieve information about 
lipids [19] or glycans [20] in individual cells providing a 
promising outlook to what may be possible in the close 
future. Advances in multiomics did not necessarily depend 
on complicated experimental designs. Neural networks 
have been demonstrated to be able to retrieve morpholo-
gical information from brightfield images of single cells that 
was sufficient to reliably classify the cell and reveal po-
tential haematological alterations [21]. Similarly, morpho- 
kinetic features have been extracted from intravital mi-
croscopy to retrieve behavioural states of individual cells 
that could be applied to classify cells and further identify 
cellular states, determined by the underlying genetics and 
protein content, that could be associated with pathogenic 
inflammation [22]. All these technologies provide a fasci-
nating outlook on the way individual cells could be 

characterised in the future that goes far beyond the analysis 
of their transcriptomes and epitopes. 

Recent discoveries in basic 
neuroinflammation uncovered by multiomics 
The role of the immune system in triggering neuroin-
flammation remains largely enigmatic. The use of animal 
models has proven to be extremely useful to identify the 
most important inflammatory mediators that trigger neu-
roinflammation in human diseases. For example, initial 
therapy research in multiple sclerosis (MS) has been lar-
gely driven by results obtained from experimental auto-
immune encephalomyelitis (EAE). However, none of the 
existing models can fully recapitulate human pathology  
[23]. That is not only due to interspecies variability but 
also from the fact that EAE induction requires the use of a 
driver antigen (often a myelin peptide) or transgenic an-
tigen receptors genetically engineered to target the CNS. 
The situation in MS is of course far more complex and the 
original trigger of MS remains unknown. Both in MS and 
EAE, the adaptive immune system, in particular, is con-
sidered to be a central mediator of neuroinflammation. 
EAE is a CD4+ T-cell mediated autoimmune disease. 
However, each subset, as well as each effector and reg-
ulatory T cell phenotype plays a decisive role in the pa-
thogenesis of EAE. Recent single-cell studies have 
highlighted that CD4+ T cells subsets are more hetero-
geneous and plastic than previously anticipated [24]. 

Figure 1  
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Single-cell multiomics detect an unprecedented variety of cellular features. Schematic overview of a cell with highlighted cellular components, 
properties or processes that can currently be captured in single-cell resolution using multiomic technologies.   
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Combining scRNA-seq and T cell receptor (TCR) se-
quencing (TCR-seq) allows to trace phenotype changes of 
individual T cell clones across tissues during neuroin-
flammation. Schnell et al. showed that non-pathogenic IL- 
17 producing Th cells cell can acquire an IL-23-driven 
encephalitogenic response characterised by a GM-CSF+ 

(granulocyte macrophage colony-stimulating factor) IFN- 
γ+ (Interferon gamma) CXCR6+ (C-X-C chemokine re-
ceptor type 6) phenotype [25]. In line with this finding, 
using scRNA-seq and mass cytometry Rasouli et al. pro-
vide compelling evidence that GM-CSF-producing T 
cells are the principal trigger of neuroinflammation in 
EAE [26]. Hiltensperger et al. demonstrated that the 
phenotype of brain infiltrating encephalitogenic CD4+ T 
cells is acquired at the priming site and maintained in the 
brain [27]. Encephalitogenic CXCR6+ T cells reaching the 
CNS were predominantly primed in draining inguinal 
lymph nodes and infiltrated both grey and white matter, 
while T cells primed in the gut-draining mesenteric 
lymph nodes were primarily recruited to white matter [27]. 
Once in the CNS, encephalitogenic T cells will potentially 
become reactivated by encountering their self-cognate 
antigens. In such a scenario, inflammation per se will cause 
the activation of the resident myeloid cells in the brain, 
microglia and other CNS-associated macrophages (CAMs). 
Using high-dimensional single-cell multiomics analyses 
Amorim et al. linked the role of GM-CSF and IFN-γ in 
the transition of Ly6C+ monocytes into mature pathogenic 
phagocyte subsets during neuroinflammation [28]. Giladi 
et al. applied index and transcriptional single-cell sorting 
to characterise a population of pathogenic phagocytes in 
EAE, which did not derive from Ly6C+ monocytes but 
from early myeloid cell progenitors [29]. Other single-cell 
studies have focused on phenotypic changes in microglia 
and CAMs during neuroinflammation. Jordão et al. gen-
erated a comprehensive atlas of the transcriptome of the 
myeloid cell compartment and the role of individual 
subsets during neuroinflammation [30]. 

Unlike in EAE, the inflammatory reaction in the brain of 
patients with MS is dominated by CD8+ T-cell in-
filtrates [31–33]. Using single-cell paired TCR sequen-
cing Saligrama et al. demonstrate that expanded CD8+ T 
cells are unresponsive to myelin in EAE but rather 
suppress myelin oligodendrocyte glycoprotein-specific 
encephalitogenic CD4+ T cells [34]. 

Multiomics in the context of human 
neuroinflammation 
Access to early and immunologically active human 
brain tissue samples is very limited. Key insights of 
neuroinflammatory diseases have been generated by 
analysing leucocytes present in the cerebrospinal fluid 
(CSF), which is routinely collected for diagnostic 
purposes at modest risk. In the recent years, few 
single-cell RNA-seq studies investigated CSF of 

patients with MS and generated an unprecedented 
view of the immune landscape in this leucocyte-en-
riched fluid filling and surrounding the brain [35–38]. 
By combining scRNA-seq with TCR-seq, B cell re-
ceptor (BCR) sequencing and cellular indexing epi-
topes, Beltrán et al. demonstrated that the earliest 
experimentally approachable stage of MS, prodromal 
MS, is characterised by a synergistic activation of the 
adaptive immune system, with a strong contribution of 
recently activated, clonally expanded CD8+ T cells 
displaying a tissue-resident memory phenotype [39]. 

Even though under inflammatory conditions some CSF 
leucocytes adapt a tissue-resident phenotype, the CSF cell 
composition is altered by periodic infiltration of blood- 
derived immune cells. Since peripheral blood is a more 
accessible and targetable compartment than the CSF, an 
integrated analysis of CSF and blood to identify the per-
ipheral immune cells invading the brain is crucial for 
preventing, monitoring and treating neuroinflammatory 
diseases. Combining cellular indexing of transcriptomes 
and epitopes sequencing (CITE-seq) on peripheral blood 
with spatial RNA sequencing, Kaufmann et al. identified a 
CNS-colonising T cell subset that could be targeted in the 
peripheral blood to limit its invasion of the brain and 
therefore prevent progression of MS [40]. Using mass 
cytometry Galli et al. identified a population of GM-CSF+ 

CXCR4+ CD4+ T helper cells expanded in the peripheral 
blood of relapsing-remitting MS (RRMS) patients that was 
enriched in the CSF compared to peripheral blood [41]. In 
two integrated single cell analyses of blood and CSF, 
compelling evidence of cell-type diversity in the CSF was 
provided with a dominant T helper cytotoxic phenotype 
and active intrathecal interaction of T and B cells [35,38]. 
Of note, while T cells are always present in the CSF both, 
during steady-state and under inflammatory conditions, 
single-cell analysis studies have shown that very few B 
cells and in particular plasmablasts can be found in the 
CSF of healthy patients [38,39]. Ramesh et al. show that B 
cells in the CSF of patients with MS adapt an in-
flammatory clonally expanded memory and plasmablast 
phenotype but did not investigate specificity of these 
antibodies [38]. No evidence for constitutive Epstein–Barr 
Virus (EBV) transcription, or other neurotropic viruses, in 
B cells of patients with MS was provided [38]. Recently, a 
single-cell BCR repertoire sequencing study revealed that 
B cells of patients with MS produce antibodies that cross- 
bind EBV antigen EBNA1 and GlialCAM in the CNS  
[42]. The authors further identified CD8+ T cells re-
sponding against GlialCAM [42]. These results support 
the long-standing theory of EBV as a trigger and most 
dominant environmental risk factor for MS [43]. More-
over, mass cytometry and CITE-seq analyses of mono-
zygotic twin pairs discordant for MS revealed a 
dysregulated IL-2/CD25 axis in Th cells of MS twins as 
environmental immune perturbation that was in-
dependent of the genetic predisposition [44]. 
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Unlike fresh material such as CSF and peripheral blood, 
the study of post-mortem brain tissue in single-cell re-
solution is only possible by single-nuclei RNA-seq 
(snRNA-seq). Studies using snRNA-seq on post-mortem 
brain samples from patients with MS and unaffected 
controls revealed alterations in oligodendrocytes [45] 
and transcriptome changes in cortical neurons and glial 
cells [46], which could be key for understanding the 
synergistic role during MS progression. 

Transformative value of multiomics in clinical 
neuroimmunology 
Multiomics offering a combination of deep, broad and ide-
ally unbiased (hypothesis-generating) analyses is of utmost 
importance when it comes to clinical research fostered by 
several limitations related to access of precious biomaterial. 
This holds especially true for compartmentalised or pro-
cessed tissues, such as CSF, brain biopsy or autopsy mate-
rial, which in addition feature low cell numbers to harvest. 
At the current state, multiomics are restricted to basic re-
search and have not entered clinical routine diagnostics due 
to high costs and expenditure of time. 

However, applied broad profiling technologies are a pre-
requisite to identify novel biomarkers that will be trans-
lated from bench to bedside. In perspective, the 
integration of big data sets generated with this valuable 
tool box will provide the opportunity to support clinical 
decision-making processes in the close future. The 
transformative value of this approach into a clinical setting 
will be critically dependent on the low-threshold interac-
tion between treating physicians and basic researchers. 
Assessment of these complex datasets needs to be flanked 
by machine learning algorithms to leverage and prepare 
the relevant data for an individualised precision diagnostic 
process as well as personalised treatments. This line of 
action is already established in oncology and enables tai-
lored therapy with off-label treatments according to the 
genetic profile of the individual tumour. The landscape in 
clinical neuroimmunology has largely expanded during 
the last years, ranging from an increased variety of neu-
roimmunological diseases to the discovery of new disease 
entities and is accompanied by modification of diagnostic 
criteria. Most importantly, high-dimensional single-cell 
technologies revealed various underlying disease me-
chanisms having a direct impact on the choice of suitable 
therapy from an ever-increasing armamentarium to target 
autoimmune diseases. This poses an urging clinical need 
for per-patient specific treatments since clinical evidence 
confirms that a ‘one-size-fits-all’ approach in autoimmune 
diseases is not effective. Examples are immunoglobulin G 
(IgG) antibody-mediated diseases, such as neuromyelitis 
optica spectrum disorders (NMOSD, aquaporin-4-Ab) 
versus myelin oligodendrocyte glycoprotein antibody-as-
sociated disease (MOGAD). Single-cell transcriptome 
profiling comparing these two disease entities provided a 

predictive discrimination and might be more reliable 
during different disease stages compared to antibody titres 
themselves [47]. Whereas in NMOSD significant treat-
ment response to B-cell-depleting therapy (rituximab, 
ocrelizumab) or complement inhibition is well established, 
treatment response in MOGAD remains limited [48]. 
Comprehensive ex vivo analyses revealed a divergent 
mode of action for pathogenic anti-MOG IgG antibodies 
and explain an impaired functional response to treatment 
and hence other strategies have to be pursued such as 
anti-IL-6 treatment [49]. Another important aspect is the 
yield of novel biomarkers to decipher risk factors that at 
best might even transform into strategies for the preven-
tion of disease, for example, based on Lanz et al. a po-
tential benefit of an EBV vaccination on MS risk is under 
debate [42,43]. 16sRNA sequencing in combination with 
metagenomics of the gut microbiome might be a game 
changer in understanding trigger factors that are accessible 
to intervention [50]. Intensive and multifaceted mon-
itoring of patients or patients with a high familial risk of 
MS — such as monozygotic twins with discordance for MS 
or family member of people with MS — might lead to the 
establishment of interventions to avoid conversion from a 
prodromal phase to clinical manifest disease [39]. New 
insights into the complex mode of action of commonly 
used medications, such as steroids or interferons have 
been provided by a thorough analysis of the methylome 
leading to a better understanding of short-term and long- 
term treatment responses and might serve as biomarkers 
for individual treatment response [51]. 

Next steps: multiomics as a tool for routine 
clinics 
Transition of relevant results from an ‘exploratory sci-
ence loop’ that leverages exploratory biomarkers from 
complex data sets using larger cohorts to the develop-
ment of emerging biomarkers into a ‘fast diagnostic loop’ 
including routine biomarkers with an assessment of 
clinical usefulness and applicability is the aim of mul-
tiomic approaches [52]. 

The long-term goal is to generate either information of 
screening or diagnostic value or treatment re-
commendations on a per-patient basis for the treating 
physician caring for individual patients. 

Conclusions 
Single-cell multiomics have clearly transformed our un-
derstanding of neuroinflammation providing a more 
holistic view on heterogeneous cellular networks. While 
current investigations have mainly interrogated tran-
scriptomes, epitopes and epigenomes, proof-of-principle 
studies exploring additional modalities of cellular func-
tions and features provide an exciting outlook on future 
opportunities. The choice of technologies used is often 
discussed heatedly. Each single cell technology has 
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advantages and disadvantages and often times, only the 
combined interrogation of the proteome, transcriptome, 
metabolome, etc. permits the holistic view on the cel-
lular networks involved in neuroinflammation. The close 
interaction of computational scientists, immunologists 
and clinical neuroimmunology centres will provide the 
required infrastructure to introduce single-cell multio-
mics into routine clinics as soon as costs drop and effi-
cient workflows are established. 
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