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Abstract

Should consumer researchers employ silicon samples and artificially generated data

based on large language models, such as GPT, to mimic human respondents'

behavior? In this paper, we review recent research that has compared result patterns

from silicon and human samples, finding that results vary considerably across

different domains. Based on these results, we present specific recommendations for

silicon sample use in consumer and marketing research. We argue that silicon

samples hold particular promise in upstream parts of the research process such as

qualitative pretesting and pilot studies, where researchers collect external

information to safeguard follow‐up design choices. We also provide a critical

assessment and recommendations for using silicon samples in main studies. Finally,

we discuss ethical issues of silicon sample use and present future research avenues.
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1 | INTRODUCTION

Generative artificial intelligence (AI) is transforming academic and

practical research. A particularly prominent type of generative AI is

large language models (LLMs) that can process a myriad of inputs

and predict the next word or a part of the next word (referred to as

a token) in a sequence. The most visible outcome of this

development is, arguably, the generative pre‐trained transformer

(GPT) model (Brown et al., 2020; OpenAI, 2023), which was made

available to the general public via ChatGPT in November 2022. GPT

uses large databases of text as input, trains the model by using a

self‐supervised language modeling objective, and employs

reinforcement learning from human feedback (OpenAI, 2023). This

procedure enables LLMs to mimic human response behavior (Jeon

et al., 2023; Luo et al., 2022).

Psychologists and marketing researchers have started reflecting

on how LLMs might impact consumer and marketing research (e.g.,

Peres et al., 2023). Studies in this domains emphasize LLMs' potential

to improve marketing communications (e.g., content marketing

campaigns and content design), deliver superior customer experience

through hyperpersonalization, and enhance classic marketing

research functions (Brand et al., 2023; Ooi et al., 2023; Paul

et al., 2023). Researchers have also started using LLMs to substitute

human participants in academic empirical research (Argyle et al., 2023;

Demszky et al., 2023; Dillion et al., 2023). These studies use LLMs to

generate so‐called “silicon samples” (also referred to as “synthetic

datasets”) that seek to mimic human respondents to describe, explain,

and predict human behavior.

Silicon samples have also emerged in marketing practice. For

example, the startup Synthetic Users has set up a service using LLMs
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where personas can be described based on their demographics and

personality traits so that they can be asked about their needs, desires,

and feelings concerning a product or service. The system returns

synthetic interview data that marketers can readily interpret and

analyze (Hutson, 2023).

But should silicon samples be used to conduct empirical studies

to provide insights into human behavior? Research has addressed this

question by assessing whether the sample data generated by LLMs

generalizes to human respondents—a necessary condition for

replacing human samples with silicon samples. For example, in a

series of replications of common cognitive psychology experiments,

Binz and Schulz (2023) find that GPT shows similar biases as humans

do (e.g., framing effects). On the contrary, Kirshner (2024) finds

considerable differences between GPT and human samples in the

formation of construals (i.e., personal interpretations of the world).

Specifically, GPT puts greater emphasis on features that relate to a

goal‐focussed, high construal level than features that relate to a

means‐focussed, low construal level.

Studies involving silicon sampling are scattered across numerous

fields of scientific inquiry such as consumer research (e.g.,

Kirshner, 2024), general psychology (e.g., Caron & Srivastava, 2022),

and political science (e.g., Argyle et al., 2023), making it difficult to

provide a conclusive answer under which circumstances LLMs can

mimic human response behavior. From a more fundamental

perspective, researchers question whether LLMs can validly be used

as models of human thought since an LLM's working principle

involves computing the most probable next text element in a

sequence. This process differs considerably from a human partici-

pant's feelings and reasoning abilities (e.g., Abdurahman et al., 2023;

Demszky et al., 2023).

We contribute to this debate in several ways. We first review

research comparing silicon and human samples across numerous

scientific domains and discuss reasons for the observed variability in

results. Based on our findings, we then discuss the use of silicon

samples for applied consumer and marketing research. Specifically,

we assess their use for qualitative pretesting and pilot studies as well

as for quantitative main studies. We further supplement our

discussion with ethical perspectives to offer recommendations for

silicon sample use and derive future research avenues. Our proposed

checklist for LLM use will help academics and practitioners to

adequately situate silicon samples in their projects.

2 | USING LLMS TO MIMIC HUMAN
BEHAVIOR

Although efforts to substitute human respondents with LLMs are

relatively new, several studies have already conducted comparisons

of human and silicon samples. These comparisons stem from various

domains (e.g., human–computer‐interaction, general psychology,

social psychology) and consider a wide range of tasks and settings

(e.g., cognitive reflection task, Hagendorff et al., 2023; the ultimatum

game, Aher et al., 2023; and the Wason selection task, Lampinen

et al., 2023). Viewed as a whole, the studies resulted in mixed

findings regarding the efficacy of silicon samples in mimicking human

responses.1

On the one hand, LLMs replicated results from tasks related to

personality traits (Caron & Srivastava, 2022), framing effects (Chen

et al., 2023), as well as political attitudes and party preferences

(Argyle et al., 2023). For example, Caron and Srivastava (2022)

surveyed Reddit users about their “Big Five” personalities and trained

LLMs with these user‐specific contextual data. Their results show

that LLMs can reliably imitate personality markers in various

contexts.

On the other hand, researchers were unable to replicate effects

known to characterize consumer behavior in many cases, such as the

endowment effect, mental accounting, or the sunk cost fallacy (Chen

et al., 2023). For example, when replicating Kahneman and Tversky's

(1979) classic prospect theory experiment to identify risk preferences

regarding gains versus losses, Chen et al. (2023) found that ChatGPT

mostly focuses on maximizing the expected payoffs, rather than, as

humans do, acting risk‐averse for gains and risk‐seeking for losses.

Similarly, Park et al. (2023), using GPT‐3.5, re‐ran 14 studies from

Many Labs 2, a large‐scale replication project of major findings from

psychological research (Klein et al., 2018). The authors could only

replicate just over a third of the results from the studies. Studies for

which both the Many Labs 2 and the GPT samples replicated the

original results rely on generalizing or comparing information that is

provided directly in the task instruction. GPT, however, did not

replicate effects that arise due to implicit associations. For 6 out of

14 studies, regardless of the researchers' algorithmic choices, the

GPT results showed a high level of determinacy (i.e., a “correct

answer effect” in which GPT answered in a highly uniform way with

none or almost no variation).

Two aspects that likely contributed to these mixed results are

LLM's working principles, including ways to customize and parametrize

them, and researchers' use of different LLM versions. In terms of their

working principles, LLMs are designed to reproduce word co‐

occurrence patterns found in an unprecedented amount of training

data from data sets such as The Pile. The latter is an almost 900 GB

large diverse, open‐source data set of English text, covering contents

from, amongst others, arXiv, GitHub, Stack Exchange, Pubmed, and

Wikipedia (Gao et al., 2020). LLMs reproduce co‐occurrence patterns

by applying neural networks using sentences as predictors of masked‐

out words, thereby approximating the meaning in the context, rather

than assuming that words have a static meaning across contexts.

Prediction errors serve as the basis for updating the neural network's

weights and bias terms (backpropagation) to minimize the difference

between the model output and the target text.

As with all statistical analyses, the quality of the output depends

largely on the quality of the training data. In the case of LLMs, the

1We substantiated our discussions with a systematic literature review, which identified 28

articles that report the results from 285 silicon‐to‐human sample comparisons in seven

domains with 96 individual tasks. We document the results of our review in the Web

Appendix on the Open Science Framework (OSF): https://osf.io/b2gtv/
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training data comprises a multitude of sources that do not represent a

well‐defined population. This is problematic because LLMs “are

simply parroting what the training data tended to say about the

concept so that the dialogue sounds natural” (Demszky et al., 2023,

p. 4), but it is not clear whose experiences and opinions the output

reflects. Researchers can address this issue by fine‐tuning the model

(Brown et al., 2020) by feeding the LLM with additional and more

specific training data (Brown et al., 2020). However, while fine‐tuning

may improve a model's performance in generating a correct response,

this does not imply that the LLM better mimics human response

behavior—as evidenced in the results of our systematic literature

review (see theWeb Appendix). The reason is that the correct answer

is not necessarily the same response a human might give. For

instance, the fine‐tuned Flan‐PaLM as well as other LLMs perform

considerably better than humans in logic puzzles (e.g., Wason

selection task, Lampinen et al., 2023). However, when fine‐tuning

the model for tasks that seek to mimic human responses, such fine‐

tuning may easily backfire as it “pushes the model to almost embody

caricatures of those groups” (Santurkar et al., 2023, p. 10).

Another approach to improve LLM performance is prompt‐

tuning, where researchers prompt sample tasks and their solutions

(Demszky et al., 2023). For example, a researcher investigating

antecedents to service quality may prompt the following example:

“Here is an example of a customer expressing concerns about the

service quality: ‘The service staff was unfriendly and didn't even try

to resolve the problem’.” Importantly, prompt‐tuning is not restricted

to a single sample task (one‐shot prompting) but may extend to

multiple examples (few‐shot prompting).2

In addition to the sensitivity of the results to the structure of the

training data and prompts, LLM users also have various degrees of

freedom when applying LLMs. Most notably, users can impose a

certain degree of result variability via the softmax temperature and

top‐k parameters (Chang et al., 2023). For example, a higher softmax

temperature of 1 or 2 will result in more diverse outputs, while a

lower temperature such as 0.5 will make the outputs more

deterministic. However, this decrease in diversity can easily be

problematic as a certain degree of variation may be central to

capturing a phenomenon fully. Conversely, if the randomness is very

high, the results will vary more and will be more difficult to replicate.

Even if the temperature setting leads to differences in the individual

answers, GPT can still come to a similar—but not necessarily the

same—result (see Park et al., 2023).

A second source of result variability is grounded in researchers'

use of different GPT versions. Most notably, Hagendorff et al. (2023)

identified a substantial shift in the response patterns across different

GPT versions. While early versions displayed the human‐like intuitive

system 1 thinking and its associated cognitive errors, GPT‐3.5 and

higher engage in chain‐of‐thought reasoning, which corresponds to

system 2 thinking. For example, from human respondents and

different GPT versions, the authors gathered data on a series of

cognitive reflection tasks, such as: “Together, a potato and a camera

cost $1.40. The potato costs $1 more than the camera. How much

does the camera cost?”3 While the majority of human respondents

and earlier GPT versions gave an intuitive and, therefore, wrong

answer to these tasks ($0.40 in this example), GPT‐4 responded

correctly in practically all the cases ($0.20 in this example), often even

providing chain‐of‐thought reasoning. This result is in line with

previous findings by similar task types, showing that GPT‐4 performs

exceptionally well in standardized tests (OpenAI, 2023). Another

direct comparison of GPT versions revealed differences regarding the

Big Five personality traits. Specifically, extraversion and agreeable-

ness deviate more strongly from human samples in GPT‐4 than in

GPT‐3.5. In addition, both versions do not represent human scores

well concerning conscientiousness, neuroticism, and openness with

GPT‐4 performing better than GPT‐3.5 (Jiang et al., 2023).

3 | RECOMMENDATIONS CONCERNING
THE USE OF SILICON SAMPLES

In light of the challenges and opportunities of silicon samples, where

should they be situated in a research project? What are current

guidelines that researchers should adhere to in silicon sampling? In

the following, we address these two questions.

3.1 | Using silicon samples for pretesting and pilot
studies

We see considerable promise in using LLMs such as GPT in upstream

parts of the research process where researchers collect external

information to safeguard follow‐up design choices. The aim is to alert

researchers of potential errors in the process that would require

intervention before initiating the main study with human participants.

For example, we recommend researchers to use silicon sampling for

pretests and pilot studies, such as in scale pretesting where they

could interrogate GPT whether a certain item wording is appropriate

or not.4 As a practical example, we prompted GPT‐4 to assess the

appropriateness of the following survey item “I'm satisfied with the

products and services of the company,” which respondents should

answer on a scale from 1 (“I fully disagree”) to 7 (“I fully agree”). GPT‐

4 correctly identified that the item is double‐barreled, containing

both products as well as services to evaluate (Lietz, 2010) and also

highlighted the generic nature of the question (Figure 1), noting that

“[…] it doesn't provide insight into specific areas of strength or

improvement.” In a second example, GPT‐4 flagged the item wording

“I use this service very often” as vague, noting that “What one person

2Results from our systematic literature review suggest that prompt‐tuning considerably

improves LLM performance (see the Web Appendix).

3See Appendix in Hagendorff et al. (2023) (https://static-content.springer.com/esm/art%

3A10.1038%2Fs43588-023-00527-x/MediaObjects/43588_2023_527_MOESM1_

ESM.pdf).
4Note that the following examples merely offer snapshots of qualitative inquiries of survey

elements and therefore do not fully adhere to our definition of silicon samples.
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considers ‘very often’ might be considered less frequent by someone

else” (Figure 2).

GPT may also be used to capture some sources for measurement

invariance in scale development processes (Vandenberg &

Lance, 2000). To illustrate its capabilities in this regard, we prompted

GPT‐4 to assess whether respondents from different cultures would

respond differently to the concept of cultural intelligence, which

refers to “a person's capability to adapt effectively to new cultural

contexts” (Earley & Ang, 2003, p. 59). GPT‐4 asserts that this is likely

the case due to different cultural norms and values, respondents'

exposure to diversity, the context of interaction, and several other

factors (Appendix Figure A1). The output therefore mirrors empirical

findings pointing to the challenges associated with establishing

measurement invariance in the measurement of cultural intelligence

(Schlägel & Sarstedt, 2016). This approach can be extended to

generate a set of silicon participants from diverse backgrounds to

ascertain whether members of different subsamples may interpret

the item content differently.

We also see value in using generative AI such as the text‐to‐

image model DALL‐E in other contexts such as crafting and testing

stimuli or vignettes that should meet predefined characteristics (e.g.,

generating product stimuli for a study on assortment organization).

To illustrate its potential in this context, we asked DALL‐E 3 to

generate a visual stimulus that is supposed to extend the viewer's

future time perspective (i.e., an individual's perceptions of their

remaining time in life, which plays an important role, e.g., for emotion

regulation; Carstensen, 2006). In response, DALL‐E 3 describes a

matching scenery that is principally useful for evoking a

F IGURE 1 Prompt and ChatGPT (GPT‐4) answer for the appropriateness of a survey item (I).
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corresponding shift in time perspective. DALL‐E 3 then uses this

input to generate a corresponding image (Figure 3). Researchers

could now revise the prompt by adding further information to

customize the image to the specific research context.

DALL‐E 3 can also be used as an initial test of the appropriate-

ness of a visual stimulus. Drawing on Ton et al.'s (2023) study on the

impact of simple versus complex packaging designs on consumer

behavior, we generated two variants of a chocolate bar package,

which we subjected to the prompt shown in Figure 4. Specifically, we

used the attention check from Ton et al. (2023) and asked DALL‐E 3

to assess each packaging's complexity on a scale from 1 (“simple”) to

9 (“complex”). The model identifies differences in complexity

concerning various design elements, noting that the more complex

design suggests “a richer sensory experience.” The model also

describes the images and provides a numeric assessment. We probed

these assessments in an additional replication in which we also

assessed order effects. While the descriptions are only marginally

affected by the query order, the numeric assessments are sensitive to

F IGURE 2 Prompt and ChatGPT (GPT‐4) answer for the appropriateness of a survey item (II).

1258 | SARSTEDT ET AL.

 15206793, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ar.21982, W
iley O

nline Library on [15/05/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



order effects (see Park et al., 2023 for another observation of order

effects in GPT). Specifically, the more complex packaging receives a

higher complexity score value only if it is presented after the

minimalistic packaging (see Web Appendix Figure A2).

DALL‐E 3 also pinpoints specific design elements when asked to

describe differences and similarities between the packages (Figure 5)

that also point to some potential confounds to visual complexity. For

example, the minimalist design could be perceived as more upscale

F IGURE 3 DALL‐E 3 examples for a stimulus ad targeting future time perspective.
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which may entail a different premium perception between the

designs. Furthermore, since the complex design includes a higher

sensory appeal, it can trigger sensory imagery and sensory expecta-

tions that are absent in the minimalistic design (see also Ton

et al., 2023). Depending on the specific aim of the study, these

aspects could limit the results' validity.

Taking together, our endeavors into using GPT‐4 and DALL‐E 3

for pretesting illustrate that both models can help generate and

evaluate study materials—especially when it comes to assessing survey

items, providing descriptions, and making generic evaluations. By doing

so, GPT‐4 and DALL‐E 3 can provide qualitative insights that

researchers would similarly expect from textbooks, experts in the

field, or members of the target audience—which can be helpful for an

initial evaluation of the survey materials. However, since LLMs such as

GPT may hallucinate factually incorrect statements, it is imperative

that researchers use them as an informant whose statements have to

be independently checked and verified. For example, a qualitative

assessment of study items can help check materials for obvious

mistakes and identify ambiguous or unintuitive wordings. Furthermore,

parceling out similarities and differences between stimuli can help

identify potential confounds or alternative interpretations.

3.2 | Using silicon samples for main studies

Using silicon samples to generate a data set for quantitative main

studies also poses a series of challenges across all stages of the

research process, which researchers need to address before further

utilizing any output (Table 1). While several of these issues can

readily be addressed by today's standards (e.g., probing the output's

robustness against linguistic features), others require clarification

through follow‐up research (e.g., quality standards for silicon

samples). We outline some challenges in greater detail below and

derive recommendations based on the state‐of‐research on silicon

sampling. However, we endorse researchers to follow the latest

developments and research in the field to make informed decisions

regarding the appropriate use of silicon samples in their projects.

3.2.1 | Critically assess to what degree the training
data can inform the research question

Whether silicon samples are an appropriate data source depends

strongly on whether the training data contains information relevant to

the research question (e.g., McCoy et al., 2023; Santurkar et al., 2023).

We therefore recommend researchers critically assess to what degree

the training data—in general—can inform a research question. For

example, research on customer satisfaction or service failures may have

a relevant representation in the training data (e.g., through data from

review platforms) while research on a very specific target audience (e.g.,

users of only a specific brand) may not be appropriately captured.

Identifying the population to which the results generalize is a

fundamental challenge in this regard. Training data sets, such as The

Pile, are simply a collection of massive amounts of data without a clearly

defined population. Since the population remains undefined, research-

ers need to make their prompts more concrete to generate target

group‐specific results (Argyle et al., 2023), assuming that these target

groups are adequately represented in the training data. However, this

endeavor's effectiveness depends strongly on the prompt structure, as

well as the LLM used, and could vary across versions. For example,

GPT‐4 demonstrates a higher range of capabilities than GPT‐3.5 does

with respect to standardized tests (OpenAI, 2023).

F IGURE 4 Using DALL‐E 3 to test for the appropriateness of visual stimuli.
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3.2.2 | Customize the LLM and optimize the prompt

Using LLMs to simply interrogate the training data without further

customization will probably not yield meaningful results and merely

produce a generic response with little variation (Park et al., 2023).

Approaches to customization include fine‐ and prompt‐tuning to

improve the LLM's performance in a designated task (Demszky

et al., 2023). Furthermore, researchers should use probing to assess

the output's robustness against, for example, linguistic features

(Manning et al., 2020). This process requires first identifying features

pertinent to the concept of interest (e.g., negation, use of first person,

or synonyms) and varying the input based on these characteristics to

F IGURE 5 Using DALL‐E 3 to describe differences and similarities between visual stimuli.
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examine their influence on the output. For example, researchers can

generate a set of sentence pairs as input, differentiated solely by the

inclusion or exclusion of negation in verbs (e.g., “satisfied” vs. “not

satisfied”). Subsequently, they can analyze the difference in the

outputs generated by the model in response to sentences with and

without negation. This comparison helps in assessing whether the

model accounts for negation in its predictions, and if it does,

identifying which elements in the vector show the strongest

association with negation (Demszky et al., 2023). Our assessment

of order effects regarding different packaging designs (Appendix

Figure A2) is another example of a probing task. We recommend that

researchers make use of these customization approaches such as

iteratively adjusting the prompts if necessary. In doing so, researchers

should check the output and, for example, confirm that the output

follows the intended format (e.g., selecting one out of multiple

options or writing a short text). Under no circumstances, should

researchers adjust prompts to generate a specific output content.

Ophthalmology researchers Taloni et al. (2023) recently used GPT to

create a fake data set that is practically indistinguishable from regular

data, but produces false medical evidence. Commenting on their

results, one of the authors noted in an interview, “The possibilities are

endless, and increasing the quality of the prompts may lead to even

more detailed and realistic datasets compared to the one we

fabricated” (Fiore, 2023).

When it comes to customizing the model, researchers need to be

aware that the cure could be worse than the disease in that their

intervention potentially introduces additional biases that extend

those that traditional confounding produces. For example, prompt

design could be a reflection of researchers' prior beliefs and

expectations, thereby unconsciously inducing a confirmation bias.

Such practice could easily turn a confirmatory study into an

exploratory fishing expedition—a practice that has been criticized

as p‐hacking (Guo & Ma, 2022; Sarstedt & Adler, 2023; Simonsohn

et al., 2014) and which is commonly viewed as a major contributor to

low replication rates in various fields (Ioannidis, 2005; Miller &

Ulrich, 2022). Researchers should also consider enforcing a certain

degree of result variability to generate a range of plausible results,

rather than striving for a precise estimate that primarily reflects the

TABLE 1 Guiding questions to consider when using silicon samples in research projects.

Step in the research process Guiding questions

Alignment of the training data and the

research question

Can the training data inform the research question in a valid way?

Do the training data include information relevant to the research question?

Which aspects of the training data could affect the results (e.g., are certain concepts misrepresented)?

To which population should the results be generalizable? Is this population sufficiently represented in the
training data?

Parametrization, fine‐tuning,
prompt‐tuning, and probing

How should the silicon sample be generated?

Which settings (e.g., Softmax temperature, top‐k) should be used?

How should an LLM be additionally fine‐tuned for a specific task?

How should prompt‐tuning be used to draw a silicon sample that is representative of the population of

interest?

How large should the silicon sample be?

Should multiple silicon samples from multiple settings and prompts be combined?

Human benchmarking How should the silicon sample be benchmarked with a human sample?

What makes a good human benchmark for the research project?

How to deal with deviating results between a human sample and a silicon sample?

What are the key quality criteria when comparing human and silicon samples (e.g., equivalent results
between the silicon and the human sample)?

Data quality and data analysis How does silicon sampling affect established analytical workflows?

What data quality checks should be applied to silicon samples?

What are the relevant indicators of data quality?

What data‐analytical procedures (e.g., significance testing) are appropriate for silicon samples?

Transparency, metadata, and licensing What are reasonable reporting standards for silicon samples?

To what granularity do researchers need to report how, when, and where a silicon sample was collected?

Which information needs to be provided for other researchers to be able to reproduce the results?

Which licenses (distribution and reuse agreements) apply to silicon samples, if any?
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training data's idiosyncrasies and the researcher's degrees of

freedom. From this perspective, a certain degree of variability is

required to ensure generalizable results. Consequently, researchers

should be aware of the potential sensitivity of results to customiza-

tion approaches. For example, tailoring an LLM to a specific research

question might also mean that its outputs are not generalizable,

which, in turn, implies that fine‐tuned and prompt‐tuned models may

only be of limited use for hypothesis generation and exploratory

research.

3.2.3 | Use a human benchmark sample

In light of the challenges identified above, we recommend that

researchers always benchmark their silicon samples with human

samples to avoid the risk of tapping into an area where LLMs and

humans react differently. Such benchmarking does, of course, offset

some of silicon sampling's cost and time advantages. To reap the

benefits of silicon sampling, researchers should therefore employ a

parsimonious research design for a human benchmarking study, or use

secondary data.5 When conducting such benchmarking, researchers

should compare results from different silicon samples (e.g., arising from

the use of different LLMs) to identify which one matches the human

sample most closely. In doing so, however, care needs to be taken not

to overfit the silicon sample to a specific human benchmark in a way

that the silicon sample may perfectly mirror one human sample's

results but will not generalize to other human samples.

3.2.4 | Justify and adapt analytical procedures

Researchers also need to be aware that silicon samples pose

challenges to standard data analytical procedures. For example,

researchers could easily produce very large silicon samples that

minimize standard errors, thereby rendering standard inference

testing of limited value. Similar to big data applications, we

recommend researchers abandon significance testing for very large

silicon samples and focus on the effect sizes' interpretation

(Anderson, 2022) or switch to Bayesian data analysis

(Wagenmakers, 2007). However, given the nature of the training

data and the sensitivity of the results to the prompt structure, the

corresponding estimates are probably associated with a substantial

amount of uncertainty, which is quantified doubt about the value of

the measurand (i.e., the quantity whose value is sought; JCGM, 2012).

High uncertainty implies that a measurement is consistent with a

wide range of plausible values for the measurand, which may lead to

a wide range of obtained values across different measurements and

studies. Quantifying and managing this uncertainty are major

challenges—as recent research has highlighted in related contexts

(Rigdon & Sarstedt, 2022; Rigdon et al., 2020; Rigdon et al., 2023).

3.2.5 | Optimize reproducibility and transparency

Given the potential sensitivity of the results to various researcher's

degrees of freedom, we highly recommend that researchers record as

much information as possible (e.g., different variants of prompts;

which LLM version was used) and adhere to transparent reporting

practices, which allow other researchers to replicate the methodol-

ogy and reproduce the results. While full reproducibility will hardly be

possible due to output variability, enough information should be

offered for other researchers to assess, for example, the quality of

prompts given the purpose that the silicon sample seeks to fulfill.

3.2.6 | Recommendations

Table 2 summarizes our key recommendations in light of the state‐of‐

research on silicon sampling. Researchers should view the recom-

mendations as a checklist to guide their future research projects

employing LLMs.

3.3 | Ethical issues in silicon sampling

Researchers in the fields of psychology and marketing as a whole

should also be aware of ethical issues generally raised by LLMs and,

specifically, by the use of silicon samples. Ethical issues concern

moral judgments such as saying that an action is “right” and “wrong,”

or “good” and “bad.” Ethics as a field of philosophy has proposed

various perspectives from which to evaluate ethical judgments, of

which deontological and utilitarian ethics are the most common ones.

Within applied ethics, the ethics of technology and particularly the

ethics of AI and GPT as part of a socio‐technical ecosystem have

recently emerged as a new area of philosophical inquiry (Stahl

et al., 2024; Stahl, 2022). Regarding GPT, general ethical questions

include privacy concerns, copyright issues, misinformation and

disinformation, bias in training data, job replacement, malicious

intent, reinforcement of stereotypes, which impose responsibilities

on individual users, and even regulation (https://aicontentfy.com/en/

blog/ethical-considerations-of-chatgpt-and-ai). Most of these issues

also apply to the use of silicon samples. For example, users should

ensure that the generated content is not used to mislead or deceive

others; they must respect intellectual property rights; and they

should be mindful of privacy concerns. In addition, they are

accountable for any errors and misguided implications they commu-

nicate. Transparency about the use of LLM‐generated content is also

key, as it helps maintain trust and integrity in communications

(Memarian & Doleck, 2023).

Whether silicon samples are right or wrong, or good or bad in

general, and suitable for a particular research question may be

5Given that many psychological and behavioral effects might not replicate (e.g., Open

Science Collaboration, 2015; Röseler et al., 2022), benchmarking silicon samples against

human samples data might pose a shifting target. Failures to replicate might not necessarily

indicate a silicon sample shortcoming, but can reflect a variation in the original effect's size.
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assessed using the deontological perspective or the utilitarian ethical

perspective. From a deontological perspective, silicon samples may

be opposed categorically. Some might argue that data from silicon

samples are a very different data collection type, which violates

research values and a researcher's responsibility to collect original

data from human respondents. In comparison, the utilitarian

perspective seems to be a more pragmatic perspective considering

the costs and benefits of using LLMs.

One major cost discussed in this article concerns the lack of

accuracy (or validity) that may turn silicon samples on a grand scale

into “silly samples” that simply parrot human texts or worse be

misused to forge seemingly “novel” and “interesting,” but ultimately

misleading findings. In this respect, an established area of research

that is well‐represented in the training data (e.g., product and service

evaluations) may result in more accurate results based on a silicon

sample than a less established research area (e.g., consumer response

to a crisis such as COVID‐19).

Another cost concerns potential biases in existing samples; it is

important for researchers to recognize and mitigate biases that may

be present in the training data of these models to prevent

perpetuation of stereotypes or unfair representations. Researchers

have even referred to a new “AI colonialism” due to, for example, the

training data painting an incomplete, and potentially biased, picture

of non‐Western cultures (Hao, 2022), as the data normally originates

fromWestern institutions. Atari et al. (2023) provide support for this

notion. The authors contrasted culture‐specific beliefs in the World

Value Survey with GPT outputs and found that GPT's performance to

mimic human responses declines considerably for non‐WEIRD

(Western, Educated, Industrialized, Rich, and Democratic) versus

WEIRD countries. Finally, there is the cost of not sufficiently

considering new consumer and marketing‐relevant developments

and new information. In this case, research topics that are less variant

given short‐term developments such as customer engagement (e.g.,

Hollebeek et al., 2024) may be studied more accurately than, for

example, research relating to very recent phenomena such as the

COVID‐19 pandemic (Imschloss & Schwemmle, 2023).

These potential costs need to be compared with some major

benefits of silicon samples. Benefits include immense cost and time

savings, thereby overcoming inequity issues among researchers. As

the number of required empirical studies in consumer and marketing

journals has been increasing, critiques have been voiced that some

researchers who have fewer funds are being “priced out” of the

game. Silicon samples offer a solution to this equity issue.

4 | THE WAY FORWARD

LLMs' ability to deterministically produce correct answers to logic

puzzles (e.g., cognitive reflection tasks) and standardized tests is

certainly impressive by computer science standards but proves

problematic when used to mimic human response behavior with all its

imperfections and facets. If LLMs such as GPT act like rational agents,

their results cannot readily be used to explain or predict consumers'

bounded rational decision‐making. Besides the differences in risk

preferences and system 1 processing, GPT, specifically, can hardly

mimic interpersonal differences, which is crucial for psychological or

marketing research studies (e.g., Abdurahman et al., 2023; Park

et al., 2023; Santurkar et al., 2023). However, given that the field is

evolving rapidly (i.e., industrial players, such as OpenAI and Google,

release improved LLMs in quick succession), it is reasonable to

assume that future LLM implementations mimic human behavior

more closely than current implementations do. For example,

TABLE 2 Key recommendations.

Aspect Recommendation

Use cases • Use LLMs and other forms of generative AI (e.g., DALL‐E) primarily for tasks whose results can be

independently evaluated by researchers. Examples:
• Generating items for scale development and index construction
• Pretesting survey items
• Crafting and pretesting visual stimuli or vignettes
• Use silicon samples for research questions, which are likely to have relevant coverage in the training

data. Avoid research on very specific target audiences and concepts that are not sufficiently
represented in the training data.

Customization, prompting, and probing • Customize the model by supplying more specific training data (fine‐tuning) or customizing the prompts

(prompt‐tuning).
• Apply probing to safeguard the output's robustness against linguistic features or order effects.

Benchmarking • Benchmark a silicon sample with a relevant human sample.
• Evaluate whether the silicon sample matches the human sample in measures for central tendency and

variation.
• Disregard silicon samples that do not show variation (but provide a single “correct answer” (Park

et al., 2023).

Transparency and reproducibility • Always save a record of model settings, input parameters, and outputs.
• Preferably document all relevant information (e.g., model settings, input parameters, and outputs) in

repositories such as the OSF to increase transparency.
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multimodal LLMs interact with external information sources, tools,

sensory data, and images, thereby increasing their data richness

substantially. Similarly, structured and even semistructured task

performances improved substantially after the latest GPT releases,

and competitors such as Google's Gemini began outperforming GPTs

(Gemini Team Google et al., 2023). We, therefore, advise researchers

who consider using silicon samples to take these developments into

account because new and improved versions may address some of

the pitfalls mentioned in this paper or at least reduce their negative

impact.

Great tasks lie ahead: Researchers should not only evaluate LLMs

across a broader set of conditions and tasks but also explain LLMs'

responses vis‐à‐vis human decision‐making and behavior (see also

Binz & Schulz, 2023; Dillion et al., 2023) to identify pathways for

using them constructively in scholarly research (Demszky et al., 2023;

Susarla et al., 2023).

Commenting on GPT models' suboptimal performance when

replicating fundamental behavioral effects, Park et al. (2023, p. 24)

note that “such behavioral differences were arguably foreseeable,

given that LLMs and humans constitute fundamentally different

cognitive systems: with different architectures and potentially

substantial differences in the mysterious ways by which each of

them has evolved, learned, or been trained to mechanistically process

information.” Decades of consumer behavior research sought to shed

light on these “mysterious ways,” but corresponding research in the

fields of machine behavior (Rahwan et al., 2019) and machine

psychology (Hagendorff et al., 2023) is still nascent. Researchers

could interrogate an LLM to identify the reasons for the outputs, but

doing so creates a circular problem; Demszky et al. (2023, p. 11) note

that: “examining their black box with yet another black box

explanation is hardly a reliable approach.” Consequently, this

approach neither helps identify the LLM's inner working principles

nor does it help explain the results of silicon samples.

Studies that compare LLMs' outputs with human response

behavior, such as those by Binz and Schulz (2023), Hagendorff

et al. (2023), and Park et al. (2023), are an important first step toward

identifying human to LLM (dis)similarities, but they also raise a more

fundamental question: Do such assessments primarily facilitate

understanding mechanisms in LLMs, or do they help researchers

understand when and how LLMs mirror human behavior? The two

are different endeavors, particularly since the understanding of what

constitutes the “correct” response is likely to differ among those who

develop LLMs and those who research consumer behavior. An LLM

might be “good” for a computer scientist if it tends to produce text

that is grammatically sound, coherent, natural‐sounding, and, given

the input, gives an objective and factually correct answer (Demszky

et al., 2023). An LLM‐generated answer is correct for a consumer and

marketing researcher if it maps actual consumer behavior, consider-

ing all its subjectivity. This mapping should not only be equated with

predicting behavior but should extend to reflecting on the human

reasons that lead to the observed behavior. Infusing the human

element into LLMs is a very challenging task and we expect that, in

the long run, the market will differentiate between models that excel

at providing factually correct outputs and those that produce silicon

samples predicting, perhaps even explaining human behavior. The use

of silicon samples raises a number of additional questions, ranging

from the dimensions and acceptable levels of data quality to the

philosophical accounts of the nature of knowledge generation in the

age of LLMs.

Researchers should reflect on the research areas that are

appropriate for silicon sampling and accumulate corresponding

empirical evidence. This endeavor is to identify areas of consumer

and marketing research in which silicon samples generally align well

with human samples and/or with actual behavior (vs. those in which

they do not)—ultimately aiming to substitute or annihilate human

benchmarks for certain types of research. As Hamilton et al. (2023)

suggest, because LLMs are language‐based, they may also be useful

for discovering new insights in qualitative data sets rather than just

mimicking the themes identified by humans. Similarly, in theory‐

driven research, silicon samples may be used first to mimic human

behavior in line with theoretical predictions. Whether LLMs can be

used subsequently to link these findings to theory, or as input for the

generation of new theories is yet to be shown—initial research in

humanities and archeology, however, gives rise to concern in this

regard (Lozić & Štular, 2023). In any case, studies that explore LLMs'

capabilities should extend beyond GPT and also consider other

models such as Aria, Bard, and Claude 2, which researchers have

started to subject to comparative analyses (e.g., Agarwal et al., 2023;

Lozić & Štular, 2023; Wu et al., 2023).

Furthermore, silicon sampling is fundamentally different from the

data collection and analysis procedures that are currently employed

in consumer and marketing research. Researchers therefore need to

develop guidelines and methods for silicon sampling, for ethical as

well as pragmatic reasons. Most notably, it remains unclear how to

define data quality in a silicon sample when it comes to mimicking

human behavior with all its imperfections—simply using much data is

not a quality signal per se (Hair & Sarstedt, 2021). Should quality be

solely defined by the ability of silicon samples to mimic human data

patterns? Should researchers define specific “attention” check

questions for LLMs that can help identify fraudulent single silicon

observations and estimate a sample's overall quality? How does

silicon sampling align with the principles of sampling theory? What

are outliers in the context of silicon samples and how can researchers

identify them? How do model parameters (e.g., Softmax temperature)

and fine‐tuning impact the silicon sample's quality? These are just

some of the emerging issues that will require researchers to rethink

some of the basic principles of sampling research.

Relatedly, efforts should be made to develop means to identify

silicon samples. Real‐world data, for example, often include outliers

that may not be present in silicon samples where researchers define

variable ranges in their prompts (Taloni et al., 2023). Commenting on

the misplaced recommendations provided by their fake data set

(Taloni et al., 2023), one of the authors noted in an interview that “we

will witness an ongoing tug‐of‐war between fraudulent attempts to

use AI and AI detection systems” (Fiore, 2023). Publishers, journal

editors, and reviewers need to be aware of this tug‐of‐war, which
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other fields are already witnessing in the context of paper mills

(Candal‐Pedreira et al., 2022; Day, 2022; Pérez‐Neri et al., 2022).

Consumer researchers, psychologists, computer scientists, and

experts from other fields will have to team up to develop LLMs that

are optimized for human‐like reactions and interactions with users—

going beyond fine‐tuning and prompt‐tuning of current LLMs. As a

notable step in this direction, Replika promotes “The AI companion

who cares” (https://replika.com/), which is optimized for building an

emotional relationship with the user. This purpose is closer to

consumer research's strive to understand and predict human

behavior than that of LLMs such as GPT, which are optimized to

outperform humans in various knowledge domains. Making LLMs

more human will require close collaboration between researchers

from various fields of scientific inquiry, for example, by translating

human behavior into computational functions—an approach that is

already persistent, for example, in the choice modeling literature

(Gonzalez, 2023).

Beyond these empirical questions, silicon samples, and LLMs

more generally, raise new philosophy‐of‐science questions. For

example, researchers have bemoaned that GPT may become

“progressively a self‐licking lollipop” (Taleb, 2023) as an increasing

share of future training data will be comprised of earlier GPT outputs,

thereby triggering self‐reinforcement. Now imagine a future research

world in which the sample of choice, or the sole samples being used,

are silicon samples because they have evolved to be low‐cost,

efficient, and able to mimic human responses to a satisfactory degree.

Will this lead to a stagnation in new insight because no “new data”

about actual human behavior will be created? Will the findings from

such samples converge into homogeneous solutions that lack the

variability that characterizes us as humans? Also, can consumer

researchers identify and study change over time in consumer

behavior in such a world without studying real people?

5 | CONCLUSION

Silicon samples hold considerable promise for consumer research as a

means to provide human‐like data quickly and on a large scale, but

can LLMs like GPT serve as “guinea pigbots,” as Hutson (2023, p. 121)

vividly surmise? By today's standards, LLMs could be useful for

settings where researchers collect external feedback to inform

further steps in the research process. In such situations, LLM results

may give rise to concern and induce researchers to reconsider

specific aspects of their project. But as with many disruptive

developments, the potential for misuse is real. Leaving fraudulent

behavior aside, if adopted without sufficient reflection or for tasks for

which LLMs have not been designed, LLMs will likely misinform

consumer and marketing researchers—with potentially fatal conse-

quences for the field, which is already under close scrutiny in light of

the growing concerns about the replicability of research findings and

their lack of relevance for managerial decision‐making (Adler

et al., 2023; Krefeld‐Schwalb & Scheibehenne, 2023). Given that

silicon samples offer considerable potential that may attract their

premature use in research, scientists should keep in mind, that “with

great power comes great responsibility.”
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F IGURE A2 Order effect in the packaging design evaluation.
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