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Spatial smoothing revisited: An application to rental
data in Munich
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Abstract: Spatial smoothing makes use of spatial information to obtain better estimates in regression
models. In particular flexible smoothing with B-splines and penalties, which has been propagated by
Eilers and Marx (1996), provides strong tools that can be used to include available spatial information.
We consider alternative smoothing methods in spatial additive regression and employ them for analysing
rental data inMunich. The first method applies tensor product P-splines to the geolocation of apartments,
measured on a continuous scale through the centroid of the quarter where an apartment is. The alternative
approach exploits the neighbourhood structure of districts on a discrete scale, where districts consist of a
set of neighbouring quarters. The discrete modelling approach yields smooth estimates when using ridge-
type penalties but can also enforce spatial clustering of districts with a homogeneous structure when using
Lasso-type penalties.
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1 Introduction

According to German Law, increases in rents for apartments can be justified on ‘average rents’ for
apartments that are comparable in size, location, equipment and quality. Such average rents are
thereby published in official rental guides (Mietspiegel). Munich andmost other larger cities publish
rental guides, usually based on regression models with net rent or net rent per square meter as the
dependent variable and characteristics of the apartment as explanatory variables. The models are
based on data from surveys and are an official instrument in the German apartment rental market
(see e.g., Fahrmeir et al., 1995 or Fitzenberger and Fuchs, 2017). Resulting rental guides appear
in form of tables that are easy to use for both tenants and landlords. Therefore, suitable regression
models should provide good predictive performance but should not be unnecessarily complex. A
general discussion of statistical aspects in rental guides in Germany can be found in Kauermann
and Windmann (2016).

Statistical consulting and analyses for rental guides for the city of Munich are carried out by the
Department of Statistics, LMU Munich, since 1992. Coincidentally, this is the year when the first
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version of P-splines was presented by Eilers andMarx (1992) at theGLIM and StatisticalModelling
Meeting in Munich. The use of P-spline for rental guides however occurred much later, after the
seminal publication of Eilers and Marx (1996), for modelling the distinctly non-linear effect of size
(in square meters) of an apartment—and possibly also of the year of construction—on its net rent
per square meter. The inclusion of categorical variables characterizing equipment and quality then
leads to additive regression models. Given that the data are available for research, they have been
used as example in many further papers, including for instance Fahrmeir et al. (1998), Stasinopoulos
et al. (2000), Kneib (2013) or De Bastiani et al. (2018).

It is well known that the location of an apartment has high predictive value, but suitable in-
clusion and modelling of this important spatial variable is non-trivial. The current Munich rental
guide contains two types of location variables. First, as a categorical variable obtained from expert
assessment in combination with exploratory statistical analysis. This variable describes the local
neighbourhood, which is categorized into the average, high, and top residential areas. Additionally,
the location of the apartment is also included in the rental guide, categorized into central and non-
central locations. We refer to the webpage mietspiegel-muenchen.de for an exact definition. While
the first variable describes the quality of the local residential area, the second variable refers to the
spatial location within the city borders of Munich. The combination of the two discrete variables
leads to 6 (= 2× 3) categories referring to location.

In this article we focus on the influence of the location of the apartment in a rigorous data-based
manner, utilizing more detailed information from the data. That is we aim at extending the currently
used rental guide. For reasons of data protection, the exact address of an apartment is not provided,
but the city of Munich is divided into 475 quarters. For each apartment, we know the quarter the
apartment is located in. Calculating the centroid for each quarter will allow for spatial smoothing by
substituting the exact location of the apartment through the corresponding quarter centroid. The
quarters themselves are grouped into 25 districts as a coarser categorization. We will also propose
to use the districts and the resulting neighbourhood structure of the districts for smoothing as well
as spatial clustering. Both, the centroids of quarters and the 25 districts are visualized in Figure 1.

We focus on spatial additive regression models, also called geoadditive models (Kammann and
Wand, 2003), evaluating and comparing different but related forms of spatial smoothing. Bivariate
and spatial smoothing for continuous and discrete spatial variables is described, for example, in
Fahrmeir et al. (2021), covering tensor product P-splines, kriging, thin plate splines, radial basis
function and Markov random field approaches. For P-spline smoothing in one or more dimensions
we refer to the very readable surveys of Eilers et al. (2015) and Eilers and Marx (1992). Smoothing
on lattice data, in particular, its contrasts to spatial econometrics, is discussed in Kauermann et al.
(2012).

The article is organized as follows. In Section 3, we use centroids as continuous spatial variable
and apply tensor product P-splines for estimating a smooth spatial effect. In Section 4, we use the
districts as discrete spatial variable and smoothing methods based on lattice data. Section 4.2 con-
siders lattice smoothing using a Ridge-type penalty, derived from Gaussian Markov random fields
for the effects of neighbouring districts. In Section 4.3, we replace this smoothing penalty with a
Lasso-type penalty, enforcing spatial clustering through a selection of neighbouring districts with
differences of effects close to or equal to zero.We also consider the identification of clusters of neigh-
bouring districts with (approximately) the same spatial effects, which is a sensible goal to formulate
rental guides that are easier to interpret and communicate. Though our comparison of the three
versions of spatial smoothing is illustrated and motivated by application to theMunich rental guide
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Figure 1 Map of districts 1 to 25 and centroids of quarters in Munich with coordinates.

data,we are convinced that this comparisonwill be rather useful formany other fields of application,
for example, in epidemiology or labour market research.

2 Munich rental guide data

We analyse data from the 2019Munich rental guide. The data were collected through a survey where
the sample was drawn from the residential registration office. The survey was carried out through
personal or video-based interviews. Only apartments were included that fulfilled particular legal cri-
teria, which are of no particular interest to the application given here. All in all, we have data on
3 255 apartments. As response variable y, we use the net rent per square meter. The only metrical
covariate is the size of the apartment in square meters, while the year of construction will be con-
sidered a categorical covariate. Spatial location will be denoted by r and is given either as a discrete
variable with district numbers ranging from 1 (the city centre) to 25 or is considered a continuous
variable representing the centroid of the quarter in which the apartment is. For the purpose of this
application, categorical covariates are chosen as a subset of the covariates used for the official Mu-
nich rental guide. All variables included in our analyses are listed in Table 1. The assessment of the
residential area is thereby carried out by a standing expert panel and provided for data analysis by
the city council. The official denotation is ‘normal’, ‘good’ and ‘best’, which we rephrased here for
better understanding. More detailed information is given in the documentation to this guide (see
https://2019.mietspiegel-muenchen.de/dokumentation.php).
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Table 1 Explanatory variables included in the models with rent as response variable.

Variable Name Description Range/Categories

Size Size in square meter [20 m2, 160 m2]
r =(rlon, rlat ) Coordinates of the Longitude and latitude

centroid of quarter i

Year Year of construction (1900–1948], (1948–1966], (1966–1977],
(1977–1998] (> 1998)

Residential area Quality of residential area Standard, good, upscale

Modern/new floor Binary 0: no modern/new floor,
1: modern/new floor

No balcony/terrace Binary 0: with balcony/terrace,
1: no balcony/terrace

3 Penalized spline smoothing

3.1 Smooth spatial additive regression
We assume the net rent per square meter to follow a spatial, additive regression model of the form

yi = s(ri )+ h(si zei )+ x�i β + εi , (3.1)

where s(·) is a smooth surface with ri as the centroid of the quarter where apartment i is located and
h(·) is a smooth function with si zei as floor space of the apartment. For identifiability reasons it is
assumed that s(·) and h(·) are centred around 0. Finally, we assume homoskedastic normality for
the residual εi . The vector xi includes 1 for the intercept and categorical covariates in binary coding.
To be specific we set

x� =
(
x�year, x

�
residential area, xmodern/new floor, xno balcony/terrace

)
where xyear is a four-dimensional dummy coded indicator vector with reference category (> 1998)
and accordingly xresidential area is three dimensional and also dummy coded with ‘standard’ as the
reference category. Finally xmodern/new floor and xno balcony/terrace are 0/1 variables as defined
in Table 1.

The smooth functions can be estimated by P-splines, as originally introduced by Eilers andMarx
(1992) in a first version and in the well-known article of Eilers andMarx (1996). The method gained
massive interest in the last 25 years and we refer to Eilers et al. (2015) or Eilers andMarx (2021) for
survey work.We do not give many technical details here but refer to the comprehensive survey work
cited above. Instead, we want to focus on the idea of penalization and do this in the spatial context
for the estimation of function s(·).

3.2 Spatial smoothing with P splines
To estimate s(r ) with centroids r = (rlon, rlat) measured on a continuous scale, several methods for
spatial smoothing with continuous location variables are available, such as radial basis functions,
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thin plate splines, kriging, and tensor product P-splines, see, for example, Ch.8 in Fahrmeir et al.
(2021). We use the latter, having computational advantages in our application.

First, a two-dimensional B-spline basis is constructed on the convex hull of the spatial locations
ri , which are given by longitude and latitude values. To do so we construct a J dimensional B-
spline basis on the longitude, denoted as Blon and accordingly a K dimensional B-spline basis on
the latitude, labelled as Blat. The tensor product B-spline basis functions for estimation of the two-
dimensional surface s(r ) are then defined through

Wjk(r ) = Blon, j (rlon) · Blat,k(rlat) for j = 1, . . . , J, k = 1, . . . , K, (3.2)

consisting of all pairs of univariate B-splines in the longitudinal and latitudinal directions. Here,
Blon, j (.) is the j -th column of Blon and Blat,k the k-th column of Blat . For simplicity, we assume
equidistant knots in each direction, and we suppress the dependence on knots and the order of the
B-splines notationally. Let s(r ) be approximated through

s(ri ) = W(ri )γ (3.3)

where W() has columns Wjk for j = 1, . . . , J, k = 1, . . . , K . Evaluation of the functions at the cor-
responding observations leads to the representation

y = Wγ + Bα + Xβ + ε, (3.4)

where B is the design matrix of univariate quadratic B-spline basis function evaluations referring
to the modelling of apartment-size effects and W is the matrix with rows W(ri ). The vector α of
coefficients is penalized through the well-known penalty

Ps (α) = α�Lα, (3.5)

with D as the penalty matrix L = DTD and D the (second-order) difference matrix. The coefficients
γ jk in (3.3) are penalized through row- and column-wise sums of squared univariate (second-order)
differences ∑

j

∑
k

(γ jk− 2γ j−1,k + γ j−2,k)2,

∑
j

∑
k

(γ jk − 2γ j,k−1 + γ j,k−2)2.
(3.6)

These ridge-type penalties (3.6) for the location effect can be expressed as

Pl (γ ) = γ�Mγ , (3.7)

where the penalty matrix M is constructed from Kronecker products of univariate penalty matrices
for both directions, see Fahrmeir et al. (2021, Section 8.2). Parameter estimates are obtained as
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minimizers of the penalized L2-criterion

||y−Wγ − Bα − Xβ||2 + λ1Pl (γ )+ λ2Ps(α). (3.8)

Smoothing parameters can be estimated via the mgcv package in R (Wood, 2017) ormixedmodel
approaches after parametrizing α and γ . We emphasize that using (3.7) in (3.8) is very memory
hungry due to the construction and high dimension of the penalty matrix M. A numerically more
efficient version, utilizing (3.7) has been proposed in Currie et al. (2006), see also Xiao et al. (2013).

3.3 Results
We show the fitted spatial effect in Figure 2, where one can clearly see that the centre part of Munich
has higher apartment rents which get smaller with more distance from the city centre. It is also seen
that the decrease in rent in the north/south direction is less visible than in the east/west direction.
This can be explained by the topology of Munich, with the river Isar running from south to north
through Munich, and proximity to the river is mirrored in higher apartment rents.

The effect of apartment size is visualized in Figure 3.We see a decreasing effect but generally not
a complicated structure of the function. In the remainder of the article, we will therefore model this
effect with a six-dimensional quadratic B-spline basis and omit the penalty on the coefficients α for
simplicity. Finally, the effects of the categorical variables are listed in Table 2. The standard errors
rely on themixed model framework used for fitting and the standard output of the gam() procedure,
see Wood (2017). It is seen that newer apartments are more expensive and that the quality of the
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Figure 2 Estimated effect ŝ(r) for every quarter.
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Table 2 Estimates, standard error and resulting standardized values resulting from the P-Spline model.

Variable Estimate Standard Error t-values

Year(1900–1948] −3.3248 0.2106 −15.788
Year(1949–1966] −3.2201 0.1980 −16.260
Year(1967–1977] −2.5723 0.2150 −11.964
Year(1978–1998] −2.1521 0.2122 −10.141
Good residential area 0.8477 0.1468 5.773
Upscale residential area 2.2882 0.2878 7.952
Modern/new floor 2.1137 0.1928 10.961
No balcony/terrace −0.6543 0.1476 −4.434

20 40 60 80 120 160
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0
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4

size in square meter
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siz

e)

Figure 3 Effect of apartment size in P-Spline smoothing.

residential area has a significant positive effect. Moreover, if the apartment has a new floor and a
balcony or terrace, the rent per square meter increases.

4 Lattice smoothing

4.1 Lattice data
As already discussed, the geolocation used for each apartment in the previous section is not its ex-
act longitude and latitude coordinates, but the centroid of the corresponding quarter so that spatial
smoothing as proposed above is carried out over a finite set of distinct centroids. For practical pur-
poses, this is still burdensome when applying the rental guide, due to a large number of quarters
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in Munich. It is therefore easier to coarsen the spatial variable and work with districts instead of
quarters. We visualized the step from quarters to districts already in Figure 1. In this case, centroids
of districts are less useful to work with, since there are only 25 distinct values. We now consider the
district to correspond to a lattice with a neighbour structure, as visualized in Figure 1. This opens a
new avenue of spatial smoothing by taking the lattice structure as spatial information instead of the
Euclidean distance between the district centroids. We, therefore, use the following neighbourhood
structure and numerate the districts from 1 to K . Hence, we can relate the location ri to one of the
districts and with a slight twist in the notation, we define with ri ∈ {1, . . . , K} the district in which
apartment i is located. For each district, kwe define withNk the neighbouring districts, hence those
districts that have a common border with district k. Apparently, for j ∈ Nk we have the symmetric
relation k ∈ N j . Smoothing can now be carried out by assuming that neighbouring districts have a
similar rent level.

Note that smoothing on lattice data ignores the Euclidean distance. In spatial smoothing, as car-
ried out in the previous section, we imposed through the penalty (3.5), that apartments lying close
together have a similar rent level. In lattice smoothing, instead, it is only postulated that neighbour-
ing districts have similar rent levels, regardless of their Euclidean distance.While in general, it sounds
less plausible for smoothing to rely on lattice data if coordinates are available, it does make sense for
rental guide data. First, districts themselves have some homogeneity regardless of their size. This is
ignored in spatial smoothing but implicitly taken into account in lattice smoothing. Second, in terms
of applicability, it is far easier to give a general rent level per district instead of per geolocation or
quarter.

4.2 Lattice smoothing with ridge-type penalties
We consider again model (3.1), but now s(r ) is a discrete valued function, that is,

s : {1, . . . K} → R. (4.1)

We define γk := s(k) so that estimation of s(.) corresponds to estimation of the parameter vector
γ T = (γ1, . . . , γK). The aim is to achieve a smooth fit, such that neighboring districts do not differ
strongly. This aim is reflected in the penalty

P(γ ) =
K∑
k=1

∑
j>k: j∈Nk

(γk − γ j )2. (4.2)

The penalty consists of squared differences of all possible combinations of neighbouring districts,
where each combination is considered only once. This yields a penalty that discourages large de-
viations of effects associated with neighbouring regions. The penalty can also be derived from the
Gaussian Markov random field approach, see Fahrmeir et al. (2021, Section 8.2.4).

Let the K × R dimensional difference matrix D have entries

Dkl =
⎧⎨⎩ 1 for k = l
−1 for l ∈ Nk and l > k
0 otherwise,

(4.3)
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where R= N(N− 1)/2 with N =∑K
k=1 |Nk| is the number of pairwise neighbor relations. Then the

penalty component in the penalized L2-criterion is defined through the quadratic term

P(γ ) = γ�Lγ , (4.4)

where L = DTD. Since D does not have full rank also Ldoes not have full rank. Generally, however,
that does not matter and λ can be fixed by standard smoothing parameter selection tools.

By setting γk = s(k), model (3.1) is overparameterized due to the intercept which is still included.
We circumvent this problem by setting γ1 ≡ 0 leading to parameter γ̃ = (γ2, . . . , γK)T . We also re-
duce D to the (K − 1)× R dimensional difference matrix D̃ which is obtained from D by deleting
the first column in D. The penalty (4.4) for subvector γ̃ then results to

P(γ̃ ) = γ̃� L̃γ̃ (4.5)

with L̃ = D̃� D̃, which now has full rank. Using standard linear algebra we can reparameterize
model (3.1) to incorporate the penalty structure (4.5) in the covariates, leading to simple squared
penalties. Let therefore zi = (1(ri = 1), . . . , 1(ri = K))T be the indicator vector referring to the cor-
responding district of apartment i and accordingly, z̃i be the vector with the first element dropped.
Function s(·) can then be expressed as s(ri ) = z̃Ti γ̃ , assuming s(1) = 0. This can be rewritten as

z̃�i γ̃ = z̃�i L̃
1/2︸ ︷︷ ︸

=: ṽ�i

L̃−1/2γ̃︸ ︷︷ ︸
=: δ̃

= ṽ� δ̃. (4.6)

The penalty (4.5) then has the form

P(γ̃ ) = P(δ̃) = δ̃T δ̃ (4.7)

yielding as simple squared regularization. As remarked in Section 3, the non-linear effect of the
apartment size is fitted by a simple six-dimensional quadratic B-spline and the remaining covariates
are included in the model as before. This leads to the penalized L2 loss which we aim to minimize

||y− Ṽδ̃ − Bα − Xβ||2 + λP(δ̃). (4.8)

where matrix Ṽ has rows ṽTi .
The corresponding smooth district effect is shown in Figure 4. The resulting effects for the covari-

ates are given in Table 3. The effect of size is not visualized as this looks very much like the penalized
fit shown in Figure 3. Generally, Table 3 shows comparable results to Table 2, hence changing the
spatial model has only a small impact on the categorical covariates. Looking at Figure 4 we see little
variation in the eastern and western suburbs of Munich, which already appeared from Figure 2. We
may therefore question, whether some neighbouring districts in fact have the same rent level. This
is further examined in the next modelling step.
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Figure 4 Estimated effect ŝ(ri ) for every quarter i.

Table 3 Estimates, standard error and resulting standardized values in the smooth lattice model.

Variable Estimate Standard Error t-values

Year(1900–1948] −3.08653 0.2080285 −14.83704
Year(1949–1966] −3.01229 0.1969827 −15.29215
Year(1967–1977] −2.48845 0.2153085 −11.55758
Year(1978–1998] −2.10879 0.2124739 −9.92492
Good residential area 0.91586 0.1438097 6.36855
Upscale residential area 2.25760 0.2837630 7.95592
Modern/new floor 2.12058 0.1933850 10.96558
No balcony/terrace −0.60723 0.1480415 −4.1017

4.3 Lattice smoothing with LASSO-type penalties
The penalty (4.7) corresponds to simple ridge regression, that is, we impose an L2 component on the
coefficients. An alternative is to proceed with LASSO estimation, that is, replacing the L2 with L1.
We, therefore, postulate that the difference between neighboring districts should be small in absolute
terms, that is,

K∑
k = 1

∑
j ∈ Nk
j > k

|γk − γ j | (4.9)

Statistical Modelling 2023; 23(5-6): 480–494
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Figure 5 Generalized Lasso estimates for different penalization parameters.The vertical line shows the model
with the smallest BIC.

which can be rewritten as |Dγ | where | · | refers to the L1 norm, that is, the sum of absolute terms.
Setting γ1 = 0 replaces (4.9) accordingly which can be written as |D̃γ̃ |. The penalty has the form
of a spatial-fused Lasso penalty. It enforces spatial clustering of adjacent districts with only small
differences in spatial effects, which is very helpful for rental guides, but also in other areas of applica-
tion, see Choi et al. (2018), Li and Sang (2019), Rahardiantoro and Sakamoto (2022),Masuda and
Inoue (2022), and Ohishi et al. (2019) for similar fused Lasso penalties. A closely related Lasso-type
penalty is the all-pairs penalty for clustering categories in categorical covariates, see, for example,
the survey in Gertheiss andTutz (2023).To solve the resulting optimization problem, the generalized
Lasso (Tibshirani and Taylor, 2011) and its implementation in the R package genlasso (Arnold and
Tibshirani, 2019) can be used. This minimizes the penalized L2 loss

||y− Ẽγ̃ − Bα − Xβ||2 + λ|D̃γ̃ | (4.10)

for different values of the penalty parameter λ, where Ẽ is the n × (K − 1) dimensional indicator
matrix with entries Ei(k−1) = 1 if apartment i lies in district k and zero entries otherwise.

In Figure 5 we show the estimates for parameters γk for k = 1, . . . 25 for different values of the
penalty λ. For decreasing λ we obtain more differences in the rent levels for neighbouring districts.
For each value of λ where estimation traces in Figure 5 split, we refit the model in unpenalized form
with the Lasso constraints fulfilled. In other words, if the lasso estimates γ̂k,λ for a specific value of
λ fulfill γ̂k,λ = γ̂l,λ we set impose the hard constraints γk ≡ γl while for γ̂k,λ �= γ̂l,λ we allow γk and
γl to differ, for k, l = 1, . . . 25 and k �= l. With these hard constraints, we refit the model without
further penalty and calculate the resulting BIC value. This is shown in Figure 7. Instead of plotting
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Figure 6 BIC for different models. The number of components corresponds to the number of splits resulting
for different values of λ in Figure 5.

Table 4 Estimates, standard error and resulting standardized values in selected model based on BIC and
unpenalized fit.

Variable Estimate Standard Error t-values

Year(1900–1948] −3.0195 0.2054 −14.699
Year(1949–1966] −2.9757 0.1951 −15.254
Year(1967–1977] −2.4416 0.2138 −11.420
Year(1978–1998] −2.0833 0.2116 −9.846
Good residential area 0.9739 0.1329 7.330
Upscale residential area 2.2632 0.2669 8.479
Modern/new floor 2.1612 0.1931 11.191
No balcony/terrace −0.6130 0.1477 −4.150

the BIC value against λ we plot this against the number of components, that is the number of splits
shown in Figure 5. We see a clear minimum which results in the final model. We show the resulting
smooth estimate in Figure 5.While there are five different levels, visually we can only recognize three
distinct areas. The centre part includes a stripe towards the north with high rent levels. This area is
the centre ofMunich and the area along the river Isar towards the north. This is neighbored towards
the east and west by some intermediate rent levels and lower rent levels in the eastern and western
suburbs. The corresponding parameter effects are shown in Table 4, which are comparable to the
estimates obtained before. Hence, changing the modelling of the spatial component does not have a
big impact on the parametric effects.
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Figure 7 Estimated effects ŝ(ri ) after Lasso model selection.

5 Discussion

In this article, we considered three different versions of smoothing applied to the Munich rental
data. We used smoothing based on geolocations of apartments, grouped to centroids of quarters.
We also grouped the quarters into districts and considered these as lattice, penalized by both, an L2
as well as an L1 loss.

At least in our application, the estimates of other covariate effects are quite robust with respect
to the different versions of smoothing. Therefore, the choice of a specific spatialmodel will be guided
by the specific goals of smoothing.While P-spline smoothing for quarters is well-suited for providing
a refined global picture of spatial effects, Lasso-type smoothing for districts with automated spatial
clustering is very useful for developing applicable rental guides.

We chose to run this comparison with data fromMunich to remember Brian Marx’s many visits
to our home town. Beyondworking on statisticalmodelling and giving lectures at theDepartment of
Statistics, LMUMunich, Brian enjoyed good things in life together with us, such as hiking or biking
along the banks of the river Isar, visiting beergardens in and around Munich, and having fun with
friends. Although this article focuses on spatial smoothing for rental guides, spatial clustering as in
Section 4.3. can be of interest in many other applications. This motivates further methodological
research: In its current version, the generalized Lasso is restricted to linear models with an addi-
tional spatial component. It might be useful or even necessary, to allow for Ridge-type penalties,
as for P-splines, in combination with generalized Lasso penalties. The resulting optimization prob-
lem is challenging. However, We see three possible approaches: First, an alternating optimization
algorithm, switching between optimizing the Ridge component for fixed parameters of the Lasso
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component, and vice versa, see Ohishi et al. (2019) for a grouped Lasso part and a generalized Lasso
part. Second, approximation of the Lasso penalty through a differentiable function, see Oelker and
Tutz (2017).Third, a Bayesian approach based on theBayesian Lasso, with a conditionally Gaussian
prior, along the lines of Masuda and Inoue (2022).
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