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Abstract
We discuss the existence of almost complex structures on closed hyperbolic manifolds of
even dimension at least four. We prove that for n = 2 and for all odd n every hyperbolic
2n-manifold has a finite covering admitting an almost complex structure. Conjecturally this
should be true for all n. For n = 4 we prove it for arithmetic manifolds.
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1 Introduction

The purpose of this paper is to discuss the following:

Conjecture 1 Every 2n-dimensional closed hyperbolicmanifold has a finite-sheeted covering
space which admits an almost complex structure.

In other words, closed even-dimensional hyperbolic manifolds are virtually almost complex.
As usual, a hyperbolic manifold is one that admits a metric of constant negative sectional
curvature. If it has dimension 2n it is therefore of the formH

2n/� for a torsion-free uniform
lattice � in the isometry group of hyperbolic space. For n = 1 it is of course classical that
oriented hyperbolic structures and complex structures are the same, but in higher dimensions
the two geometries diverge. To avoid this exceptional case, we assume throughout that n > 1,
so the dimensions of our manifolds are ≥ 4.

TheDavis [10] hyperbolic 4-manifold is orientable but not almost complex, cf. Example 14
below, showing that the passage to a finite-sheeted covering cannot be avoided, even if one
considers only orientable manifolds.

One reason for believing the conjecture is that hyperbolic manifolds are virtually stably
parallelizable by a result of Deligne and Sullivan [11, 23]. This implies that they are virtually
stably almost complex. Therefore, to prove the conjecture one only has to bridge the gap
from stably almost complex to genuinely almost complex structures. In dimension 6, it is
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known from work of Wall [26] that in fact there is no such gap. Another reason to believe
the conjecture is the following result.

Theorem 2 Conjecture 1 is true for hyperbolic manifolds of dimension 2n if n = 2 and if n
is odd. For n = 4 it is true at least for all arithmetic manifolds.

There are also good reasons for being skeptical about Conjecture 1. First of all, no hyper-
bolic manifold can be Kähler, and, even stronger, no such lattice can be a Kähler group, by a
result of Carlson and Toledo [7], see [2, Ch. 6]. Second of all, without anyKähler assumption,
I proved in [19], that no hyperbolic 4-manifold can be homotopy equivalent to a compact
complex surface. This was later generalised to show that no lattice in hyperbolic space can
be the fundamental group of a compact complex surface, cf. [2, Ch. 1, Sect. 3] and [8]. See
[17, 18] for further generalizations.

In dimension 4, i.e. for n = 2, we know from the result in [19] that none of the almost
complex structures provided byTheorem2 can be integrable. In this dimension there are other
examples which are almost complex without being complex. However, in higher dimensions
no such examples are known at the time of writing, and Yau has speculated that they cannot
exist. So either the almost complex structures produced by Theorem 2 are non-integrable,
providing the first countexamples to Yau’s suggestion in dimensions > 4, or they are inte-
grable to non-Kähler complex structures that have little connection to hyperbolic geometry
since Gauduchon [12] proved that an almost complex structure which is orthogonal for the
hyperbolic metric cannot be integrable, cf. also [14].

2 Characteristic numbers of hyperbolic manifolds

The following is well known. For the convenience of the reader we provide a quick proof.

Lemma 3 Let M = H
2n/� be a closed orientable hyperbolic manifold. Then the following

two statements hold.

(1) All real Pontryagin classes of M vanish. In particular, its signature σ(M) vanishes.
(2) The Euler characteristic χ(M) satisfies χ(M) ≡ 0 (mod 2) and (−1)nχ(M) > 0.

Proof The hyperbolic metric is conformally flat, and therefore has vanishing Weyl tensor.
Since the Chern–Weil representatives for Pontryagin classes depend only on theWeyl tensor,
they all vanish. The vanishing of the signature follows by the Hirzebruch signature theorem.

Recall that the signature is zero by definition whenever n is odd. Poincaré duality gives
χ(M) ≡ bn(M) ≡ σ(M) ≡ 0 (mod 2). Finally, the sign of the Euler characteristic follows
from the Chern–Gauss–Bonnet theorem. ��

3 Odd complex dimensions

In this section we prove Theorem 2 in odd complex dimensions.
So letM be a closed hyperbolic 2n-manifold, with n odd. After passing to a finite covering

if necessary, we may assume that M is stably parallelizable by the result of Deligne and
Sullivan [11, 23]. Therefore M is stably almost complex, and we may choose the stable
almost complex structure to have trivial Chern classes.

We now need to modify this stable almost complex structure to make it genuinely almost
complex. The criterion for this modification to work is provided by the following well known
result, see for example [24, Theorem 1.1] or [25, Theorem 1.7].
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Proposition 4 A connected stably almost complex manifold M of real dimension 2n has an
almost complex structure if and only if it has a stable almost complex structure with 〈cn, [M]〉
equal to its Euler characteristic χ(M).

This tells us that we need to modify the top Chern number of the stable almost complex
structure to arrange it to equal the Euler characteristic of M . We make this modification via
the connected sum with S2n . This leaves the manifold unchanged, but changes the stable
almost complex structure.

The next result is also straightforward; see for example [16, Section 5.2] or [13, Lem-
ma 2.1].

Proposition 5 Let M#N be a connected sum with collapsing maps pM : M#N −→ M
and pN : M#N −→ N to the summands. Then p∗

MT M ⊕ p∗
N T N is stably isomorphic to

T (M#N ).

As remarked by Kahn [16, Lemma 3], this means that stable almost complex structures on
M and N give rise to stable almost complex structures on their connected sum, and that the
Chern numbers are additive in this construction.

Consider first the casen = 3.The standard almost complex structure on S6 has 〈c3, [S6]〉 =
2, which is the Euler characteristic of the sphere. However, we can take its complex conjugate,
which changes the sign of the third Chern class. Evaluating this on the fundamental class of
S6 for the orientation induced by the standard almost complex structure, rather than by its
conjugate, we get the value −2. Connect summing this stable almost complex structure to
the given one on M , which has trivial c3, we lower the value of c3 on M by 2. Since the Euler
characteristic of M is a negative even integer by Lemma 3, if we sum M with −χ(M)/2
many copies of this conjugate structure on S6, we obtain a stable almost complex structure
on M which, by Proposition 4, induces an almost complex structure on M . This completes
the proof for n = 3.

Remark 6 The argument we have given proves Wall’s result [26, Theorem 9] that every
stably almost complex closed oriented 6-manifold is genuinely almost complex, because
such a manifold automatically has even Euler characteristic by Poincaré duality.

For n odd and ≥ 5, the sphere S2n is not almost complex, but it is stably almost complex.

Proposition 7 For every odd n ≥ 5, the sphere S2n admits stable almost complex structures
with Chern number cn �= 0.

Proof The proof is a standard application of Bott periodicity [5].
Via the clutching construction, vector bundles over S2n with structure group G are clas-

sified by π2n−1(G). An oriented real bundle of rank 2n admits a complex structure if and
only if the homotopy class of its clutching function is in the image of the inclusion-induced
map f : π2n−1(U (n)) −→ π2n−1(SO(2n)). We think of these maps as forgetful maps as
they forget the complex structure of a vector bundle. They fit into the following commutative
diagram, in which s denotes the stabilisation maps:

π2n−1(U (n))
f−→ π2n−1(SO(2n))

π2n(SO/U )
∂−→ π2n−1(U )

f−→ π2n−1(SO) −→ π2n−1(SO/U )

Z
∂−→ Z

f−→ π2n−1(SO) −→ 0

s s

= = = =
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The second line of the diagram is a piece of the homotopy exact sequence of the fibration
U −→ SO −→ SO/U . The information given about the homotopy groups in the third line
is from [5]. Since the group π2n−1(SO) is finite—either trivial or of order 2, depending on n,
see again [5]—it is clear that its neutral element, corresponding to the stable tangent bundle of
S2n because the sphere is stably parallelisable, is hit by non-zero elements ofπ2n−1(U ) under
the stabilised forgetful map f : π2n−1(U ) −→ π2n−1(SO) at the bottom. This gives stable
almost complex structures on S2n with cn �= 0 since the isomorphism between π2n−1(U )

and Z is given by cn , suitably normalised. ��
Now let c(n) be the smallest positive Chern number for a stable almost complex structure

on S2n . The exact value of c(n) is known, cf. [6], but is not important for the argument that
follows, in which we use a theorem of Lubotzky to pass to a suitable covering of a given
hyperbolic manifold. Lubotzky’s result [20, Theorem A], about arbitrary finitely generated
linear groups, is more general, we only state what we need here.

Theorem 8 For every natural number d, the fundamental group of a hyperbolic manifold has
a subgroup of index divisible by d.

Given a closed hyperbolic 2n-manifold M with a stable almost complex structure with
trivial Chern classes, the theorem tells us that M has a finite covering whose degree is a
multiple of c(n). Thus, replacing M by this covering, we may assume that χ(M) is a negative
multiple of c(n). Therefore, the connected sum with the appropriate number of copies of S2n

equipped with the stable almost complex structure with top Chern number −c(n) provides
a stable almost complex structure on M which induces a genuine almost complex structure
because of Proposition 4.

This completes the proof of Theorem 2 for all odd n.

4 Even complex dimensions

In this section we discuss the case when n is even. In particular we will prove the cases n = 2
and n = 4 in Theorem 2.

We begin with the following observations.

Lemma 9 Let M be a closed oriented hyperbolic 2n-manifold with n even.

(1) If M is almost complex, then χ(M) ≡ 0 (mod 4).
(2) There is no almost complex structure on M with ci = 0 for i < n.

Proof If M is almost complex of even complex dimension n, then

χ(M) ≡ (−1)n/2σ(M) (mod 4)

by the Hodge index theorem, cf. Hirzebruch [15, p. 777]. Since the signature vanishes by
Lemma 3, the first statement follows.

For the second statement recall that if ci = 0 for i < n, then (−1)n/2 pn/2 = 2cn . Now
in the hyperbolic case the Pontryagin numbers vanish, but the Euler characteristic, which is
the evaluation of cn , does not by Lemma 3, so this is impossible. ��
Remark 10 Either part of Lemma 9 can be applied to S2n , the compact symmetric space dual
toH2n . This gives two different proofs—both well known—for the fact that S2n is not almost
complex for even n.
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The second statement in Lemma 9 shows that the stable almost complex structures found
on hyperbolic manifolds via the result of Deligne and Sullivan [11, 23] cannot be modified
easily to make them genuinely almost complex. Any modification cannot be restricted to the
top cell, and has to start in dimension 2n− 2, or earlier. Therefore, for even n, unlike for odd
n, we do not use the result of [11, 23].

In dimension four the first part of Lemma 9 has a converse.

Proposition 11 A closed oriented hyperbolic 4-manifold M is almost complex if and only if
its Euler characteristic is divisible by 4.

Proof If M is almost complex, then its Euler characteristic is a multiple of 4 by Lemma 9.
For the converse note that χ(M) > 0 by Lemma 3, so once it is a multiple of 4, it is at least 4.
This means that b2(M) ≥ 2. By the vanishing of the signature, we know that the intersection
form is indefinite. Therefore, by the Hasse–Minkowski classification, it is either diagonal or
a sum of hyperbolic pairs. In both cases one can explicitly find characteristic elements that
have the correct square to satisfy the Wu formula. Therefore these characteristic elements
are first Chern classes of almost complex structures. ��
The Euler characteristics of closed orientable hyperbolic 4-manifolds are even, again by
Lemma 3. Therefore the multiplicativity of the Euler characteristic in coverings yields:

Corollary 12 Every connected even-degree covering space of a closed oriented hyperbolic
4-manifold is almost complex.

Since the fundamental groups are residually finite, we know that there are plenty of finite
coverings.More precisely, Theorem8 shows that there are even degree coverings. This proves
the case n = 2 in Theorem 2.

Remark 13 In response to a question from D. Toledo, I had proved Proposition 11 and Corol-
lary 12 in the 1990s. This was not published at the time, but has since been mentioned
occasionally in the literature, for example in [14, p. 206]. Beware however, that in the paren-
thetical remark before this statement, in [14, p. 205/6], theWu criterion seems to bemisstated.

Example 14 The Davis manifold [10] has Euler characteristic 26, and is therefore not almost
complex. However, all its even-degree covering spaces are almost complex.

Example 15 Conder and Machlachlan [9] constructed a closed orientable hyperbolic 4-ma-
nifold of Euler characteristic 16. This is almost complex, as are all its covering spaces.

Example 16 Agol and Lin [1] have constructed hyperbolic 4-manifolds with vanishing
Seiberg–Witten invariants. This means in particular that they cannot support symplectic
structures. The construction starts with a certain 3-dimensional L-space Y , which is embed-
ded in an orientable hyperbolic 4-manifold M as a non-separating hypersurface. This means
that b1(M) is positive. They then take a double cover M −→ M to find a separating L-space
in M . By construction, χ(M) is divisible by 4. So M and all its covering spaces are almost
complex.

Example 17 Martelli, Riolo and Slavich [21] have constructed an orientable hyperbolic 4-
manifold with odd intersection form. In particular, it is not spin, although by [11, 23] it does
have spin coverings. This manifold has Euler characteristic divisible by 4, and the same will
be true for anymanifold constructed by the colouringmethod of [21]. (Private communication
from B. Martelli). Therefore, this manifold is almost complex.
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Example 18 Battista and Martelli [3] recently constructed an orientable hyperbolic 4-
manifold with a perfect circle-valued Morse function. It has Euler characteristic 272, and so
it too is almost complex.

We now move on to dimension eight. Let M be a closed oriented hyperbolic 8-manifold.
Like in dimension 4, Lemma 9 shows that having Euler characteristic divisible by 4 is a nec-
essary condition for the existence of an almost complex structure on M . Unlike in dimension
4, this divisibility does not imply positivity of the second Betti number via Lemma 3. We
now get only

2b2(M) + b4(M) ≥ 2

so it is conceivable that M would have Euler characteristic a multiple of 4 but b2(M) = 0,
and that this would persist on all finite covering spaces. The existence of such an M would
disprove Conjecture 1 in dimension 8:

Lemma 19 A closed orientable hyperbolic 8-manifold M with b2(M) = 0 is not almost
complex.

Proof Since by assumption there is no second cohomology, any almost complex structure
would have vanishing first Chern class. The vanishing of the first Pontryagin class from
Lemma 3 then shows that the second Chern class would also vanishs. By Poincaré duality
there is no cohomology in degree 6, so c3 would also vanish. Therefore the conclusion follows
from the second part of Lemma 9. ��
With the added assumption of positive second Betti number, Proposition 11 generalizes.

Proposition 20 A closed oriented hyperbolic 8-manifold M with b2(M) > 0 is almost com-
plex if and only if its Euler characteristic is divisible by 4.

Proof The necessity of the divisibility condition was proved in the first part of Lemma 9. The
sufficiency follows from the analog of the Wu criterion in dimension 8 proved by Müller and
Geiges [22, Theorem 4]. ��
Corollary 21 Every connected even-degree covering space of a closed oriented hyperbolic
8-manifold with positive second Betti number is almost complex.

Again even-degree covering spaces exist in all cases by Theorem 8.
Let us now assume that M is an arithmetic hyperbolic 8-manifold. Then a deep result

of Bergeron and Clozel [4, Corollaire 1.8] shows that M has a finite connected covering M
with positive first and second Betti numbers. In case that χ(M) is not divisible by 4, we take
another covering, of even degree. This exists, either because b1(M) > 0, or by invoking
Theorem 8 again. This further covering is almost complex by Proposition 20. This completes
the proof of the statement for n = 4 in Theorem 2.
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