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Abstract

A collective and aggregated overview of information is required for effective forest land
management and a versed judgement on habitat suitability, especially against the back-
ground of climate change.

Based on the combination of varying data sources for the description of forest cha-
racteristics in the Bavarian Alps, modelling techniques, including generalised additive
models, random forests and boosting algorithms, are compared in their capability of
modelling the habitat of tree species. The properties of merely data—directed models
are contrasted to hypotheses—directed approaches based on expert knowledge.

Sparse generalised additive models including a spatial trend provide a comparably good
discriminatory power and suitable prediction maps. However, the spatial trend does not
compensate the small-range effect of a disregarded predictor. Investigations concerning
the properties on extrapolated data reveal unbiased and often more precise estimations
than using data—directed models. To some extent, the models profit from weighting,
the inclusion of interactive factors and a spatially balanced design.

The data—directed approaches, which are mainly designed for prediction, render valu-
able information for the selection of relevant predictors and for the comprehension of the
relationships within the data by implicit variable selection, importance measures and
partial effects. Therefore, the varying approaches afford diversified insights, especially
into the interactive relations.
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1. Introduction

1.1. The role of statistical modelling in ecology

Ecology, as a sub-discipline of biology, deals according to a definition of [Krebs (1985)
with “the scientific study of the interactions that determine the distribution and abun-
dance of organisms”. For that purpose, statistical methods can support the exploration
and the comprehension of the underlying structures.

The spatial or temporal dispersion of different kinds of plant or animal species, the rela-
tionships among them and also the correlation with environmental factors are analysed
in order to link theoretical considerations with directly observed information (Ludwig
and Reynolds| [1988), because the exploration of patterns in biotic communities is the
central topic in statistical ecology.

Two different approaches are commonly used to examine ecological structures: data
can be collected either experimentally or observationally. In an experimental study
design, one or more parameters, which potentially influence the outcome, are varied
systematically by fixing the remaining variables and the resulting effects can be attri-
buted to the varied parameters. The favoured strategy of statistical ecology consists of
the observation of ecological patterns and the corresponding parameters over time or
within a determined region, with the result, that the analysis is focused on the existing
situation, rather than on a systematic manipulation of the basic conditions.

However, some theoreticians are not convinced of the benefits of empirical research in
ecology:

“The use of mathematical models in theoretical ecology is seen by some ecologists today
as a symptom of a malignancy infecting the entire discipline of ecology.” (Caswell, [1988)

Is the construction of statistical models really a waste of time, which even deteri-
orates ecological research? |Caswell (1988) presumes the cause of this attitude in a
misunderstanding of the relation between statistical modelling and ecological theory.
Furthermore, he makes clear that an appropriate utilisation of statistical models can
ameliorate the understanding of ecological theories.

Therefore, according to |Toft| (1990), it is essential,

e that the examined question is clearly formulated in order to choose the most
appropriate method,

e that the data is as familiar as possible,



1. Introduction 7

e that the biases, which can emerge from violations of the assumptions of the
applied method, are well-known and

e that the practitioner is aware of the difference between statistical and biological
significance.

Especially the third point causes sometimes difficulties in ecological problems. Besides
the assumptions concerning the distributions and the asymptotics, etc., particularly
the independence of the observations, which relates closely to the experimental design,
is often not given. [Hurlbert| (1984) calls this lack of true replications, regardless of
whether it is a consequence of spatial or of temporal dependency, “pseudoreplication”.

Though, taking into account the weaknesses and limitations, the application of statisti-
cal modelling techniques are an effective tool to reveal and analyse ecological relation-
ships.

1.2. Subjects and aims of the project and the thesis

This work is written in the context of the joint Bavarian—Austrian research project
“Forest Information System for the Northern Alps” (WINALP). The project aims at
a reliable, area—wide information system for the natural capacity of montane forests in
order to support the decision making process for site—specific forest management. The
examined area extends over the Northern Alps of Bavaria, Tyrol and parts of Salzburg.

Particularly against the background of climate change, which will effect the growth
conditions, a forest information system provides information about the actual situ-
ation and the current species distribution. Hence, accurate predictions for the future
distribution of ecological forest types can be gained.

The schedule of this project is divided into eight steps (Hochschule Weihenstephan—
Triesdorf, 2010):

1. Development of a geographic information system with a high-resolution descrip-
tion of geological conditions.

Determining the requirements of the target user group.
Deduction of ecologically relevant parameters.
Modelling of forest types on a scale of (1:25,000), verification and recalibration.

Modelling of special maps requested from the users.

AN ol R

Construction of maps with ecological factors and forest types under the influence
of climate change.

7. Development of a handbook for the forest—type specific cultivation, maintenance
and restoration of montane forests.

8. Introduction of the system into practical application and user instruction.
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This diploma thesis develops the statistical framework for point four. On the basis of
the results from the previous steps, which link detailed point data and the informa-
tion from digital maps, different modelling techniques for the dichotomously measured
occurrence of various trees species in dependence of the corresponding environmental
conditions, i.e. the ecological niches of the species, are examined. Ecologists define the
ecological niche as “the conjunction of environmental conditions within which a species
can maintain populations without immigration” (MacArthur) 1972).

Predominantly, two objectives are pursued with ecological modelling, which are often
contrarious. The predictive capability of a statistical model is often considered more
important than gaining new insights into the relationship between species and their
environment. But, according to |Austin/ (2002)), the disregard of ecological plausibility
in favour of more precise predictions is a limiting factor for the robustness and the
explanatory power of a model. For that purpose, two strategies are embarked on:

On the one hand, a preferably parsimonious, hypotheses—directed model is developed
with statistical modelling techniques as well as with expert knowledge. Thus, besides
the goodness of fit of a model, also the plausibility of the results are incorporated in
the model selection procedure for a more truthful image of the data generating process.

On the other hand, data—directed models are only established with the criterion of the
best predictive performance as possible. However, models with a good predictive per-
formance are usually black box methods, which do not contribute to the comprehension
of a mechanism, whereas plausible models often achieve poorer predictive accuracy.

Moreover, a simulation study is conducted for the further examination of the applied
modelling techniques. Different scenarios are supposed to provide information on the
properties under various study designs, the role of the data generating mechanism and
the effects of variable selection and extrapolation.

Guisan et al. (2007) showed, that the predictive performance of different modelling
techniques strongly varies between different tree species. So it is reasonable to include
several species in the model comparison, which differ in prevalence and spatial distri-
bution. Besides the spruce as a frequent tree species, the ash, which is a pioneer tree
species and the rare Swiss pine are considered.

1.3. Statistical realisation of modelling species—habitat
relationships

Initially, a descriptive overview of the data is given in the second chapter. The data
collection procedure of the previous steps of the WINALP project and the resulting data
structure is briefly illustrated. Also the occurrence of the exemplary tree species and
the appendant habitat properties, i.e. the properties of the area the species are living
in, are described. Furthermore, a first insight into the dependence of the presence or
absence of a species from environmental factors is given by univariate response shapes
along ecological gradients.
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The applied modelling techniques focus on three statistical methods, namely generalised
additive models, random forest and boosting. An overview of theoretical concepts is
given in the chapters [3] to

Assuming an underlying functional association structure between the response and the
predictor variables, the hypotheses—directed approach, which is described in chapter
should provide an ecologically reasonable and parsimonious model. Basically, this is
realised through a generalised additive model. In addition to that, the most important
interaction effects on the residuals of the final model, which are identified with a decision
tree, are added to the model as a factor variable along the lines of Maggini et al.
(2006). Further, the profit of imitating a balanced sample along ecological gradients
by weighting is investigated, since this is the preferred sampling strategy for habitat
suitability modelling (Hirzel and Guisan), 2002). Sparse models are selected with the
generalised cross—validation criterion as well as with the verification of plausibility by
an expert.

Instead, the data—directed models learn the patterns from the observed data in order
to make predictions considering the data generating mechanism as unknown. This
approach is realised with random forests described in chapter [4 and with two different
boosting models, which are illustrated and explained in chapter

The models are examined from two different points of view: In chapter [] the three
approaches are compared with different simulated data sets in terms of variations in
the data generating process, the sampling design and the analysis methods.

The second perspective investigates the modelling techniques by analysing the WINALP
data, which are divided into a training and a test data set. The former is used for fitting
the models, whereas the test data set is taken for the quantification of predictive ac-
curacy and for validation. For each modelling technique also the importance of the
covariates for the species distribution and the partial effects is determined, because the
individual species require particular demands on water, energy, nutrients and geomor-
phodynamics. Furthermore, the differences between the models in respect of the spatial
illustration of the predictions is demonstrated. The results are depicted and evaluated
in chapter [7] before a final summary and an outlook is given in chapter

The simulation study and the evaluation of the data are accomplished with the statis-
tical software R (R Development Core Team, 2009).
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2. Data description

2.1. Data collection and data structure

The examined sites with varying grid intensity are located in the growing area “Nor-
thern Alps” in Bavaria as depicted in the chart below and comprise observation points
within circa 4,600km?. This area is well-suited for the analysis of the species-habitat
relations, because the ecosystem of the forest is very diverse and hence, the ecological
niches of the tree species are likely to be described more accurately.

FIGURE 2.1.: Ezamined observation sites (green) in Bavaria (separated in growing areas).

The first task of the WINALP project was the collection of physiographical and vegeta-
tion—ecological raw data for a geographic information system. Data on soil climate and
topography, which were available in the form of digital maps, were linked to detailed
point data on soil profile, tree occurrence and phytosociological information, which was
collected between 1978 and 1998, at 55,357 sites. The plot sizes vary mainly between
50m? and 300m?.

Based on this raw data, relief, soil, climate and vegetation parameters, like temperature
or precipitation, were deviated and index values, which e.g. describe the nutrient or
the water balance of a site, were calculated.
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Besides the localisations of the observation points in terms of Gauss—Kriiger coordi-
nates, the resulting data set consists of dichotomous information about the occurrence
of 14 tree species as well as of several ecological parameters:

ID | longitude | latitude | tree species 1 | tree species 2 ‘ . ‘ ecological parameters
1 1 0
2 0 0

TABLE 2.1.: Data structure.

The environment of the habitats is recorded through different ecological parameters,
which can be divided into four groups: water (H), energy (E), nutrient (N) and geo-
morphodynamic (G) parameters. Table gives an overview of the ecological variables
of the WINALP data set.

cate— spruce/
gory abbreviation variable description Swiss pine ash
AWCIM available water capacity (1m depth) X X
HYD_UNIT water logging level (categorial)
H P_JJA precipitation summer X X
STAUTXT water logging index (cat.) X X
TWI10 topographic wetness index
G05_20 degree value days
T01-20 temperature January X X
B T_JJA temperature summer X X
R_JJA radiation summer X X
SAFI slope aspect favourability index
ASPECT10 exposition
N TGBS depth gradient of base saturation (cat.) X
CLAY1M proportion of clay (1m depth)
MORDYN morphodynamics (cat.) X
G SLOPE10 slope angle
CURV10 curvature

TABLE 2.2.: OQuerview of the ecological variables and their usage in the hypotheses—directed
models.

For the hypotheses—directed models, not all available ecological variables, but the
worthwhile ones are included into the model to achieve ecologically comprehensible
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relationships. Based on expert knowledge, only these parameters were chosen, whose
impact on the occurrence of the individual tree species is well-known. Therefore, tree
specific variable sets were developed, which are marked with a cross in the last two
columns of the table above.

All 16 predictors, which are listed in table are used for the data—directed models,
because as much information as possible should be incorporated into the models in
order to improve the predictive performance.

Because the available sample of the project contains presence—absence measurements
of the response, statistical methods for presence—only approaches will be disregarded
(for the analysis of presence-only data refer to Elith and Graham| (2009a))).

2.2. Descriptive analysis

In this chapter, a short, descriptive outline of the occurrence of the examined tree
species and the environmental conditions at the examined sites is given. From the total
of 14 collected tree species, the habitats of the ash, the spruce and the Swiss pine are
exemplarily analysed.

At 9.85% of the observed locations, the pioneer tree species ash was present. Frequently,
the ash occurs in combination with the sycamore, the spruce and the beech. Especially
in the eastern part of the study region the ash is increasingly found, whereas only few
species are located in the western Bavarian Alps:
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occurrence = 9.85 %

FIGURE 2.2.: Spatial occurrence of the ash; marks for presences (green) are marked twice as
large than absences (grey).

The very prevalent spruce is situated in the most observation points (94.8%) with
no spatial preference. This tree species grows in the environments of all investigated
species, but at locations with a Swiss pine, spruces are monitored less often.

The Swiss pine is a very rare surveyed tree species in the Bavarian Alps. At only 85
of over 55,000 sites Swiss pines are found. Besides few, individually occurring species,
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the Swiss pine exists in two small areas; one south of Garmisch—Partenkirchen and the
other in the south—east of the study region.

As illustrated in chapter a lot of possibly relevant predictors were collected. Never-
theless, the variation of the data could be explained with only a few topographical
covariates, e.g. geographical position or altitude, because they can be seen as proxies
for several physiological predictors. Since topographical information can be measured
very precisely in comparison to physiological covariates, they tend to provide quite
accurate models, even if they only indirectly influence vegetation. However, this is not
the main objective in statistical ecology, because the transferability to other regions is
not straightforward.

The temperature variables in the WINALP data set reveal spatial patterns through
warm valleys and cold montane regions. Especially it is to note, that the eastern part
of the study region shows slightly higher temperatures than the western regions:

&
SRR

e

11 12 13 14

FIGURE 2.3.: Spatial distribution of temperature (°C) in summer.

The average temperature in summer is 13.09°C (sd=1.22) with a range from 8.63°C to
17.07°C. The temperature in January varies between -6.5°C and -0.59°C; the average
is -2.79°C (sd=0.81).
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FIGURE 2.4.: Spatial distribution of precipitation (mm) in summer.

Furthermore, the precipitation exhibits a patchy pattern (cf. figure and is, simi-
lar to most other predictors, a spatial acting variable. The average precipitation in
the study region is 637.1mm (sd=74.7) and the measurements range from 409mm to
1046mm. The soil characteristics differ especially at the northern boundary, from the
rest, because in that region, the soil has a lower base saturation and a higher stagnant
moisture.

In figure a descriptive overview of the — in experts’ opinion — most important
predictor variables for the individual tree species is given.

The spruce grows at the most of the observed locations and thus, it gets along with all
environmental conditions of the Bavarian Alps. The ash differs from the spruce mainly
in its energy request, because it prefers places with higher temperatures. Regarding
water, nutrients and geomorphodynamics, spruces and ashes are growing under similar
conditions.

The fact that the Swiss pine occurs especially in the upper altitudes of the Alps is
also reflected in its environmental properties. This tree species grows at very low
temperatures combined with a rather high radiation. Additionally, Swiss pines are
found at locations with high base saturation and low water logging.

Among these predictors, the temperature in summer is correlated with the tempera-
ture in January (r = 0.732). A moderate correlation (|r| < 0.6) occurs between the
predictors AWCIM, STAUTXT and TGBS, which describe the available water in the
ground and the nutritional value.
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2. Data description
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2.3. Analysis of the species response shapes along
ecological gradients

In niche theory a distinction is drawn between a fundamental and a realised niche.
Whereas the fundamental niche of a species describes the conditions, under which
growing is possible, the realised niche denotes the actual conditions, under which the
species occurs.

For a simple description of the complex ecological niche, in particular the realised niche
of a tree species, the observed response patterns are analysed along individual ecological
gradients, i.e. environmental predictors.

Contrary to former assumptions of unimodal, symmetric and bell-shaped curves, e.g.
Gauch Jr. and Whittaker| (1972), newer approaches, e.g. |Austin| (1999, [1987), suggest,
that the shape of a curve is influenced by superior competitors of the evaluated species
and by environmental stress. This results in many different possible shapes, e.g. skewed,
plateau or bimodal curves.

Analysis strategies for the univariate description of the ecological niche include HOF-
models (Huisman, Olff and Frescol |1993), generalised linear models (GLMs) and ge-
neralised additive models (GAMs). The parametric HOF-models provide a hierarchic
test procedure for the shape of the response curves, but Oksanen and Minchin/ (2002])
showed the similarity between the results and GAMs. The advantage of GAMs is
their flexibility in contrast to the restricted shapes of other approaches. The true, but
unknown response curve, lies most likely within the calculated confidence region.

Figure depicts univariate response curves of GAMs along a temperature and a
precipitation gradient. The curves of the spruce along temperature and of the Swiss
pine along precipitation show, that the ecological niche concerning these gradients is
completely covered within the study region. The slightly bimodal shape of the Swiss
pine has to be attributed to the few presences rather than to competition effects.

For some species the ecological niche is not totally explored and so it is impossible to
model the full range of their distribution. For instance, the temperature gradient of
the study region comprises the clear lower growing boundary of the ash, whereas the
upper boundary is not included. Instead of that, the Swiss pine prefers the lower part
of the gradient.

The truncated shape of the precipitation response curve of the ash indicates, that
physiological limitations in terms of precipitation are not reached within the observed
locations. Thus, only an extract of the real distribution is given.

These examples show, that even the diverse ecosystem of the Bavarian Alps does not
encompass the full environmental scope, in which the tree species are able to live.
Therefore it is to notice, that response curves based on restricted environmental gradi-
ents exhibit unrealistic shapes, especially at the edges of the gradient, and a reduced
predictive suitability (Thuiller et al., [2004]).
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The analysis of species occurrence along environmental gradients provides a valuable
tool for data description and an exploratory insight, but actually, the underlying pro-
cesses, which govern the dispersion of a species, are more complex and relate to several
variables or interactions with other predictors.
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3. Hypotheses—directed approach using a
generalised additive model

3.1. Model description

Generalised additive models (Hastie and Tibshirani, {1990) allow a flexible modelling
of the relations between dependent and independent variables by extending the simple
linear approach.

Since in niche modelling bell-shaped or linear response curves are unrealistic assump-
tions (e.g Austin and Smith (1989) and |Austin (2002)), especially regarding the me-
chanisms of competition, flexible response shapes describe the ecological niche of a
species more accurately. Even in comparison to generalised linear models with poly-
nomial terms or with transformed variables, GAMs provide a better approximation of
the true response surface, because they are not limited by the shape available from the
predetermined model equation.

The first application of GAMs in an ecological context is found in the work of [Yee
and Mitchell (1991). The improvements compared to general linear models regarding
the flexible modelling of species distributions are illustrated and the clear graphical
interpretability as well as the predictive capacity is emphasised.

In recent years, GAMs have become an important and widely used tool for modelling
species distributions (Guisan, Edwards and Hastiel |2002) and are often used as a refe-
rence procedure for the application of new and unexperienced methods, e.g. [Moisen and
Frescino| (2002)), Thuiller, Aratjo and Lavorel (2003|) or Leathwick, Elith and Hastie
(2006)).

A lot of effort is put in the improvement of generalised additive models. For instance,
variable selection procedures, e.g. [Wood and Augustin| (2002), incorporation of interac-
tions (Maggini et al., [2006), simultaneous models for several species (Aratjo and Luoto,
2007) and the appropriate account for spatial autocorrelation, e.g.Maggini et al.| (2006)
can increase the model performance.

Some of these ideas are adopted by the analysis of the WINALP data with GAMs
and their impact on model performance is examined in order to calibrate the models.
Furthermore, a weighted GAM approach for the imitation of a balanced sampling design
is investigated.
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3.2. Estimation

At first, a short overview of the estimation procedure of generalised additive models is
given focusing mainly on binomial response variables. GAMs are based on generalised
linear models (McCullagh and Nelder, [1989), which are determined by the following
three components.

1. Random component: Conditioned on the covariates x; = (1,1,...,%) the
density of the response variables y; belongs to the mono—parametric exponential
family (i = 1,...,n).

2. Systematic component: The structure of the linear predictor #; is a linear com-
bination of the covariates: n; = ZZ:1 Brxig.

3. The link function g defines the connection between the expected value E(Y;) = p;
and the linear predictor: g(u;) = n;.

The linear predictor in generalised additive models contains not only linear, parametric
terms, but also smooth, non-parametric and unspecified functions of the covariates,
which are additively combined:

P
i = Zﬁkxik + fi(wi) + fazei) + f3(wig, zia) + ... + &
k=1

or respectively
n=XB+hHh+fet+fst.. +e

The residuals €; are assumed to be independent and identically distributed with E(g;) =
0 and Var(e;) = o2.

Besides one—dimensional smooth functions of covariates, the linear predictor can in-
clude higher—dimensional, functional relationships, like f3, which represent an interac-
tion between two metric covariates. Imposing constraints for the identifiability of the
smooth functions, for example > " | fi(z;;) = 0,7 = 1,...,q, determines the level of
the functions.

To represent the smooth functions constructively, the use of a linear combination of
basis functions is popular:

dj
=1

With different types of basis functions B;,l = 1,...,d;, various types of splines, e.g.
regression splines, in particular truncated power splines and B—splines, or smoothing
splines, can be displayed. Natural cubic splines and their multi-dimensional analogon,
the thin—plate—splines, are exemplarily described in detail below, because they are used
for the analysis in chapter [6] and [7] For more information on other representations of
the smooth functions refer to |Fahrmeir, Kneib and Lang| (2007).



3. Hypotheses—directed approach using a generalised additive model 21

The basis functions of natural cubic splines are chosen in a way, in which their linear
combination f(x) makes up a cubic polynomial spline. The knots are represented by
the observations expanded through two boundary knots: ¢ < 21 < ... < z, < b.
Furthermore, f”(a) = f”(b) = 0 is presumed.

Natural cubic splines minimise the penalised least—squares criterion

n

= £ A [ (@)

=1

with respect to (3,71,...,7¢). Thus, they represent that function in the space of all
possible smoothing functions with the smallest curvature. Also the penalty term can
be demonstrated with the corresponding basis functions:

/( dx—ZZ%’y]/B" B” )dx = TK~

=1 j=1

Generalising this optimisation concept into higher dimensions, leads to the so called
thin—plate splines. In the two—dimensional case, they are assessed by minimising

Z( f(x;) +/\// o o f(z a:)ded:c
i~ ! anl 83718:1;2 821'2 1,72 ! z

=1

with respect to (8,71, -+57Yq)-

The thin—plate regression splines can also be displayed through a basis function approach,
in which radial basis functions are used. Due to the isotropy of these basis functions,
they are especially appropriate for modelling two—dimensional smooth effects of geo-
graphical coordinates (Wood), 2006]).

The consistent representation of smooth functions as a linear combination of basis func-
tions results in a unified optimisation strategy for GAMs. The estimation is conducted
either with the penalised least—squares criterion for normal distributed response

q
PKQ = (y—Bl’Yl—---—Bq’)’q_Xﬁ)T(?J—Bl’Yl—---_Bq’Yq_XB)‘i‘Z)‘j’Yg—‘rKj’Yj
j=1

or with the penalised log—likelihood

1 q
pen = (/6 717'”'7(1) - 52)‘7;-[{]7]
j=1

for the generalised case. B; denotes a matrix, whose entries are the basis functions for
covariate j evaluated at the observations:

Bé‘l(ﬂfl) Bé’d(xl)
B; = : :
Bll(wn) T Bé‘l(xn)
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Simple GAMs are estimated either with the penalised least—squares estimator or with
the Fisher Scoring algorithm, respectively (Fahrmeir, Kneib and Lang, [2007). Multiple
generalised additive models require more complex methods.

Besides the common backfitting algorithm (Hastie and Tibshirani, [1990), in which the
degree of smoothness is difficult to estimate (Wood and Augustin) 2002), Marx and
Eilers| (1998) suggest a penalised iteratively re—weighted least squares approach for
direct and simultaneous modelling of the smooth components of a GAM. Therefore,
the penalised log—likelihood is approximated by

\/ ~ (k 2 T T
H w (k) (y( ) — 77) H + A1y Bivi + daye Baya .. (3.1)
near by the actual parameter estimate.

W () denotes the diagonal matrix of the IRLS-weights in iteration k. The elements

are calculated with
(k) _ 1

Wi = ®)Y [, *))>
14 <Mz‘ ) 9 (Mi )
in which V'(-) determines the variance function of the corresponding exponential family
and ¢g(-) denotes the link function. g is a vector of pseudo—data which is given by

5= o (1) (5 = ") + 2™

The model is estimated iteratively by repeating the following steps:

)

Algorithm 1: Penalised iteratively re-weighted least squares algorithm (P-IRLS)

1. Update the weights W and pseudo—observations y with the actual value of the
parameter estimate.

2. Solve the minimisation problem with W and g from step 1 to achieve an
updated estimation for the parameter vector (v1,...,7q, 3).

3.3. Model selection and variable importance

The parameters Aj,j = 1,...,q, control the degree of smoothness of the functional
components. In order to prevent overfitting as well as estimating a too general model
(bias—variance tradeoff), the smoothing parameter A has to be chosen appropriately.
In the case of a known scale parameter o2, the unbiased risk estimator (UBRE)

1 2 2
UBRE = — H\/W(gj - n)H ~ 0%+ Ztr(H)o?

is proposed as an optimisation criterion. If the scale parameter is unknown, the gener-
alised cross validation criterion (GCV)
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Jewia- o
CV =

G
[n — tr(H)J?

will be used (Wood, [2006|). Thereby, the hat matrix is denoted by H and depends
on the smoothing parameter A. GCV is based on the leave-one—out cross—validation
criterion, which is calculated with the sum of the squared prediction errors, when each
observation is predicted by a model assessed by the rest of the data.

The smoothing parameter vector can be updated either in each iteration step or it is
estimated with an additional outer loop. The first alternative is indeed more effective,
but, besides other disadvantages, it cannot be guaranteed in particular that the overall
best smoothing parameter is chosen (Wood, [2006]).

Model selection is often closely related to the appropriate selection of covariates for the
explanation of the response variable in a regression context. This important issue is
now gaining support also in the modelling of ecological issues (Johnson and Omland,
2004; Reineking and Schroder], 2006]).

Wood| (2009al) proposes to compare GAMs with different sets of covariates, but within
the same distribution family, concerning the GCV or UBRE scores as “the most logically
consistent method”, which is also recommended by |Guisan, Edwards and Hastie| (2002)
in an ecological context.

The UBRE—criterion provides the same results as the AIC; furthermore, a variable
selection with GCV differs marginally from a selection with UBRE/AIC, but in the
case of binomial models the results should be compared (Wood, 2006). Covariates for
removal are determined according to their p—value.

To evaluate the relevance of a single term, the p—value is used as an indicator for the
distance to the null effect. For smooth components, the test statistic to the hypothesis

E(¥)=0 |,

which is calculated with the squared Mahalanobis distance of 4 from zero, determines
the p—value. Thus, under the null hypothesis the p—value shows how strong the coeffi-
cients of the smooth term deviate from null.

An alternative possibility of model selection represents the usage of a shrinkage com-
ponent, which is imposed on the smoothness penalty term.

A further possibility for the model selection procedure in generalised additive models
with GCV or UBRE is the adaptive backfitting approach of [Hastie and Tibshirani
(1990), BRUTO, which can also be extended to binomial response values (Leathwick,
Elith and Hastie, 2006). Other criteria, like AIC, BIC and Cross Selection are consid-
ered in |Araijo and Luoto| (2007)).
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The variable selection in regression models is well-suited for introducing ecological ex-
pert knowledge in order to heighten plausibility. This proceeding is confirmed through
the findings of Meynard and Quinn (2007), who propose expert—based variable selec-
tion, because automated procedures lack selecting the relevant variables out of several
correlated predictors.

3.4. Approach of a pseudo—balanced design by weighting
observations

Since ordinary GAMs are often used in ecological modelling, some ideas for their ame-
lioration are taken into account.

Comprising the maximum variability of the main predictors in the habitat of the exa-
mined species is crucial for the success of species distribution modelling. This require-
ment relates closely to the appropriate choice of the utilised sampling strategy.

Hirzel and Guisan| (2002) showed with a simulation study, that equal and random
sampling along stratified environmental gradients tends to provide models with more
accurate predictions than a random sampling design. In particular, the extremes of
the gradients are represented more strongly with this approach, and thus, according to
Mohler| (1983)), the species distribution models can be improved.

Since the WINALP data set is constructed out of two databases, the design is a random
pattern. To imitate a balanced design along environmental gradients, an extended
GAM approach with weighted observations for a subsequent stratification is regarded.
In comparison to a stratified subsample, this proceeding has the advantage of using the
entire information of the data set.

The weights for the individual observations along a single gradient x;,j =1,...,q, are
determined through the quartiles:

% , for x;; within the first quartile of x;

wij = ﬁ , for x;; within the second or the third quartile of x;
J
% , for z;; within the forth quartile of x;

nj

n9'25 denotes the number of observations within the first quartile of gradient x;,
n02°=0975 the number within the second and the third quartile and n9'75 the num-
ber within the fourth quartile, respectively. Thus, the weights of observations within

the middle quartiles of the gradient are half of those of the external quartiles.

The weight for each observation 7,7 = 1,...,n, along several gradients is calculated as
the product of the individual weights:
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q
Ww; = H wij
j=1

Since difficulties occur with the interpretation of confidence regions of weighted models,
the weights are so scaled that they sum up to n.

The described weighting procedure increases the influence of observations, which are
located at the boundary of the predictor space. With the WINALP data it will be
investigated to what extent this strategy contributes to the improvement of the model.

3.5. Integration of an interaction factor

According to |Austin| (2002)), the negligence of interactions between predictors restricts
ecological modelling. Therefore, multi—-dimensional effects of environmental covariates
should also be incorporated into the model equation. However, this proceeding sig-
nificantly enhances the complexity of the model and the identification of meaningful
interaction terms from all possible ones is highly elaborate. Furthermore, the level of
interaction has to be determined.

A possible solution to the integration of interaction terms are multivariate adaptive
regression splines (MARS), which were introduced by [Friedman| (1991). This approach
is a generalisation of regression trees, described in section The fit in each node
is a continuous function. The algorithm contains an implicit data—directed choice of
the number of basis functions, the degree of interaction terms and the knot locations.
Moisen and Frescino (2002) used this approach to the modelling of forest characteristics.

Maggini et al. (2006) applied a very simple, but efficient solution to the simultaneous
integration of the most important predictor interactions within the commonly used
linear or additive regression models. A qualitative interaction factor is included as
covariate. The categories of this factor variable are defined by the paths of a regression
tree, in which the residuals of the initial regression model are fitted with the ecological
variables. The complexity of the regression tree is limited by pruning.

This appealing method, which adaptively accounts for relevant interactions, can be
useful for the improvement of the predictive performance of a baseline model.

3.6. Spatial autocorrelation

Autocorrelation occurs when dependencies among different observations are persistent.
Spatial and also temporal autocorrelated data is very common in ecology, e.g. (Legen-
dre}, [1993)), because often, observations are collected across geographic space or along
time series, respectively. Since the WINALP data set does not contain a temporal
structure, only spatial autocorrelation is regarded.
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Various reasons for spatial autocorrelation can be considered, which can affect the
observations on a large scale as well as on a smaller scale. Besides spatially acting,
ecological variables like water, energy, nutrients and geomorphodynamics, also biolo-
gical processes, e.g. speciation, extinction, dispersal or species interactions (Dormann
et al., 2007), and cultivation proceedings induce spatial structure in the data.

Disregarding a contributing predictor Z results in the violation of the independence
assumption regarding the error term € and leads to biased estimations. Since no in-
formation about the structure s(Z) of the unobserved predictor is available except
the position of the observations, a standard method to allow for Z is the inclusion of a
smooth effect of the position, e.g. a smooth interaction between longitude and latitude:

P q
N = Z Brxir + Z fj(xij) + s(longitude;, latitude;) + &;
k=1 j=1

Therefore, it is assumed, that E(e;) = s(z;) and Var(e;) = o2 so that E(§;) = 0 and
Var(g;) = 02 holds (i = 1,...,n).

Not only unobserved confounders, but also the resolution of the measuring scale may
be a cause for misspecification, because in the case of a too high resolution, long-range,
continental effects are not displayed in the data and otherwise a too small resolution
lacks describing small-scaled patterns. [Kiihn (2007) describes this aspect and proposes
the allowance for spatial autocorrelation as a way of alleviating misspecification.

3.7. Implementation

For the analysis with GAM, a reduced predictor set (cf. table , which was predeter-
mined by ecology experts and which varies for the different tree species, is used, mainly
in order to prevent multicollinearity. Merely the main effects of these environmental
predictors are included to obtain sparse and comprehensible models.

The binary presence—absence response variables are modelled by using the binomial
family. The smooth components are constructed with thin—plate regression splines as
basis functions. The degrees of freedom are restricted to at most 4 in order to get
reasonable and smooth response shapes. Categorial predictors are included either as
factors or with a linear trend. Isotropic spatial autocorrelation is accounted for with a
bivariate smooth surface, modelled with an interaction between longitude and latitude.

The gam function from the package mgcv (Wood, 2009b) is used for the model cal-
culations, which implements the penalised likelihood approach. To compare several
models in terms of their GCV-score adequately, the smoothing parameter selection is
accomplished with an outer loop in addition to the ordinary P-IRLS algorithm, which
provides the best GCV as possible.

The impact of allowing for the spatial structure, weighting observations and integrating
an interaction factor is examined with the full, unselected models by means of the
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GCV criterion. Product—weighting (cf. section is accomplished with all covariates
besides T01_20 and MORDYN, because of correlation with T_JJA and respectively,
because MORDYN is binary. To determine the interaction factor, a regression tree
is calculated on the residuals of the model until an assessable depth with conditional
inference trees (cf. section implemented in the function ctree of the package party
(Hothorn et al., 2009).

A stepwise backward variable selection procedure is adopted, in which the covariate with
the highest p—value is removed at each stage until the GCV—score strongly increases.
The order of exclusion serves as a rough guide for the variable importance in the
GAM approach. To identify the best model the statistical relevance of a predictor in
the variable selection procedure as well as expert knowledge on the plausibility of the
resulting response curves and predictions are taken into account. For more reasonable
models, the degrees of freedom are adjusted in some cases.

3.8. Profits and limitations of the GAM approach

Generalised additive models are a powerful and efficient tool for the flexible modelling
of smooth effects of several covariates simultaneously. They can detect several shapes
including e.g. bimodal or skewed ones. Especially the quantification of uncertainty of
the resulting estimation, e.g. with confidence regions, is appealing and allows statistical
inference.

However, assuming additive covering of the single effects and a smooth response surface
restricts the functional form of the modelled relationship. Moreover, the independence
assumption of the model is often not given and techniques to alleviate this violation
are necessary.

Especially in the context of ecology, GAMs produce unrealistic estimations at the
boundary of a predictor, if the gradient is truncated, as mentioned in section

Another weakness of regression models relates to the integration of interaction effects
and correlated predictors. Containing all main and interaction terms of interest the
model is often affected by identification and multicollinearity problems and conse-
quently, the estimation fails or is instable.
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4. Data—directed approach using random forests

4.1. Model description

Although stochastic data models, like e.g. regression models, sometimes lack fit-
ting the data well, they are, due to simplicity and interpretability, commonly used.
Whereas data models try to imitate the underlying mechanism of the data, algorithmic
approaches, like neural nets, random forests or support vector machines, directly specify
the functional relation between the predictors and the response (Breiman, [2001b)).

The flexibility of machine learning methods allows the modelling of complex and also
nonlinear relations and patterns as they occur in ecology. In comparison to conven-
tional, parametric modelling techniques, these approaches have no need for restrictive
assumptions on the relationships among response and predictor variables and they often
outperform standard models. Within this work random forests will be described and
applied in detail, as one possible data—directed strategy to model species distributions.

Random forests (Breiman, 2001a) base on classification and regression trees (CART,
Breiman et al., |1984)), which have been frequently used in recent years even in ecology.
An introduction to the usage of CARTs for ecological questions is given by [Olden,
Lawler and Poff| (2008). [De’ath and Fabricius (2000) emphasise the simplicity and the
convenient interpretation of the powerful CART algorithm in contrast to traditional
linear regression, mainly with regard to variable selection and nonlinear modelling of
multiple interactions in complex ecological data sets.

The random forest algorithm is, like boosting, which is described in detail in section
an ensemble method. Therefore, several models are combined in order to improve the
predictive performance. In the case of random forests, an ensemble of decision trees is
created by bootstrapping or subsampling.

Whereas random forests are well established in other subjects, they are barely applied
in ecology. |Prasad, Iverson and Liaw (2006) and |Lawler, White and Blaustein, (2006))
detected a superior predictive capacity of random forests, applied to the modelling
of tree and mammal species, in comparison to CARTSs, bagging trees, generalised re-
gression models, multivariate adaptive regression splines (MARS) and artificial neural
networks.

Analysing different ecological presence—absence data sets, |Cutler et al. (2007) explored
the classification accuracy and the variable importance of random forests in contrast to
classification trees, additive logistic regression and linear discriminant analysis. The su-
periority of random forests in the case of strong interactions among variables is pointed
out, while the advantage is only moderate when additive structures are modelled.
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The simulation study of Elith and Graham (2009a) discovered the superior performance
of boosted regression trees and random forests in contrast to generalised linear models
in most instances. Furthermore, advice for the appropriate application of the examined
modelling techniques for specific use is given.

4.2. Classification and regression trees

Classification and regression trees, introduced by Breiman et al.| (1984), are a non-
parametric approach, because the relationship between response and predictor variables
has not to be prespecified.

With the CART method special decision trees for categorial and continuous response
variables, which only allow binary splits into mutually exclusive, preferably homoge-
neous groups, are created. This algorithm is not limited, because every multiway split
can be represented by a series of binary splits. The other, very popular decision tree
algorithm C4.5 accomplishes additionally multiway splits. Detailed information can be
found in Quinlan| (1993).

The resulting tree can be depicted graphically and therefore, the CART—model is not
only suitable for prediction, but also for data description.

The CART procedure can be divided into three basic steps (Olden, Lawler and Poft,
2008):

1. tree building
2. stopping the tree building process
3. tree pruning and optimal tree selection.

For tree building CARTSs subdivide the feature space recursively and parallel to the
coordinate axes. In each resulting section R,,,m = 1,..., M, the response variable is
modelled with the averaged response value ¢, in the regression situation:

) M
fl@)=>" éml(z € Ry

m=1

I represents the indicator function. In the context of classification the fit is determined
by majority decision.

With the resulting stepwise constant function, arbitrary association rules, e.g. lin-
ear or polynomial ones, can be approximated. Besides accounting for relevant main
effects, CART's are able to select important interactions implicitly, even though they
are possibly high dimensional.

The splitting variable and the position of the cut is achieved by reducing an information
measure of node impurity locally optimal, e.g.
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e the sum of squares: ﬁ > eier,, Wi — ém)?
in the regression case and

e the misclassification error: 1 — maxy pmr

e the Gini Index: Z{le Pk (1 — Drmk) OF

e the Shannon Entropy: Zszl Pk log(Dmk)

within classification problems. Therefore, py,; = |R71m\ > wer,, L(yi = k) holds; {1,..., K'}
are the classes. The cut-point, which maximises the homogeneity of the resulting
groups regarding the response, is selected. This procedure results in a decision tree,
whose branches represent the splitting rules.

Node splitting will be recursively repeated until
e a minimum number of observations in the terminal node is reached,
e impurity reduction is too small,
e the terminal node is pure or if
e 3 different stopping criterion is fulfilled.

The hierarchical structure of the decision tree implicates the modelling of interactions
between the predictor variables.

In order to avoid overfitting, the optimal tree size, which describes the complexity of
the model, has to be determined. Hastie, Tibshirani and Friedman (2001) suggest a
strategy of cost—complexity pruning for that reason. Thereby, the goodness of fit of a
tree T, which is measured by its loss L(T"), e.g. with the Gini Index, is penalised by
the complexity of the tree, measured with the number of terminal nodes |T|:

Lo(T) = L(T) + o|T]

Minimising this cost—complexity criterion for several a—values leads to a sequence of
smallest subtrees of the full tree Ty O 177 D 15 O .... The best value of the complexity
parameter « is determined by cross—validation.

The tree building procedure can be modified and extended to some special options:
e lower limitation of the minimum node size
e definition of a priori class weights
e handling of missing predictor values with surrogate variables.
For that purpose, |[Hastie, Tibshirani and Friedman| (2001) provide further information.

In particular, missing values often appear in ecological data. Whereas many mo-
delling techniques cannot include missing values of predictor variables in the estimation,
CARTSs provide so called surrogate variables. A surrogate variable is a predictor, which
produces a split similar to the split of the primary splitting variable.
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However, the classification and regression trees produce not necessarily the best possible
tree. Converging to a local optimum instead of the global optimum, the CART algo-
rithm, like other greedy algorithms, can be suboptimal and moreover instable. A
strategy to overcome this shortcoming is presented in section

4.3. Conditional inference trees

Despite the instability of decision trees, the suboptimality of the final decision tree and
the rawness of the predicted surface (Hastie, Tibshirani and Friedman| 2001)), another
limitation of the CART algorithm is the variable selection bias (Strobl, Boulesteix and
Augustin, 2007). Variables with many possible splits or many missing values will be
favoured in the selection of a splitting variable, if an ordinary entropy based measure,
i.e. the Gini Index, is applied.

Conditional inference trees, which were proposed by |Hothorn, Hornik and Zeileis| (2006)),
are more appropriate for predictors measured at arbitrary scales, because they avoid
the variable selection bias by means of accomplishing variable selection separated from
the splitting procedure:

1. Variable selection: Test the global null hypothesis of independence between all
covariates and the response. If this hypothesis is rejected, select the covariate
with the strongest association to the response, e.g. the covariate with the lowest
p—value resulting from an independence test. Otherwise, the recursion will be
stopped.

2. Splitting procedure: Choose the best split of the selected variable by optimising
an appropriate splitting criterion.

At the variable selection step, the global null hypothesis consists of m partial hypothe-
ses:

m
Hy=(\H} with H}:D(Y|X;)=D(Y) , j=1,....m
j=1
Thus, it will be tested, if the conditional distribution D(Y|X;) of the response Y given
the j—th covariate X; depends on X;. For each partial hypothesis a linear test statistic

T; is constructed, which measures the strength of the association between Y and Xj.
For detailed statistical notation, refer to |[Hothorn, Hornik and Zeileis (2006]).

Because the family of permutation tests provides unified tests for independence with re-
gard to variables of arbitrary scales, this non—parametric approach is used for statistical
inference. The general idea of permutation tests is the imitation of the distribution of
the test statistic under the null hypothesis with random permutation of the considered
response variable among the observations.

In the case of the independence tests, which are applied in the context of conditional
inference trees, the situation under the j—th null hypothesis is generated by all possible
permutations of the response Y, whereas X is fixed. Thus, the p-value of the realised
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test statistic ¢; can be determined and some method for the adjustment of multiple
testing, e.g. Bonferroni correction, can be accomplished.

Despite the different scales of the predictors, an unbiased comparison of the m p—values
is possible. If the minimum of the adjusted p—values does not exceed a prespecified
level a, the global null hypothesis will be rejected and the covariate with the minimal
p—value will be the splitting variable. Otherwise, further node splitting will be stopped.
The parameter o can be seen either as significance level of the test of the global null
hypothesis or as a hyper—parameter determining the tree size.

The permutation test framework also provides an approach to the splitting procedure,
i.e. finding the optimal binary split: For each split, a linear test statistic is constructed,
which measures the discrepancy between the splitted sets. The split, which causes the
maximal, standardised test statistic, is chosen.

Thus, the association between the response and the potential splitting variable is mea-
sured with the test statistic of a formal test, in contrast to the classification and re-
gression trees, where some measure of impurity reduction is applied.

Furthermore, an implicit solution to the overfitting problem is provided by the incor-
poration of the distribution of the test statistics, which avoids an additional pruning
step.

4.4. Random forests

Random forests extend the decision tree approach and solve two essential limitations:

e Instability: Small changes in the data set can yield quite different trees, which
induce a high variability, whereas the bias is low.

e Suboptimality: Locally optimal splits are not obliged to result in the global op-
timal tree.

The basic idea of ensemble methods, in particular random forests and boosting algo-
rithms (cf. chapter |5)) derives from the bias—variance decomposition for the prediction
error (James and Hastie| [1997)):

PE = Var(Y) + bias?(Y,E(Y)) + Var(Y)
~——
o2
The prediction error PE of a model can be partitioned into an irreducible error Var(Y)
and a reducible error, which consists of the squared bias bias?(Y, E(Y")) and the variance
of the prediction Var(Y').

Ensemble methods in general aim at the reduction of the variance of the prediction

o? through model aggregation. If several i.i.d. models are averaged, e.g. B models,
N 2

Var(Y') decreases according to the Law of Large Numbers to % .
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Since |Breiman| (2001al) showed, that the predictive accuracy improves with a decreasing
correlation between the ensemble members, the construction of the ensemble should aim
at a low correlation. Different ensemble methods vary in the manner how they generate
several models.

Within the context of random forests, the optimal variance reduction in the case of
an ensemble with B i.i.d. models is approximated by the following steps (Hastie,
Tibshirani and Friedman, 2001):

Algorithm 2: Random forest

1. For b=1 to B:
(a) Draw a bootstrap sample of size n from the training data.
(b) Repeat the following steps recursively to build a tree on the bootstrapped
data until the minimum node size is reached:
i. Select m variables at random from the p covariates.
ii. Pick the best variable/split—point among the m variables.
iii. Split the node into two daughter nodes.
2. Output the ensemble of trees {T,}7.

Hence, variability is inserted into the ensemble with a random subset of the data, with
a random selection of the predictor variables, which are available for each split and also
with the omission of pruning. For regression, predictions are obtained by averaging
the predictions over all trees; in a classification analysis, majority votes deliver the
predictive values.

The tuning parameter m controls the diversity between the single trees and the bias—
variance trade—off (Hastie, Tibshirani and Friedman) 2001)). Increasing m leads to more
correlated trees and thus to a higher variance, whereas the squared bias decreases. If m
equals the number of predictors the procedure is called “bagging”, which was introduced
by Breiman (19964, 1998).

Therefore, random forests improve the predictive accuracy, because they reduce the
instability and suboptimality of a single tree, but otherwise the interpretability of a
single decision tree gets lost.

4.5. Model selection and variable importance

A very appealing feature regarding the tuning parameter selection, the accuracy mea-
sures and the error rates of random forest models is, that model fitting and model
validation can be accomplished all at once. This proceeding is possible, because only a
subsample of the data is used for the fitting of a single tree, the remaining observations
are used for out—of-bag predictions. Thus, an estimate for the out—of-bag error can be
achieved, which approximates the generalisation error (Breiman, |1996b)).

Especially in applications and for interpretability, not only the prediction, but also
the mechanism behind a procedure, is concerning. For that reason a measure for the
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variable importance is the matter of interest (Oppel, Strobl and Huettmann, [2009)),
as also applied in [Prasad, Iverson and Liaw| (2006) and (Cutler et al.| (2007). Four
approaches are considered (Strobl et al., 2007, [2008)):

e Selection frequency: number of selections of each variable by all individual trees

e Gini importance: (weighted) mean of decrease in Gini Index at every split pro-
duced by the variable

e Permutation importance: averaged difference in prediction accuracy before and
after randomly permuting the covariate

e Conditional permutation importance: permutation importance with additional
adjustment for previous splitting variables.

For detailed formula, refer to the denoted literature, because the support for explaining
is not too valuable.

(Strobl et al., 2007) investigated that the variable importance measure for random
forests based on the Gini Index is affected by the number of categories and the scale
of measurement. This is to some extent due to the bias of the individual classification
and regression trees in favour of variables with more categories as depicted in section
By the use of a forest based on conditional inference trees in combination with the
permutation importance, this kind of bias decreases.

The idea behind the permutation importance is to simulate the situation of indepen-
dence between response and predictor, which delivers a higher prediction error, if the
predictor is important. However, the variable selection bias decreases, but does not
vanish, because the bootstrap step in the algorithm also affects the variable selection
preferring multi—categorial predictors (Strobl et al., [2007). The background of this is,
that for statistical inference, in the individual conditional inference trees the distribu-
tion in the bootstrap sample is used instead of the distribution of the test statistic
under the null hypothesis .

Since subsampling avoids this effect, it is more appropriate for random forests with
predictors varying in their number of categories and in the scale of measurement. For
further, more detailed reading refer to [Strobl et al.| (2007) and Bickel and Ren| (2001]).

Selection frequency and also the ordinary permutation importance were detected to
overestimate the importance of predictors, which actually have just a minor influence,
but correlate to a contributing covariate (Strobl et al., [2008). The reason is, that these
measures depend on the marginal correlation, i.e. the correlation of the considered
predictor with the response as well as with the previous splitting variables.

Strobl et al.| (2008)) suggest an importance measure based on conditional permutation,
which adjusts for the unintended impact of the correlation with previous splitting vari-
ables more accurately than the permutation importance. For further information on
the technique of conditional permutation, refer to the denoted literature.

Besides the univariate effect of a predictor variable, variable importance measures for
random forests also account for the impact of high—dimensional interaction effects.
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4.6. Implementation

In order to implement the data—directed approach with random forests the 16 environ-
mental predictor variables, which are described in chapter are used for modelling.

The random forest approach is conducted with the cforest procedure of the package
party (Hothorn et al.l 2009), in which a random forest algorithm with conditional
inference trees is implemented.

Besides the construction of unbiased decision trees, subsamples of the size 0.632 - n
instead of bootstrapping are used for drawing random samples of the data set, in order
to prevent the variable selection from bias, which is explained in the previous chapter.

The stability of the resulting model is based on the number of trees ntree and the
number of predictors, which are available for each split, mtry. Though, the selection of
the tuning parameters is not as crucial as in other modelling techniques.

For stable results as many trees as possible are included in the forest and thus, 300
trees are computed for each model.

Although the conditional variable importance measure would be preferable because
of the correlated predictors, the calculation thereof is not possible due to the high
number of observations in the WINALP data set. However, according to |Strobl et al.
(2008), similar values to the conditional importance will be obtained with the ordinary
permutation importance, if mtry is increased. Therefore, mtry= 7 is chosen.

Lin and Jeon| (2006 showed, that the predictive capacity of random forests depend,
particularly in the case of many observations coexistent with few predictors, on the
terminal node size. Thus, for the limitation of overfitting, the optimal depth of the tree
is chosen with regard to the out—of-bag AUC criterion based on random forests with
100 trees for the analysis of the data and with 50 trees in the simulation study.

The results are described by the variable importance measure as well as by partial
dependence plots of the predictors, which are not available by default in the party
package. A routine, based on the marginal average of the effect, was implemented as
described by [Hastie, Tibshirani and Friedman! (2001) and applied in an ecological issue
by |Cutler et al. (2007). For the partial dependence of variable X, predictions are
accomplished for varying values of variable X; by fixing the other covariates X_; to
their empirical values:

n

1
fpartial,j(Xj) = ﬁ Z f(Xj7 xi7_j>

i=1
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4.7. Profits and limitations of the random forest approach

The random forest approach is a powerful tool for accurate predictions. They are
characterised by a high classification accuracy and a flexible handling of different types
of response. Averaging prevents from overfitting due to the Law of Large Numbers.
Also the robust algorithm can handle correlated predictors with complex and nonlinear
interactions, even if the number of predictors exceeds the number of observations.

In comparison to decision trees, random forests are more appropriate for modelling
functional relations and can approximate arbitrary decision boundaries. An appealing
side effect of averaging is the fact, that the raw, piecewise constant decision boundaries
of an individual tree are smoothed. Also the limited assortment of predictor variables at
each split accounts for additional interaction effects, because locally suboptimal splits
are generated.

Another feature of random forests is their treatment of missing values with surrogate
variables. Thus, all observations are included in the modelling procedure.

Additionally, the calculation of variable importance is provided, which can be used for
the identification of relevant predictor variables . The random forest algorithm offers
an unbiased variable selection and implicit pruning of each tree based on statistical
inference by utilising conditional inference trees in combination with subsampling.

Since the random forest algorithm renders the calculation of the out—of-bag predic-
tion error, the estimation of predictive performance measures comes along with model
fitting. This error is often used as a lower bound for the prediction error of other
modelling strategies.

Because random forest is a non—parametric modelling technique, it is not affected by
limiting distribution assumptions, e.g. it does not require uncorrelated predictors.
However, a limitation of random forests is, that this approach is not based on a proba-
bilistic model. Consequently, a probability statement on the accuracy of the prediction,
e.g. a confidence interval, is not provided by the estimation procedure and has to be
calculated with additional techniques, like e.g. bootstrapping.

Furthermore, the algorithm is a computationally intensive routine concerning compu-
ting time as well as computer resources, especially if partial dependence curves are
calculated. The examination of the individual trees is often not meaningful and hence,
the method is called a black box approach. The straightforward interpretability of the
single regression tree disappears by applying a random forest.
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5. Data—directed approach using boosting

5.1. Model description

Boosting, which connects statistical modelling to machine learning, is an ensemble
method for improving the predictive performance of a single weak learning algorithm
by an adaptive combination of the ensemble. In contrast to other ensemble methods,
like i.e. random forests, boosting algorithms are aimed at the stepwise improvement
of the performance. This is achieved through a strengthened or literally “boosted”
emphasis on poorly fitted observations.

Originally, |[Freund and Schapire (1995) introduced boosting as a machine learning algo-
rithm for binary classification problems and called the procedure “AdaBoost”. [Hastie,
Tibshirani and Friedman! (2001) extended this approach to a more general, statistical
framework, in which many different baselearners, e.g. trees or component—wise linear
procedures, can be used. Thus, also the analysis of regression problems and further
statistical issues, e.g. survival analysis, is possible with boosting.

For modelling presence—absence data with boosting, two approaches are considered:
e BRT: boosted regression trees
e GAMBoost: component—wise smoothing splines used as base procedure

Whereas BRT allows for interactions between the predictor variables more appropri-
ately, GAMBoost has the advantage, that the modelled effects on the response are
smooth.

In ecology, boosting methods have just recently attracted interest and are rarely applied
at present. Elith, Leathwick and Hastie (2008]) provide a broad guidance for the appli-
cation of boosted regression trees in ecology and illustrate the usage by means of the
distribution analysis of a fish species in New Zealand.

De’ath| (2007) gives an introduction to boosted trees in ecology and discovers their
superiority in terms of predictive accuracy compared to bagged trees, random forest and
generalised additive models. Also |Guisan et al.| (2007) showed, that boosted regression
trees perform better than a series of other modelling techniques, e.g. GAM, BRUTO
or MARS.

Examples for the application of boosted regression models, e.g. GLMBoost or GAM-
Boost are not available in literature. So the performance and the properties on species
distribution modelling must still be investigated.
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5.2. Estimation

5.2.1. Generic boosting algorithm

Boosting, as an ensemble method, aims at decreasing the prediction error by averaging
(similar to random forests, which are described in chapter [4.4]) over several models

gm(x):

Mstop

g(x) = Z amgm ()
m=1

The individual models g,,(z) result from the analysis of different re—weighted data
versions with a proper statistical modelling technique, which is called base procedure
or baselearner.

Apart from the fact, that the basic idea of boosting is not limited to decision trees as
baselearners, the original conception of boosting, especially the AdaBoost algorithm
(Freund and Schapire, 1995), predominantly differs from random forests in the genera-
tion of the ensemble in terms of two aspects:

The first difference is related to the construction of the base procedure. Instead of
unbiased, highly overfitting models, a sequence of weak learners is produced to build
up the ensemble. |Kearns and Valiant| (1994) proved that an ensemble of models, which
are individually only slightly better than random guessing, achieves better predictions
in conjunction.

Secondly, variation in the data sets, which are used for each single model g,,(x), is
not achieved by bootstrap sampling, but rather through varying observation weights.
The modification of the weights for each ensemble member depends on the fit of the
previous model. The weight of an observation is lowered in the case of a good previous
fit, whereas a bad fit yields increased weights. This weighting procedure concentrates
increasingly on observations, which are difficult to learn.

From a statistical point of view, the original AdaBoost algorithm, in which re-weighted
versions of the data produce several models, can be seen as an optimisation problem
for the expected loss L between the response variable and a function of the covariates
(Friedman) 2001):
f* = argminE [L(Y, £(X))
f

Therefore, the function f is described as a linear combination of base procedures
b(x; ) (Friedman, Hastie and Tibshirani, 2000))

Mstop

f($; {I/m,'}’m};nsmp) = Z Vmb(m,')'m)

m=1

The configuration of the parameter vector -, which characterises the basis functions,
depends on the utilised base procedure. The minimisation problem is solved numerically
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with the steepest-descent method (Friedman, 2001; Bithlmann and Hothorn, 2007):

Algorithm 3: Functional gradient descent algorithm

1. Tnitialise fo(z), e.g. fo(z) = argmin 37 | L(y;, ¢).
(&
2. For m =1,...,msop iterate:
a) Compute the negative gradient evaluated at the predictions of the previous
iteration fy,—1(x):

i = b AL i 74
af(ml) f(m):fmfl(w)
b) Choose the parameter vector ,,, with which the base procedure fits the

negative gradient vector ¢, ..., ¥, at the best in terms of Lo—loss.
c) Update the function estimate:

, 1=1,...,n

fn(@) = fn—1 (@) + vb(a:7m)

Parameter estimations of previous iterations remain steady.
3. Terminate, if m = Mmgiop.

The basic idea behind the algorithm is, that an approximate value for f* is iteratively
improved by a small modification through the addition of fitted baselearners towards
the locally best solution. Also the original AdaBoost algorithm, in which the data is
iteratively re-weighted, was shown to be a gradient descent algorithm (Breiman, 1999).

The demonstrated, stage—wise boosting algorithm constitutes a general framework for
various applications. Depending on the choice of the base procedure and the loss
function, structural assumptions for the data can be incorporated into the specific
algorithm in order to ameliorate the predictive performance and the interpretation of
the resulting model.

5.2.2. Loss functions

In step 2a) of the functional gradient descent algorithm, the negative gradient is cal-
culated with the loss between the response variable and the corresponding fit of the
previous iteration. The usage of appropriate loss functions, which results in § € R for
all types of responses, permits a uniform concept of the algorithm.

Whereas for regression problems, the loss is calculated with the residuals y — f(x),
the so—called “margin” yf(z) is utilised in classification problems with responses y €
{—1,1}. Because a positive margin value indicates a correctly classified observation
and a negative value a misclassified one, an appropriate loss function should penalise
the latter more strongly. Commonly used loss functions are for example (Bithlmann
and Hothorn) 2007).
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e a re—parameterised and scaled version of the negative binomial log—likelihood
Llogflik(yv f) = 10g2(1 + 6Xp(—2yf)),

e the exponential loss Lexp(y, f) = exp(—yf) or

e the hinge function (loss function for support vector machines)
LSVM(y7 f) = [1 - yf]+ )

which are convex and differentiable approximations of the misclassification loss
Lo-1(y, ) = Lyp<oy:
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FIGURE 5.1.: Loss functions for binary classification.

The exponential loss function leads to the AdaBoost algorithm. Boosting with the
negative binomial log—likelihood as a loss function is called BinomialBoosting. For
both versions, the population minimiser is given by the half of the log—odds ratio of
the class probabilities (Friedman, Hastie and Tibshirani, [2000):

s @) = i) = Slo (%) L with @) = P(Y —1]X = 2)

On the other hand, the Bayes classifier minimises the expected misclassification loss
and also the loss function based on the hinge function.

Besides the mentioned, monotone loss functions for binary classification problems, it is
also possible to use the non-monotone L;— and La-loss (scaled):

L. D) =ly—f| and Lo(w.f)= |y~ I’
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The Li— and Lo—loss functions are mainly common for regression problems, but they
can also be applied for classification problems. Their population minimiser is the Bayes
classifier and the conditional expectation, respectively. Using the Lo—loss function
yields the popular Lo—Boosting algorithm, in which the negative gradient vector is
equal to the residuals. Thus, Lo—Boosting improves the estimation in each step by
iteratively fitting a new, weak model on the resulting residuals. A further, robust
alternative for regression is the Huber—loss function.

Because binary classification is in the centre of interest in this work, refer to Buhlmann
and Hothorn| (2007)) for a detailed description of the regression case.
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5.2.3. Base procedures

The general framework of boosting as an additive combination of several models allows
a flexible specification of the base procedure. The choice depends on the structural cha-
racteristics of the relationship of interest: Trees are more appropriate for the modelling
of the effects of interacting predictor variables. If a linear or an additive structure is
suggested, component—wise linear models (GLMBoost) or respectively component—wise
smoothing procedures (GAMBoost) are suitable baselearners.

The base procedures differ in the method of parameter estimation (cf. table :

base procedure parameter estimation

G 7 __ Abest, bes n n
LM b(z) = gPtabet _ ZXF)E/Z (Xi(y))z
=1 =1
6(1’) _ fbeSt(.rbeSt) B(j) —argmin i (ffz _ f (Xz(])))Q
GAM et =

B
_ Hbest Jjbost
- lz;ﬁl Bl( ) + )\/f//($))2d$:|

K - K -
Tree b(z) = ny,?eStI<m € R‘,gest> BY) = argmin Z Z Lo (Yiﬁlgzj))

(4) (4) ,
_ oWy k=1, < p()
k=1 T T z;€R)]

best best best
(/6 = (71 9 77]{; )

best best
Rt . RP ))

TABLE 5.1.: Examples for base procedures and the corresponding optimisation problems for
parameter estimation (Hastie, Tibshirani and Friedman|, |2001; |Bihlmann and Hothorn, |2007).

In each boosting step, simple models with the negative gradient Y; as dependent variable
are calculated for all predictor variables (cf. the second column of table [5.1]).

For the different base procedures, the model parameters 3; have different meanings:
for GLMBoost, 3; is the ordinary regression coefficient and for GAMBoost, 3; repre-
sents the coefficients for the basis functions. For decision trees, the model parameters
represent a vector, which includes the vector of subregions Ry, ..., Ry of that region,
which is chosen for splitting in iteration m, and the constant estimations vy, ..., for
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these subregions.

The parameter estimators for the GLMBoost and the GAMBoost are assessed with the
method of the least—squares and the penalised least—squares, respectively. If a decision
tree is chosen for the base procedure, a subtree in each existing region of the predictor
space will be required. The calculation of the parameter estimators for each subtree
results from the minimisation of the Lo—loss.

For each predictor or — in the case of a decision tree as baselearner — for each com-
bination of predictor variables, the base procedure is fitted to the negative gradient.
The best fitting base procedure E(w) of the actual boosting iteration m is added (in a
shrunken version) to the function estimate fy,_1 ().

5.3. Properties of the boosting algorithm

In this section some outstanding properties of the boosting algorithm will be overviewed.

Firstly, using boosting with component—wise least squares or component—wise smoo-
thing splines, the boosted model converges to the ordinary regression model and the
regression coefficients of the boosted model are shrunken versions of the coefficients of
the ordinary model.

A very attractive feature of boosting is the implicit and efficient variable selection. In
each boosting iteration few predictors, which improve the model at best, are chosen
for the extension of the model. Thus, unimportant covariates do not or do only little
contribute to the model and indications for the importance of the individual predictors
can be deviated, which is explained in detail in chapter However, the mathematical
properties of variable selection with boosting are not clear.

As explained in chapter boosting iteratively fits the negative gradient vector.
Hence, the approximate boosting hat matrix in iteration m, B,,, can be calculated
with the hat matrix of the component—wise estimator for the negative gradient vector

Hm : (gl,m7 ey gn,m) = ?jl,ma o 7gn,m

In the case of BinomialBoosting, e.g., the approximate boosting hat matrix can be
depicted as follows Bithlmann and Hothorn| (2007):

B, = Bp-1 + 41/Wm717‘[m(1 — Bmfl) with By = pdWoHy

W denotes a diagonal matrix, which is calculated with the predictors. This alternative
notation of the boosting step allows the calculation of the degrees of freedom as the
trace of the approximate boosting hat matrix and thus, the calculation of information
criteria, like AIC or BIC.
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It is also known, that boosting can be susceptible to overfitting, but it overfits very
slowly. Bartlett and Traskin! (2007) showed, that the early stop of the algorithm results
in its consistency.

5.4. Model selection

Because poor generalisability of a model can result from overfitting to the training data
set, regularisation methods are applied to discover a good fitting degree. Therefore, the
boosting algorithm provides two alternatives: constraints on the number of components
Mstop as well as on the step—size v in each boosting iteration are possible (Friedman,
2001)).

The optimal number of components Mmgiop is determined by some selection criterion,
e.g. AIC, cross—validation or bootstrapping. It is to remark, that regularising the
parameter mgiop implicitly assumes that sparse models perform better in prediction.

Furthermore, the step—size v controls the generalisability of the fitted model. The
parameter v operates like a shrinkage parameter (Friedman), 2001 and hence, by de-
creasing v, the variance is reduced on account of the bias.

This leads to contrary objectives: Choosing a small step—size v results only in a slight
improvement of the model, many boosting iterations are required and vice versa, if
the size of the boosting steps is large, fewer iterations will be needed. Consequently, a
trade—off between v and msop occurs.

For small step—sizes, e.g. v = 0.1, the effect of this parameter on the predictive accuracy
is negligible small (Friedman, 2001} Bithlmann and Hothorn, [2007). Thus, it is sufficient
to search the optimal number of boosting iterations msgiop, for a constant and small value
of the step—size v.

However, overfitting can result not only from the tuning parameters msiop and v, but
also from the degree of complexity of the base procedure. [Biuhlmann and Hothorn
(2007) demonstrate, that base procedures with low bias and high variance, e.g. high—
order smoothing splines, lead to a poorly generalising model. Additionally, [Bithlmann
and Yu| (2003)) showed for L2-boosting, that the flexibility of a model does not need
to be governed by the degrees of freedoms of the base procedure, because a high—order
degree of smoothness can also be achieved with sufficient boosting iterations by using
weak baselearners.
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5.5. Variable importance

Especially in high—dimensional problems, in which even the number of predictor va-
riables exceeds the number of observations, boosting is an appropriate tool for eval-
uating the importance of the different predictors. The variable importance measures
depend on the utilised base procedure.

For boosted regression trees, |Hastie, Tibshirani and Friedman| (2001) propose the
following importance measure. The importance of the predictor X, I ZQ(T), of a single
decision tree T can be assessed by adding up the squared impurity reduction i? in that
inner nodes ¢, t =1,...,J — 1, which were produced by predictor X;:

J-1
(T) =) iflw(t)=1)
t=1

where I denotes the indicator function. The importance measure for a boosted regre-
ssion tree can be calculated by averaging:

1 Mstop
I} (T)

2 _
Iy =
Mstop

m=1

Since up to now, an importance measure for the GAM—-Boost algorithm does not exist,
a possibility thereof is described in this paragraph. The importance of the predictor X;
can be quantified with the deviation of the partial response f(z;) from the null, which
can be measured with the area under the normalised response curve:

1
n- |
0

For the comparability of the measures between different predictors, the domain of the
predictors is standardised on the interval [0, 1].

f@)| s, @me)

Because variable importance measures are relative, the proportion of the cumulative
importance is specified and interpreted.

5.6. Implementation

As mentioned in section two different baselearners are used for the analyses with
boosting: regression trees and component—wise smoothing splines.

Analogously to the analysis with the random forests, the data—directed approach with
the boosting algorithms is modelled with the same 16 predictor variables, which have
been described in chapter 2.1 The analysis with GAMBoost is conducted with the
inclusion of the coordinates.
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The boosted regression trees are calculated by means of the library gbm (Ridgeway,
2007), which implements the gradient boosting method with classification and regres-
sion trees as base procedure and with the deviance of the bernoulli distribution as loss
function. The individual trees are grown until the depth is two. This approach is
denominated with “GBM” below.

The GAMBoost models are fitted with the gamboost function of the library mboost
(Hothorn et al., [2009) with a loss based on the negative binomial log-likelihood, be-
cause, according to Buhlmann and Hothorn| (2007)), the advantages of the negative
log—likelihood loss for classification problems are the estimation of probabilities, the
monotonicity of the loss function and the robustness towards very poor fitted obser-
vations. Depending on the assumed flexibility of the effect and on the scale of mea-
surement of a predictor, different types of base procedures can be chosen. A bivariate
surface in the form of bivariate tensor product P—splines represents the baselearner for
the spatial effect, whereas penalised regression splines are used for modelling the effects
of the continuous ecological predictors. Categorial covariates are incorporated by linear
baselearners.

In order to restrict the base procedures on weak learners, their complexity is limited
to maximal four degrees of freedom. This uniform constraint on the model complexity
additionally prevents a selection bias towards variables, for which the structure of the
baselearner allows a higher degree of complexity. The restriction on the linear base-
learners is realised by a ridge penalty.

For both boosting algorithms, the step size is chosen to be 0.1 and 1000 iterations
are accomplished. Only for modelling the occurrence of the Swiss pine with GBM,
a step size of 0.01 is selected, because otherwise, the algorithm would stop already
after two iterations. The number of boosting iterations for the final boosting models of
the data analysis are determined with the 10—fold cross—validation error by the elbow
criterion. In the simulation study, the iteration with the minimum cross—validation
error is chosen.

5.7. Profits and limitations of the boosting approach

A very attractive feature of boosting is, that, apart from an often superior predictive
accuracy, also structural assumptions on the underlying mechanism can be included by
the choice of the base procedure. Besides the ordinary GLMs or decision trees, also
additive models and even survival models can be estimated (Hastie, Tibshirani and
Friedman, 2001). Thus, boosting is a very flexible approach and has a broad range of
application.

Even complex problems, in which the number of possible predictors exceeds the number
of observations by far, can be solved with the integrated regularisation scheme. There-
fore, the algorithm is computationally efficient, because the individual weak learners
can be evaluated very fast. The implicit variable selection procedure in high dimen-
sional covariate spaces avoids the multiple test problem, but its statistical properties
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are still vague.

Unlike other black—box methods, boosting allows a slight insight into the modelled
relationships: variable importance measures identify variables with a high impact and
partial effects can be depicted.

On the one hand, the renouncement of statistical assumptions allows the application
of boosting for many different problems, but, on the other hand information on the
accuracy of the prediction, e.g. confidence intervals, cannot directly be obtained.
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6. Simulation study

6.1. Introduction to the simulation study

For the proper use and the evaluation of statistical models in ecology, it is essential to
understand their characteristics in this field of science. Besides a sensitivity analysis of
fitted models, simulation studies are another approach for investigating the properties
of statistical methods. Based on known data generating processes (DGPs), several data
sets with varying characteristics are generated and analysed by the examined methods.
The objective of the simulation study in this chapter is to gain an insight into the
impact of different DGPs, sampling designs and analysis methods, when the different
modelling strategies are applied.

For the purpose of selecting the appropriate model for any data analysis, |[Elith and Gra-
ham| (2009b)) highly recommend a deeper comprehension and a more detailed knowledge
of the reasons of varying model performances, which has not yet been sufficiently ex-
plored for species distribution modelling. To reveal differences between the performance
of the models, their capability to fit the true relationships should be measured. There-
fore, |Austin et al.| (2006 emphasise the necessity of analysing artificial data, which was
already realised e.g. by |Austin et al. (2006), Reineking and Schroder| (2006]), [Dormann
et al.| (2007) and |Moisen and Frescino (2002).

Firstly, the discrepancies of the four methods are analysed concerning varying sampling
designs. [Hirzel and Guisan| (2002) studied the impact of the sampling design on the
estimations of generalised linear models and found out, that a spatialy regular grid
improves the accuracy of the model. One aspect of this simulation study addresses to
the question, whether also the data—directed models profit from a spatially balanced
sample.

In addition to the comprehension of the underlying ecological relationship, the trans-
ferability of the resulting model on other locations as well as on hypothetical climate
scenarios is of great interest (Fitzpatrick and Hargrove, 2009)). Since often, the predic-
tors for that purpose exceed the range of the data in which the model was calibrated,
extrapolation properties and the involved uncertainties of the modelling techniques are
analysed. While [Thuiller et al. (2004) have already investigated some prediction cha-
racteristics of GAMSs, also data—directed models are taken into account in this study.

Secondly, the structure of the data generating process is considered. |[Elith and Graham
(2009b) explored different modelling techniques with a simulation study and they used
an additive covering of effects in order to simulate the underlying mechanism. Since
actually the real data generating process is mainly unknown, the differences between the
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modelling techniques are analysed in this cahapter not only when an additive structure
but also when a tree—like structure is presumed.

The third aspect of the simulation study investigates the impact of various predictor
sets on the modelling strategies. On the one hand, it will be analysed, to what extent
the disregard of a contributing predictor affects the estimation and whether a spatial
trend is capable to compensate for it. On the other hand, the influence of several
correlated predictors on the different variable importance measures of the techniques
is focused.
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6.2. Simulation setup

In this chapter the properties of the examined statistical methods will be investigated
regarding three aspects by means of a simulation study. Different sampling designs as
well as different analysis methods are considered. Furthermore, the three modelling
techniques will be compared, when the data generating process varies.

Virtual species are generated and their true relationships to the environmental predic-
tors are predetermined. The knowledge about the true DGP allows a precise comparison
of model performance. The simulation procedure is arranged as follows and repeated
100 times:

(1) A sample from the WINALP data set
is drawn and used as the real mapped dis-
tribution of the predictors.

(2) According to the DGP, the occurrence
probability for each sampled data point is
calculated.

(3) Presences and absences are generated
using a binomial distribution with the
occurrence probabilities as parameter.

(4) Two—thirds of the data is used for sta-
tistical modelling.

(5) The other third of the data is used for
validation.

FIGURE 6.1.: Simulation setup.

The strategy of the simulation study is to start with an initial scenario, in which the
predictors are sampled spatially unbalanced, the occurrence probabilities are simulated
without a spatial effect and all contributing, environmental predictors are incorporated
into the analysing model. Successively, one aspect is varied by fixing the other aspects
according to the initial scenario, which results in the following overview of the scenarios
of the simulation study:
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examined

scenarios
aspects

initial scenario

DGP1: GAM withoutspatial effec \
DGP2: GAM with spatial effe J

data generatir
- \ process (DGF
« spatially unbalanced

DGP3: regression tree \

sample
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FIGURE 6.2.: Qutline of the simulation study.

The first issue of the simulation study is, how the three models will behave, if the data
in step (3) of the simulation setup is generated with varying DGPs. Besides a GAM
with (scenario DGP2) and without a spatial effect (scenario DGP1), a decision tree
(scenario DGP3) is considered as a data generating mechanism.

For each observation, the probability of the occurrence of the artificial tree species is
calculated with

1
Ppepi1(Y =1) = 3 [s(2c05.20, 2P_33A) + 8(2P_3JA) - ZHYD_UNIT]
if the tree occurrence depends only on ecological parameters (DGP1) and with
1
Ppap2(Y =1) = 3 [s(2c05.20, 2P_33A) +8(2p_3JA) - 2HYD_UNIT + S(Z,Y)]

if a long—range spatial effect of unmeasured confounders, e.g natural and silviculturally
guided dispersion, is assumed for DGP2.

The individual components of the above modelling equations are derived from simple
regression models for the spruce with the covariates “growing degree days” (G05-20),
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“precipitation in summer” (P_JJA), “hydrogen unit” (HYD_UNIT; as a factor variable)
and optionally the coordinates (X,Y) from the WINALP data set. The response curves
and surfaces of the individual components are considered as the truth and are depicted
in figure (the response surface for the coordinates is not illustrated). The data
generating mechanisms for the scenarios DGP1 and DGP2 are not simple in order to
imitate the quite complex structure of ecological relationships.

Furthermore, the behaviour of the modelling techniques is examined in scenario DGP3,
if not an additive structure, but a tree structure will build up the DGP. The occurrence
probabilities of the virtual tree species are simulated by a conditional inference tree
on the WINALP data set for the distribution modelling of the spruce (cf. figure .
Therefore, the predictors are again sampled from the empirical environmental variables,
as described in step (1) of the simulation setup.
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Secondly, three common types of sampling designs are compared:
e Spatially unbalanced observations
e Spatially balanced sample

e Spatially unbalanced sample within a restricted area, where the collected predic-
tors do not cover the whole ecological niche

Spatially unbalanced covariables (SD1) will be achieved by sampling from the WINALP
data set. For the spatially balanced sample (SD2), the observed area is divided into
equally sized rectangles along the longitudes and latitudes. One observation is sampled
from each rectangle and the predictors are used for the DGP.

Especially the last point is interesting for the examination of extrapolation properties
of the GAM, the random forest and the boosting approach. Therefore, only the eastern
(< 45.25° longitude) observation points are used for the sample drawing (SD3), because
this area is slightly colder. The test data sets are drawn from the remaining, warmer
observations.

A further topic of the simulation study is the analysis with different predictor sets,
which consist of

e only the non—spatial, environmental predictors, which are used in the data gene-
rating mechanism,

e spatial and environmental predictors, which are used in the data generating me-
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chanism,

e cnvironmental predictors from the DGP and an additional highly correlated vari-
able,

e environmental predictors, but without one of the contributing predictors (G05-20)
and

e environmental predictors without one of the contributing predictors, but with
spatial information.

This part of the simulation study adresses to the question, to what extent the negligence
of the spatial information (AM1) changes the results in comparison to allowing for
this information (AM2) and whether additional variables, which partly correlate with
the true influencing variables, have an effect on the estimation (AM3). Moreover it
is explored, whether an additional spatial effect can compensate for the effect of a
disregarded contributing predictor (AM4 and AMS5).

The simulation study is accomplished by the Monte Carlo simulation technique, in
which the expected value of a resulting specific value is approximated by averaging
over several repeated samples. Here, the results of different modelling strategies and
the scenarios are compared using the test data sets by means of the measure A%, which

P
quantifies the variation of the estimated occurrence probability around the true one on

The bias of the estimated probabilities is analysed with

n

1o, VPN
Ag = Z logit (p;) — logit(p;)| = n Z
i=1

=1

A, = Tllzn: (logit (p;) — logit(p;)) = lenJ (lOg <1€p> ~log ( . ))

=1 i=1 - ﬁz
Depending on the prevalence, deviations of the fitted occurrence probabilities from the

true probabilities are measured in a different way and scaled to the whole set of the
real numbers.

6.3. Effect of sample size

The sample size, which is used for a study within an appointed region, mainly deter-
mines the scale, on which structural differences can be identified. Comparing GAM,
random forest and boosting, it will be analysed, to what extent the impact of sample
size varies between the three methods.

In addition to the sample size of 4000, which is also used in most instances for the other
scenarios, a smaller sample with n = 2537 and the twofold size of 8000 are explored.
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FIGURE 6.5.: Illustration of the distance measure Ap.

The peculiar size of the small sample is taken into account, because it is further required

in chapter [6.4.1]

To quantify the dispersion of the estimations around the true occurrence probabilities,
the sum of the absolute deviations between the logits of the true and the estimated
probabilities, A7, is considered, which identifies different properties:
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FIGURE 6.6.: Absolute model performance for varying sample sizes.

In contrast to random forest (RF), all other models reduce the deviation between truth
and estimation with increasing sample size. Especially the generalised additive model
profits from a large sample size. GAMBoost (GAMB) performs in all three cases slightly
better than the boosted regression trees (GBM).
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Tracking the performance of random forest along the “degree value days”—gradient for
n = 8000 (cf. figure , the difficulties of random forest with modelling the smooth
response are detected. At the edges of the gradient, the true occurrence probabilities
are overestimated, whereas in the middle part they are underestimated. Therefore,
random forest delivers a slightly biased estimation on average with a high variation,
which indicates, that the sample size does not suffice to detect the smooth relationship
between the predictor variables and the response out of the available presence—absence
data.

The resolution affects the accuracy of the estimation in a rather different way. A high
sample size improves the results of GAM and the boosting approaches to different
degrees.

6.4. Comparison of sampling designs

The suitability in terms of various sampling designs of the three modelling strategies
is examined in this chapter. The unbalanced design (SD1) is compared to the spatially
balanced design (SD2) and to the unbalanced design on a restricted area (SD3). The
SD3 scenario focuses on the extrapolation properties of the models.

6.4.1. Balanced design

Depending on the studied issue, the question of the localisation of the observation
sites arises additionally to the used resolution. Diverse sampling designs are possible,
e.g. random, stratified, systematic or systematic—clustered designs. The performance
of GAM, random forest and boosting is compared, by drawing a random subsample
(scenario SD1) and a systematic, respectively a spatially balanced subsample of the
data is drawn.

In order to generate a balanced sample, the study region is subdivided into 2537 equally
sized units. In each case, one individual observation is drawn out of the units for the
training data set. For a valid comparison of the balanced and the unbalanced design,
only 2537 randomly sampled observations are used for SD1. The test data set for both
scenarios is sampled at random.

Structural differences of the data sets in the two scenarios can be found by taking
into account the spatial distribution of the sites, but also by regarding the comprised
temperature range. The mean temperature range in SD2 is wider (353 — 1815 degree
value days) than in SD1 (432 — 1804). Thus, a larger spectrum of the temperature
gradient, which is especially expanded at the lower boundary, is analysed and the
simulated observations are varying much more.

A look at the absolute deviations of the estimated occurrence probabilities from the
true values shows results, which differ between the considered modelling strategies:
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FIGURE 6.7.: Absolute model performance for the unbalanced (SD1) and the spatially balanced
(SD2) design.

Using a spatially balanced design tends to change the predictive capacity of the analysed
procedures, especially considering GAM and GAMBoost. The tree-based methods
deliver similar results for both scenarios.

Modelling with GAM takes a remarkable advantage of the balanced design by raising
the accuracy of the estimations. Apparently, GAMs profit from the higher variability
of the data in the spatially balanced sample. Closer scrutiny of the averaged, absolute
logit—residuals shows, that at the lower boundary of the “degree value days”—gradient
a minor deviation from the truth is prevalent for the balanced design.
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FIGURE 6.8.: Performance Ay of GAM in scenarios SD1 and SD2 subdivided into intervals of
the predictor “degree value days”.
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Thus, the additional information of the balanced design is used to ameliorate the gene-
ralised additive model, especially at the boundaries of the predictor space.

The analogous illustration for GAMBoost (cf. figure shows a similar behaviour at
the lower boundary like GAM, but in comparison to SD1 the scenario SD2 performs
worse in the middle of the temperature gradient. Hence, the sparser information of
the training data in SD2 for the central region of the predictor space downgrades the
estimation in this area with an impact on the entire performance of the model.

6.4.2. Extrapolation

The projection of species distribution models often comes along with the exceeding of
the scope, on which the models are calibrated. The arising uncertainties are the subject
in this section.

Elith and Graham| (2009b) explored the behaviour of GLM, boosted regression trees
and random forests in terms of detecting the true response shape, identifying the real
mapped suitabilities and extrapolation. The analysis of the extrapolation properties
concentrates here on the description of the resulting response curves, whereas this part
of the simulation study rather addresses to the issue of the predictive performance on
extrapolated data.

Whereas in the initial scenario the sites are sampled from the entire study region (SD1)
with averaged 1054 degree value days, only the western, slightly colder part (cf. figure
2.3) with averaged 997 degree value days is used for model building in scenario SD3.
The models are validated on observations of the eastern part (averaged 1142 degree
value days).
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FIGURE 6.9.: Absolute model performance on extrapolated data (SD3); performance of the initial
scenario (SD1) as reference.



6. Simulation study 59

Expectedly, figure shows a minor estimation accuracy and also the variation of
performance is higher for all models, if the test data set exceeds the range of the
training data set. Whereas GAM reveals to some degree good extrapolation properties
compared to the initial scenario, the estimations of the other models degrade.
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FIGURE 6.10.: Mean model performance on extrapolated data (right); performance of the initial
scenario (SD1) as reference (left).

Considering A, (cf. figure , the tree based methods random forest and GBM
overestimate the occurrence probabilities, but the bias of random forest is more pro-
nounced. The results of GAM and GAMBoost are comparable. On average, both
modelling techniques are unbiased.

In order to explain the results of scenario SD3, some aspects of the extrapolation
properties are investigated in detail.

GAM and GAMBoost continue their response curve smoothly to the extrapolated data
and the direction of the surface is determined by the basis functions at the boundary of
the training data. This appears to work quite well for GAM in this simulation study,
mainly due to the low distance between the test data and the training data.

In contrast to GAMSs, the quality of the data on the boundary highly influences the
estimation in GAMBoost models, which is illustrated in the following figure by means
of analysing one of the simulated data sets with and without an artificial outlier.
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FIGURE 6.11.: Influence of outliers on the estimation of GAM and GAMBoost; solid line:
estimation without outlier, dashed line: estimation with outlier.

If there are unrealistic values at the boundary of the training data, they will affect
the GAMBoost modelling in this region, because the boosting algorithm concentrates
with increasing boosting iterations on the observations, which are difficult to fit. Early
stopping of the boosting algorithm, even slightly earlier than according to the cross—
validation criterion on the training data, alleviates the problem a little.

This artificial example displays, that the GAMBoost rather than the GAM estimations
at the boundary of the predictor space will significantly depend on the observations in
this area, even if they are unrealistic. As the simulation study reveals, the strategy of
GAM works better in comparison to GAMBoost.
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FIGURE 6.12.: Extrapolation properties of GBM and random forest: partial dependence curves
of GBM in scenario SD3 (left); partial dependence of GBM and random forest in scenario
SD3 at G05_20 = 1500 in comparison to mean occurrence probability if G05_20 > 1500 in each
simulated data set.
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Figure [6.12] provides a deeper insight into the shortcomings of the tree-based methods.
The plot in the left part illustrates the individual developing of the partial dependencies
of each simulated training data set along the G05_20 gradient, while on the right hand
side, the two boxplots depict the distribution of the partial dependencies at the co-
variate “degree value days” fixed to 1500. As a reference, the mean simulated occurrence
probability for observations with “degree value days” above 1500 is represented in the
third boxplot.

As the partial dependency curves of the GBM indicate, the tree—based methods random
forest and GBM will be continued with constant values, if the region of the data, which
is used for modelling, is exceeded. In particular, the variation at the edges of the
gradient attracts attention, which is presented with the first boxplot. In comparison to
that, the boxplot of the random forest shows a variation on a significantly fewer extent,
which derives from the heuristic of the method to average preferably unbiased trees.
However, the validation of the random forests on extrapolated data is considerably
more biased than by applying GBM.

The trend of GBM and random forest to overestimate extrapolated test data derives
from the unrealistic, constant continuation of the response curves, whereas the boosted
trees perform better than the averaged trees. The simulation study demonstrates fairly
better extrapolation properties of GAM.

6.5. Comparison of data generating processes

Usually the complex interactions in ecological systems are known only fractionally.
Assuming an additive overlay of the individual covariate effects is a widespread ap-
proach, but also a tree-like structure is imaginable. Each model concentrates on spe-
cific aspects of the underlying structure. Because of being always a simplification of
reality, detecting the entire complexity of the relations is often not possible.

For that reason, the properties of GAM, random forest, GAMBoost and GBM based
on different data generating processes, are examined in terms of their predictive ac-
curacy. In addition to the initial scenario (DGP1), in which the data is generated
by a generalised additive model with three environmental predictors, a GAM with an
additional spatial effect (DGP2) and a classification tree are analysed with the three
environmental predictors “degree value days”, “precipitation” and “hydrogen unit”.
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FIGURE 6.13.: Absolute model performance for different DGPs: GAM with only environmental
predictors (DGP1), GAM with environmental predictors and spatial effect (DGP2), classifica-
tion tree with environmental predictors (DGP3).

Disregarding the spatial effect causes fewer precise estimations for all models. The
considerably higher variation in the performance of GAM is to note, which will be
absent, if the other techniques are conducted. GAMBoost looses its slight advantage
over GBM.

As expected, accounting for the spatial effect in DGP2 with GAM and GAMBoost
enhances the estimation, especially, if GAMBoost is used (cf. figure . The im-
provement is not excessively high because apparently, the sample size of 4000 does not
satisfy to detect the complex additive structure of DGP2 more appropriately.
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FIGURE 6.14.: Absolute model performance for the comparison of scenario AM1 with AM2
based on DGP2.
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If the data is generated by a tree mechanism, as expected, the tree-based models
random forest and GBM will perform better than GAM and GAMBoost, which have
difficulties with this kind of structure.

The behaviour of GBM is remarkable, because this approach delivers good results for
tree—like as well as for smooth, additive structures. Although it does not directly model
smooth response curves, the additive structure of the boosting algorithm combined with
a tree as baselearner, is appropriate for modelling data generated from GAM as well
as data with a tree structure.

6.6. Comparison of analysis methods

It is a matter of common knowledge, that disregarding one or more contributing predic-
tor variables biases the estimation. Because it is not possible, to identify all influential
variables in the complex interdependencies of ecology, it must be assumed, that not all
of them can be comprised by data collection.

The aim of this chapter is the examination of different analysis methods, each varying
in the utilised predictor set for the analysis. Based on the data generating process
DGP1, i.e. without spatial effect, the data is analysed with the different predictors.

Because commonly spatial position is not included in tree based models, the scenarios,
which contain spatial information, i.e. AM2 and AMS5 respectively, are only evaluated
for GAM and GAMBoost.

The characteristics of the modelling techniques with different analysis methods are
investigated in terms of predictive accuracy and the behaviour of the corresponding
variable importance measures.

6.6.1. Predictive accuracy

First of all, the predictive accuracy is examined, when DGP1 is used for data generating
and the evaluation is carried out with AM1, AM2 and AM3. Here, the question whether
an additional, in reality not directly contributing, but highly correlated variable, affects
the accuracy of the estimation arises.
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FIGURE 6.15.: Absolute model performance for the comparison of scenario AM1 with AM2 and
AMS based on DGP1.

A decline in accuracy of GAM can be discovered, if variables, which actually do not
influence the data generating process, e.g. coordinates or a further environmental
covariate, are used for the analysis. However, the relevance of the correlated predictors
in the various approaches is of greater interest and examined in the next section.

But the results will change, if the data generating process is assumed to contain a
spatial effect: GAM and GAMBoost can be improved by including the coordinates
as predictors (cf. figure . This finding is really not surprising, but it poses the
question of whether allowing for the coordinates can compensate for the disregard of
spatial acting, contributing predictors. Scenarios AM4 and AMb5 address to that issue.

. °
Q ¢ B
o o 3
8 - A
o & |
N 8 © o
¥ ° - = L - - mm
= @ T . — = : 3
4 = : . | m B ==
— : 8 : : : :
s | - | - T | _ =
: ==
— |
o e 3 i
I I I I I I I I I I I
Naive GAM RF GAMB GBM GAM RF GAMB GBM GAM GAMB
AM1 AM4 AM5
FIGURE 6.16.: Absolute model performance for the comparison of scenario AM1 with AM4 and

AMS5 based on DGP1.



6. Simulation study 65

The results show, that, if a contributing predictor is not included, the accuracy of
the predictions will decrease for all models to the scope of naive estimation calculated
through the prevalence of the respective test data set.

The additional inclusion of a spatial effect cannot offset the negligence of an important,
spatial acting covariate neither if GAM nor if GAMBoost is applied. Either the spatial
effect is too smooth to comprise the rather small-scaled coverage of the temperature
variable or 4000 observations are not sufficient to model the temperature effect spatially.

6.6.2. Variable importance

A major topic of the application of statistical methods is the identification of driving
forces of a process. Often the relevant predictors have to be detected from many
possibly important ones. Therefore, each modelling technique provides evidence, which
can be quantified by various variable importance measures as theoretically introduced
in the chapters before.

The challenge is, that each modelling technique measures the variable importance in a
different way and thus, the measures emphasise various aspects. Taking into account
the importance measures of several models reveals a differentiated view on the relevance
of the individual predictors keeping their diverseness in mind.

Within the underlying analysis, GAM and GAMBoost include only the main effects
of the environmental predictors and interactions are left out. Consequently, the cor-
responding importance measures quantify the relevance of the predictors disregarding
their interactive potential. The variable importance measures of GAM and GAMBoost
are confined to characterise the strength of the smooth influence of each single predictor
conditioned on the others.

In contrast to the importance measure for GAMBoost, the p—value of a generalised
additive model allows for the uncertainty of the estimation existing especially at the
boundaries.

Since random forest and GBM also model interactive effects, these approaches assess
the relevance of a predictor in a more general way. However, if random forest is used,
the importance of a covariate in a very elaborate construct will be evaluated, whereas
for GBM the relevance is determined in terms of interactions with the maximal depth.

For a more profound understanding of the properties of the different importance mea-
sures, their behaviour is examined under various analysis methods with simulated data.
Therefore, only the ranks of the importance measures are taken into account, because
the absolute values are difficult to compare and, in the case of random forest, not inter-
pretable. Mean inverted ranks are used to determine the importance depicted in figure
6.17]
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FIGURE 6.17.: Mean inverted ranked variable importance for AM1, AM2 and AMS (the most
important predictor receives the most points).

Analysing the data of the initial scenario with the contributing, environmental covari-
ates (AM1) delivers a similar pattern of variable importance for the different approaches.
For GAMBoost, the advantage of G05_20 compared to P_JJA is not very evident. The
reason thereof is, that the importance measure for GAMBoost is slightly more affected
by individual, extreme values at the boundaries of the gradient.

Furthermore, the importance of the environmental covariates will not change, if addi-
tionally to the true contributing predictors a smooth spatial effect is included in the
analysis (AM2), because the spatial effect contributes only marginally to the model.

The main issue of scenario AM3 is the impact of two highly correlated predictors
on the variable importance measures. The results of figure show quite different
characteristics for the four models.

GAM and GAMBoost similarly evaluate the importance of the variables. On average,
precipitation is the most important predictor. But a closer look reveals, that in the
most cases one of the two temperature variables is more fundamental than P_JJA,
whereas the other temperature variable possesses only a marginal effect on the model.
Relating to GAM and GAMBoost, only one of the correlated predictors has a major
impact on the resulting model.

In comparison to that, both temperature variables are equally important for random
forest and like in the initial scenario temperature is more important than precipitation.
Thus, the random forest model gains information from both correlated predictors.

The GBM procedure selects in each iteration two variables for a tree, which improve
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the model at best. The algorithm does not recognise any significant differences between
the variables P_JJA, G05_20 and T_JJA in AM3 and a further look at the results of
the single simulated data sets does not reveal any structure for the variable impor-
tance. Apparently, GBM provides only rough information about the relevance of the
predictors, if they are correlated.

6.7. Concluding remarks

Finally, the results from the simulation study will be evaluated and summarised.

Generalised additive model

The high variability in the GAM estimations for the simulated data sets can be
lowered by an increased sample size, which leads to comparably good predictions.

Furthermore, the estimations are improved by a sample design with a higher diverse-
ness in the data, e.g. by a spatially balanced design. In particular, the extrapolation
properties of the GAM should be emphasised. The predictive accuracy is slightly
superior to the other modelling techniques. Apparently, it is a good strategy to
extrapolate the estimation with the smooth continuation of the response surface.

However, if the simulated data exhibits a tree—like structure, the generalised additive
model performs rather poor. This is due to the structure of the data itself, but also
due to the fact, that only predetermined interactions can be modelled. The true
contributing interactions will have to be previously identified by experts, which is
especially demanding and often impossible, if high dimensional interactive terms
exist.

Inducing a multicollinearity problem through an additional, highly correlated co-
variate, tends to downgrade the predictive accuracy of the model. The inaccurate
and instable estimations of the effects must not be ignored in the application of a
GAM with correlated predictors.

Random forest

Random forest has difficulties with predicting the complex, additive structure in the
simulated data set. Even an increased sample size of 8000 does not provide better
results and obviously, the contained information of presence—absence response does
not suffice for an accurate model.

The predictive performance of random forest even deteriorates, if the model is used
for extrapolation, because the response surface is constantly continued beyond the
range of the observed data.
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However, random forest will render comparably good results, if the underlying struc-
ture is a regression tree. Thus, modelling high—dimensional, especially tree-like
interactions with implicit variable selection is the strength of random forest.

The incorporation of an additional predictor, which provides no further informa-
tion, does not affect the predictive accuracy of random forest and exhibits a similar
importance as predictors, which measure the same factor.

Boosted generalised additive models

In most of the investigated scenarios, GAMBoost belongs to the best models. The
predictive accuracy of the boosted version of generalised additive models tends to
be less varying for the different scenarios in comparison to GAM.

Another difference between GAM and GAMBoost originates from the extrapolation
properties. Because the response surface is not continued as smooth, the predic-
tions of GAMBoost on the extrapolated data sets are even worse. Furthermore,
GAMBoost models do not profit from a balanced sample.

Tree—like structures can be predicted more precisely than with GAM, but, as ex-
pected, less accurately than with tree-based methods.

If a smooth spatial effect is included in the data generating process, the predictions
of GAMBoost are slightly more precise than with GAM, even though the degrees of
freedom are restricted.

The implicit variable selection of the GAMBoost algorithm chooses mainly one out of
several highly correlated predictors. This is also obvious in the variable importance
measure.

Boosted regression trees

The boosted regression trees represent an appealing approach for modelling smooth,
additive structures as well as tree—like mechanisms. If the data is generated with
a smooth response surface, GBM is in the scope of GAM and GAMBoost or only
slightly worse. In the simulated data set, the ability of recognising tree—like struc-
tures is similar to random forest.

The constant continuation of the response surface on extrapolated data strongly
varies between the different simulation data sets. Although the absolute deviation
of the extrapolated predictions from the true occurrence probabilities is comparable
to GAM and GAMBoost, the estimations are biased.

During the boosting iterations, those predictors are selected, which enhance the
model with trees of a predefined depth at most. Hence, variable importance for
GBM evaluates rather the relevance of the predictors for interactions, than for the
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main effects. However, the importance measure will show an insecure behaviour, if
the predictors are highly correlated.

Referring to GAM and GAMBoost, the addition of a spatial effect to the model cannot
compensate for the disregard of an important predictor. Two reasons are suggested:
Firstly, the neglected predictor contributes to the data generating process in interaction
with another covariate. Secondly, the result could be due to a very small-range spatial
action of the predictor, which cannot be covered with a smooth, quite long-range spatial
effect.

All in all, GAM has its main advantage in the attractive extrapolation properties. De-
pending on the data generating process the performance of the models varies, whereas
GBM seems to be the most general model. Especially the different variable importance
measures can identify various aspects and characteristics of the underlying mechanism.
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7. Species distribution modelling of forest
communities

After the theoretical description of the investigated methods and the examination of
some properties with a simulation study, the application and evaluation of GAM, ran-
dom forest and boosting for the spatial prediction of forest communities are the matter
of interest in this chapter.

Therefore, model calibration is accomplished with a proportion of 75% of the original
data set; the remaining part of the data is used for validation.

7.1. Development of expert models with GAMs

In chapter [3] different approaches for improving the simple generalised additive model
were introduced. Their profit is now explored with the application to the WINALP
data set and the parsimonious expert models are developed.

As seen in the simulation study, GAMs have difficulties with the identification of tree—
like data structures. Thus an approach, which includes a correction factor allowing
for complex interactions, is considered. Furthermore, models with weighted observa-
tions are calculated in order to imitate a balanced design, in which particularly the
boundaries of the parameter space are weighted stronger. To account for long-range
spatial autocorrelation, models with a smooth spatial effect are examined. Calibration
is conducted with the GCV criterion:

Ash Spruce Swiss pine
without Int. with Int. without Int. with Int. without Int. with Int.
Model 1 0.4604 0.4588 0.3707 0.3695 0.0041 0.0041
Model 2 0.3855 0.3781 0.3338 0.3286 0.0010 0.0009
Model 3 0.5001 0.4952 0.3817 0.3799 0.0123 0.0107
Model 4 0.4776 0.4670 0.3683 0.3617 0.0032 0.0030

TABLE 7.1.: GCV wvalues for different modelling techniques: Model 1: unweighted GAM, with
coordinates; Model 2: weighted GAM, with coordinates; Model 3: unweighted GAM, without
coordinates; Model 4: weighted GAM, without coordinates.

Table[7.I]illustrates, that models, which include a smooth spatial effect, provide a better
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GCYV value for all tree species, which indicates, that a spatial effect exists. Thus, the
allowance for unmeasured confounders ameliorates the model.

The inclusion of interactions through an additional factor renders just a marginal ad-
vantage. Expressed in per cent, the Swiss pine profits from the additional interaction
factor most.

Weighting the observations also improves the models according to the GCV-criterion.
However, raising the influence of observations at the boundary of the parameter space
through weighting means, that the estimation focuses more just on these regions of
the parameter space, which has often little impact on the estimation, because normally
either presences or absences are prevailing there. It is suggested, that the improvement
of GCV of the weighted models results rather from an artificially increased importance
of small residuals than a better model fit. In addition, the ecology expert appraised
the predictions of the weighted models as quite unrealistic.

Taking everything into account, the sparse hypotheses—directed models are established
without weighting observations and also without an interaction factor, but with allowing
for a spatial effect in the models for the ash and the spruce; for the Swiss pine also the
spatial effect is not included.

In order to select relevant predictors, the decisions of the expert were guided by plau-
sibility of the resulting response shapes as well as by the importance of the variables in
the variable selection procedure with the GCV criterion. The following environmental
predictors are selected for the expert models:

ash T01.20, TGBS
spruce T_JJA, P_JJA
Swiss pine T_JJA, P_JJA

7.2. Comparison of model performance

After calibrating the models of each estimation strategy, their predictive performance
is compared by means of the discriminatory power. The discrimination ability of the
individual models is validated with the widely used, threshold— and scale-independent
AUC (area under the receiver operation characteristics) criterion on the external test
data set.

The ROC (receiver operation characteristics) curves and the corresponding AUC values
for each individual tree species are illustrated in figure For a further evaluation of
the classifiers, confusion matrices (cf. table are assessed by the prevalence of the
examined species as threshold (Liu et al.l 2005).

Similar to the findings of |Guisan et al.| (2007), it is quite evident, that the discrimi-
nation power varies more between the different tree species than between the modelling
strategies. The reason for that is, that the ROC curve is mainly influenced by the
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distribution of the tree species along the examined gradients and thus, according to
Lobo, Jiménez-Valverde and Real (2007)), the specialisation of a species is reflected. In
general, the curves are rather close to each other, but some tendencies are visible.
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The predictive capacity of random forest stands in the forefront regarding all tree
species. Although the GAMs are calculated with just a few predictors, they perform in
the range of the other models. For all three tree species, the random forest approach
discriminates the data marginally better than the two boosting methods, which deliver
quite the same results.

ash spruce Swiss pine
0 1 0 1 0 1

GAM

0 9380 3061 508 262 12866 956

1 244 1154 4725 8344 1 16
RF

0 10586 1855 239 531 13693 129

1 471 927 952 12117 2 15
GAMBoost

0 9684 2757 513 257 12086 1736

1 381 1017 4285 8784 1 16
GBM

0 9056 3385 485 285 13554 268

1 272 1126 3757 9312 2 15

TABLE 7.2.: Confusion matrices; rows: true abundances, columns: estimated abundances.

Modelling the ash with GAMs and random forest provides comparably good results in
terms of AUC (0.868 and 0.865 respectively), but the misclassification rate of GAM
(0.239) exceeds the rate of random forest (0.168). Random forest differs from the
other techniques due to its high specificity, but it possesses the lowest sensitivity of all
models. The boosting approaches indicate a slightly worse discrimination power, with
AUC = 0.84 for GAMBoost and AUC = 0.848 for GBM.

Analysing the spruce, the discrimination quality of GAM (AUC=0.723) is not as good
as the performance of random forest (AUC=0.755) and similar to the boosting methods
(GAMBoost: AUC=0.717; GBM: AUC=0.725). Especially the presences can be well
predicted with random forests, whereas the other approaches have issues with their
detection.

The barely observed Swiss pine is difficult to model, because only information from
68 presences is available. Again, the random forest (AUC=0.992) discriminates best,
followed by GAM (AUC=0.975), GAMBoost (AUC=0.967) and GBM (AUC=0.936).
However, if the estimated occurrence probabilities are dichotomised, the prediction
accuracy is higher for the tree based methods than for GAM and GAMBoost.
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All in all, the random forests exhibit the highest discrimination level and tend to predict
only the more frequent class quite well.

7.3. Variable importance

Since ecological relationships are highly interdependent and influenced by many con-
ditions, it is essential to identify the mainly relevant factors in order to construct
reasonable and parsimonious models. Therefore, variable importance measures provide
decision support.

In section the properties of the variable importance measures are outlined and
investigated with a closer look at the impact of correlated predictors. The order of
variable importance for the WINALP data is determined analogous to the simulation
study: the higher the rank of importance the higher the score. The maximum score is
16.

Before analysing the results, it is to mention, that the predictors for modelling GAMs
are preselected and in contrast to the simulation study, the relevance of the predictors of
the GAMs is now evaluated through the sequence of removal in the backward selection
procedure. Furthermore, the boosting approaches implicitly select variables, because
not all predictors contribute to the model. As the results for the three tree species on
the subsequent pages show, GAMBoost excludes more variables than GBM.
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Water

Precipitation (P_JJA) is the most important water variable for modelling the three tree
species, whereas water supply seems to be more relevant for an ash than for a spruce
and a Swiss pine. The pretty high importance of AWC1M in the GBM models indicates
the relevance of this variable for two—way interactions.

Water logging is measured with two variables: STAUTXT and HYD_UNIT. The results
of the importance analysis show, that all modelling techniques evaluate the importance
of STAUTXT higher than HYD_UNIT.

The topographic wetness index (TWI10) is rather significant in the GAMBoost model
for the ash. Thus, the smooth main effect of TWI10 provides, additionally to the
precipitation in summer, valuable information about the water requirement of the ash.

Energy

Since two of the temperature variables, i.e. G05.20 and T_JJA, are strongly correlated,
GAMBoost selects only that predictor, which is relevant for the model, as similarly seen
in the simulation study. It is to note, that the absolute importance value of T01_20,
which is also correlated with G05_20 and T_JJA, is marginal in the GAMBoost model
of the ash. The most important temperature variable is identified in accordance to
GBM.

For the spruce models, it is not clear, whether G05_20 or T_JJA is of higher relevance,
whereas “temperature in summer” (T_JJA) is the major predictor for the models of the
Swiss pine and “degree value days” for the ash models. T01_20 is the least contributing
temperature predictor for all data—directed modelling techniques.

The importance of “radiation in summer” (R_JJA) appears to be tree-specific: its
contribution to the spruce models is higher than for the other trees, in particular the
Swiss pine.

The “slope aspect favourability index” (SAFI) and the “exposition” (ASPECT) play a
minor role in modelling species distributions. Other energy variables are more impor-
tant.

Nutrients

The predictors, which describe the nutrient balance of the soil are merely relevant for
modelling the ash. Similarly to the appraisement of the ecological experts, the depth
gradient of base saturation (TGBS) influences the distribution of the ash.
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Geomorphodynamics

The slope angle (SLOPE10) of an observation point seems to have a fundamental
influence on the distribution models of the spruce and the Swiss pine. Since GAMBoost
does not recognise SLOPE10 as a contributing predictor for the latter tree species, it
is suggested, that this variable is mainly important for interactions.

In opposition to the experts’ opinion, the data—directed models indicate a higher impact
of MORDYN on the models for the spruce than for the ash.

7.4. Response curves

Besides the predictive performance and the variable importance of the species distri-
bution models, their ability to reflect the true environmental relationships is a matter
of interest. For a more profound understanding of the models, the environmental niche
is described along ecological gradients with response curves. The univariate case de-
scribed in section is now extended to multiple predictors.

Because of the large amount of predictor variables, the description of the response curves
is limited to the most important variables. All predictors of the sparse expert models
and the two most important variables of the data—directed models are analysed. A
direct comparison between all modelling techniques is not possible, because the models
differ in the predictor set as well as in variable importance.

To achieve comparable response curves for the four modelling strategies, the partial
effects on the scale of the linear predictor are centred at zero and transformed on the
scale of the response. The resulting curves for the ash, the spruce and the Swiss pine
are depicted on the following pages.
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Ash

The data—directed models for the ash are mainly influenced by the predictor “growing
degree days” (cf. figure RF1, GAMBoostl, GBM1). All these models indicate
an increasing species occurrence above 900 growing degree days. Below this boundary,
the response curve is at a constant level. The upper limit for good growing conditions
along this gradient is not reached, but saturation is visible for random forest and GBM
above 1500 growing degree days. The response curve of the GAMBoost model is not
that steep and on the whole, the effect is smaller.

Considering the partial effects of “temperature in summer” in the random forest and
the GBM approach (cf. ﬁgure RF2, GBM2), a right-shift of the increasing effect for
GBM in comparison to random forest is evident. This means, that conditioned on the
other predictors, T_JJA provides only at the upper boundary additional information
for the GBM model. Perhaps another predictor describes the effect of the middle part
of the underlying factor better, which could be a reason for the shifted curve.

The response shape of “January temperature” in the hypotheses—directed GAM (cf.
figure GAM]1) resembles the curves of G05.20 of the data—directed models. The
ash prefers high temperatures, above —3.5°C and the right edge is truncated.

The requirements of the ash regarding the nutrient supply is contained in the generalised
additive model (cf. figure GAM2). If the soil is highly saturated with bases, more
ashes will occur.

Moreover, the growing limits in terms of the demand for precipitation are not reached
within the underlying data, as the GAMBoost model depicts (cf .figure GAM-
Boost2). However, an increasing precipitation heightens the occurrence of the ash.

Spruce

Considering the effect of “temperature in summer” for the distribution of the spruce
(cf. figure GAM1, GAMBoost1l, GBM1), the response curves are not truncated,
slightly right—skewed and display the best growing conditions at about 11 to 13°C. The
data—directed approaches reveal a broad top, which is not recognised with the GAM.
The influence of temperature on the growth of the spruce seems to be stronger in the
modelling with GAM and GBM.

The variable “growing degree days” is an important predictor for random forest and
GBM (cf. figure RF2, GBM2). Both models show a declining response curve for
high values of the gradient, from about a value of 1200 degree value days. The positive
effect decreases also at the left boundary and GAMBoost as well as GBM reach a level
edge. G05_20 plays a slightly minor role for GBM than for the random forest model.

The characteristics of the spruce distribution in terms of precipitation are described
with GAM (cf. figure GAM?2). The right—skewed curve reveals, that the upper
limit of the ecological niche is covered by the WINALP data, whereas at the lower
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boundary the truncated response curve tends to exhibit a negative effect. Best growing
conditions are at about 500mm total precipitation in summer.

According to the random forest model, spruces prefer locations with rather high radi-
ation (cf. figure RF1). An upper limit is not clearly comprised within the data.
Furthermore, the analysis of the slope gradient with the GAMBoost model (cf. figure
identifies a negative relationship between the slope of a location and the growth of
spruces.

Swiss pine

The driving force of the distribution models of the Swiss pine is the temperature in
summer. The shape of the response curves (cf. figure GAMI1, RF1, GAMBoost1,
GBM1) is indeed similar for the four different types of models: low temperatures have
a positive effect on the occurrence, whereas high temperatures are disadvantageous.
However, the breaking point is considerably higher for the GAM than in the data—
directed models. The effect of T_JJA is strongest pronounced for random forest and
GAM.

The slope of an observation point (cf. figure Rf2, GBM2) is a relevant predictor
for the tree-based methods random forest and GBM and thus, the variable is mainly
important for interactions. Both models indicate, that the Swiss pine prefers rather
plain regions with a slope below 20%, but the partial effect of SLOPE10 in GBM is
marginal and almost invisible.

As also the descriptive analyses in chapter [2| demonstrate, the ecological niche of the
Swiss pine regarding precipitation, which is investigated with the GAM, is entirely
described within the data set (cf. figure GAM1). Good growing conditions for the
Swiss pine will be provided, if the precipitation amount lies between 550 and 750mm.
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7.5. Response surfaces

In order to account for unmeasured confounders and to prevent spatially autocorrela-
ted residuals, spatial information in the form of a smooth effect of the coordinates is
included in GAM and GAMBoost, as described theoretically in section [3.6

The main difference between the two approaches with regard to the modelling of the
spatial effect is, that the available degrees of freedom are estimated by cross—validation
in the generalised additive model, whereas they are restricted for the GAMBoost model.
Due to this limitation, the base procedure of the coordinates is not favoured, because of
the higher number of degrees of freedom in comparison to the environmental variables.
Thus, the predictor, which provides most information with at most four degrees of
freedom is chosen in each boosting iteration.

Figure[7.8depicts the spatial effects of GAM and GAMBoost for the ash and the spruce,
in which the effects are centred and transformed to the response scale, similarly to the
response curves of the environmental predictors. In consequence of implausibility, the
spatial effect in the expert model for the Swiss pine is removed. Moreover, the spatial
information is irrelevant in the GAMBoost model.

The results for the two ash models are quite different: The spatial effect is substantially
higher and more varying in the generalised additive model, whereas in the GAMBoost
model only a very weak effect exists.

The effects for the spruce differ mainly in their intensity, but the tendencies are quite
similar. The eastern part of the study region is disadvantageous, whereas the western
part demonstrates a fairly positive effect.

The main reason for the differing results originates in the various predictors, on which
the models are based. This implicates, that the spatial confounders, which are modelled
with the spatial effect, have also a different structure.

The benefit of the smooth effect of the coordinates to alleviate spatial autocorrela-
tion has to be evaluated by means of analysing the spatial structure of the residuals.
However, the quantification of spatial autocorrelation within large data sets raises com-
putational difficulties, as described in section [7.7]
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7.6. Prediction

The current phase of the WINALP project aims at the modelling of forest types in order
to construct species suitability maps. For this purpose, it is essential to compare the
different modelling techniques concerning the spatial demonstration of the predictions.

Exemplarily, the ash models are considered and illustrated, because the information
content of probability maps for very seldom or very frequent tree species is low. The
graphics for the spruce and the Swiss pine can be found in the appendix (figures:
. It is to note, that the colouring in the illustrations varies for the
individual tree species and that the categories do not have equal distances.

Since the ash is a tree species, which prefers the warmer valleys, all predictive maps
reveal a higher occurrence probability in these regions and the valleys are well to dis-
tinguish.

Whereas the generalised additive model and also the boosting models show a quite
smooth predictive distribution of the ash, the map produced by the random forest
is patchier. When the spruce and the Swiss pine are analysed, the random forest
predictions do not show any spatially structured distribution at all.

Furthermore, the random forest estimates more extremely. This means, that medium
occurrence probabilities only appear seldom.

For the ash model, the GAMBoost method calculates considerably higher values for the
locations with lower probabilities compared to the other approaches . The tendency of
GAMBoost to differ in the prediction of the prevailing class, i.e. presences or absences,
can also be recognised in the models for the spruce and the Swiss pine. Additionally,
residual analyses also detect these characteristics.
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7.7. Limitations of the analysis

At the end of the data evaluation, some limitations of the applied techniques are re-
viewed.

Spatial autocorrelation in GAM

As mentioned in section the allowance for spatial autocorrelation is essential to
conform the requirement of independent errors in the regression model. Therefore, a
smooth spatial trend of the coordinates is included in the GAM.

Though, looking at the residuals of the model, e.g. for the ash, a light, small-scaled
spatial structure is identifiable:

residuals on the scale of response

-1 -0.8 -0.6 -0.4 -0.2 0 0.1 0.3 0.5 0.7 09 1

FIGURE 7.11.: Residuals for the expert model of the ash.

Obviously, the spatial trend is not able to remove spatial structure on a small range,
as it is also suggested in |[Dormann et al.| (2007)).

Commonly applied approaches for exploring spatial autocorrelation include variograms
and correlograms, in which the similarity between the residuals is depicted against the
corresponding distance of the observation points. But also parametric methods, like
kriging, are often used.

In ecology, Moran’s I is widely used to quantify the spatial dependency of values, for
instance of residuals (e.g. |Legendre} 1993; Kiihn, 2007). However, it must be pointed
out, that Moran’s I depends on the sample size. On that account, the absolute values
of this measure do not indicate the strength of spatial autocorrelation. A permutation
based test of significance on Moran’s I provides more precise information on the exis-
tence of spatial autocorrelation, but also evokes a multiple test problem, if several lags
are considered.
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In addition to that, the calculation of Moran’s I and also the parametric kriging
approach is computationally demanding, because high—dimensional distance matrices
have to be established. For that reasons, the quantification of spatial autocorrelation
remains an open issue in the analysis of the large WINALP data set.

AUC

The area under the receiver operating characteristic curve measures the predictive
performance only in terms of discriminatory power, while predictive accuracy is not
incorporated. In particular, this becomes evident for the two boosting approaches:
GBM and GAMBoost differ only slightly according to AUC, but the prediction maps
of the GAMBoost models show higher occurrence probabilities, especially for the more
prevalent class.

Lobo, Jiménez-Valverde and Real (2007) criticise the indiscriminate use of AUC and
mention the influence of irrelevant thresholds and the equal treatment of sensitivity and
specificity as further reasons. Thus, the quality of the models should not only be linked
to the AUC criterion and the ROC curves, but also to other aspects, like plausibility
of the results or residual diagnostic.

Does occurrence probability equal habitat suitability?

Using occurrence probabilities derived from statistical models for probability maps is a
common practice in ecology. However, these maps only reflect the expected probability,
with which a particular tree can be found under the given conditions of the site. It
is questionable, to what extent this information renders a statement on the potential
suitability of a site for the growing of a tree species.

7.8. Concluding remarks

The utilisation of statistical methods for the analysis of the WINALP data provides
valuable insights into their adequacy for describing the habitat of tree species. Different
aspects of the models were examined with the result, that the suitability of the methods
varies depending on the considered aspect.

Generalised additive model

Indeed, the attempts to account for interactions and to imitate a balanced sample by
weighting are abandoned because of a too small benefit and implausibility, but based
on expert knowledge parsimonious and in terms of discriminatory power competitive
models are established.
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Due to the aim of accomplishing sparse models, it is necessary to account for the
unmeasured and in particular for the disregarded predictors by the inclusion of a spatial
effect. Thus, also the models are improved according to the GCV criterion, though the
entire spatial structure of the data cannot be explained.

The importance of environmental predictors influencing the ecological mechanisms of a
species’ niche is difficult to evaluate with a generalised additive model, because the order
of removal in a backward selection procedure serves only as a rough guide. Furthermore,
the relevance in the analysis of the WINALP data depends on the preselection of the
variables, which was necessary in order to prevent a multicollinearity problem.

Huge effort of the ecological expert was required in order to build models with eco-
logically reasonable response shapes. In comparison to the data—directed models, the
resulting partial effects tend to be more extreme and also the shapes differ to some
extent. Thus, the response curves of the GAM do not display the underlying structure
of the data precisely.

Random forest

Since the theoretical concept of random forest is designed for discrimination, the predic-
tive performance in terms of AUC is for all tree species among the best in comparison
to the other modelling techniques. But another consequence of concentrating mainly
on discrimination is, that the spatial predictions are quite uneven, in particular the
pattern is spotted, if one class is very predominant.

Especially the variable importance measure for random forests provides valuable infor-
mation on the relevance of the predictors in the complex model including also high—
dimensionally interactive relationships and can be used as a guideline for the selection
of important predictors for a parametric model. The application of random forest
based on conditional inference trees properly allows for categorial variables in the tree
building process.

As a consequence of the aggregation proceeding in the random forest algorithm, the
response curves are comparatively smooth. The partial effects are highly informative,
but their calculation is computationally very intensive.

Boosted generalised additive models

Besides the GAMBoost models tend to perform slightly worse in terms of discrimina-
tory power, the smooth response curves and the resulting variable importance measure
provide useful information on the smooth main effects within the data generating mech-
anism. Therefore, the implicit variable selection procedure includes only one of highly
correlated predictors, namely the predictor with the higher informational content re-
garding the main effect.
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In addition to that, GAMBoost offers an opportunity to account for unmeasured con-
founders with a smooth spatial effect, which will be only preferred to environmental
predictors, if, based on the same number of degrees of freedom, more variation can be
explained.

The prediction maps have a similar structure compared to GAM, but the estimations
tend to be less extreme for the more prevalent class.

Boosted regression trees

The predictive performance of boosted regression trees on the WINALP data set is com-
parable to GAMBoost. The response curves display a similar shape, but are wigglier,
especially for less important predictors. The reason thereof is, that weak decision trees
are used as baselearners, which produce piecewise constant predictions.

The relevance of the predictors in a boosted regression tree reflects the importance of
interactions of the predefined depth, which renders further information in addition to
the rather overall importance of random forest and the importance of the main effects
provided by GAMBoost.

The structure of the predictive map resembles the corresponding map of the generalised
additive model and the values seem to be slightly higher.
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8. Summary and perspectives

8.1. Concluding reflection of the acquired results

Statistical models for the description of the ecological niche of species are of great
interest for the WINALP project and also generally in ecology, because the spatial
predictions serve as species suitability maps and provide an important base for site—
specific forest management.

A hypotheses—directed approach in terms of a generalised additive model is contrasted
to data—directed strategies, particularly random forest and boosting. The models are
evaluated on real data as well as with a simulation study.

The selection of an appropriate model depends on the structural assumptions regar-
ding the underlying mechanisms, but also on the properties of the model. Because the
relationships between species and environments are often largely unknown and vary
between the different tree species, the comparison of several models related with expert
knowledge is essential.

The imitation of a stratified sample by weighting seems to improve the fit of GAMs,
but the quantification of the profit and the interpretation is questionable.

Moreover, in accordance to Hirzel and Guisan (2002)), a spatially balanced sample
ameliorates the accuracy of GAMs. However, this tendency is not detected by the
usage of the data—directed approaches.

Including a spatial effect in order to allow for unmeasured confounders enhances the
species distribution models with GAMs for the WINALP data, but does not remove
the entire spatial structure and cannot compensate for the disregard of a small-scaled
predictor.

The predictive capacity of GAMs within the range of the training data is comparable
to the data—directed approaches including the good discriminatory power of random
forest. The properties of GAMs for extrapolated data are favourable and more precise
estimations are delivered in comparison to the data—directed models.

Since the data—directed approaches make fewer assumptions on the structure of the
model, they are more appropriate for reflecting the real relationships in the data,
especially with regard to partial effects.

A differentiated insight into the habitat properties of the examined tree species is
reflected by the importance measures of the various data—directed models: the relevance
of the predictors concerning overall and interactive relevance as well as the impact of



8. Summary and perspectives 96

the main effects can be analysed. However, the exploration of the influence of correlated
predictors on the importance measure of the boosted regression trees displayed unclear
properties.

The results show, that on the one hand, the incorporation of expert knowledge offers
models with comparably good predictive power, and that on the other hand, data—
directed models are also able to provide insights into the data generating process.

8.2. Outlook

Based on this work, a recalibration of the actual parametric species distribution models
of the WINALP project with the acquired results on the variable importance, the
response shapes and the properties of the models is possible. Data—directed models
turned out to render valuable information on the habitat of the species and thus, they
are worthwhile to be applied to the further tree species in the project.

Future studies within the WINALP project address to the incorporation of data from
southern Germany and Europe on a smaller resolution in order to comprise a larger
range of the ecological niche of an examined species and to account for supra—regional
effects. Multilevel models will be accomplished by including the predictions of the
higher levels into the models for the Northern Alps.

Several suggestions were proposed to account for spatial autocorrelation in regression
models, including wavelet analysis (Carl and Kiihn, [2008)), autoregressive models, spa-
tial generalised linear mixed models and spatial generalised estimating equations (Dor-
mann et al., 2007). However, the usage of these methods is restricted either to data on
a regular grid or to linear effects.

The last—mentioned deficit can be offset by using polynomial predictor terms, whose
degrees are estimated through a GAM without allowing for spatial autocorrelation or
by applying general additive mixed models. Large computational effort in order to
create n X n correlation matrices excludes the application of these approaches so far,
even for a sparse matrix.

Current statistical research concerns the improvement of the variable selection pro-
perties of boosting. [Bithlmann and Hothorn| (2010 suggest an advanced boosting
algorithm, “Twin Boosting”, in order to obtain sparser models.
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A.

Appendix

A.1. Table of data files for R—code

On the appended CD, the programming code for the data evaluation and the simulation
study is provided. In the following, the contents will be listed.

>

>

>

01_DataManagement.r: Data management

01_TestTrain.r: Division of the data in test and training data set
02_DescriptiveAnalysis.r: Descriptive analysis of the data set
03. GamModels.r: Modelling using GAM

03_ GamCalc.r: Calculation of the predictions of GAM

04_ RfModels.r: Modelling using random forest

04_RfCalc.r: Calculation of the predictions and the variable importance of random
forests

05- BoostingModels_GamB.r: Modelling using boosting: GAMBoost
05_ BoostingModels_Gbm.r: Modelling using boosting: GBM

05_ BoostingCalc.r: Plotting of model selection, calculation of predictions and
variable importance of boosting

06_ DataSim.r: Generating of simulation data sets
06_ SimModels_Gam.r: GAM using simulated data
06- SimModels_Rf.r: Random forests using simulated data
06_ SimModels_GamB.r: GAMBoost using simulated data
06_ SimModels_Gbm.r: GBM using simulated data

06_ SimCalc_Gam.r: Simulation study: predictions and variable importance of
GAM

06_ SimCalc_Rf.r: Simulation study: predictions and variable importance of ran-
dom forest

06 SimCalc_GamB.r: Simulation study: predictions and variable importance of

GAMDBoost
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> 06_ SimCalc_Gbm.r: Simulation study: predictions and variable importance of
GBM

> 06_ SimResults.r: Results for chapter[]

> 07- GamResults.r: Results for chapter (7.1

> 07_ ResultsPerf.r: Results for chapter([7.3

> 07_ ResultsImp.r: Results for chapter[7.3

> 07_ ResultsResp.r: Results for chapters and
> 07_ ResultsPred.r: Results for chapter[7.4

> 07_ ResultsResid.r: Results for chapter[7.7]

> AuxiliaryRoutines:

>

>

00_Coding.r: Coding of variables and levels

00_FormulaCov: Diverse auziliary functions for the creation of model for-
mulas

00_Shape.r: Function for adding topographical information to a spatial plot

01_DivideTestTrain.r: Function for the division of the data in test and train-
ing data set

02_DescHelpers.r: Diverse auziliary functions for the descriptive analysis
03_Weighting.r: Function for the calculation of the product weights
03_GAM.r: Function for the computation of the GAMs
03_InteractMod.r: Function for adding an interaction factor to a GAM
03_VarSel.r: Function for variable selection with GCV

04_CForestResponse.r: Function for calculating the partial effects of a ran-
dom forest

05_VarlmpGamB.r: Function for calculating the variable importance of GAM-
Boost

06_Cv.r: Function for creating a cross—validation matriz for GAMBoost

06_SimResultsHelpers.r: Functions for illustrating the results of the simula-
tion study

07 MyVisGam.r: Modification of vis.gam()
07_GamCol.r: Modification of plot.gam()
07_Pred.r: Function for plotting predictions
07_Resid.r: Function for plotting residuals
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A.2. Additional graphics: Simulation study
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FIGURE A.1.: Performance of Random Forest in the initial scenario subdivided into intervals
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A.3. Additional graphics: Data analysis

Swiss pine

spruce

ash

s B
g5
o Q
£0g
©

53E

—— cgverror

I T T 1 [
¢¢0’0 8100 ¥LO0 0LOO

90UBIASD |[noulag

s S
g5
[} Q
£0L
©

53 E

—— cgverror

[ T T I T T I
0¥'0 80 9€0 vE€O0

90UBIASP I[|nouJag

s &
g5
o Q
£0g
©

5E3E

—— cgverror

I I I I
090 950 0S50 6&v0

90UBIASD I|[noulag

GBM

600 1000

0 200

600 1000

0 200

600 1000

0 200

Iteration

Iteration

Iteration

o
,,,,,,,, L ©
o o
32 —
5 S
g @
€ -8
©
| S
| E
o
o
________________ N
o

T I I I I

0200 0100 0000

poouyieyIT [elwoulg aAnebaN

o
_________ K]
o S
s} -
®
5 g
g )
@
o
€ O
©
1
\ o
)
<
o
________________ )
Y
o

¥20 0c¢0 910

pooyijayi [elwoulg annebaN

mstop: 220

200 400 600 800 1000

0

I I T I
Ge0 0€0 G20 0¢0

poouyieyIT [elwoulg aAnebaN

GAMBoost

FiGURE A.3.: Tuning parameter selection: Boosting.

Iteration

Iteration

Iteration



101

A. Appendix

"(mojaq) 1s50.40f wopuns pup (200qD) Y5 99n4ds ayp 40f suonorpaLd pyDdG 1 F Y THNDI

T G.6°0 S6°0 G260 60 G/8°0 G8°0 0
|

sanijigeqold 82ua1nN220 pajoipaid




102

A. Appendix

‘(mojaq) WgH puv (9009D) 1S00g N H ‘29n4ds 2y L0f su012pa.d p1Ddg "Gy TAUNDI]

T G.6°0 S6°0 G260 60 G/8°0 G8°0 0
|

sanijiqeqolid asuaiin220 pajdipaid




103

A. Appendix

"(mojaq) 152.40f wopuns puv (200qn) Wy H ourd ss1nG Yy 40f SU01321pa.d [pYDAG 9 Y FUNDI]

T T00 6000 8000 LOO'O 9000 S000 ¥OO'0O €000 ¢O00 TOOO 0
| | | | |

sanijiqeqolid asuaiin220 paldipaid

FL

oo
e
J
- :\ v
.
e
— k.,
-
g P T s
T g 4 e SO T
Vai b Y SO AR S
£ & .
8 ’ ol
ulw. % -l Y ’ a4

#4,



104

A. Appendix

. +
. .
* ]
- 4
’ . +
< . .
y
3 i
S '\

‘(mojaq) ;wgH pup (2009D) 1500g VD ‘ourd ssung 2y Lof suonapaid pyndg i)y HINDI

0

T00 6000 8000 LOO'O 9000 S000 ¥OO'0O €000 ¢O00 TOOO
| | | | |

T
T
sanijiqeqolid asuaiin220 paldipaid

ey
<& Moo
pee b
.
i 2 G
B - R A
. 2 - My O
g e o~
e ald £ . -
o % I s
- s
(Rt
<8 Mo o
e
., % »un s
po & Ty
b 0 e Qg -
v v
- - xm.d. #
N
-
«+ x

K33
o e
RS
s
h b



105

Bibliography

Aratjo, M. and Luoto, M. (2007). The importance of biotic interactions for modelling
species distributions under climate change. Global Ecology and Biogeography 16,
743-753.

Austin, M. (1987). Models for the analysis of species’ response to environmental gra-
dients. Vegetatio 69, 35—45.

Austin, M. (1999). A silent clash of paradigms: some inconsistencies in community
ecology. Oikos 86, 170-178.

Austin, M. (2002). Spatial prediction of species distribution: an interface between
ecological theory and statistical modelling. Ecological Modelling 157, 101-118.

Austin, M., Belbin, L., Meyers, J., Doherty, M., and Luoto, M. (2006). Evaluation of
statistical models used for predicting plant species distributions: Role of artificial
data and theory. Ecological Modelling 199, 197-216.

Austin, M. and Smith, T. (1989). A new model for the continuum concept. Vegetatio 83,
35-47.

Bartlett, P. and Traskin, M. (2007). Adaboost is consistent. Journal of Machine
Learning Research 8, 2347-2368.

Bickel, P. J. and Ren, J.-J. (2001). The bootstrap in hypothesis testing. Lecture
Notes-Monograph Series 36, 91-112.

Breiman, L. (1996a). Bagging predictors. Machine Learning 24(2), 123-140.

Breiman, L. (1996b). Out-of-bag estimation. Technical Report, Department of Statis-
tics, University of California at Berkeley, CA, USA.

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics 26(3), 801-849.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computa-
tion 11(7), 1493-1517.

Breiman, L. (2001a). Random forests. Machine Learning 45, 5-32.

Breiman, L. (2001b). Statistical modeling: The two cultures. Statistical Science 16,
199-231.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Re-
gression Trees. Wadsworth International Group.



Bibliography 106

Bithlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, prediction
and model fitting. Statistical Science 22(4), 477-505.

Bithlmann, P. and Hothorn, T. (2010). Twin boosting: improved feature selection and
prediction. Statistics and Computing 20(2), 119-138.

Bithlmann, P. and Yu, B. (2003). Boosting with the Iy loss: Regression and classifica-
tion. Journal of the American Statistical Association 98, 324-339.

Carl, G. and Kiihn, I. (2008). Analyzing spatial ecological data using linear regression
and wavelet analysis. Stochastic Environmental Research and Risk Assessment 22,
315-324.

Caswell, H. (1988). Theory and models in ecology: a different perspective. Ecological
Modelling 43, 33—44.

Cutler, D., Edwards Jr., T., Beard, K., Cutler, A., Hess, K., Gibson, J., and Lawler,
J. (2007). Random forests for classification in ecology. Ecology 88(11).

De’ath, G. (2007). Boosted trees for ecological modeling and prediction. Ecology 88(1),
243-251.

De’ath, G. and Fabricius, K. (2000). Classification and regression trees a powerful yet
simple technique for ecological data analysis. Ecology 81(11), 3178-3192.

Dormann, C., McPherson, J., AraAojo, M., Bivand, R., Bolliger, J., Carl, G., Davies,
R., Hirzel, A., Jetz, W., Kissling, D., Kiihn, I., Ohlemiiller, R., Peres-Neto, P.,
Reineking, B., Schroder, B., Schurr, F., and Wilson, R. (2007). Methods to account
for spatial autocorrelation in the analysis of species distributional data: a review.
Ecography 30, 609-628.

Elith, J. and Graham, C. (2009a). Do they? how do they? why do they differ? on find-
ing reasons for differing performances of species distribution models. FEcography 32,
66-77.

Elith, J. and Graham, C. (2009b). Do they? how do they? why do they differ? on find-
ing reasons for differing performances of species distribution models. Fcography 32,
66-77.

Elith, J., Leathwick, J., and Hastie, T. (2008). A working guide to boosted regression
trees. Journal of Animal Ecology 802-813(77).

Fahrmeir, L., Kneib, T., and Lang, S. (2007). Regression - Modelle, Methoden und
Anwendungen. Springer Berlin Heidelberg New York.

Fitzpatrick, M. and Hargrove, W. (2009). The projection of species distribution models
and the problem of non—analog climate. Biodiversity and Conservation 18, 2255—
2261.



Bibliography 107

Freund, Y. and Schapire, R. (1995). A decision-theoretic generalization of on—line learn-
ing and an application to boosting. Proceedings of the Second European Conference
on Computational Learning Theory. Springer, Berlin.

Friedman, J. (1991). Multivariate adaptive regression splines. Annals of Statistics 19,
1-141.

Friedman, J. (2001). Greedy function approximation: A gradient boosting machine.
The Annals of Statistics 29(5), 1189-1232.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: A
statistical view of boosting. The Annals of Statistics 28(2), 337-407.

Gauch Jr., H. and Whittaker, R. (1972). Coenocline simulation. Ecology 53(3), 446
451.

Guisan, A., Edwards, T., and Hastie, T. (2002). Generalized linear and generalized
additive models in studies of species distributions: setting the scene. FEcological
Modelling 157, 89-100.

Guisan, A., Zimmermann, N., Elith, J., Graham, C., Phillips, S., and Peterson, A.
(2007). What matters for predicting the occurrences of trees: techniques, data, or
species” characteristics? FEcological Monographs 77(4), 615-630.

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman & Hall.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learn-
ing - Data Mining, Inference, and Prediction. Springer—Verlag.

Hirzel, A. and Guisan, A. (2002). Which is the optimal sampling strategy for habitat
suitability modelling. FEcological Modelling 157, 331-341.

Hothorn, T., Bithlmann, P., Kneib, T., Schmid, M., and Hofner, B. (2009). mboost:
Model-based boosting. R package version 1.1-4.

Hothorn, T., Hornik, K., Strobl, C., and Zeileis, A. (2009). party: A laboratory for
recursive partytioning. R package version 0.9-999.

Hothorn, T., Hornik, K., and Zeileis, A. (2006). Unbiased recursive partitioning: A
conditional inference framework. Journal of Computational and Graphical Statis-
tics 15(3), 651-674.

Huisman, J., Olff, H., and Fresco, L. (1993). A hierarchical set of models for species
response analysis. Journal of Vegetation Science 4, 37-46.

Hurlbert, S. (1984). Pseudoreplication and the design of ecological field experiments.
Ecological Monographs 54(2), 187-211.

James, G. and Hastie, T. (1997). Generalizations of the bias/variance decomposition
for prediction error. pp. Dept. Statistics, Stanford Univ., Stanford, CA, Tech. Rep.



Bibliography 108

Johnson, J. and Omland, K. (2004). Model selection in ecology and evolution. Trends
in FEcology & Fvolution 19, 616-625.

Kearns, M. and Valiant, L. (1994). Cryptographic limitations on learning boolean for-
mulae and finite automata. Journal of the Association for Computing Machinery 41,
67-75.

Krebs, C. (1985). Ecology. The experimental analysis of distribution and abundance (4
ed.). Harper and Row, New York.

Kiihn, I. (2007). Incorporating spatial autocorrelation may invert observed patterns.
Diwversity and Distributions 13, 66—69.

Lawler, J., White, D. Neilson, R., and Blaustein, A. (2006). Predicting climate-induced
range shifts: model differences and model reliability. Global Change Biology 12,
1568-1584.

Leathwick, J., Elith, J., and Hastie, T. (2006). Comparative performance of generalized
additive models and multivariate adaptive regression splines for statistical modelling
of species distributions. Ecological Modelling 199, 188-196.

Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? FEcology 74(6),
1659-1673.

Lin, Y. and Jeon, Y. (2006). Random forests and adaptive nearest neighbors. Journal
of the American Statistical Association 101(474), 578-590.

Liu, C., Berry, P., Dawson, T., and Pearson, R. (2005). Selecting thresholds of occur-
rence in the prediction of species distribution. FEcography 28, 385-393.

Lobo, J., Jiménez-Valverde, A., and Real, R. (2007). Auc: a misleading measure of the
performance of predictive distribution models. Global Ecology and Biogeography 17,
145-151.

Ludwig, J. and Reynolds, J. (1988). Statistical ecology: a primer on methods and
computing. John Wiley and Sons.

MacArthur, R. (1972). Geographical Ecology: Patterns in the Distribution of Species.
Harper and Row, New York.

Maggini, R., Lehmann, A., Zimmermann, N., and Guisan, A. (2006). Improving gen-
eralized regression analysis for the spatial prediction of forest communities. Journal
of Biogeography 33, 1729-1749.

Marx, B. and Eilers, P. (1998). Direct generalized additive modeling with penalized
likelihood. Computational Statistics € Data Analysis 28, 193-209.

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models (2nd ed.). London:
Chapman & Hall.



Bibliography 109

Meynard, C. and Quinn, J. (2007). Predicting species distributions: a critical com-
parison of the most common statistical models using artificial species. Journal of
Biogeography 34, 1455-1469.

Mohler, C. (1983). Effect of sampling pattern on estimation of species distributions
along gradients. Vegetatio 54(2), 97-102.

Moisen, G. and Frescino, T. (2002). Comparing five modelling techniques for predicting
forest characteristics. Ecological Modelling 157, 209-225.

Oksanen, J. and Minchin, P. (2002). Continuum theory revisited: what shape are
species responses along ecological gradients? FEcological Modelling 157, 119-129.

Olden, J., Lawler, J., and Poff, N. (2008). machine learning methods without tears: a
primer for ecologists. The Auarterly Reviw of Biology 83(2), 171-193.

Oppel, S., Strobl, C., and Huettmann, F. (2009). Alternative methods to quantify vari-
able importance in ecology. Technical Report, Department of Statistics, University
of Munich.

Prasad, A., Iverson, L., and Liaw, A. (2006). Newer classification and regression tree
techniques: bagging and random forests for ecological prediction. Fcosystems 9,
181-199.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers, Inc., San Mateo, CA.

R Development Core Team (2009). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.

Reineking, B. and Schréder, B. (2006). Constrain to perform: Regularization of habitat
models. Ecological Modelling 193, 675-690.

Ridgeway, G. (2007). gbm: Generalized boosted regression models. R package version
1.6-3.

Strobl, C., Boulesteix, A.-L., and Augustin, T. (2007). Unbiased split selection for
classification trees based on the gini index. Computational Statistics €& Data Analy-
sis 52(1), 483-501.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A. (2008). Condi-
tional variable importance for random forests. BMC' Bioinformatics 9(1), 307.

Strobl, C., Boulestix, A.-L., Zeileis, A., and Hothorn, T. (2007). Bias in random
forest variable importance measures: Illustrations, sources and a solution. BMC
Bioinformatics, 8-25.

Thuiller, W., Araijo, M., and Lavorel, S. (2003). Generalized models vs. classifica-
tion tree analysis: Predicting spatial distributions of plat species at different scales.
Journal of Vegetation Science 14, 660—680.



Bibliography 110

Thuiller, W., Brotons, L., Araijo, M., and Lavorel, S. (2004). Effects of restrict-
ing environmental range of data to project current and future species distributions.
Ecography 27, 165-172.

Toft, C. (1990). Reply to seaman and jaeger: An appeal to common sense. Herpeto-
logica 46(3), 357-361.

Wood, S. (2006). Generalized Additive Models - An Introduction with R. Chapman &
Hall/CRC.

Wood, S. (2009a). mgev: Generalized additive model selection.
http://www.maths.bath.ac.uk/ sw283/.

Wood, S. (2009b). mgcv: Multiple smoothing parameter estimation by gev or ubre.
http://www.maths.bath.ac.uk/ sw283/.

Wood, S. and Augustin, N. (2002). GAMs with integrated model selection using pe-
nalized regression splines and applications to environmental modelling. FEcological
Modelling 157, 157-177.

Yee, T. and Mitchell, N. (1991). Generalized additive models in plant ecology. Journal
of Vegetation Science 2, 587-602.



111

List of Figures

[2.1. Fxamined observation sites in Bavarial . . . . ... ... ... ... ... 10
[2.2. Spatial occurrence of theash| . . . .. ... ... ... ... .. ... 12
[2.3. Spatial distribution of temperaturel . . . . . . . .. ... 13
[2.4. Spatial distribution of precipitation|. . . . . . . . . .. ... 14
[2.5. Descriptive predictor analysis for the difterent tree species| . . . . . . . . 15
[2.6. Response curves for the ash, the spruce and the Swiss pine along ecolog- |
ical gradients| . . . . . . ... L 18

[5.1. Loss functions for binary classification| . . . . . . . . . . ... ... ... 40
[6.1. Simulation setup| . . . . . . . ..o 50
[6.2. Outline of the simulation study| . . . . . . ... ... ... ... ..... 51
[6.3. Real partial effects of the simulated tree species in DGP1 and DGP2| . . 52
6.4, True tree structure for scenario DGP3l . . . . .. ... . ... ... 53
6.5. Illustration of the distance measure A,f. . . . ... ... ... ... ... 55
6.6. Absolute model performance for varying sample sizes|. . . . . . . .. .. 55
|6.7.  Absolute model pertormance for the unbalanced and the spatially bal- |
anced design| . . . . ... e o7

6.8, Performance of the GAM in scenarios SD1 and SD2| . . .. .. ... .. 57
16.9. Absolute model performance on extrapolated data] . . . .. . ... ... 58
|6.10. Mean model performance on extrapolated data] . . . . .. .. ... ... 59
[6.11. Influence of outliers on the estimation of GAM and GAMBoostl . . . . . 60
|6.12. Extrapolation properties of GBM and random forest| . . . . . . . .. .. 60
|6.13. Absolute model performance for different DGPs|. . . . . . .. ... ... 62
|6.14. Absolute model performance for the comparison of scenario AM1 with |
[ AM?2 based on DGP2l. . . . . . ... 62
|6.15. Absolute model performance for the comparison of scenario AM1 with |
[ AM2 and AM3 based on DGPI| . . . . .. ... ... ... ........ 64
|6.16. Absolute model performance for the comparison of scenario AM1 with |
[ AM4 and AMS based on DGPTl . . . . . ... ... ... L. 64
|6.17. Variable importance for AM1, AM2 and AM3[. . . .. ... ....... 66
(7.1. Model validation with ROC—curves . . . . . ... ... ... ... ... .. 73
[7.2. Variable importance: ash| . . . . .. ... ... ... .00 L. 76
[7.3. Variable importance: spruce|. . . . . . . . ... Lo 77
[7.4. Variable importance: Swiss pinel . . . . . . . . . ... 78
[7.5. Response curves: ash|. . . . . . ... ... ... ... ... ... 81
[7.6. Response curves: spruce| . . . . . . . . ... oo 82
[7.7. Response curves: SwiISS PIne| . . . . . . . . . . . . ... 83



List of Figures 112

[7.8. Spatial response surfaces: GAM and GAMBoost for the ash and the spruce| 87

[7.9. Spatial predictions for the ash: GAMand RF| . . . . ... ... ... .. 89
[7.10. Spatial predictions for the ash: GAMBoost and GBM| . . . ... .. .. 90
[7.11. Residuals for the expert model of theash| . . . .. ... ... ... ... 91
[A.1. Performance of Random Forest in the nitial scenariof . . . . . . . . . .. 99
[A.2. Performance of GAMBoost in scenarios SD1 and SD2| . . . . . ... .. 99
|A.3. Tuning parameter selection: Boosting] . . . . . ... ... ... ..... 100
|[A.4. Spatial predictions for the spruce: GAM and random forest| . . . . . . . 101
[A.5. Spatial predictions for the spruce: GAMBoost and GBM|. . . . . . . .. 102
|A.6. Spatial predictions for the Swiss pine: GAM and random forest| . . . . . 103

[A.7. Spatial predictions for the Swiss pine: GAMBoost and GBM| . . . . .. 104




Erklarung

Hiermit bestéatige ich, Veronika Fensterer, dass ich die vorliegende Diplomarbeit selbstandig
und ohne Benutzung anderer als den angegebenen Hilfsmitteln angefertigt habe.

Miinchen, den 1. Juni 2010 Veronika Fensterer



	Introduction
	The role of statistical modelling in ecology
	Subjects and aims of the project and the thesis
	Statistical realisation of modelling species–habitat relationships

	Data description
	Data collection and data structure
	Descriptive analysis
	Analysis of the species response shapes along ecological gradients

	Hypotheses–directed approach using a generalised additive model
	Model description
	Estimation
	Model selection and variable importance
	Approach of a pseudo–balanced design by weighting observations
	Integration of an interaction factor
	Spatial autocorrelation
	Implementation
	Profits and limitations of the GAM approach

	Data–directed approach using random forests
	Model description
	Classification and regression trees
	Conditional inference trees
	Random forests
	Model selection and variable importance
	Implementation
	Profits and limitations of the random forest approach

	Data–directed approach using boosting
	Model description
	Estimation
	Generic boosting algorithm
	Loss functions
	Base procedures

	Properties of the boosting algorithm
	Model selection
	Variable importance
	Implementation
	Profits and limitations of the boosting approach

	Simulation study
	Introduction to the simulation study
	Simulation setup
	Effect of sample size
	Comparison of sampling designs
	Balanced design
	Extrapolation

	Comparison of data generating processes
	Comparison of analysis methods
	Predictive accuracy
	Variable importance

	Concluding remarks

	Species distribution modelling of forest communities
	Development of expert models with GAMs
	Comparison of model performance
	Variable importance
	Response curves
	Response surfaces
	Prediction
	Limitations of the analysis
	Concluding remarks

	Summary and perspectives
	Concluding reflection of the acquired results
	Outlook

	Appendix
	Table of data files for R–code
	Additional graphics: Simulation study
	Additional graphics: Data analysis

	Bibliography

