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Abstract 

Purpose:  Inadequate piperacillin (PIP) exposure in intensive care unit (ICU) patients threatens therapeutic success. 
Model-informed precision dosing (MIPD) might be promising to individualize dosing; however, the transferability of 
published models to external populations is uncertain. This study aimed to externally evaluate the available PIP popu‑
lation pharmacokinetic (PopPK) models.

Methods:  A multicenter dataset of 561 ICU patients (11 centers/3654 concentrations) was used for the evaluation of 
24 identified models. Model performance was investigated for a priori (A) predictions, i.e., considering dosing records 
and patient characteristics only, and for Bayesian forecasting, i.e., additionally including the first (B1) or first and 
second (B2) therapeutic drug monitoring (TDM) samples per patient. Median relative prediction error (MPE) [%] and 
median absolute relative prediction error (MAPE) [%] were calculated to quantify accuracy and precision.

Results:  The evaluation revealed a large inter-model variability (A: MPE − 135.6–78.3% and MAPE 35.7–135.6%). 
Integration of TDM data improved all model predictions (B1/B2 relative improvement vs. A: |MPE|median_all_models 
45.1/67.5%; MAPEmedian_all_models 29/39%). The model by Kim et al. was identified to be most appropriate for the total 
dataset (A/B1/B2: MPE − 9.8/− 5.9/− 0.9%; MAPE 37/27.3/23.7%), Udy et al. performed best in patients receiving 
intermittent infusion, and Klastrup et al. best predicted patients receiving continuous infusion. Additional evaluations 
stratified by sex and renal replacement therapy revealed further promising models.

Conclusion:  The predictive performance of published PIP models in ICU patients varied considerably, highlighting 
the relevance of appropriate model selection for MIPD. Our differentiated external evaluation identified specific mod‑
els suitable for clinical use, especially in combination with TDM.
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Introduction

Infections increase the length of stay and mortality of 
patients in the intensive care unit (ICU) [1, 2]. Timely 
administration of antibiotics and dosing that results in 
effective exposure are of paramount importance to treat-
ment outcomes [3–5]. However, critically ill patients 
commonly exhibit pathophysiological changes, altering 
the volume of distribution (Vd) and the elimination of 
antibiotics, making dosing and pharmacodynamic (PD) 
target attainment challenging [6–8]. While excessive 
drug/multidrug concentrations might cause life-threating 
toxicity, subtherapeutic concentrations increase the risk 
of treatment failure and emerging antibacterial resistance 
[9, 10]. To avoid these scenarios, individualized dosing 
approaches are urgently needed [11].

Piperacillin (PIP) is the most frequently prescribed 
β-lactam antibiotic in German ICUs [12]. Its time-
dependent antibacterial activity is characterized by the 
time (T) during which free (f) concentrations exceed 
the minimum inhibitory concentration (MIC) of the 
pathogen (fT>MIC) [13]. Standard doses of PIP have been 
reported to result in poor target attainment [14, 15]. Dose 
adjustments using traditional therapeutic drug monitor-
ing (TDM) have therefore been investigated. Hagel et al. 
showed increased, but still poor attainment of target con-
centrations during continuous infusion (CI) in 249 criti-
cally ill patients (37.3 vs. 14.6%, odds ratio (OR) 4.5, 95% 
confidence interval 2.9–6.9, p < 0.001) [16]. Along with 
others, the authors subsequently proposed to investigate 
the additional benefit of using dosing software [16, 17]. 
Model-informed precision dosing (MIPD) is a promising 
predictive technology that supports dosing and combi-
nation with TDM results. It is available through dosing 
software and, thus, convenient to use [18–20]. Prior to 
widespread bedside use, a thorough evaluation of the 
population pharmacokinetic (PopPK) model(s) under-
lying the dosing software is strongly recommended by 
the United States (US) Food and Drug Administration 
[21], and by an expert panel defining research priorities 
towards antibiotic precision dosing [11]. Similarly, Cotta 
et al. called for “externally validated and clinically appro-
priate PopPK models” in their presentation of “ideal 
characteristics of MIPD software in the ICU” [22].

Numerous PopPK models have been developed for PIP, 
most of which are based on small monocentric studies 
[23] and may not be generalizable to other populations. 
A recent evaluation of six PIP models in 30 ICU patients 
receiving CI demonstrated large inter-model variabil-
ity regarding predictability [24]. The transferability of 
these results to other populations is uncertain due to the 

limited number of patients and the monocentric setting. 
Furthermore, a clinically oriented model assessment in 
conjunction with TDM (Bayesian forecasting) was lack-
ing [25]. The aim of the present study was to evaluate the 
predictive performance of available PIP PopPK models 
with and without TDM using an external multicenter 
dataset to facilitate model selection for MIPD in critically 
ill patients.

Methods
Evaluation dataset
Clinical data of 561 ICU patients treated with PIP (3654 
samples) were available from four previous studies 
including eleven different German centers [16, 26–28]. 
Details are described in electronic supplementary mate-
rial (ESM_Main, page 2) and summarized in Table 1.

Evaluation of population pharmacokinetic models 
for piperacillin
The systematic literature review in PubMed, includ-
ing search terms and a detailed flowchart of PopPK 
model screening, as well as the software used for (i) 
model reconstruction, (ii) prediction of concentra-
tions, and (iii) output processing, is presented in ESM 
(ESM_Main, page 3–5, Fig. S1). An overview of the 
twenty-four identified models and underlying studies 
is provided (ESM_Main Tables S1–2). The report was 
guided by the TRIPOD checklist [31]. If models were 
based on free PIP concentrations (PIPunbound), 70% of 
the total PIP concentrations (PIPtotal) available in the 
evaluation dataset were assumed for model assessment 
[24, 32]. Three prediction scenarios were examined for 
each PK model, two of which investigated a Bayesian 
approach, i.e., the combination of PopPK model and 
TDM results based on the Bayes’ theorem:

(1)	A priori (A): prediction of all PIP concentrations 
based on dosing history and patient covariates only 
(npredicted_samples_A = 3654)

Take‑home message 

This multicenter external evaluation in critically ill patients provides 
a selection of different pharmacokinetic models for piperacillin as 
promising candidates for successful clinical use following imple‑
mentation in an open-access dosing software. The selected models 
should be used in combination with timely therapeutic drug moni‑
toring (Bayesian forecasting) to achieve most reliable and precise 
optimization of individual antibiotic therapy.
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(2)	Bayesian 1 (B1): prediction of concentrations con-
sidering the first TDM sample for each patient 
(npredicted_samples_B1 = 3093)

(3)	Bayesian 2 (B2): prediction of concentrations con-
sidering the first and second TDM sample for each 
patient (npredicted_samples_B2 = 2532).

By considering TDM data, model parameter vari-
ability is taken into account to refine the initial PopPK 
parameters for the individual patient. The integrated 
samples for Bayesian forecasting were different, how-
ever, the large number and wide range of concentra-
tions increased the comparability of predictions.

Model evaluation included statistical and graphical 
methods, employing prediction- and simulation-based 
diagnostics as recommended [25]. First, numerical 
comparisons between predicted and observed PIP 

plasma concentrations (cpred and cobs) served to quan-
tify model-specific relative prediction errors (rPE) 
based on the total evaluation dataset and additionally 
for each individual study. The median relative predic-
tion error (MPE) and median absolute relative predic-
tion error (MAPE) were calculated to reflect accuracy 
and precision.

i: individual patient, j: measurement.

(1)rPEij =
cpred,i,j − cobs,i,j

(cpred,i,j + c
obs,i,j

)/2
,

(2)MPE[%] = median(
{

rPE1,1, . . . , rPEi,j
}

) ∗ 100,

(3)
MAPE[%] = median

({

|rPE1,1|, | . . . |, |rPEi,j|
})

∗ 100.

Table 1  Demographic and clinical characteristics of patients in the evaluation dataset

a  Values presented per study: n (%) for categorical variables; median [minimum–maximum] for continuous variables
b  Median value per patient (as multiple observations were obtained)
c  52 patients with missing albumin values (replaced by median of study population)

ABW adjusted body weight [29], IBW ideal body weight (Devine formula) [29], BMI body mass index, eGFR estimated glomerular filtration rate (Cockcroft-Gault) [30], 
CRP C-reactive protein, RRT​ renal replacement therapy, ECMO extracorporeal membrane oxygenation, TZP piperacillin/tazobactam, PIP piperacillin, TDM therapeutic 
drug monitoring, CI continuous infusion, II intermittent infusion, (U)HPLC(–UV) (ultra) high-performance liquid chromatography (–ultraviolet detection), MS/MS 
tandem mass spectrometry, conc. Concentration, NA not available

Total
(npatients = 561)
(nsamples = 3654)
Multicenter

Study 1
(npatients = 207)
(nsamples = 1064)
9 centers [16]

Study 2
(npatients = 282)
(nsamples = 731)
Heidenheim [26]

Study 3
(npatients = 12)
(nsamples = 24)
Regensburg [27]

Study 4
(npatients = 60)
(nsamples = 1835)
Munich [28]

Patient characteristicsa

 Sex

  Male 370 (66) 145 (70) 176 (62) 6 (50) 43 (72)

  Female 191 (34) 62 (30) 106 (38) 6 (50) 17 (28)

 Age [years] 67 [16–94] 66 [19–90] 70 [16–94] 52 [19–81] 64 [23–82]

 Height [cm] 173 [100–205] 175 [153–195] 170 [100–205] 170 [158–190] 173 [150–198]

 Weight [kg]b 80 [25–203] 80 [43–193] 77 [25–203] 80 [48–105] 80 [50–150]

 ABW [kg]b 72 [26–124] 74 [47–114] 70 [26–124] 69 [53–90] 71 [48–112]

 BMIb 26.1 [11.1–70.2] 26 [14.9–66.8] 26.2 [11.1–70.2] 25.8 [16.6–36.7] 26.6 [17.3–40.7]

 eGFR [mL/min]b 59 [10–313] 64 [10–313] 56 [10–261] 67 [11–151] 60 [14–167]

 Serum creatinine [mg/dL]b 1.3 [0.3–8.2] 1.1 [0.3–5.8] 1.3 [0.4–8.2] 1.6 [0.9–4] 1.4 [0.5–5.1]

 Albumin [g/dL]b 2.5 [1–4.1] 2.5 [1–4.1]c NA 2.2 [1.8–2.8] 2.7 [2.1–3.4]

 CRP [mg/dL]b 13.4 [0.4–40.5] 13.9 [0.5–40.5] NA 9.4 [0.4–29.8] 11.3 [1.3–37.3]

 Sepsis 496 (88) 207 (100) 226 (80) 3 (25) 60 (100)

 RRT​ 96 (17) 23 (11) 55 (20) 2 (17) 16 (27)

 ECMO 6 (8) NA NA 3 (25) 3 (5)

TZP administration and TDM
 Type of infusion CI/II CI CI CI II

 Number of TDM samples/patienta 7 [2–50] 6 [2–11] 3 [2–6] 2 [2–2] 33 [14–50]

 Analytical method HPLC/LC–MS/MS HPLC HPLC–UV UHPLC–MS/MS

 Total plasma PIP conc. [mg/L]a 75.5 [0.1–812.8] 69.3 [0.3–725] 54 [10–300] 66 [5.1–467] 111.1 [0.1–812.8]
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To facilitate clinical interpretation, an illustration based 
on the rPE (A/B1/B2) translated to PIP concentrations 
was performed:

The target concentration (ctarget) was exemplarily 
defined as 64 mg/L, which is related to the 4xMIC-epide-
miological cutoff (ECOFF) for Pseudomonas aeruginosa 
according to the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST). Density plots illustrate 
the range of the expected concentrations; i.e., the devia-
tions from ctarget due to model-specific inaccuracy and 
imprecision are simultaneously reflected according to the 
identified rPE. A symmetric target range of 32–96 mg/L 
(2-6xMIC-ECOFF) was considered clinically acceptable 
and attainment rates (%) were quantified.

Furthermore, the evaluation was stratified by CI and 
II to account for different PIP infusion regimens (studies 
1–3: CI, nsamples_CI = 1819; study 4: II, nsamples_II = 1835).

Apart from numerical evaluation, cpred and cobs were 
compared graphically using goodness-of-fit (GOF) 
plots and prediction-corrected visual predictive checks 
(pcVPC) (nsimulations = 1000) [33].

The models that best represented the total evalua-
tion dataset numerically and graphically were used to 
further investigate factors influencing the predictive 
performance:

(1)	To explore the precision of Bayesian predictions as a 
function of time after integration of TDM data, the 
absolute rPE (B1/B2) vs. time after TDM (TaTDM) 
was assessed by descriptive statistics and the Ken-
dall rank correlation coefficient (τ). This analysis 
was performed using studies 1 and 2, as these pro-
vided observation periods > 7 days (489 patients, CI, 
npredicted_samples_B1/B2 = 1306/817).

(2)	To quantify the differences between (i) males vs. 
females, and (ii) non-renal replacement therapy 
(non-RRT) vs. RRT patients, point-biserial correla-
tions (rpb_corrected) were calculated between the rPE 
(A) and each binomial group.

Besides, all 24 models underwent independent sub-
group evaluations using the external dataset stratified by 
sex and RRT, and the above-described numerical analysis 
and GOF plots.

Results
Predictive performance of population pharmacokinetic 
models for piperacillin
The predictive performance markedly varied 
between all models (total dataset, A/B1/B2: MPE 

(4)crPEi,j = ctarget −
(

ctarget ∗ rPEi,j
)

.

−  135.6–78.3/−  77.3–72.3/−  55.8–65.3%; MAPE 35.7–
135.6/26.2–77.7/23.8–67.3%). Overall, data of each study 
population were predicted similarly to the pooled data-
set, except that centers with CI performed slightly bet-
ter in the model evaluation than that with II (see below). 
For most models, a common predictive trend (e.g., 
MPE < / > 0) and comparable performance per study site 
was observed (ESM_Main Tables S3–5). Figure  1 illus-
trates the accuracy and precision of the models based 
on the total dataset. Differences in performance were 
most evident for population predictions (A). Underes-
timation (MPE < 0; nmodels_A/B1/B2: 17/15/11) was more 
frequent than overestimation (MPE > 0; nmodels_A/B1/B2: 
7/9/13). Consideration of TDM samples improved pre-
dictions for all models (ESM_Main Table  S5). Models 
developed merely based on ICU patients did not gener-
ally appear superior to models without underlying ICU 
populations. However, taking together minimum inaccu-
racy (MPE) and imprecision (MAPE), the models by Kim 
(2022) [34], Klastrup [35] and Udy et al. [36], all originat-
ing from ICU patient data, performed best (A/B1/B2: 
|MPE|< 13/7.7/7.5%; MAPE < 37.5/28.0/28.4%). Graphi-
cal GOF plots agreed with these numerical results.

Based on the rPE of the three best-predicting models, 
Fig.  2 illustrates the range of expected concentrations 
targeting 64  mg/L (see ESM_Main Fig. S2 for all model 
results). A symmetric range with a median concentration 
near ctarget indicates high predictive performance, with 
improved model precision and accuracy associated with 
more concentrations approaching 64  mg/L. Over- or 
underestimation is reflected by the frequency of out-of-
range concentrations. Overall, higher target range attain-
ment rates were observed for Bayesian approaches, and 
the model by Kim et  al. showed the best result for the 
pooled dataset (A/B1/B2: 62.7/77.6/80.6%).

The model evaluation revealed overall better predic-
tions for data collected during CI compared to II (A: 
|MPE|median_all_models: 27.8 vs. 35.7%; MAPEmedian_all_mod-

els 46.2 vs. 50.9%). Integration of a second TDM sample 
(B2) substantially improved the predictions for II, but 
not for CI (ESM_Main Table S5). The model by Klastrup 
et al. showed the best numerical accuracy and precision 
for CI but was inferior to Kim and Udy et  al. regarding 
II. With respect to the 95% confidence intervals of MPE 
and MAPE, however, the performance of the latter mod-
els partially overlapped (ESM_Main Fig. S4). GOF plots 
and pcVPCs confirmed the numerical evaluation results 
(ESM_Main Tables S3–5, Figs. S3–6).

A significant, albeit small positive correlation between 
the precision of Bayesian predictions and TaTDM was 
detected, i.e., higher imprecision given longer time (Kim, 
Klastrup, Udy et al.: τB1 = 0.08, 0.11, 0.13; τB2 = 0.10, 0.10, 
0.10; pB1/B2 < 0.001). Comparison of MAPE values vs. 
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TaTDM further indicated decreasing precision (e.g., Udy 
et al. B1: MAPE24h/MAPE168h: 17.4/29.9%; B2: MAPE24h/
MAPE168h: 22.3/40.2%, Fig.  3). Moreover, higher impre-
cision and underestimation were observed in (i) females 
compared to males (Kim/Klastrup/Udy et  al.: rpb_cor-

rected = −  0.01/−  0.09/−  0.08; p = 0.79/ < 0.001/ < 0.01) 
and (ii) patients undergoing RRT (Kim/Klastrup/Udy 
et  al.: rpb_corrected = −  0.35/−  0.26/−  0.17; p < 0.001), as 
detailed in ESM_Main Fig. S7, Table S6.

Stratified subgroup evaluations of all 24 models are 
presented in ESM_Subgroup Figs. S1–5, Tables S1–3. 
Separation by sex revealed overall higher accuracy and 
precision for men compared to women (A: |MPE|median_

all_models: 28.7 vs. 35.8%; MAPEmedian_all_models 46.7 vs. 
49.3%); however, the difference was not apparent in 
Bayesian predictions. Notably, the model by Kim 
et  al. performed best in women (A/B1/B2: MPEfemale 
−  11.6/−  6.4/0.8%; MAPEfemale 39.3/29/24.5%). Strati-
fication by non-RRT/RRT patients disclosed more 
models underestimating PIP concentrations in the RRT 
group (nA/B1/B2: 19/19/14), and predictions appeared 
worse overall (A: |MPE|median_all_models: 28.7 vs. 47.7%; 
MAPEmedian_all_models 47.6 vs. 53.7%). While the model 
by Kim et al. was favorable in non-RRT patients (A/B1/

B2: MPE − 1/− 2.4/1.6%; MAPE 34.7/27.2/23.8%), the 
model by Roberts et al. (2015) [37] produced the most 
accurate and precise population predictions in RRT 
patients (A: MPE 0.8%; MAPE 33.3%). When consider-
ing TDM data, adequate predictions for RRT patients 
were achieved with several models (e.g., Tamme et  al. 
[38], B1/B2: MPE 0.6/− 2.9%; MAPE 22.1/20.9%). Fur-
ther subgroup analyses (e.g., female + RRT) are avail-
able in ESM (ESM_Subgroup Figs. S3–5, Tables S1–3).

Taken together all evaluation results, a flowchart 
showing the best-performing models for each subgroup 
and clinical target attainment within our external data 
is presented (ESM_Subgroup Figs. S6–7). The candi-
date models were then implemented in the open-access 
TDMx dosing software (www.​TDMx.​eu), which allows 
to explore PIP MIPD scenarios relevant for clinical 
practice (Fig. 4).

Discussion
This study investigates the external validity of 24 PopPK 
models for PIP in a multicenter cohort of 561 ICU 
patients and highlights MIPD candidates appropriate for 
specific situations and patient groups (e.g., CI/II adminis-
tration, male/female, RRT/non-RRT), considering a pri-
ori and Bayesian predictions.

Fig. 1  Predictive performance of the evaluated population pharmacokinetic models. Median relative prediction error (MPE) [%] as a measure of 
accuracy and median absolute relative prediction error (MAPE) [%] reflecting precision of the predictions, comparing the observed plasma piperacil‑
lin (PIP) concentrations for each model; A priori (A): Prediction of all concentrations based on dosing history and patient covariates only; Bayesian 
1 (B1): Prediction of concentrations considering the first therapeutic drug monitoring (TDM) sample for each patient; Bayesian 2 (B2): Prediction of 
concentrations considering the first and second TDM sample for each patient; models were ordered (from left to right) according to the model-
specific sum (A + B1 + B2) of (absolute) MPE and MAPE values, respectively

http://www.TDMx.eu
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Acceptable values for model accuracy (e.g., 
|MPE|< 20%) and imprecision (e.g., MAPE < 30%), 
originating from a propofol PK model evaluation by 
Miyabe-Nishiwaki and their feasibility for models of 
time-dependent antibiotics have been debated [24, 
39]. However, alternative thresholds to assess the suit-
ability of a model are lacking. The highest predictive 
performance within our external dataset was observed 
for the models by Kim, Klastrup, and Udy et  al., but 
none of these achieved the above-mentioned thresh-
olds for a priori predictions (A). When considering 
TDM measurements, however, several models met the 
defined thresholds, highly suggesting the combina-
tion of model-based therapy and TDM. Similar to our 
work, Chai et  al. recently assessed the accuracy of the 
ID-ODS dosing software using external data from 75 
critically ill patients, concluding overall improved pre-
dictive performance/dosing using Bayesian forecasting 

[40]. While our study showed no substantial benefit 
of considering two vs. one TDM sample for predict-
ing CI data, two samples were superior to one for II 
data. However, Bayesian precision has been shown to 
decrease over time, suggesting the consideration of 
timely TDM samples during CI. Fixed time intervals 
cannot be recommended based on our data and require 
further investigation. Continuous drug monitoring 
using biosensors with direct feedback of real-time anti-
biotic concentrations to PK models represents a future 
scenario, enabling fully automated closed-loop tech-
niques between drug sensor, dosing software, and self-
adaptive infusion pumps [41–43].

Our evaluation results are largely consistent with 
a previous study conducted in France using external 
monocentric data from 30 critically ill patients [24]. 
Despite methodological differences, the authors also 
recommended the models by Udy and Klastrup et al. as 

Fig. 2  Expected target attainment of the population pharmacokinetic models by Kim, Klastrup and Udy et al. by translating the relative prediction 
errors for the total evaluation dataset to piperacillin plasma concentrations. A priori (A): Prediction of all concentrations based on dosing history 
and patient covariates only; Bayesian 1 (B1): Prediction of concentrations considering the first therapeutic drug monitoring (TDM) sample for each 
patient; Bayesian 2 (B2): Prediction of concentrations considering the first and second TDM sample for each patient; red dashed lines represent the 
lower and upper limits of the target concentration range; percentages indicate the proportion of predicted concentrations within (black color) and 
outside (red color) the target range
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potential candidates for MIPD (Kim et al. was not pub-
lished at that time), making our results likely transfer-
able to other centers/countries. In our evaluation, the 
model by Udy et al. best predicted data collected dur-
ing II and Klastrup et al. best predicted CI data, which 
seems plausible since the models were built upon II 
and CI data, respectively. Both models showed similar 
performance to that of Kim et al., which revealed most 
appropriate for the pooled dataset (CI + II), also due to 
less gender bias and superior performance in non-RRT 
patients.

Our analyses demonstrated that PIP predictions were 
overall more accurate and precise for males, presum-
ably as women were underrepresented in all datasets 
underlying the 24 investigated models (ESM_Main 
Table  S1). The PK parameters estimated (e.g., Vd, CL) 
may, thus, have been driven by men. A smaller hydro-
philic Vd due to a relatively lower muscle mass and a 

higher proportion of adipose tissue may explain higher/
accumulating concentrations in women. Moreover, 
renal clearance is physiologically about 10% lower than 
in men [44]. Although some models accounted for sex 
by integrating renal function using the Cockcroft-Gault 
(CG) equation [30], this did not appear sufficient to 
avoid differences in predictions. RRT patients showed 
considerably worse predictions than non-RRT patients 
(A). Some models were built upon data excluding RRT 
patients (e.g., Klastrup and Udy et al.) or were derived 
from predominantly non-RRT patients (e.g., Kim et al.: 
79%), which may explain lowered predictive perfor-
mance. In contrast, some models were developed exclu-
sively based on RRT patients (ESM_Main Table  S1); 
however, only the model by Roberts et  al. (2015) per-
formed well regarding a priori predictions for RRT 
patients. RRT is associated with highly variable patient 
PKs due to multiple influences like residual diuresis, 

Fig. 3  Precision of the models by Kim, Klastrup and Udy et al. as a function of time since the last therapeutic drug monitoring. Absolute relative pre‑
diction error (Absolute rPE) [%] of Bayesian predictions versus time interval [h] since the last considered therapeutic drug monitoring (TDM) sample; 
values based on the pooled evaluation dataset of studies 1 and 2; Bayesian 1 (B1): Prediction of concentrations considering the first TDM sample 
for each patient; Bayesian 2 (B2): Prediction of concentrations considering the first and second TDM sample for each patient; n: number of binned 
concentrations for each boxplot (binning: {24, 48, 72…} + −12 h); boxplots represent the 25th, 50th and 75th percentiles, whiskers the 1.5-fold 
interquartile range; red dashed lines: linear regression through binned median absolute prediction errors (MAPEs)
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type of RRT, dialysis membrane, duration, and intensity 
settings [41]. Unfortunately, RRT-related variables were 
not covered by the evaluation dataset, which precluded 
a detailed exploration of predictions in RRT patients.

A recent randomized controlled trial by Ewoldt et  al. 
investigated a potential benefit of MIPD in 388 critically 
ill patients receiving ciprofloxacin and β-lactams [45]. 
Such investigations are urgently needed to link an impact 
of novel dosing strategies to clinical outcomes. Surpris-
ingly, the authors did not find increased target attainment 
when using a commercial MIPD software. The applied 
model for PIP (Andersen et  al. [46]) was developed 
based on clinical data from 22 septic non-ICU patients 
and published evidence of its transferability to external 
populations seems lacking. In fact, our study revealed 
overestimation and mediocre performance of the respec-
tive model in the investigated critically ill patients (A/
B1/B2: MPE 24.9/18.6/22.8%; MAPE 43.5/34.6/36.9%). 
Thus, it can only be speculated whether model selection 
had a relevant influence on the study results, also because 
the trial included several β-lactams, whereas our study 

included only PIP [22, 47, 48]. However, both studies 
combined highlight the key role of externally evaluating 
PopPK models prior to clinical implementation.

Some limitations of this study shall be acknowledged. 
First, external evaluation depends on the quality of the 
evaluation dataset and clinical collection may be error 
prone, potentially distorting model predictions [49]. 
To limit this shortcoming, our combined dataset was 
carefully reviewed and each model assessment was 
conducted identically to enhance inter-model com-
parability. Second, although this was a multicenter 
study, all patients were admitted to national ICUs 
(Germany), and the evaluation for II dosing is based 
on a single monocentric trial, limiting extrapolation 
to other settings. Third, we only included parametric 
models and cannot exclude similar or better perfor-
mance of models built with less common modeling 
approaches. Fourth, our evaluation considered PIP 
concentrations only; however, recent studies support 
a holistic PIP/tazobactam stewardship, particularly in 
severe cases of sepsis. Considering tazobactam may 

Fig. 4  Screenshot of the TDMx dosing software for piperacillin (open access web-browser application) with sample patient data (left), an excerpt 
from the dosing record (bottom), and visualization of a priori (blue line) and Bayesian (orange line) predicted piperacillin concentrations based on 
the underlying population pharmacokinetic model by Kim et al. Concentration–time profile (top) and probability of target attainment over time 
(bottom) are displayed in the diagram
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improve target attainment and antibacterial effective-
ness for both drugs simultaneously, and future evalua-
tion of a combined model would, thus, be desirable [24, 
50]. Fifth, the clinical dataset covered PIPtotal, whereas 
some models were developed based on PIPunbound. We 
adjusted the available concentrations according to the 
protein binding stated by the manufacturer (30%) [24]. 
However, the unbound fraction may vary in critically 
ill patients, and possible skewing of the results can 
therefore not be excluded [27, 32, 51]. Sixth, our study 
exemplarily followed a recommended PIP ctarget of 
64 mg/L, but for β-lactams “the optimal PK/PD target 
remains debated” according to Novy et al. [47]. A range 
of 32–96 mg/L was considered acceptable. Lower con-
centrations are at risk of being ineffective due to vari-
able protein binding and insufficient penetration at the 
infection site, while higher concentrations are associ-
ated with significantly increased 28-day mortality [16]. 
Seventh, some minor covariate adjustments were nec-
essary due to unavailable covariates (e.g., eGFR instead 
of measured CLCR) (ESM_Main Table  S1). As several 
characteristics are included in the CG equation [30], a 
multivariate positive effect on model performance has 
been discussed [24]. Last, external evaluations (and 
model selection) include a subjective component, yet 
we followed a systematic approach with defined criteria 
to make the evaluation as objective as possible.

In conclusion, the predictive performance of pub-
lished PopPK models for PIP in critically ill patients 
varied remarkably. Selecting an appropriate model 
is essential for high-quality MIPD. Models should be 
combined with TDM as soon as possible to improve 
predictability. Studies on the prospective application of 
MIPD of PIP at the bedside using Bayesian dosing soft-
ware like TDMx is desired to assess a clinical benefit 
for patients.

Finally, the authors would like to emphasize that this 
evaluation is not intended to discredit any PK model, but 
rather to extrapolate potential candidates for cross-center 
clinical application in critically ill patients, to move from 
conventional dosing of PIP toward a more individualized 
approach.
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