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Abstract
Purpose The role of microRNA-146a (miR-146a) in defining the tumor immune microenvironment (TIME) is well estab-
lished. The aim of this study was to evaluate circulating miR-146a as an early prognostic marker of 90Y-radioembolization 
(90Y-RE) in metastatic liver cancer and to assess the correlation between circulating miR-146a and TIME cellular composi-
tion in distant, yet untreated metastases.
Methods Twenty-one patients with bilobar liver lesions from gastro-intestinal cancer underwent lobar 90Y-RE. Biopsy 
of contralateral lobe abscopal tumors was acquired at the onset of a second treatment session at a median of 21 days after 
initial RE, immediately prior to ablation therapy of the contralateral lobe tumor. miR-146a was measured by RT-qPCR in 
plasma collected 24 h before (T1) and 48 h after (T2) initial unilobar 90Y-RE. The level of miR-146a was correlated with 
the infiltration of CD4 + , CD8 + , FoxP3 T cells, CD163 + M2 macrophages and immune-exhausted T cells in the abscopal 
tumor tissue acquired before the second treatment session.
Results Plasma samples collected at T2 showed a higher concentration of miR-146a with respect to T1 in 43% of the patients 
(p = 0.002). In these patients, tumors revealed a pro-tumorigenic immune composition with enrichment of Tim3 + immune 
exhausted cells (p = 0.021), in combination with a higher infiltration of CD163 + M2 macrophages and a lower infiltration 
of CD8 + T cells. Patients with a higher level of miR-146a after 90Y-RE showed a trend to shorter OS (p = 0.055).
Conclusion miR-146a may represent a novel prognostic biomarker for 90Y-radioembolization in metastatic liver cancer.

Keywords Radioembolization · Metastatic liver disease · microRNA · Liquid biopsy · Biomarker

Introduction

In patients with liver metastases (metastatic liver cancer, 
mLC), loco-regional treatment by transarterial yttrium-90 
(90Y)-radioembolization (RE) is an established treatment 
(Vogel et al. 2021; Reig et al. 2021; Helmberger et al. 2021; 
Karanicolas et al. 2021).90Y-RE has proven to be effective 
both in first (Salem et al. 2016) and second-line settings 
(Mulcahy et al. 2021), being able to boost immune response 
and indirectly to modulate the tumor immune microenviron-
ment (TIME) composition in distant, non-treated yet, metas-
tases. However, clinical outcomes vary, with a significant 
proportion of patients not achieving durable responses (Lau 
et al. 2013; Ricke et al. 2019). In addition, the low tolerance 
of the liver to irradiation, characterized by a rapid deterio-
ration of hepatic function, can be a limiting factor (Sangro 
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et al. 2008; Seidensticker et al. 2021; Ricke et al. 2021). 
Therefore biomarkers for treatment efficacy prediction are 
a highly needed tool. In the context of liquid biopsy, micro-
RNAs (miRNAs) occupy a prominent role as non-invasive 
biomarkers in several types of diseases, including cancer. 
miRNAs are highly conserved, ~ 21–25 nucleotides long, 
non-coding RNA released from cells by active secretion 
(Kosaka et al. 2010) or after cell death (Turchinovich and 
Cho 2014). They are post-transcriptional repressors, inhibit-
ing translation through transcript degradation (Di Leva et al. 
2014; Hanahan and Weinberg 2000). Several studies, mainly 
in vitro and in animal models, have evaluated the modifica-
tion of miRNA levels in response to radiation, confirming 
miRNAs as useful biomarkers for radio sensitivity (Drula 
et al. 2020). miRNAs play an important function in forging 
the tumor immune microenvironment (TIME), modulating 
the infiltration of immune cells and their function (Gagnon 
and Ansel 2019). Among others, miR-146a is a well-char-
acterized miRNA taking part in multiple pro-inflammatory 
pathways (Boldin et al. 2011; Stickel et al. 2014, 2017). 
Functionally, miR-146a regulates the immune response 
and controls excessive inflammation, mainly through the 
repression of the NK-κB pathway (Taganov et al. 2006) 
and the polarization of macrophages towards the immuno-
suppressive, M2-type (Li et al. 2015). miR-146a displays 
multiple roles in the modulation of different pathways in 
different cancer types. According to the Kaplan–Meier plot-
ter database (Nagy et al. 2018, 2021), a higher expression 
level of miR-146a is associated with a shorter overall sur-
vival (OS) in renal clear cell carcinoma (p = 0.04) and in 
hepatocellular carcinoma (p = 0.032) and with longer OS in 
bladder carcinoma (p = 0.0041), head-neck squamous cell 
carcinoma (p = 0.00044), breast cancer (p = 0.038), ovarian 
cancer (p = 0.0036) and lung adenocarcinoma (p = 0.012). 
However its expression level in plasma and the correspond-
ing prognostic value remains to be clarified in HCC. The 
aim of this study was to investigate if miR-146a level might 
serve as prognostic factor in metastatic liver cancer of gas-
trointestinal origin undergoing sequential ablative therapy. 
Moreover, the relationship between miR-146a expression 
levels in plasma and immune infiltration of distant untreated 
metastatic TIME was analysed.

Materials and methods

Ethics approval and consent to participate

The study was approved by the local Ethics Commission 
(LMU München, Munich, Germany) and listed in the Ger-
man clinical trials register (DRKS 00009744). All investi-
gations were conducted in accordance with the Declaration 

of Helsinki. Before entering the study, all participants gave 
written informed consent.

Study population and study design

In total, 21 patients with liver metastases of gastrointestinal 
cancer (n = 19, colorectal cancer; n = 2, pancreatic ductal 
adenocarcinoma) were included in this study. Patients 
were recruited between January 2018 and July 2021 at a 
tertiary care university hospital. Eligibility criteria included 
metastatic liver cancer involving both lobes with more than 
five lesions, absence of chemotherapy or cortisone treatment 
up until two weeks before study inclusion and no previous 
immunotherapy. Patients presenting with primary liver 
cancer and greater than 70% of liver involvement were 
excluded. The study protocol included: (1) baseline blood 
draw 24 h previous to unilobar 90Y-RE; (2) blood draw 48 h 
post-treatment; and (3) biopsy of the yet untreated, abscopal 
tumor in the contralateral liver lobe (median, 21 days, range 
2–51). Immediately after the core biopsy, contralateral liver 
metastases underwent tumor ablation for completion of the 
therapeutic strategy. Clinical follow-up included contrast-
enhanced MRI and/or CT every 3 months.

Total RNA extraction

Peripheral blood was obtained 24 h before (T1) and 48 h 
after (T2) 90Y-RE. Blood (5 mL) was collected in EDTA 
tubes (Sarstedt AG, Nümbrecht, Germany) and centrifuged 
within 1 h from collection (1300 g, 5 min, 4 °C). Total 
RNA was isolated using the MagMAX™ mirVana™ Total 
RNA Isolation Kit (ThermoFisher Scientific, Darmstadt, 
Germany; Supplementary Information).

cDNA synthesis and quantitative real‑time 
polymerase chain reaction (RT‑qPCR)

For reverse transcription of miRNAs the TaqMan Advanced 
miRNA cDNA Synthesis Kit was used (ThermoFisher 
Scientific) and miRNAs were quantified using the TaqMan® 
Advanced miRNA Assay (ThermoFisher Scientific; 
Supplementary Information).

Patient response assessment

To evaluate radiological response MRI abdomen was 
performed at baseline, before the second therapy and every 
3 months follow up, supplemented by CT thorax/abdomen at 
baseline and at 6 months follow up. Images were evaluated 
according to the revised Response Evaluation Criteria in 
Solid Tumors (RECIST 1.1) (Eisenhauer et al. 2009) by two 
board-certified radiologists who were blinded to the clinical 
information and laboratory results. Patients were grouped 
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as responders if they showed complete response (CR) or 
partial response (PR) at any time during follow-up. Vice 
versa, according to RECIST 1.1, patients were grouped 
as non-responders if they showed stable disease (SD, 
equals disease control) or progressive disease (PD) at any 
time during follow-up. Responder stratification was done 
in consensus between the two readers, in case of lack of 
agreement adjudication was made by a third radiologist.

Histological and immunohistological analysis 
of tissue samples

Tissue samples were fixed in 10% formalin overnight at 4 °C 
and subsequently embedded in paraffin. Tissue sections’ 
preparation and immunohistochemical analysis are described 
in Supplementary Information.

Multiplex immunophenotyping (mIF)

Immunophenotyping of paraffin sections was performed 
using the Opal 7 Tumor Infiltrating Lymphocyte kit (Akoya 
Biosciences, Marlborough MA, USA) for the detection 
of CD4 + , CD8 + and FoxP3 + T cells, according to the 
recommended protocol (Supplementary Information).

Statistical analysis

Patient characteristics and survival data were compared with 
high vs. low miR-146a expression levels based on the mean 
value of 0.61 (pre RE) and 0.51 (post-RE), respectively. 
Patients were divided into group 1 (G1) and group 2 (G2): 
G1 included patients with an increase of miR-146a plasma 
levels at T2, while G2 included patients with a decrease of 
miR-146a plasma level at T2. For the comparison of high/
low miR-146a groups, Fisher’s exact test was used for cat-
egorical data, Mann–Whitney U test was used for continu-
ous data and Wilcoxon signed-rank test was used for paired 
continuous data. Progression-free survival (PFS) and over-
all survival (OS) were analyzed using the Kaplan–Meier 
method with log-rank testing. The OS was calculated from 
the date of the radioembolization session. The potential of 
miR-146a as a prognostic marker was calculated using the 
univariable Cox regression analysis. miR-146a levels were 
used as a continuous parameter. Correlation between the 
level of miR-146a and the clinical parameters and immune 
cell infiltration was explored using Pearson´s rank correla-
tion tests. All tests were carried out two-sided. Variables’ 
distribution was evaluated with the Shapiro–Wilk test. Due 
to the low sample size, no alpha adjustment was made. All 
statistical tests were interpreted at a significance level of 
α = 5% with the according results considered exploratory. 

Statistical analyses were performed using SPSS Statistics 
21.0.0 (IBM Corporation New York, NY, USA).

Results

Baseline characteristics

A total of 21 patients with liver metastatic CRC (n = 19, 
90%) and PDAC (n = 2, 10%) were included in this study. 
The baseline characteristics are displayed in Table 1. The 
mean age of the patients was 63 years (range 32–83), 
13 (62%) were male. At the time of recruitment, 4 
patients presented extrahepatic metastases. Indication for 
radioembolization included non-response to second-line 
therapy (n = 17, 81.0%), non-response to first-line therapy 
(n = 2, 9.4%), contraindication to second-line therapy 
(n = 1, 4.8%), patient’s preference (n = 1, 4.8%). The 
median OS was 7.4 (range 2–40) months. Seven patients 
were lost to follow-up (at a median of 110 days). Response 
during follow-up was progressive disease (PD) in 14 (67%) 
patients, stable disease (SD) in 3 (14%) patients and partial 
response (PR) in 2 (9.5%) patients. Radiological images 
were not available for two patients, who were hence 
excluded from the response analysis.

Changes in the plasma levels of miR‑146a 
after 90Y‑RE and association with TIME composition 
in untreated metastases

The comparison between the levels of miR-146a measured 
at T1 and T2 identified two distinct groups of patients with 
opposite trends: in group 1 (G1, n = 9, 43%) a significant 
increase (p = 0.00048) of miR-146a measured after therapy 
was observed, while group 2 (G2, n = 12, 57%) showed a 
significant decrease (p = 0.004) (Fig. 1).

Next, the correlation between the levels of miR-146a 
at T2 and TIME composition in untreated metastases 
was evaluated. The analysis included the quantification 
of  CD4+ T cells (mean 20.64 ± 32.89 SD),  CD8+ T cells 
(mean 240.98 ± 238.60 SD),  FoxP3+ regulatory T cells 
(mean 4.00 ± 3.31 SD), and  CD163+ M2 macrophages 
(mean 239.33 ± 100.55 SD). In addition, the level of 
expression of three exhaustion markers (PD1, PD-L1 
and Tim3) was evaluated. No significant correlation 
between miR-146a levels and the absolute count of T 
cells, macrophages or PD1 + immune cells was found 
(all p > 0.05, Table  2). On the contrary, miR-146a 
measure at T2 positively correlated with the number of 
Tim3 + immune cells (p = 0.021) found in the TIME.

The comparison between intra-tumoral areas in the two 
patients’ groups revealed a significantly higher expression 
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(p = 0.036) of Tim-3 in group 1 (Fig. 2b) with respect to 
group 2 (Fig. 2e). Similarly, tissues collected from group 1 
showed a corresponding higher infiltration of CD163 + M2 
macrophages (Fig. 2c) with respect to group 2 (Fig. 2f). 
However no statistical significance was found (p = 0.423).

To assess the potential role of Tim-3 in T cell exhaustion, 
the expression of Tim-3 was correlated with the number 
of  CD4+,  CD8+, and regulatory  FoxP3+ T cells identified 
in the TIME. Immunohistological analysis of tissues col-
lected from group 1 indicated a negative correlation between 

Tim3 + immune cells (Fig. 3b) and CD8 + T cells (Fig. 3d). 
Similar correlation was found between CD163 + (Fig. 3c) 
and CD8 + T cells. Opposite results were observed for group 
2 (Fig. 3f–h). Additional IHC analysis of tissues collected 
from group 1 patients (n = 4) is shown in Supplementary 
Fig. 1.

Table 1  Baseline characteristics 
of patients

Patients are displayed as total or grouped in G1 and G2 based on the miR-146a levels measured at T1 and 
T2. (G1: T1 < T2; G2: T1 > T2)
ALP alkaline phosphatase, ALT alanine transaminase, AST aspartate aminotransferase, CRC  colorectal 
cancer, G1 group 1, G2 group 2, GGT  gamma-glutamyl transferase, LDH lactate dehydrogenase, PD 
progressive disease, PDAC, pancreatic ductal adenocarcinoma; PR, partial response; SD, stable disease

Variables Total (%) G1 (%) G2 (%)

Patients 21 9 (43) 12 (57)
Age (years)
 Mean 63 63 63
 Min–Max 32—83 53—83 32—78
 < 65 (%) 10 (48) 6 (67) 4 (33)
 ≥ 65 (%) 11 (52) 3 (33) 8 (67)

Gender, n (%)
Female 8 (38) 2 (22) 6 (50)
Male 13 (62) 7 (78) 6 (50)
Primary tumor 19 CRC (90) 9 (100) 10 (83)

2 PDAC (10) 0 2 (17)
Fibrosis
 Yes (%) 1 (5) 1 (11) 0
 No (%) 20 (95) 8 (89) 12 (100)

Maximum lesion, mm (%)
 ≥ 50 (%) 7 (33) 4 (44) 3 (25)
 < 50 (%) 14 (67) 5 (56) 9 (75)

Number of lesions (%)
 ≥ 5 (%) 21 (100) 9 (100) 12 (100)
 < 5 (%) 0 0 0

Extrahepatic metastases
 Yes 4 (19) 2 (9.5) 2 (2.5)
 No 16 (76) 10 (48) 6 (28)
 Unknown 1 (5) 0 (0) 0 (0)

Best response (%)
 PD (%) 14 (67) 5 (56) 9 (75)
 SD (%) 3 (14) 2 (22) 1 (8.3)
 PR (%) 2 (9.5) 1 (11) 1 (8.3)

Unknown (%) 2 (9.5) 1 (11) 1 (8.3)
Albumin (g/dL), mean ± SD 4.0 ± 0.39 4.2 ± 0.21 3.9 ± 0.45
Bilirubin (mg/dL), mean ± SD 0.76 ± 0.86 1.0 ± 1.26 0.6 ± 0.28
AST (U/L), mean ± SD 41.8 ± 16.42 46.89 ± 12.11 37.9 ± 18.60
ALT (U/L), mean ± SD 33.8 ± 17.19 40.89 ± 19.02 28.5 ± 14.22
GGT (U/L), mean ± SD 226.9 ± 192.41 199.11 ± 146.73 247.8 ± 224.82
ALP (U/L), mean ± SD 219.38 ± 160.74 200.0 ± 95.42 233.92 ± 199.55
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Association between miR‑146a concentration, 
survival and therapy response

Univariable Cox regression analysis indicated a trend for 
shorter survival in patients with a higher level of miR-146a 
measured post 90Y-RE (p = 0.055, HR: 5.677, 95% CI: 
0.963–33.451). With the exception of alkaline phosphatase, 
associated with shorter PFS (p = 0.029, HR: 1.004, 95%CI: 
1.000–1.007), none of the remaining variables did show a 
significant association neither with OS nor PFS (all p > 0.05) 
(Table 3). Finally, no association between miR-146a levels, 
radiological response and survival endpoints measured by 
Kaplan–Meier analysis was found (data not shown).

miR‑146a levels do not correlate with liver function 
and damage

Next, the anti-inflammatory function of miR-146a was 
evaluated as a marker for liver parenchyma inflammation 
and damage induced by radiation. The level of miR-146a 
measured post 90Y-RE was correlated with the clinical 
parameters indicative of liver function (aspartate and 
alanine aminotransferase, bilirubin, albumin, alkaline 
phosphatase, gamma-glutamyl transferase), measured in a 
time frame between 1 and 3 months after 90Y-RE. Besides 
a trend towards a negative correlation between miR-146a 
levels and bilirubin (r: – 0.424, p = 0.055), miR-146a did 
not correlate to any other parameter of liver failure or tissue 
damage (Table 4).

Discussion

A growing body of evidence points to the role of 90Y-RE to 
stimulate an antitumor immune response, through the induc-
tion of cellular destruction and release of tumor-associated 
antigens (Chew et al. 2019). Nevertheless, 90Y-RE-induced, 
clinically measurable abscopal effects are rare (Powerski 
et al. 2020). Moreover, optimization of therapeutic strategies 
certainly requires the as of yet strong unmet medical need 
for predictive biomarkers. In the last decade, the discovery 
of minimally invasive, liquid biopsy-based biomarkers has 
shown large potential. Previous studies have addressed the 
effect of radiation on miRNA levels, as well as the correla-
tion of specific miRNA with therapy response. In a lung 

Fig. 1  miRNA146a dynamics. 
Box plots represent the expres-
sion of miRNA-146a, analyzed 
by a single TaqMan assay, in 
plasma samples measured at 
T1 and T2. For a subgroup of 9 
(43%) patients, miR-146a was 
significantly increased at T2 
(p = 0.00048), while for remain-
ing patients (n = 12, 57%), 
the level of miR-146a was 
significantly reduced (p = 0.004) 
at the same time point. Two 
patients were excluded since 
plasma was not available for 
both time points. Comparisons 
were performed using the 
Wilcoxon signed-rank test and 
the corresponding p-values of 
significant differences are indi-
cated in the graphs (**p ≤ 0.01; 
***p ≤ 0.001).Y axis represents 
the relative expression of miR-
146a (measured as  2−ΔCq)

Table 2  Correlation analysis between the level of miR-146a at T2 and 
immune cell infiltration in metastatic lesion distant from therapy site. 
No positive PD-L1 cells were identified

MΦ macrophages, TIME tumor immune microenvironment

Parameter Rank correlation coefficient (r) p value

CD4+ 0.679 0.207
CD8+ -0.586 0.299
FoxP3+ 0.388 0.518
MΦ (M2) 0.654 0.231
Tim3 0.654 0.021
PD-1 0.069 0.217
PD-L1 – –
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Fig. 2  Representative images of Tim3 and CD163 immunohisto- 
chemical staining in mLC patients with high and low levels of miR-
146a measured at T2. Patients from group 1 showed a higher level of 
Tim3 + (p = 0.036, panel b) and CD163 + (p = 0.423, panel c) infiltrat-

ing immune cells with respect to patients from group 2 (panel e and 
f, respectively). Hematoxylin and Eosin (H&E) staining is shown in 
panel a and d. Staining was performed on consecutive slides. Magni-
fication: 200x. Scale bar: 200 µm

Fig. 3  Representative images of Tim3 and CD163  immunohis-
tochemical staining and CD8 immunofluorescence staining in 
mLC patients with high and low level of miR-146a measured at 
T2. In patients with higher levels of miR-146a measured after 
therapy (group 1), intratumoral areas were highly infiltrated by 
Tim3 + immune cells (panel b) and CD163 + M2 macrophages (panel 
c), while the level of CD8 + T cells infiltration was low (panel d). On 

the contrary, in patients with post-therapy lower levels of miR-146a 
(group 2), intratumoral areas showed marked infiltration of CD8 + T 
cells (panel h), while the infiltration of Tim3 + immune cells (panel 
f) and CD163 + M2 macrophages (panel g) was lower. Hematoxylin 
and Eosin (H&E) staining for G1 and G2 is shown in panel a and e, 
respectively. Staining was performed on consecutive slides. Magnifi-
cation: 200x. Scale bar: 500 µm
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cancer model, ionizing radiation induces the upregulation 
of miR-21 with inhibition of apoptosis (Wang et al. 2013), 
induction of cellular proliferation and therapy resistance 
(Wang et al. 2019a, b; Stechele et al. 2022). On the contrary, 
in a colorectal cancer model, the downregulation of miR-
221 and miR-222 enhances radiation sensitivity (Zhang et al. 
2011). Furthermore, in HCC and metastatic liver treated 
by local or locoregional therapies, the levels of miR-21, 
miR-210 and miR-122 increase and show predictive value 
(Andrasina et al. 2021).

In our own study, we aimed to investigate the signifi-
cance of miR-146a as a non-invasive biomarker of TIME 
infiltration in distant metastases and its prognostic value. 
miR-146a did not correlate with any sign of deterioration 
in the liver function as a consequence of irradiation. Never-
theless, the univariable analysis indicated a trend toward an 
association between miR-146a and OS, while no association 
between miR-146a levels and therapy response was found. 
The histological TIME inspection after 90Y -RE showed 

an association of M2 macrophage infiltration with higher 
expression of Tim3 and a lower infiltration of CD8 + T cells 
in those patients with high levels of miR-146a. miR-146a 
belongs to a class of miRNA known as inflamma-miR, due 
to their multiple roles in inflammation. mR-146a inhibits 
the pro-inflammatory, anti-tumorigenic nuclear factor-κB 
(NF-κB) (Wang et al. 2019a, b) by targeting IRAK1 and 
TRAF6, both proteins being part of the NF-κB pathway. 
miR-146a modulates also the macrophage M1–M2 polari-
zation (Takeuchi and Akira 2010). M2 polarized mac-
rophages mediate an anti-inflammatory and, therefore, pro-
tumorigenic, response. In our study, immuno-histological 
analysis of distant metastases evidenced an increased M2 
macrophage infiltration in those patients with high levels of 
miR-146a and low M2 macrophage infiltration in patients 
with low levels of miR-146a. This finding suggests that 
miR-146a can function as a time dependant biomarker of 
an anti-inflammatory, pro-tumorigenic status in liver metas-
tases of GI cancer. Consequently, with further validation 
miR-146a might be considered an early marker for 90Y-RE 
efficacy: patients displayed benefit from 90Y -radioemboliza-
tion when reduction of miR-146a levels were observed 48 h 
post therapy. The lack of correlation between survival and 
radiological response after 90Y -RE may likely be attributed 
to advanced disease stages in our cohort.

Furthermore, we did not find any direct correlation 
between plasma miR-146a and T-cell infiltration; however, 
we discovered a significant association between miR-146a 
and the exhaustion marker Tim-3 expressed by immune 
cells. Tim-3 demonstrated a trend to decrease if CD8 + T 
cells infiltration was increased in the same region. It 
should be noted that immunophenotyping presently does 
not address the co-expression of the respective markers. 
Co-staining of tissues with these markers will be necessary 
to confirm our results. Immune exhaustion is one of the 

Table 3  Univariable analysis 
of the variable associated 
with overall survival and 
progression-free survival 
in patients with mLC who 
underwent 90Y-RE

ALP alkaline phosphatase, ALT alanine transaminase, AST aspartate aminotransferase, GGT  gamma-
glutamyl transferase

OS Univariable analysis PFS Univariable analysis

Variable HR (95% CI) p-value HR (95% CI) p-value

Gender 0.472 (0.155–1.434) 0.185 0.771 (0.282–2.108) 0.613
Age (≥ 65 vs < 65) 0.923 (0.350–2.431) 0.870 0.786 (0.344–2.242) 0.786
Lesion size (≥ 5 cm vs < 5 cm) 0.378 (0.134–1.070) 0.067 1.124 (0.424–2.979) 0.814
miR-146a level (pre) 0.899 (0.324–2.492) 0.873 3.450 (0.174–72.038) 0.411
miR-146a level (post) 5.677 (0.963–33.451) 0.055 0.584 (0.081–4.235) 0.595
bilirubin 0.522 (0.099–2.742) 0.442 0.960 (0.555–1.660) 0.883
AST 1.021 (0.984–1.059) 0.272 0.996 (0.964–1.029) 0.814
ALT 1.022 (0.991–1.054) 0.166 1.000 (0.966–1.034) 0.983
GGT 1.001 (0.998–1.003) 0.531 1.003 (1.000–1.006) 0.065
ALP 1.000 (0.997–1.003) 0.814 1.004 (1.000–1.007) 0.029
Albumin 0.847 (0.252–2.844) 0.788 0.329 (0.070–1.549) 0.160

Table 4  Correlation analysis between the level of miR-146a at T2 
and the clinical parameters indicative of liver inflammation and liver 
function

ALP alkaline phosphatase, ALT alanine transaminase, AST aspartate 
aminotransferase, GGT  gamma-glutamyl transferase

1 month 3 months

Parameter Rank correlation 
coefficient (r)

p-value Rank correlation 
coefficient (r)

p-value

AST – 0.267 0.381 – 0.070 0.820
ALT – 0.265 0.246 – 0.053 0.856
GGT – 0.104 0.654 0.038 0.898
Bilirubin – 0.424 0.055 – 0.204 0.484
Albumin 0.081 0.728 – 0.193 0.527
ALP – 0.159 0.490 – 0.011 0.971
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hallmarks of cancer. Tim-3 is an immuno-regulator that 
negatively modulates T-cell response and T-cell apoptosis 
(Wolf et al. 2020; Sakaguchi et al. 1995; Sakuishi et al. 
2010). miRNAs play a role in  CD8+ T cell exhaustion, as 
demonstrated previously with miR-31 (Bhela and Rouse 
2017) and miR-155 (Stelekati et al. 2018). We hypothesize 
that miR-146a might modulate the expression of Tim-3 
in the TIME, leading to  CD8+ T cell exhaustion. Future 
work will be necessary to characterize the  CD8+ T cells 
present in the lesions. Our results suggest that patients 
displaying an increase of miR-146a after 90Y-RE may 
benefit from immunotherapy targeting Tim-3. Targeting 
miR-146a could be a novel strategy to improve the effect 
of radioembolization in patients receiving this type of 
therapy, alone or in combination with a downstream 
ablative therapy. Manipulation of miRNA levels by 
mimicking or inhibiting their expression represents an 
attractive strategy to sensitize tumours to radiation with 
a growing body of evidence supporting this approach 
(Chen et al. 2021). For example, the overexpression of 
tumor suppressor miRNAs such as miR-34a (Cortez et al. 
2019) or members of the Let-7 family (Zhou et al. 2015) 
have been shown to sensitize lung and uveal melanoma 
tumor cells, respectively, to radiation. The downregulation 
of onco-miR such as miR-21 has been shown to arrest 
cell proliferation and angiogenesis (Tang et al. 2019). 
Accordingly, the downregulation of miR-146a in patients 
receiving radioembolization might therefore be a novel 
approach to improve therapeutic outcomes.

Limitations of this study must be acknowledged. The 
size of the cohort was small and inhomogeneous with 
respect to biology. Validation studies are necessary 
to confirm these preliminary data. miR analyses were 
conducted using core needle biopsies instead of larger 
resection material. For this reason, based on sampling 
error alone, the heterogeneity of the biomarker expression 
in the tumor may not be fully accurate. We were not able 
to define the origin of miR-146a, since the measurement 
of miR-146a was performed on plasma and we do not 
have paired PBMC available to exclude them as a major 
source. We do, however, intend to address this point in the 
future. Moreover, only a limited number of patients, tumor 
blocks collected before 90Y-RE were available. Finally, the 
time interval between 90Y-RE and sample acquisition was 
different throughout the study cohort.

In conclusion, miR-146a shows potential as a novel 
prognostic biomarker. A modulation of miR-146a levels 
in plasma might increase responses to 90Y-RE and could 
represent a supporting strategy in personalized therapy of 
metastatic liver.
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