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Abstract: We prove a rigorous upper bound on the correlation energy of interacting
fermions in the mean-field regime for a wide class of interaction potentials. Our result
covers the Coulomb potential, and in this case we obtain the analogue of the Gell-Mann—
Brueckner formula ¢ p log (p) +¢2 p in the high density limit. We do this by refining the
analysis of our bosonization method to deal with singular potentials, and to capture the
exchange contribution which is absent in the purely bosonic picture.
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1. Introduction

Although interacting Fermi gases have been studied extensively from the beginning of
quantum mechanics, their rigorous understanding remains one of the major issues of
condensed matter physics. From first principles, a system of N fermions in R> can be
described by a Schrédinger equation in RV, subject to the anti-symmetry condition be-
tween the variables due to Pauli’s exclusion principle. However, this fundamental theory
becomes very complex when N — 00, leading to the need of various approximations.
Justifying these approximations is an important task of mathematical physics.

One of the most basic approximations for fermions is the Hartree—Fock (HF) theory.
In HF theory, the particles are assumed to be independent, namely the HF energy is
computed by restricting the consideration to Slater determinants. In spite of its simplicity,
the HF theory is used very successfully in computational physics and chemistry to
compute the ground state energy of atoms and molecules. The accuracy of the HF energy
(in comparison to the full quantum energy) for large Coulomb systems was investigated
in the 1990s by Fefferman and Seco [12], Bach [1], and Graf and Solovej [15].

On the other hand, for the electron gas (e.g. jellium, a homogeneous electron gas
moving in a background of uniform positive charge), the HF theory is essentially trivial
in the high density limit since the HF energy only contains an exponentially small
correction to the energy of the Fermi state, the ground state of the non-interacting gas
[14]. Therefore, computing the correlation energy,' namely the correction to the HF
energy, is a crucial task to understand the effect of the interaction. It was already noticed
by Wigner in 1934 [23] and confirmed by Heisenberg in 1947 [17] that it would be very
challenging to accomplish this task within perturbation theory due to the long-range
property of the Coulomb potential. Nevertheless, a remarkable attempt in this direction
was done by Macke in 1950 [18] when he used a partial resummation of the divergent
series to predict the leading order contribution ¢ p log (p) of the correlation energy (with
density p — 00).

A cornerstone in the correlation analysis of the electron gas is the random phase
approximation (RPA) which was proposed by Bohm and Pines in the 1950s [7-9,19].
As an important consequence of the Bohm-Pines RPA theory, the electron gas could
be decoupled into collective plasmon excitations and quasi-electrons that interacted
via a screened Coulomb interaction. The latter fact justified the independent particle
approach commonly used for many-body fermion systems. The justification of the RPA
was a major question in condensed matter and nuclear physics in the late 1950s and
1960s. An important justification was given by Gell-Mann and Brueckner in 1957 [13]
when they formally derived the RPA from a resummation of Feynman diagrams where
each term separately diverges but the sum is convergent. More precisely, by considering
the diagrams corresponding to the interaction of pairs of fermions, one from inside and
one from outside the Fermi state, Gell-Mann and Brueckner were able to produce the
leading order contribution cp log (p) + 2 p of the correlation energy.

Soon after the achievement of Gell-Mann and Brueckner, Sawada [21] and Sawada—
Brueckner—Fukuda—Brout [22] proposed an alternative approach to the RPA where the
pairs of electrons are interpreted as bosons, leading to an effective Hamiltonian which
is quadratic in terms of the bosonic creation and annihilation operators. Note that within
the purely bosonic picture, quadratic Hamiltonians can be diagonalized by Bogolubov
transformations [6], and hence their spectra can be computed explicitly. Therefore, the

! This name comes from the fact that Slater determinants are the least correlated wave functions under
Pauli’s exclusion principle.
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Hamiltonian approach in [21,22] is conceptually more transparent than the resumma-
tion method in [13]. Unfortunately the analysis in [21,22] only gives the contribution
c1plog (p) of the correlation energy because the exchange contribution of order p is
missed in the purely bosonic picture.

Recently, the bosonization argument in [21,22] has been revisited and made rigorous
in the mean-field regime with smooth interaction potentials [2-5,10, 11, 16]. In principle,
if the interaction is sufficiently weak, then the non-bosonizable terms of the interaction
energy are negligible, and the quasi-bosonic Hamiltonian can be analyzed with great
precision. In particular, the correlation energy has been successfully computed to the
leading order [2,3,5,10]. However, the boundedness of interaction potentials is crucial
for all of these works, and extending the analysis to the electron gas remains a very
interesting open question.

In the present paper, we will give the first rigorous upper bound to the correlation
energy of the electron gas in the mean-field regime. Our bound is consistent with the
Gell-Mann—Brueckner formula c1p log (p) + cap for jellium in the high density limit
[13]. Although our trial state argument is inspired by the bosonization method in [21,22],
we are able to capture correctly the exchange contribution by carefully distinguishing
the purely bosonic picture and the quasi-bosonic one. On the mathematical side, we will
use the general method in our recent work [10], but several new estimates are needed to
deal with the singularity of the potential. The matching lower bound in the mean-field
regime, as well as the corresponding result in the thermodynamic limit, remain open,
and we hope to be able to come back to these issues in the future.

On the technical side, the key idea of [10] is that while the bosonic property of
fermionic pairs holds only in an average sense, this weak bosonic property is sufficient
to extract correctly the correlation energy by implementing a quasi-bosonic Bogolubov
transformation. The main contribution of the present paper is to show that this approach
is also sufficient to extract the exchange correction to the purely bosonic computation.
On the other hand, another bosonization method has been proposed in [2], where the
bosonic property of fermionic pairs is strengthened by using suitable patches on the Fermi
sphere for the quasi-bosonic creation and annihilation operators, making the comparison
with the purely bosonic computation significantly easier. In fact, as explained in [5], the
approach in [2] can be extended to give the leading order of the correlation energy upper
bound for potentials satisfying > sz |k| < oco. Although this condition only barely fails
for the Coulomb potential, there is a huge difference to the Coulomb case. While for
> Vk2|k| < oo the bosonic correlation contribution is of order kr and the exchange
correlation is of lower order o(kFr), for the Coulomb potential the exchange contribution
raises to the order kr, whereas the bosonic correlation behaves as kr log(kr), which
makes the Coulomb case much more challenging (here k ¢ is the radius of the Fermi ball).
In particular, the method in [2,5] does not seem to capture the exchange contribution
which is indeed important for the Coulomb potential.

1.1. Main result. Let T? = [0, 2] with periodic boundary conditions. Let V : ™ —
R be defined by

1

Vv =
(x) o)}

> ket Z =77\ {0}, (L.1)
keZ3
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with Fourier coefficients satisfying

Vi >0, V=V, Z V2 < oo. (1.2)
keZ3

We implicitly assume that Vo = 0, or equivalently that the “background” has been
subtracted.

For kr > 0, let N = |BF| be the number of integer points in the Fermi ball Br =
B (0, kp) N Z3 and consider the mean-field Hamiltonian

N
=Y Akt Y V(6 —xg) (1.3)
i=1 1<i<j<N

on the fermionic space Hy = /\N hwithh = L? (T3) 2 The leading order of the ground
state energy of Hy is given by the Fermi state

lst = /\ Mp, I/lp (x) = (27'[)_% eip'x. (14)

PEBF

It is straightforward to find (see e.g. [10, Egs. (1.10) and (1.20)])

Ers = (yrs, Hyyrs) = ) [pl*+ 30n )3ZV(k)(|Lk| N)  (15)

pEBF EZ3
where for every k € 73, we denoted the [une associated to k by
Ly = (Br +0)\Br = {p € Z* | Ip =kl < kr < Ipl}. (1.6)

Our main result concerns the corrections to the ground state energy. For every k € Zi,
define

_ L p
’\k,p—z lpl”—Ip—klI"), Vpe L. (1.7)

We will prove the following:

Theorem 1.1. As kp — o0 it holds that

inf o (Hn) < Ers + Ecorr,bos + Ecorr,ex + C\/Z ‘713 min {|k|, kr}
keZ3

where

Ak,
corrbos=_ Z/ (27_[)3 Z )»2 :IZ dt, F(x)=log(l+x)—x,

k 73 peLy

2 We consider spinless particles for simplicity. Including the spin only requires slight modifications of the
analysis.
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is the bosonic contribution and

Z Z VkVp+q k

corr,ex — A
keZ3 p.qely Mep ¥ Mg

4 (2 )6
is the exchange contribution, for a constant C > 0 depending only on ) _, ez sz.

Some remarks on our result: R
1. Consider the Coulomb potential, Vi = g |k|~> for a constant g > 0. Following
the analysis of [15], we find that

inf o (Hy) = Ers +0 (k) (1.8)

where Efg contains the kinetic energy of order k3, the direct interaction energy of order

k% and the exchange interaction energy of order k3F. Furthermore, it is straightforward
to adapt the proof in [14] to see that the difference between Ers and the HF energy is
exponentially small as kr — oo. Therefore our result really concerns the correlation
energy, which we bound from above by

Ecorr,bos ~ —kplog (kp) and Ecorrex ~ kF (1.9)
plus the error term of order

> V2 min (k| kr} ~ /log (kp). (1.10)

keZ3

In fact, itis easy to verify (1.10) using Z|k|§kF Vk2|k| ~ log(kr) and Zlklzkp sz ~ k;l.
To see the leading order behavior Ecorex ~ krp in (1.9), one may use that Ay , ~
|k| max{|k|, kr} (in an average sense) and that | Ly | ~ k% min {|k|, kr}. Moreover, from
the expansion

log(1+x) —x ~ —x?/2+0(x*)x—0 (1.11)
we have
2
E o2 [T S )
corr,bos N — 6 kK p - 2—2
4(27) kez3 o\ g, Mep Tt
1 A —1.\2 1
= Z(kaF ) Z S — (1.12)
42m) o paele Ae,p + Akog

and hence the asymptotic behavior Ecorr bos ~ —kF log(kr) in (1.9) follows similarly.

Note that the correlation energy Ecorr bos+ Ecorr,ex in Theorem 1.1 is exactly the mean-
field analogue of the Gell-Mann—Brueckner formula c p log (p) + ¢z p for jellium in the
thermodynamic limit [13]. Indeed, substituting k' Vi — 4me? k| and (27)° —
the volume 2, Ecorr bos agrees with [22, Eq. (34)] which is equivalent with [13, Eq.
(19)] (accounting also for spin). In the thermodynamic limit, the right-hand side of
(1.12) always diverges, no matter if we have the mean-field scaling or not, but the full
expression on the left-hand side converges in either case.
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Furthermore, we also obtain the exchange contribution E¢orr ex, Which is the analogue
of [13, Eq. (9)], which is completely absent from the bosonic model of [22]. With the
same substitutions as above, the exchange contribution takes the form

4 e’ 1
Ecorex =2+ 755 Z Z 2 21 2 2 2
40 T piger, K |p+q K23 (1pPP+1p —k1*) + 3 (Ig1* +1g — kI?)
1
NI Y 2 (113)
kI“lp+q —kI“k-(p+q —k)

keZ3 p.q€Lli

which agrees with [20, Eq. (9.14)] (notlng that we take m = 1/2).
2. If the potential satisfies ZkeZ3 V |k| < oo, and so is less singular than the

Coulomb potential, then the bosonic contrlbutlon Ecorr,vos 18 of order kr, while the
exchange contribution is o (kr). In this case, the upper bound

inf o (Hy) < Eps + Ecorr,bos + 0 (kr) (1.14)

is already known; see [10, Remark 1 after Theorem 1.3] and [5, Appendix A]. Under the
stronger condition ) Vk |k| < oo the matching lower bound was established in [5,10]
(see also [2] and [3] for previous results on the upper and lower bounds, respectively,
when Vj is finitely supported). In comparison, the Coulomb potential is much more
challenging to analyze, since it leads to an additional logarithmic factor in the bosonic
contribution, and lifts the exchange contribution to the order kr. On the mathematical
side, working with the Coulomb potential thus requires a substantial refinement of the
bosonization method compared to the existing works.

3. Although the case of the greatest physical interest is the Coulomb potential, our re-
sult covers a far greater class of singular potentials: Under the condition ) kZ3 sz < 00,

the error term \/ZkeZ3 \7,3 min {|k|, kr} is of order at most O (\/kp), and so Theo-
rem 1.1 is always a meaningful result.

1.2. Overview of the proof. We will construct a trial state by applying a quasi-bosonic
Bogolubov transformation to the Fermi state yrs. We will follow the general formu-
lation of the bosonization method in [10]. We quickly recall this here for the reader’s
convenience, after which we explain the new components of the proof and the structure
of the rest of the paper.

Rewriting the Hamiltonian We will use the second quantization formalism in which we
associate to every plane wave state u, of equation (1.4) the creation and annihilation
operators ¢;, = a*(up) and ¢, = a(up) on the fermionic Fock space. They obey the
canonical anti-commutation relations (CAR)

{Cp,Cq} = {c;’;,cZ} =0, {CP,CZ} =68pq. D-qE€ 73, (1.15)

The Hamiltonian Hy of equation (1.3) can then be written as Hy = Hyin + k;l Hin
where

Hyin = lelzc;cp, Hine = 2(2 oY Z Z chp+kc _kCqCp.  (1.16)
pez’ keZ3 p.qeZ’
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Note that the Fermi state /g obeys (B{ denoting the complement of By with respect
to Z3)

Cpl//FS = O = C;WF57 P € B;" q € BF7 (117)

and so it follows by the CAR that the kinetic energy of the Fermi state is

(Yes, HinVrs) = Y |pl*. (1.18)

PEBF

We define the localized kinetic operator H|,, by

Hyy = Hiin — (Yes. HainVrs) = Y [plPche, — D Iplepcs

peBy pEBr
-y (|p|2—k§) chept Y (k%— |p|2) cpch, (1.19)
PEBL PEBF

where we for the last identity used the “particle-hole symmetry”

Ng = Z chep = Z cpc, onHy. (1.20)

peBY, PEBF

From the last identity of equation (1.19) it is clear that Hy, is non-negative.
‘We normal-order Hi.m with Ijespect to ¥rs: Using the CAR and the fact that ) pez’ c;;
¢p =N = N on Hy, it factorizes as

i
202

int

k
STV DD chep Yok | -N]|. a2D

keZ3 peZ? qez?

Decomposing for every k € Zi

> b wcp=Bi+B* + Dy, Bi= ) ch cp. (1.22)
peZ3 PELk
we can write
1
imszVk((BHB «) (B +B*,) —N)
keZ3
1 ~ *
Vi (2Re ((By + B*,)* D) + DDy . 1.23
+2(2n)3k6223 « (2Re (B + BX,)" D) + D Dy) (1.23)

Using the CAR again it is easy to compute that

[Be. Bf] = 1Ll = 3 (c;;c,, +c,,_kc;;7k) (1.24)
pELk
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whence (using also that Vi =V_p)

1 X
DOViIN = L)+ ——— TG = Y Vi (2B{ Bi + ByB_i + B*  B})

kel keZ3

int =

2(2 22n)°

> Ve | 2Re (Be+ B5) D)+ DiDx = Y (chep+epicyy )

5 (713
2(2 ) keZ3 PELk

(1.25)

Note that the first sum is finite as |Lg| = N for |k| > 2kp. It is easily verified that
Dy yps = D,f YEs = Bryrs = 0, so we deduce from this identity that

(VEs, Hin¥rs) = D Vi (N = |Li]) (1.26)

3
2 (2 ) kez3
and we summarize the calculations above in the following:
Proposition 1.2. It holds that

5o —1
k
E s (2B{Bi+ByB_; + B*;B{) +C+Q

/
Hy = Eps + Hjj, + Y
keZ3

where Ers = (Yrs, HyVrs) and the cubic and quartic terms, C and Q, are defined by

k_
= 3ZVkRe (B + B*,)" Dy),
(27[) keZ3
Z Di Dy — Z (c Cp+CpiC k)
2(271)3 ke 23 PELk "

We will prove that the cubic and quartic terms are negligible, and so the main con-
tribution to the correlation energy comes from the bosonizable terms

—H + (2B} By + B B_ + B* B 127
tin kXZ;zz)g i Bi+ ByB_i + B, BY) . (1.27)

We will write these in terms of quasi-bosonic operators, which will lead us to define a
quasi-bosonic Bogolubov transformation that serves to effectively diagonalize them.

The quasi-bosonic quadratic Hamiltonian We define the excitation operators bj; » b, p.
fork e Zi and p € Ly, by
br,p = c;’;_kcp, b}f’p = c;cp_k. (1.28)

The name is due to the fact that b} p acts by annihilating a state with momentum p —k €

Br and creating a state with momentum p € B¢, i.e. it excites the state p — k to the
state p.
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For the purpose of computations it is convenient to also introduce a basis-independent
notation for the quasi-bosonic operators. Consider for k € Zi the auxilliary space
0%(Ly), which we will consider only as a real vector space, with standard orthonormal

basis (ep)pELk' For any k € Zi and ¢ € ¢>(Ly) we define the generalized excitation

operators by (¢) and b (¢) by

be@) =Y (0.ep)bip. bi@) =Y (ep. 0)b; - (129)

PELk PELk

Note that the assignments ¢ +— by (@), b,f (¢) are both linear (as we only consider

02(Ly) as a real vector space). In this notation we simply have that by (ep) = b p-
A short calculation using the CAR shows that these operators are quasi-bosonic in the
following sense:

Lemma 1.3. For any k,1 € 73, ¢ € €>(Ly) and € €>(L)) it holds that

(b (@), br (W)] = [bi(9). bf )] =0, [b(@). b (V)] = Skt (@, ¥) +ext (@3 ),

where the exchange correction & ; (¢; V) is given by

e (@) = — Z Z (0. ep)leq ¥) (sﬁ,ch—lcsz +5p—k,q—lCZCp) .

peLy qely

Note that in the purely bosonic picture the exchange correction is absent. In our
quasi-bosonic case, these corrections are small but non-zero; it will be important to keep
careful track of them as it is these that gives rise to the exchange contribution Ecor,ex-

For any operators A, B on ¢>(Ly), we define the associated quadratic operators
0%(A), 05(B) on Hy by

ok = Z (ep. Aeg) by ,biq = Z b (Aep)b p (1.30)
P.g€Lk pELk
and

05(BY = 3" ep Beg) (Bhpb—tr—g + b4 _4bi.,)
P-q€Lli

3 (bk(Be,,)b_k,_,, + bfkﬁpb}:(Be,,)> . (1.31)
pELk

Defining the operator Pj on 02(Ly) by

Pe=lvg) (vl Viky Y ep € C(Lp). sothat (ep, Preg) Viky
=lvg) (x|, w=, ——= e , sothat (e,, Pie,) = ——
k k k k 2(27_[)3 P k ps» Lk€q 2(27[)3
PEL
(1.32)

3 Note that these definitions differ slightly from those of [10]. The main change is the definition of Q’f (A);
this operator is what was denoted QII(A) in that paper.
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we can express the interaction part of the bosonizable terms as

Vik !
Z 5 (];;)3 (ZB:B]( + BrB_j + BikB;:) = Z (2 Qllc(Pk) + Qlé(Pk))
keZ3

- 2 Viky' b b Viky! by »b b, _ bt
- Z Z 2 (27.[)3 k,pPk.q + Z 2 (27.[)3 ( k,pP—k,—q + —k,—q k,p)
keZ3 P.qeLli P.qeLly

(1.33)

The localized kinetic operator Hy;, cannot be written exactly in a quadratic quasi-bosonic
form, but due to the commutation relation

[ngm, b,*;p] = (|p|2 —p- k|2) b, = 20 pbf, (1.34)

(see [10, Eq. (1.76)]) and the quasi-bosonicity of the b , operators, it is sensible to
consider it analogous to a quadratic operator of the form

SN 2hpbf by = Y 205 (1.35)

keZ3 peLk keZ3

where the operators /i on £2(Ly) are simply defined by /e p = M, pep. In all we thus
consider the bosonizable terms as being analogous to a quasi-bosonic quadratic operator
as

Her ~ Y (2 05+ Py + 05(P0) (1.36)

keZ3

The quasi-bosonic Bogolubov transformation 1If the quadratic Hamiltonian on the right-
hand side of equation (1.36) was exactly bosonic, it could be diagonalized by a Bogolubov
transformation. Motivated by this we define such a transformation in the quasi-bosonic
setting, while keeping careful track of the additional terms arising from the exchange
correction.

Let Ky : €2(Ly) — £>(Ly).k € Zi, be a collection of symmetric operators satisfying

(ep, Kkeq) = (e_p, K_ke_q>, k e Zi, p.q € Ly. (1.37)
Then we define the associated quasi-bosonic Bogolubov kernel K on Hpy by

1
P Ip I LA (RETONEN

leZ3 p.qely

= % Z Z (bl(Kleq)b—l,—q - il,—qbl*(Kleq)> : (1.38)

leZ3 q€L;

It is obvious from the second equation that K is skew-symmetric; K thus generates a
unitary transformation K Hy — Hy - the quasi-bosonic Bogolubov transformation.

We consider the case ), ez3 1 Kk |2, < 00, in which case K is not only well-defined
but even bounded as an operator on H y, as we will prove in the next section.
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We choose the operators (Kj) such that e~ would diagonalize the right-hand side of
equation (1.36) if it was exactly bosonic. As explained in [10, Sect. 3] the diagonalizing
kernel is

1 _

1
1 _1 1 1\ 2
Ky = _EIOg (hk 2 (h,f (hy +2Pk)h,f> hy ) . (1.39)

Bl—

Keeping careful track of the quasi-bosonic corrections, the action of ¢/ on the bosoniz-
able terms are as follows:

Theorem 1.4. Let Hegr be as in (1.27). Assume ) kez? sz < 00. Then X is well-defined

and

K —K k, —K —K,
e~ Hegre = Ecorr,bos + H[éin +2 Z Q] (e hre™™F — hy)
keZ3

1
+> / UK (e ({Kk, Bi(HD+2Re (EL (A (1)) +2Re (E2(Bi(1)))) e~ 1% ar
keZ3 0

where for any symmetric operators A, By : (L) - Ez(Lk) we define

ex(Ap) = — Z (ep, Akep> (c;cp +cp_kc;_k> ,
peLy

ELAD =) Y D bi(Akep) {era(eps eg), b (K je_y)}

leZ3 peLigely

1
E(BY) =3 D007 {beBrep). {ek—ile—pie—y). bf (Kieg)}} .

1€Z3 peLi g€l

and for t € [0, 1] the operators Ax(t), Bi(t) : €*(Ly) — €>(Ly) are given by
1
Ar(t) = 2 (elKk (hi +2P) 'K + e_’Kkhke_[Kk) — hy,
1
Bi(t) = 5 (eth (hi +2Py) eth _ efthhkefth) )

This result is essentially the same as [10, Proposition 5.7], except that we now do not
introduce a momentum cut-off and assume only that ) ", ez sz < oo. For the readers
convenience, we include in Appendix A the proof of the identity of Theorem 1.4 - that
the condition ) 73 sz < oo is sufficient to define e/ is proved in the next section.

Outline of the paper Now we come to the main part of the paper. We will choose as our
trial state ¥ = ¢ ypg. As mentioned the cubic and quartic terms are negligible, so the
energy of our trial state energy is by Theorem 1.4, to leading order,

<\I,7 HN‘IJ) ~ EFS + Ecorr,bos

1
& 30 [ (s, 0708 (suctku Bt +2Re (8 (Are)

keZ3
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+2Re (2B ) e  ypg) ar. (1.40)

The main task will thus be to extract the exchange contribution Ecorrex from this last
term. The outline of the paper is as follows:

In Sect.2 we show that ¢ is well-defined by proving that KC is bounded under the
condition ) ;.53 sz < 00. We do this by employing a type of higher-order fermionic
estimate, resulting in a bound of the form

+K<C ) VN (1.41)
keZ3

which will also be crucial in allowing us to control N later.

In Sect. 3 we establish various bounds on the one-body operators Ky, A (¢) and By ().
This is conceptually similar to the one-body analysis in our previous paper [10], but we
must refine several estimates in order to establish control using only the assumption that
Zkezz ‘A/kz < oo

In Sect. 4 comes the main new work: We engage in a detailed study of the exchange

terms 8,& (Ay) and 8,?(Bk) so that we can extract E¢orr ex from the last term of equation
(1.40), first in the form

2 /01 <WFS’ 2Re (Ef(Bk(t))) lm:s>dt, (1.42)

keZ3

and then analyze this expression further to obtain the leading order of this, which is
precisely Ecorrex as given in Theorem 1.1.

Finally in Sect. 5 we control the non-bosonizable cubic and quartic terms, and bound
the number operator N and its powers by a Gronwall argument. We end the paper by
concluding Theorem 1.1.

2. The Bogolubov Kernel

We consider the kernel K defined by (1.38). We prove the following:

Proposition 2.1. Let K; : 02(L) — 2,1 e Zi, be a collection of symmetric
operators. Then provided Zlezi ||K1||%S < 00, the expression

1
K= 5 Z Z (ep, Kieq) (bz,,,b_z,_q - bil’iqb;“’p>

1eZ3 p.qeLy

defines a bounded operator KC : Hy — Hy, and for any W, ® € Hy we have

(W, K@) <5 [ IKillfisy/ (¥, (Wg + 1) W) (@, Wg + 1) ).

1ez3
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Note that N = 3 e pe €j¢p = X e, €pC, = |Br| = N on Hy. Moreover, it was

shown in [10] (see also Theorem 3.1) that the kernels in (1.39) satisfy ||Kk lgs < CVk,
and hence the boundedness of /C follows from the assumption ) kez3 Vk < oo. Let us
write

o ey e
K=K-K* K=3 30D lep Kieg)bipb-i.—. @.1)
leZ3 p.qeLy

and focus on the boundedness of K. Since

2K = Z Z <ep,Kzeq>bl’pch+[c_q

1eZ3 p.qeLy
= > D0 D" 1L,@) (ep- Kieg)bipe? | c—g- (2.2)
qeBf \leZ3 peL

for any W, ® € Hy we may estimate by the Cauchy—Schwarz inequality

2
~ 1
(W K0) <5 | D0 130 2 1@ (Kieg ep)e—guibi 0| |3 ey
\| 9€B; ||1€Z3 peLi q€ B

2

1
=3 D0 D @) (Kieg, ep)cgubf V| (@, Np®). (2.3)

q€BY, ||1€Z3 peL;

The operator appearing under the root can be written as

DD @) (Kieg ep)equbi, =Y Y 11,(q) (Kieg, ep) chepic—qu,

1eZ3 peLy leZ3 peL;

= Z Z ZZ5,,,,p5q/,,,_,3r/,_q+,1L,(q)(Kleq,e,,) chcgey. (24)

p'eB%. q',r'eBr \leZ3 peL;

Let us estimate the following general expression, with some coefficients A, , ,,

Z Z Ap g.rCpCqCr (2.5)

pEB q.reBr

A higher order fermionic estimate. Note that the Cauchy—Schwarz inequality trivially
implies that

I3 apepw] = 314, 0lc,v1 < \/Z |Ap|2\/Z lep w2 26)

but this is non-optimal for fermionic states. The “standard fermionic estimate” states

that
pep¥| = 314 1w @7)

HZAPCP\I/
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which can be proved by appealing to the CAR as follows:

(X aren) (X A0ea) = {(2 aer) " (X A0e0) | = L Ao {65 o]
=>4 2.8)

One can imagine generalizing this to quadratic expressions of the form ) g Ap.aCpCqs
but this fails since the CAR only yields a commutation relation for such expressions, and
not an anticommutation relation. However, for cubic expressions, such as Z . Apg, rCph
¢qcr, the CAR does yield an anticommutation relation, allowing the trick to %e apphed
The anticommutator is of course not constant, but rather a combination of quadratic,
linear and constant expressions, but this still yields a reduction in “number operator
order”, which will be crucial for our estimation of N g’ ¢ later on. We will need the
following basic anticommutator:

Lemma 2.2. For any p, p' € By and q,q’,r,r" € Bp it holds that

*
* * * Lk * * * *
{(cpcqcr> , cp,cq/cr/} = 8p, p/Cq/Cr €y Cq +8q.q/ClyCriC Cp+8y,p1CCqrcyCp

— &g p/crrc Cp—Spg p/c,/c Cp

*
— 8q.q'8r.rCpCp = 8p. prBrriCqrCy = 8p. pr8q.q1Criy

q
* k
84,1 8r.q/CprCp + 8 prBrgrCrrCy +8p prdq ey cy

+8p,p'8q.,q'8r.r" — 8p,p 8.1 0rq-
‘We can now conclude the desired bound:

Proposition 2.3. Let A, , , € C for p € By, and q,r € Bp with ZpeB; > g.reBr
|Ap,q,r}2 < 00 be given. Then for any ¥ € Hy

YD ApgrcheqerV <SZ S |Ap g (W WE+D W)

peBy q.reBF pEBS. q.r€BF

Proof. As in the proof of the standard fermionic estimate (2.8), we have

2

*
D 2 Aparcheer¥

pEBL q.reBr

< Z Z A A o w (o) . oot w
= p.q.rpq’.r ’ p=q4=r) o Eptatr )

p.P'€B} q.9'.r.r'€Bp
Hence, by the identity of Lemma 2.2, we bound the left-hand side by
Z Z Ap.qrAy ¢ <\II (Sp PpICqICrCrey +8, qzc;/crrcfcp +38, ¢ p/Cq/CqCp) \I—'>
p.p'€BY q.q' r,r'eBF

Z Z Ap,q,rAp’,q’,r’ (\IJ, (6 q’c ,C /cqcp +5r,q’ p,c /cqcp) lll>
]7,[)/€B; q.9'.r,r'€Bp
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* K
3 S AparAy gy (xp, (aq,q,s,.,,/cp,c,, $8y 8 prCqCh+ S, p/z?q’q/cr/cr> \1/)
PP EBFq q',r,r'€eBfp

Z Z Al’J]-”Ap’,q’,r’ <\[—’, <5q’r/8r’q/C;/Cp + 5p,p/8r,qlcrlcz']< + 8[) p/(Sq r/C 1Cp ) l[.l)
p.p'€By q.q' r.r'€BR

3 > Far Ayt (U (8.8t = BBy ) ¥). (2.9)

p.p'€BY q.q' r,r'eBR

We estimate the different types of expressions appearing above. Firstly, by the standard
fermionic estimate (2.8),

2
> Y Tparhpgr (U (ppegeri) W)= D0 | D Apgrcicw

p.p'€BE q.q'.r,r' €BF pEB} ||q4.r€BF
2
e 2
* * *
=D DI [ D3Frrera E11 ) IED BN DIND DR B
pEB‘;. geBFr reBr pEB;, qeBr \ reBr
2 w2
=2 2 |Avgs] avl =3 3 Ay wNpY)  (210)
peB q,reBf geBF pEBquEBF

and likewise for the other two terms on the first line of equation (2.9). For the terms on
the second line we similarly estimate

Z Z AP#‘IJAP/J]/,F/ <‘IJ’ <8rq p/Cr/C Cp) \Ij)

p.p'€BG q.q'.r,r' €BF

Z Z Z Ap’,r,r/cp/cj/"p Z Z Apyq,rCZCp\IJ

reBfp p’eB; r'eBp peB; q€BF

> I A el |37 1Apgsl epv]
‘B,

pEBy 1,r'€BF qEBF

IA

IA

=20 Y A [0 [Apal? LI el
reBrp \| peBg r'€BF pEBY. q€BF pEB}

= Z Z |qu, (U, NgW) . (2.11)
per,qu,.

The terms on the third line of equation (2.9) all factorize in a manifestly non-positive
fashion, and so can be dropped, while for the fourth line

Z Z AparAp.q.r <‘Ij’ (8q,r’5r,q’cz/cp> \If>

p.p'€BE q.q' 1,1’ €BF

= Z Z Ap rgCpV¥s Z mcpllf

q.r€Bp \p'eBy PEBY
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= Z Z Ap rgCpV Z mcp‘l’

q.r€Br || p'eBS; pEBY
2 2 2 2 2
< 0 DY Al D0 Apar TP = Y0 DT [Ap g I
q,r€BF \ p'eBs, pEBY. pEBL q.reBr

2.12)

Lastly, the terms on the fifth line are seen to simply be constant and easily bounded by
ZpeB% Zq,reBF |AP7‘IJ

We can now conclude the following bound for K, which in turn implies Proposi-
tion 2.1.

2 o
, whence the proposition follows. O

Proposition 2.4. For any ¥, ® € Hy it holds that

~ 5
(v, Ko)| < % 3 IK sy (V. Vi + 1) ) (@, Nz D).

lez3

Proof. By (2.3) and (2.4), combined with the estimate of Proposition 2.3, we can bound

2
|<w,/€¢>|s%§ D2 2 12 D dwbepidr—qnlLi(@) (Kieq. ep)

qu; p’EB; q',r'eBF lezz peL;

(W, (NVE + 1) W) (0, Np ). (2.13)

The sum inside the first square root is exactly equal to ZIEZS | K; ||12-13~

3. Analysis of the One-Body Operators

In this section we analyze the operators K, A (t) and By (¢) which appear in Theorem
1.4, obtaining the following:

Theorem 3.1. For any k € 7.3 it holds that
IKkllus < CVimin {1,k [k|72).

Moreover, forall p,q € Ly andt € [0, 1],

\A/kk_l
\ep, Kreg)] < C £
Aep +Aiyg
(ep, (—Kp) eq) — Vikp! 1 Vikg!
”’ W 20m) hep +reg Mep + Mg

’

[leps AxDrey)

(e (Ki, Bu(D)eg)| < € (1 + 17,3) VK",

(ep: Brneg)| = € (1+V2) Vi,
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1 ka;l
<e”’ </0 Bk(t)dt) e"> T 4@ny

for a constant C > 0 independent of all relevant quantities.

<C (1 + Vk) Veky!,

The analysis of this section is similar to that of [10, Sect. 7], but compared to that
section, the estimates of this section are considerably more precise: We quantify the
error of the upper bound on <e p» (—Kk) eq>, obtain elementwise estimates for Ay (¢) and
By (t) (rather than only estimates for the norm ||| » as in [10]), and determine the

leading term of the operator fol By (t)dt which will be needed to extract the exchange
contribution in the next section.

3.1. Matrix element estimates for K -quantities. To ease the notation we will abstract
the problem slightly: Instead of £2(Lj) we consider a general n-dimensional Hilbert
space (V, (-, -)),leth : V. — V be a positive self-adjoint operator on V with eigenbasis
(x;)7_, and eigenvalues (1;)7_,, and let v € V be any vector such that (x;, v) > 0 for
all 1 <i <mn,andlet Py, (-) = (w, -) w be the projection onto w € V. Theorem 3.1 will
then be obtained at the end by insertion of the particular operators /iy and Py.

We define K : V — V by
1
(n+2p )2h2>.
h2v

(3.1)

D=

1 1/l NS 1 _
K:—§10g<h 2(]’12 (h+2Pv)h2)2h 2):_§1Og<h

1
As (h2 + ZPh% )7 > h we see that K < 0. In [10, Sect. 7.2] we proved the following

v
result.

Proposition 3.2. For all 1 < i, j < n it holds that

1 +2<v2,h—1v) <Xi’)::_<;ji xj)S(xi, <e_2K—1>xj'>7<xi, (1 — eZK) xj)SZW.

Below it will be more convenient to consider the hyperbolic functions sinh (—2K') and
cosh (—2K) rather than ¢~2X and ¢?X . The previous proposition implies the following
for these operators:

Corollary 3.3. For any 1 <i, j < n it holds that
(xi, v) (v, x;)

Ai t A

2(v, i) (xi, v) (v, x5)
(x“(COSh(_zK)_l)xf>51+2(v,h—1v) Mi+dj o

(xi, sinh (—2K) x;) <2

’

Proof. These bounds follow from Proposition 3.2 and the identities

sinh (—2K) = % ((e_2K - 1) + (1 - ez")) :
cosh (—2K) — 1 = % ((e*ZK _ 1) _ (1 _ 62K>). (3.2)
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Now we extend our elementwise estimates to more general operators. These estimates
are similar to those of Proposition 7.10 of [10], but more precise. First we consider K
itself:

Proposition 3.4. For any 1 < i, j < n it holds that

1 (xi, v) (v,xj>

(xi, v) (v,xj)
L+2(v,h=1v)  Ai+2y '

AitAj

< (xi, (=K)xj) <

Proof. From the identity

%i%( -~ x <o, (3.3)

which follows by the Mercator series, we thus have that —K = % > % (1 — %K )m
Noting that Proposition 3.2 in particular implies that (x;, (1 — e*X)x;) > 0 for all
2K)m

1 <i, j < n, whence also <x,~, (1 —e xj> > 0 for any m € N, we may estimate

(oK) 5) = 5 i e (1= ) )= 5o (1= ) )

4
= L+2{v,h=1v)  Ai+4 G4

which is the lower bound. This similarly implies that (x;, (—K)" x;) > 0 for all 1 <
i, j <n,m € N, so the upper bound now also follows from Proposition 3.2 by noting
that

(xi, v){v, x;) 1 - o~ "
#zg(xi,(e K- ) '> 5 2 i (C2K)™ x) > i, (< K) xj ).

m=1

(3.5)

The proof of Proposition 3.4 is complete. O

The fact that (x;, (—K)" x;) > O forall I <i,j <n,m € N, has the important
consequence that for any such i and j, the functions

1+ (xi, sinh (—1K) x;), (x;, (sinh (=t K) + 1K) x;), (xi, (cosh (—1K) — 1) x;)
(3.6)
are non-negative and convex for ¢ € [0, 00), as follows by considering the Taylor ex-

pansions of the operators involved. This allows us to extend the bounds of Corollary 3.3
to arbitrary ¢ € [0, 1]:

Proposition 3.5. Forall 1 <i, j <nandt € [0, 1] it holds that

. (xi, v) (v,x-)
t < <x,-, sinh (—tK) xj) < T}ijt,

1 (xl-,v>(v,xj)
1+2(v, h=v)  Ai+Aj
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(v, hilv) (x;i, v) (v, xj)
<U h—1lv > Ai +)»j

o e 1) ) = S0

Proof. By the noted convexity we immediately conclude the upper bounds

)

0 < (xi. (cosh (—tK) — 1) x;) 5

t

(xi. sinh (=1 K) x;j) < > (xi, sinh (=2K) x;) < i) v xj),

Ai+Aj

(v,h’lv) (xi,v)(v,xj>

2(v,h—1v) Ai+hj
(3.7)

[\

(11, (osh (=1K) —1) ;)= (1, (cosh (~2K) ~1) 1) < 1

and by non-negativity of (xi, (sinh (—tK)+tK)x j) and Proposition 3.4, the lower
bound

1 (x;i, v) <v, xj)
2<U, h_lv> Ai +)‘j

(x;, sinh (=1 K) x;j) = (xi, (—1K) xj) > 1 (3.8)

Lastly we can apply the non-negativity of the hyperbolic operators to conclude the bound
for 'K — 1 as

(i, (% = 1) ;)| = |fwi. (Ccosh (—1K) — 1) = sinh (—1K)) x)

(xi, v) (v,xj>

< max {(x,-, (cosh (—tK) — l)xj> , (x,-, sinh (—tK) xj)} < oy

(3.9

3.2. Matrix element estimates for A(t) and B(t). Wenow consider operators A(t), B(t) :
V — V defined by

1
A =3 (e’K (h+2P,) 'K + e—’Khe—’K) —h,

— l tK tK _ —tKy —tK
B() = (e (h+2P,) 'K — e K e ) (3.10)
for ¢t € [0, 1]. We decompose these as
A@) = Apt) + 'K P, Bity=(1—1)P,+B,t) +'K P — P, (3.11)
with
Ck () =cosh(—tK)—1, Sg(t) =sinh(—tK),
Ap(t) = cosh (—tK) hcosh (—tK) + sinh (—¢tK) hsinh (—tK) —
= {h, Ck ()} + Sk (1)h Sk (1) + Cx (1)h Ck (1),
Bj(t) = —sinh (—=tK) hcosh (—tK) — cosh (—=tK) hsinh (—tK) + t P,
=tPy,—{h, Sk ()} — Sk (t)h Cx(t) — Cx(t)h Sk (¢). (3.12)

We begin by estimating the e’X P,e'X terms:
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Proposition 3.6. Forall1 <i, j <nandt € [0, 1] it holds that

Kx,-, (e[KPve’K — PU> xj>’ < <2+<v,h_lv>> <v,h_lv> (x;, v) <v,xj).

Proof. Writing
K P!k — p, = {PU, 'K — 1} + (e’K - 1) P, (efK - 1) (3.13)
we see that
(xi- (e Pue™ = P) xj) = (i) (€% = 1) v+ (i (5 = 1) o) o, x5)
+<x,-, (efK — 1) v><(e’K - 1) v,xj>. (3.14)

Now, by Proposition 3.5 we can for any 1 <i < n estimate

o (=)ol =[S (5~ 1)l = 32 By

A
—
=
<
=

-
p—
=
~
=
[S)
—~
=

<
~

—_—
<
=

—_
<

—_

~~

W

—
%!
N

whence the claim follows. 0O

Note that for (x;, e'X P,e' ¥ x ;) this in particular implies the bound

2
Kxi, etKPvethjH < (1 +<v,h—1v>) (xi, ) (v, ;). (3.16)
We now consider Ay (¢) and By (1):
Proposition 3.7. Forall 1 <i, j <nandt € [0, 1] it holds that

|(xi, An(D)x;)| .

(xi, Bh(t)xj)| < 4(1), h_1v> (xi, v) (v, xj).
Proof. The estimates of Proposition 3.5 imply that
[(xis (h, Cx ) x)] = (i +27) [(xi- Cx (1))

(v,h7 1) (xi, ) (v, x;)

S(ki+kj)l+2(v,h—1v) it

< <v,h7]v> (x,',v)(v,xj), (3.17)

and

Dk {xi, Sk (xe) (e, Sk (0)x;)
k=1

[(xi. Sk (O Sk (1)x))] =

(xi, v) (v, %) (xx, v) (v, x;)
<ZA Ai +)\.k At A

n 2
< {xj,v) (v, xj)z M = (v, h_lv> (x;, v) (v, xj>. (3.18)

A
k=1 k
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The latter estimate only relied on the inequality

(xi, v)(v,xj)

’(xi’ SK (t)x])| = )"i + )\’]

) (3.19)

whichis also true for Cg (¢),sotheterms Cg (t)h Cg (1), Cgx (t)h Sk (t) and Sk (£)h Ck (1)
also obey this estimate. It thus only remains to bound t P, — {h, Sk (¢)}. From Proposition
3.5 we see that

1+2<v’h_1v>t < (xi, {h, Sk O} x5) < (xi, v) (v, xj) ¢ (3.20)
whence

\(xi, ¢ Py — {h, Sk O} xj)| = (xi, Poxj)t — (xi, {h, Sk (1)} x})

1
<|{l— ——F | (x;,v v,x~t<2<v,h71v> xi, V) {v, x;i). 3.21
_< 1+2<v’h_lv>)<, ) v.xj)t < (o) fv.xg). (32D
O
Combining equation (3.16) and Proposition 3.7 we conclude the following:

Proposition 3.8. Forall 1 <i, j <nandt € [0, 1] it holds that

|(xi, A(t)x,-) (xl-, B(t)xj)| <3 (1 +<v, h71v>>2 (xi, v) (v,xj>.

’

Analysis of (K, B(t)} and [, B(t)dt We end by estimating {K, B()} and [ B(t)dt,
the latter of which will be needed for the analysis of the exchange contribution in the
next section.

Proposition 3.9. Forall1 <i,j <nandt € [0, 1] it holds that

|(x,', {K, B(t)}xj)| <6 (1 + <v, hilv>)2<v, h71v> (xi, v) (v, xj>.

Proof. Using the Propositions 3.4 and 3.8 we see that

n

Z (xi, Kxi) (xi, B(1)x;)

k=1

3 (14 o)) Y L) 1y
k=1

51 KB, =

IA

A+ Ax

<3 (1 + <v, h—1v>)2 Xn: W (xi, v) (v, %)

_3 (1 +<u,h*‘u>)2<v,h*‘v) (xi, v) (v, ). (3.22)

This estimate is also valid for |(x,~, B(t)Kx J)i whence the claim follows. O
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Proposition 3.10. Forall 1 < i, j < n it holds that

<x,~, (/0] B(t)dt) xj> — % (xi, v) (v,xj> < (6+<v, h71v>> <v, hilv) (x;i, v) (v,x.,').

Proof. Noting that 1 5 (i v) (v, xj) = %(x,', Pyx;) and that

! 1 ! tK tK 1
Boydi — 5P, = ((1 — 1) Py + By () + &K Pyt K — PU) dt = 3P,
0 0

1
= / (Bh(t) +e'f Pt — PU> dt (3.23)
0
we can estimate using the Propositions 3.6 and 3.7 that
1 1 1
<Xi, (/ B(t)dt—EPu> Xj> < / <|<xi, By (H)x;)| + Kxi, (e’KPve’K—Pv) xj>‘> dr
0 0

< (6+<v,h_lv>> <v,h_1v) (xi,v)<v,x.,~). (3.24)

O

Insertion of the particular operators hy and P Recall that the particular operators we
must consider are Ay, Py : £>(Ly) — £>(Ly) defined by

hkep = )"k,pepa )\k,p = % (|P|2 —lp _k|2) >

Dk (3.25)
Pe() = (o, Jves v = (555 2 pery €
For these we have that
Vik! 1
(oo o) = 555 3 —. (3.26)
2 (27‘[) pely k,p
In [10] the following estimates for sums of the form ) pely )»f, , were proved:

Proposition 3.11. For any k € Z3 and p € [—1, 0] it holds that

kP kP Ik < 2k
Z )‘k p=

3 2B
o kv k| k| > 2kF

for a constant Cg > 0 independent of k and kr.
In particular, it holds that

> dly < Chpmin {1,k k| 72}, (3.27)
PELk

so (v, by o) = € Vi Addidionally,
&kk;l

—r 3.28
227)3 (928)

(ep. vi) vk, eq) =
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Inserting these quantities into the statements of the Propositions 3.4, 3.8 and 3.9 yields
Theorem 3.1, noting also that by Proposition 3.4

| Killus = Z |(ep, Kre )|2< ‘A/kk;l Z 1 ka : Z
HS — D ql| =
p.g€li 22n)° p.qeLy ()‘k»l"")‘kﬂ) Z(Zﬂ)3 peLy

< CVymin {1, k% [k|2}. (3.29)

4. Analysis of the Exchange Terms

In this section we analyze the exchange terms, by which we mean the quantities of the
expression

3 / =08 (e({Ke. BeOD+2Re (&} (Ax(0)) +2Re (E2(B(1))) ) ™~ Kar

keZ3
“.1)

which appears in Theorem 1.4. The name is apt as these enter our calculations due to
the presence of the exchange correction & ; (p; g) of the quasi-bosonic commutation
relations (see Lemma 1.3). To be precise, we will consider in this section the operators
ex({Ky, Br(H)}), Skl (Ar(t)) and é'kz(Bk(t)), and the effect of the integration will be han-
dled in the next section. The main result of this section is the following estimates for
them:

Theorem 4.1. For any V € Hy and t € [0, 1] it holds that

Y W, e (Ky, BiOHW)| < Chp' (W, Np W),

keZ3
> [{w.elcacaenw)| = ¢ [ V2 min ikl ke) (@, (WG +1) w),
keZ3 keZ3
> |{w. (e2Bewy = (vrs. B vrs)) )|
keZ3
= C [ V2 min (k| k) (W, N3 )

keZ3

; 52
for a constant C > 0 depending only on Zkezz Vi

The constant terms in the final estimate of the theorem give the exchange contribution
! 2
> [ (s 2Re (28100 vas)a. (42)
keZ3 0

It is not generally negligible for singular potentials V, and the leading behavior is given
by by
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Proposition 4.2. It holds that

5 [ (ves. 2Re (20800) vas)as — Faom| = © /Z 02 min (&1 kr)

keZ3 keZ3

for a constant C > 0 depending only on ) ;.3 ‘A/kz, where

VkVp+q k
Ecorr,ex - 4(2 )6 Z Z

+ A
keZ3 p.geli hep * Mg

Analysis of & terms. Let us first consider terms of the form ), ;3 ex(Ax), where we
*
recall that

ex(A) = — Z (ep, Arep) (cpcp +CpikCh k) (4.3)
pELk

When summing over k € Zi, we can split the sum into two parts and interchange the
summations as follows:

- Z ek (Ap) = Z Z (ep,Akep)c;cp+ Z Z (eq+k,Akeq+k)cqc2

keZ3 keZ3 peLi keZ3 q(Li—k)

= Z Z 12,(p)(ep. Arep) c;cp+ Z Z 11, (g +k) (egek- Akequk) cqc;,

peBy \keZi q€Br \keZ3
4.4)

Recalling that N = 3 BS CpCp = > geBy €€y on Hy, we can then immediately
conclude that

£ ) (A= | sup Y 1P |ep. Axep)|+ sup D 11, (g +k) [legaks Aveqer)] | Ne
kel PEBY ez 9€BF 13
<2 Z sup |(ep. Axep)| | VE. 4.5)
kezZ3 peli

By the estimates of the previous section we thus obtain the first estimate of Theorem 4.1:

Proposition 4.3. For any W € Hy and t € [0, 1] it holds that

D W, s Ky, BiODW) | < Chp' (W, Np W)
keZ3

. (72
for a constant C > 0 depending only on ZkeZﬁ V.
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Proof. By Theorem 3.1 we have that
e Kk, Bi())eg)| < € (1 + \7,3) Vak;', keZl p.geli  (46)

for a constant C > 0 independent of all quantities, so

D (W e Ke BaoDW)| <2 D sup |(ep. K. Be()}ep)| | (¥, NeWw)

el
kez3 kez3 P

= k' Y0 (14 02) V2 (W Npw) = Ok (T+IVIR) D V2 (W V).
keZ3 keZ3
.7

As V2 < IVI3 = 3 V2 the claim follows. O
0 2 keZy "k

4.1. Analysis of Ekl terms. We consider terms of the form
EAD =" Y > bi(Akep) {era(epi eg), b (K _je_y)}. (4.8)
leZ3 peLli gl

Recalling that
erieps eq) = — ((Sp,ch_lc;_k + 8p_k7q_1c:;cp) (4.9)

we see that 5,: (Ay) splits into two sums as

—EL A0 =2 D0 D biArep) [8pgcqmich g b (Kre—p)}

leZ3 peLi qely

3D biAkep) [paCuicpr b (K re—g 1)

1€73 pe(Li—k) ge(Li—1)

= X bitkep) {epich o b (Kogep)]

leZ3 peLinLy

Y biAepw) { ¢ 1Cprics b (K_le_p_l)} . (4.10)
1€23 pe(Li—N(Li~I)

The two sums on the right-hand side have the same “schematic form”: They can be
written as

ok ~ - B¢
Z Z blt(Akem){szcppb*,l(l(_lem)}, c,,:{cf: PP 4.11)

c (S} BF
173 peSkNS p P

where the index set is either the lune Sy = Lj or the corresponding hole states Sy =
Ly — k, and depending on this index set the variables p;, p2, p3, p4 are given by

(Pap_l’P_ka_P) SkZLk

. (4.12)
(p+k,p+l,p+k,—p—1 Si=Lr—k

(p1, p2, p3, pa) = {
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Note that in either case p1, p3 only depend on p and k, while p», p4 depend only on p
and /. Additionally, p; is always an element of Ly and p4 is always an element of L_;.
Since by, = ¢%_ycp = ¢p—iCpitiseasily seenthat [b, ¢] = 0,s0innormal-ordering
(with respect to Ygs) the summand of equation (4.11) we find
b (Akepl) {5;25193’ br, (K*lem)}
=b; (Akepl)5;25p3bil (K*lem) +b; (Akepu) b, (K*lem) 52251)3
= 25;2]7: (Akem) bZ, (K—lem) Cps +5;2b;§ (Akem) [5173’ bz, (K—lem)] - (413)

To bound a sum of the form 3", .73 £ (A) it thus suffices to estimate the two schematic
*
forms

Z Z Ezzblt(Akel’l)bil (K-1€py) Cps.

k,1€Z3 pESKNS

Do D Gubi(Aeep) [b—z (K_1ep,) » 523]* . (4.14)

k,1€Z3 pESKNS

Preliminary estimates We prepare for the estimation of these schematic forms by de-
riving some auxilliary bounds for the operators involved. Recall that for any k € Z3 and

9 € (L),

@)=Y (g ep)brp =Y (9 ep)ch_icp. (4.15)

PELk PELi
Denote Ny = Y pels b,’{"’ pbk, p- We can bound both by (¢) and b} (¢) as follows:

Proposition 4.4. For any k € Zi, Q€ 02(Ly) and ¥ € Hy it holds that

1
Ibx@ Wl < llpll INZ WL [E @] < Nl Il (Ni + D2 wl.

Proof. By the triangle and Cauchy-Schwarz inequalities we immediately obtain

1
@l < - le.ep)l e ] < el |3 Joep¥]® = ol 1N
PELk PEL

(4.16)

and the bound for ||b,’{6 ()W H now follows from (4.16) and the fact that

sk (@3 9) = [be@). bE@ ] — ol = = Y |{ep. o) (cpfkcj‘,_k +c}‘,cp) <0.
PELk

4.17)

O
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It is straightforward to see that N, < Ng. Moreover, by rearranging the summations,

ZNk = Z Z CHCp—kCp_iCp = Z cpCp Z Cp—kCpi =N} (4.18)

keZ3 keZ3 peLk PEBYL ke(Br+p)
on Hy. We also note that for any ¥ € Hy and p € z3
1 1 1
INZ EpWI < IEpNE W < NIEpNE W
1 - 1 - 1
N+ D2EW < 16 Wi+ D2V < IEp, NE+ D2V, (4.19)

as follows by the inequality (considering p € B{, for definiteness)

~% ~ * % * _ * * *
cp./\/kcp = E CpCqCq—kCq_kCqCp = E CqCq—kCq—k (cqcp Sp,q) Cp
= q€Lk

= ./\/kc;;cp — 1z, (p)c;cp_kc;_kcp < ./\/kc;cp (4.20)

and the fact that [ &5¢,, i | = 0 = [&5¢,, N |. Similtarly

L ~ 1 1. - 1
INgEp Wl < I N Wi, | (WE+D2EW < e, We+ D)2 W) (4.21)

To analyze the commutator term [b_l (K _e p4) , 57,3] we calculate a general identity:
Forany! € Zi, Vv € *(L;) and p € Z°

=1 |-l (p+D (V. ep)épu p € Br
[bz W), cp] - {1L[(p) eron b (4.22)

so for our particular commutator we obtain

- —1 —DI(K_ , S Ne =L
[b_z (K_zem),c;g]:{ Lo (p3 = D (K—iep,, eps—i)Cps—t Sk k

12, (p3) (K—iep,. €ps) Cpsai Sk =Ly —k~
(4.23)
It will be crucial to our estimates that the prefactors obey the following:
Proposition 4.5. For any k,l € Zi and p € Sy N S; it holds that
£ 1y (p2— K1 (p3—1)

11, (p3 = DI{K_1ep,, epsi)| < CV_ k7! . Sk =L,
12 (p3 = D (K—tepq. epsi)| b e b
P I (p2)1L_,(p3)

1 K_iep,, CV_ik! u d . Sk=Li—k
|10, (p3) (K—iep,, eps)] < kg T = Ly
Proof. Recall that py, p>, p3, ps are given by
( 9 _15 _k7_ ) SkZLk
(1 paprpny =1 P PR (4.24)

(p+k,p+l,p+k,—p—1) Sx=Ly—k’
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From this we see that for any p € Sy N S;

Ip_,(p3—=1) Spk=Lg _ Iy (p2—k) Sk= (4.25)
Ly —k .

1 ,(p3) Sk = I, (p2) Sk =Ly —k

where the assumption that p € Sy NS enters toensure that 15, (p—k) =1 = 1. (p—1)
or 1 BS, (p+hk)=1=1 B (p + 1), respectively. Importantly this also implies that, when
combined with such an indicator function, we also have the identity

Alps—l+A_lp, Sp=Lg _ JMep t Ak ok Sk = Lk (4.26)
L, —k ’

{)"—I,PS + Al ps Sk = Aepr Ak, ps Sc=Ly—k°
The claim now follows by applying these identities to the estimates

1L, (p3 = DV_iky"
A—l,p3—1 + Al p,

1L (p3)Voikz!
Alpy + Al py

112, (p3 =D (K_ep,. eps—i)| < C

) Sk = Ly, (4.27)

|10, (p3) (K—iep,. eps)| < C : Sy = Ly —k,

which are given by Theorem 3.1. O

Below we will only use the simpler bound

1o (ps =D (Ktepyepp)] Sc=Le  _ . Voiky!

}IL,I(P3) (K_[€p4, ep3)} Sk = Lk —k = \/)Vk,pl)\-—l,p4

but for the Ekz terms the more general ones will be needed.

(4.28)

Estimation of ) ;. c3 Ekl (Ag(t)) Now the main estimate of this subsection:

Proposition 4.6. For any collection of symmetric operators (Ay) and ¥ € Hy it holds
that

> > K bk Akep])b’il([(flem)gm\yﬂ

k,1€Z3 pESKNS

<C\/Z max | Awey |1 Ve +1)3 w2

kZ3

L X [t () s (kesen). 5] )

k,1€Z3 pESKNS

_1
D Ak I I NVE + 1) 1.

keZ3
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Proof. Using the triangle and Cauchy-Schwarz inequalities and Proposition 4.4 we es-
timate

> K\p &5, b7 (Akep, ) b (K,lem)gm\y)‘

k,1eZ3 PESKNS

= 2 2 b (Akep) @ 67, (Kiep,) Eps ¥ |

k,1€Z3 pESKNS

1
= 22 Y 1) [ Aken | [ Krep | INZ Ep W N- + D? & 0]

keZ3 pESk1eZ3

< Z (max HAkepH> Z I¢py WNE + 1)2 v

keZ3 PESk

lez3 1e73

> 15(p) | K iep, ||2J > 1 (DEpNE w2

-y (;nax |AkepH> INENEWI [ ep W + D w2

keZ3 PESk
>0 15 [Korep |
PESK €73
1
> max [Ave,|* 3 IK s INE+ DI | D INEA WP
kezs T lez3 kez;
= 20 max e, |* 37 IKils I Ve + D @1 NG Wl (4.29)
ke Z3 lez3

and the first bound now follows by recalling that || K; ||HS < CVI For the second we
have by the equations (4.23) and (4.28) that

Z Z ’(‘IJ 5* bk Akem) [b I(K_lel’4)95;3:|*\[l>‘

k,1€Z3 pESKNS

=D u[b_l(K_lem),e;]emwn [5¢ (Axep) W]

k,1€Z3 pESKNS

g
<0532 5% a0 el 2 i e 10644

1eZ3 PESI keZ3

_ 1 1s,(p)V_; -1
< CkP Il WE+ D2 W[ YY" = | Y " L ()l Akhy 2ep |12
poiezd v Atp kez3

Z Ls.(p) “EﬂsﬂFlEPz‘p”2
keZ3
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A2
—_ 1
< Chkp' W+ D2 W)y lek<p>||Akhk ep |12 le,(p)A
P \|kez3 1e73 ~lps
1
Y g (PERNE Y
lez3
_ 1
< ChF I WNE+ D2 W Nl | Y0 > Ak Top 2 PIED I
keZ3 peS leZ3  pes) Aty

< Ckp' | Y 1Ak, 2 25 —|| W+ D2 W [Np®]  (430)
»17

keZ3 1e73 peL;

where we used H Aep, H A
Ckpr.

The bound on ) keZ? Skl (Ak (1)) of Theorem 4.1 now follows by our matrix element
estimates:

= ||Akhk ep,|l. The claim follows by

-1
<
km peLz Lp —

Proposition 4.7. For any ¥ € Hy and t € [0, 1] it holds that

3 ’(xy el (Ak(t))\lf>‘ < C\/Z 7 min{|k|,kF}<‘lf, (Ng + 1) q/)

keZ3 keZ3

. 52
for a constant C > 0 depending only on Zkezﬁ Vi

Proof. By Theorem 3.1 we have

lep: Aceg)| = € (14 V2) Vikz', ke Z2, p.g e Ly 4.31)
Combining with |L| < Cmin{ k|, k3 } since quLk ,:q < Ckp, we get
2 A
S max [Are, | < 5 3 (1+ vk) V2 L]
vz P k kez3

=C(1+1V1%) 3 V2 min (K], kr)

keZ3

2
_1 _1
S lAoh s =Y Y <e,,, AL, zeq>
keZ3 keZ3 p.g<€Lk
<Ck2 Y (1+\7k) V2 Ll Z —
/{EZ?K qELk k.q
< Ckr (1 + ||v||go) > V2 min ([k|  kr) . (4.32)

keZ3

Inserting these estimates into Proposition 4.6 yields the claim. 0O
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4.2. Analysis of 5,3 terms. Now we come to the terms
1
EL(BY) = > bi(Brep), {6k —1(e—pi e—q), b (Kieg)}} . (4.33)
2
1eZ3 peli qely

We will analyze these similarly to the 6,{1 (Ag) terms. Noting that

etmt(e-pi e—q) = — (8pgCoquic® pus+ Sptgit ycp) (4.34)

we find that 5,3(Bk) splits into two sums as

—282B) =Y D 3 b Brep). {8pacguct o b (Kiep |

1eZ3 peLk g€l

+Z Z Z [ Bk€p+k) {5p,qC*—q—lC—P—k7bl* (Kl€q+l)”

173 pe(Lr—k) ge(Li=1)

— Z Z {bk(Bkep), {C—p+lcip+k’b;k (Klep)}}

leZ3 peLinL;

£ Y B [ty pn b (Kiepu) |}
1eZ3 pe(Li—k)N(Li—=1)
(4.35)

and again these share a common schematic form, namely

3 X (o (Bren) {en e v (Kiep) || @36

1eZ3 peSkNS;

where the momenta are now

(p,—p+l,—p+k, p) Sk = Lg

. 4.37
(p+k,—p—1L,—p—k,p+l) Sx=Lr—k ( )

(p1, P2, P3, P4) =I

Again p1, p3 only depend on p and k while p>, p4 only depend on p and /.
We normal order the summand: As

bi (Beep) |G b1 (Kiep) |
= &3, b1 (Buep) (€0, b (Kiep)}+ [bi (Buepn) &5, | {6 7 (Kiep,))
=28 bi (Beep) by (Kiepy) ps +E5,bi (Brep,) [b, (Kiep,) . 5;3]*
2 (Beep,) 65, 07 (Kiep,) s + b1 (Biep) . &5, | [b1 (Kiep) . &5, ]
=235 b (Kiep,) bi (Brep,) ¢ps + 285, [k (Brep,) . b (Kiep,)] ps
&, [ (Kiepa) &5, b (Brep) + 8, [bx (Beep) . [b1 (Kiepy) .5, ] ]

* ~k ~ ~%k ** ~
+2b; (Klem) [bk (Bkepl) , sz] Cpy +2 [bl (Klem) , [bk (Bkep]) , cpz] ] Cps
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— (b1 (Kiep) 5:3]* (51 (Beep) &, |+ {[x (Beew) . &5, ] [ (Kies) 5;3]*]

(4.38)
and simply

{0 b7 (Kiep,) | bi (Beep) = &, {2, bf (Kiep,)} b (Bue)

= 285,07 (Kiep) bi (Beep) &ps + S5, [b1 (Kiep) &5 | i (Beep)  (439)
the summand decomposes into 8 schematic forms as
(b (Brep) . 5,800 b7 (Kiep) |}
=43 by (Kiep,) br (Brep,) Epy + 285, [br (Brep, ), bf (Kiep,)] ps
423 [ (Kiep) . &, | e (Brep) +257 (Kiep) [br (Beep) . €5, ]
485, [ (Beep,) [ (Kiep) . &5 ] ] +2 b1 (Kiepa) . [ (Biep). cp]] Eps

—[or (Kiep) . @] [or (Brep) . &, ]+ [B (Bren) .65, ] - [ (Kieps) . 5, ] ) -

(4.40)

Of these it should be noted that only the last one is proportional to a constant (i.e. does not
contain any creation or annihilation operators). As the rest annihilate ¥/g, it follows that
(when summed) the constant term yields precisely (lpps, & ,3 ( Bk)tm:s>, whence bounding
the other terms amounts to estimating the operator

&2 (B — (vrs. 2B Vs (4.41)

as in the statement of Theorem 4.1.

Estimation of the top terms We begin by bounding the “top” terms

Z Z K16p4) by (Bkem)cps and

k,1€Z3 pESKNS
" -
Z Z bk Bkem) . by (K1€p4)] Cps-
k,1€Z3 pESKNS
By the quasi-bosonic commutation relations, the commutator term reduces to

Z Z bk Bkem)vbl* (Klem)]éps

k,1€Z3 PESKNS;

= Z Z (Bkepl, Kkepl)5235p3 + Z Z E;zek,z (Bkepl; Kl€p4) Cps

keZ3 pESk kleZ3 pESKNS
(4.42)

where we used that p; = ps4 and pp = p3 when k = [. Now, the exchange correction of
the second sum splits as

—&k,1 (Bkepl; K16p4) = Z Z <Bkep1 , e‘q><eq/, K16p4> (‘Sq,q’cq’—lcz—k + (Sq—k,q’—lc;cq)
qeLlrq’el;
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= Z (Brepy. eq)leq. Kieps) Sy _1Cq—k
qgeLiNL;

+ Z <Bkep| , eq+k) (eq+1, Klep4>52+15q+k (4.43)
qe(Ly—k)N(Li—=D

which are both of the schematic form qusﬁﬂsz/ (Brep,, eq))(eqs, Kiep,) CarCas-
Toestimate "y 173 > pesins; Cpocid (Bkep s Kiep,) Epy it thus suffices to consider
Z Z Z Bkepl, eq1 eq4, Klem)cp2 qch3cp3. (4.44)
k,1€Z3 PESKNS geS NS,
The estimates for the top terms are as follows:

Proposition 4.8. For any collection of symmetric operators (By) and ¥ € Hy it holds

that
S 3 (vt (Krep) i (Brep) e

k,1€Z3 pESKNS

<C Z max HBkep“ ||N2\11||

ng

Z Z ’( L [k (Brep,) . bl*(Klem)]Em\,y»

k,1€Z3 pESKNS

<C Z Z max | ep, Bkeq>| INEW|?

q€
keZ3 peLi

for a constant C > 0 depending only on )" ;3 sz.
*
Proof. The first term we can estimate as in Proposition 4.6 by

S W Ebi (Kiep) b (Brep) & )|

k,1€Z3 pESKNS

= 2 2 o (Kiep) ] e (Brepy) e 9|

k,1€Z3 pESKNS

1 1
= Z Z Z Ls,(p) || Brep, || | Kieps | 1IN Ep WIING Epy Wi

keZ3 peSk1eZ3

< % (maxees| ) X 1A (3 1500 [ Ky

keZ3 PESK lez3

1
x J Y s (PE N w2

lez3

< IVew| ) (max | Brep H)J ST NZwIR |33 15(0) | Kiep, |

keZ3 PESk PESk leZi
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< Y IKilEs INEw Y (max | Bey ||) IVZNZ W (4.45)
1ez3 keZ3

11 3
and obviously NN | < [NgW|[|Nz ¥|. For the commutator term we have

Z Z ‘(Bkem, Kke,,l><\ll, CpyCps ¥ >‘ Z rnax| Brey, Kiep)| Z <\Il €pyCpa >

keZ3 pESk PESK

< kZZ:S Ir)réak)]z | ep, BkKkep>| (U, NgW) .

(4.46)

By the matrix element estimate for K; of Theorem 3.1 we have for any p € L that

‘A/;r€/<71
|(Biep, Kiep)| < Z |(Biep, eq)| |(eg: Kiep)| < € Z l(ep, Breg)| ﬁ
qeLy qeLy kg T 2k.p
A 1 A~
< iz (max e Biey) ) ¥ 5, = Oty e

(4.47)

since Yy, )»k_’; < Ckp. Consequently

5 3 [(Ben: Kiep (.62 )| = € 3 i (max ey B ) vz w)

keZ3 peSk kez3 pack
<C |5V max ey Bueg)| (W NpW) (4.48)
keZ3 keZ3 sty
and clearly
R e Breg)|” = p;k o (e Breg)|” (4.49)
Finally

Z Z Z ‘Bkem eqn €q4 Klep4)<‘y sz qch36173lp>)

k.I€Z3 PESKNS geS;NS;

Z Z Z (Brepr. eqi)| |(eqss Kiepy)| [|Cq:8p W] [|1Eg5¢p: % |

kI€Z3 PESKNS] geS,NS;

Z Z Z Bkel’l e41| ||C42CPZ\IJH

k,1€Z3 PESKNSI geS; NS,

Z Z Z eq4 K16P4| ”ancm"l'”

k,1€Z3 PESKNSI geS; NS,
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1
< ZZmaX|em,Bkeq D s (PERNZ Y2

q€

keZ3 PESk lez3

Y IKien]® D 15 v

1eZ3 PES keZ3
<> max [(e,. Brey) P 1K s U N (4.50)
keZ3 pELk lez3

whence the claim follows as || Kj|lgs < C\71. O

Estimation of the single commutator terms For the single commutator terms

S @ [ (Kiep) 6] e (Brep) and

k,1€Z3 pESKNS

Z Z b;k (Klep4) [bk (Bkepl) , 5;2] Cps

k,1€Z3 pESKNS;

we note that by equation (4.22), the commutator [bl (Kiep,) . E;‘,}] is given by

[bz (Kiep,) . ¢ ] _ e +D) (Klem’f’pﬁl)&m” Sk = Li . (4.51)
b3 12,(p3) (Kiepy, €ps) Cpai Sk =Ly —k

The prefactors again obey an estimate as in Proposition 4.5:

Proposition 4.9. For any k,1 € 73 and p € Sy N S it holds that

ILA(p2 +k)1L1(P3 +1)

12, (p3 + D) (Kiep,, epyui)| < CVIkS! . Sk =Ly,
| l < P4 P3+>| \/)»k p1+)¥k p2+k\/)¥l p3+l+)\l s
Ao 1, (p2)1L,(p3)
[12,(p3) (Kiep,. eps)| < CViky , Sk =Ly —k

\/)‘k,Pl + )‘k,pzx/)hl,ps + M py

The proof is essentially the same as that of Proposition 4.5 (indeed, this proposition
can be obtained directly from the former by appropriate substition, but some care must
be used since the p;’s differ in their definition).

For the single commutator terms we again only need the simpler bound

112, (p3 + D) (Kiepys eppsi)| Sk = La c Viky!

< (C——r
|1L1 (p3)(Klep4’ "173>| Sk =Lk —k ~ VA, pi M, py

but the full one will be needed for the double commutator terms below. Now the estimate:

(4.52)
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Proposition 4.10. For any collection of symmetric operators (By) and ¥ € Hy it holds
that

Z Z K\IJ, 5;2 [b[ (K[ep4) , 523]* by (Bkep]) \I—’>‘

k,1€Z3 pESKNS

_1
> Bk s INEWI?

keZ3

S [t (Kiep) [br (Been) . 75, ] ),

k,1€Z3 pESKNS

<C Z Z max \(ep. Bkeq>| INEW?

keZ3 pGLk

for a constant C > 0 depending only on Zkezg \7k2.
Proof. As in the second estimate of Proposition 4.6 we have

Z Z )(‘-IJ, E;ﬁaz [b[ (K16p4) , 5;3]* by, (Bkepl) \IJ>‘

k,1€Z3 pESKNS

<Y ¥ ‘)[b;(K;ep4),E;3]Ep2\IJ“ |6k (Beep,) |

k,1€Z3 peSKNS

1
<CY Y Y 15 | Brep | —E— m |Epsr@pn | INZ W)

leZ3 peSi keZ3

Ls,(p)V; -1
< kIR Y Y e T | X s B e P
po1ezz VP ([ kez?

> 15 (P) @i, ¥
keZ3

1
< ClIVERI Y | S 1 (Behg e 2

> g (p)

A
P \| kez3 1€73 L.pa
1
x| Y g (N
lez3
1
—1 bl
< ChFMINEWIINE® | D0 > 1By P2 >V Z
keZ3 peSk 1ez3  pes M.ps

_1 ~ 1
D Bk NEs D0 VANV INE Y. (4.53)
keZ3 lez3
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By equation (4.22) it holds that

[bk (Brep,) . & ] _ -l +k)<Bkep,,~ep2+k)Ep2+k JS BE 4.54)
P 1., (p2) <Bkep| ) ep2>cl72*k pE B;*

so the second term can be bounded as

> X K‘I’ bj (Kiep,) [bk (Biep,) . ¢ ]c,,3\11>’

k,1€Z3 pESKNS

< 5 ntKien) vl [ ien). )]

k,1€Z3 peSKNS

1
<> 2> s (maxlem Bkeq>|) | Kiep, | INZ W (& pyicéps ¥ |

keZ3 peSk 173

< ||N2\1/||Z Z 1s.(p) (max {ep, . Breg) )\/Z 1s,(p) ||K1€p4||2

P kez? lez3

Z Ls,(p) ” 5p2ﬂ:k5173 v H2

lez3
1
< INEIYS [ s [Kiep]” | Y- 15:(p) (max [ )
P\ ez keZ3
1
D L5 (D) Ep N WP
keZ3
< ||N2xy|| INERI Y3 [ Kiep, H > Z max ey, Breg |
1€Z3 peSi keZ3 PESk
>y meix!ep,Bkm > IKls V2O N (4.55)
keZ3 peLk 1< lez3

O

Estimation of the double commutator terms Finally we have the double commutator
terms

Z Z [bk Bkepl) [b[ (K1€p4) , 5;3]*] ’

k,1€Z3 pESKNS

Z Z [ Klem [bk(Bkem)’E;z]*]*Eﬁzv

k,leZ3 peSKNS;

Z Z [ Klep‘* PB]* [bk (Bkepl) ’ 522] . (4.56)

k,leZ3 pESKNS;
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An identity for the iterated commutators is obtained by applying the identity of equation
(4.22) to itself: For any k, [ € Z3, ¢ € €>(Ly), ¥ € €*(L;) and p € Z3

—11,(p+ D) epit ) [Bu9). &5,y | p e Br
L lep v ] peB;

_ {_lLk (p+D1r,(p+D (@, eps){epss. ¥)Cprik  p € Br

[0, [r . &3] ]

_lLk (p - l +k) lL[(p) ((p’ ep71+k><ep7 I»0>5P*l+k p € B;? .
(4.57)

The estimates are the following:

Proposition 4.11. For any collection of symmetric operators (By) and ¥ € Hy it holds

that
Z Z M\-IJ, 5 [bk (Brep,) [b[ (Kiep,) 5;3]*] \IJ) ,

k,1€Z3 pESKNS

)INDY

%
< [bl Klem) [bk (Bkem)’g}k)z]] 5[)3\IJ>
k,1€Z3 pESKNS

S | b Kien) ] [ (Bren) 5, ] )

k,1€Z3 pESKNS

are all bounded by

Ckp? | > max I, 2Bkepn2 (U, NgW)
ke Z3

. 2
Jor a constant C > 0 depending only on Zkezi Ve

Proof. For these estimates we consider only the case Sy = Lj for the sake of clarity,
i.e. we let

(p1, P2, P3,pa) =(p,—p+1,—p+k,p); (4.58)

the case Sy = Ly — k can be handled by similar manipulations.
Using the identity of equation (4.57) we start by estimating (by the bound of Propo-
sition 4.9)

XX | [ Been) [ (Kien) . 5] ] )
k,lez3 PELKNL;

= Z Z ‘lLk(pg, +D1,(p3 +l)(Bkep1,ep3+[>(ep3+[,K[€p4)<\lf, 57,251734_1,/(\?)‘
k,lez3 PELKNL;

Vikp 1, (p2 + 012, (p3 + D) (

W, &* ¢ \I/>
P
Ve pr + M patk/M. 3+ M. py

=C Z Z 11, (p3+0) |(Brepy . epyat] P2

k,leZi peLyNL;

<CkE Y VY \l Dl Pl (p3+D

1e73  PELiN| keZ3

2

_1
<er hy 23k€p3+1>
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1, (p3+1)
)ILI + < *””6_””\1})
keZ3 p3
_1 _1 2
< Ckp? >l (p D1 (p3) <€p+1‘ h? Bk€p3> <\P, e ;5—p‘1’>
€7 ﬁ PE(LI D\| kezZ3
_1 _1 2
= Ck[:2 Z lLk(p+l)lLk(p3) <ep+ls hk szep3> (ll/ —pC p\y>
leZ3 k173
_1 _1 A
<Ckp? | Y max llh, 2Bke,,||2 > VR NEW) (4.59)
keZ3 Ptk 1ez3
where we used ZkeZ3 1r,(p3+ l)k[ oyt = Zq€L1 ;< Ckp. From (4.57) we have

[bz (Kiepy) . [bk (Biepr) 57’]*]

= _lL[ (p2 + k)lLk (PZ + k) (K[€p4, ep2+k> (ep2+ka Bkep1)5p2+k—l
= —1r, (P2 + k)11, (p3 + 1) (Kiep,. €pyit) (€pyks Beep ) Eps (4.60)

so the second term can be similarly estimated as

ooy < [ (Krep) [bk(Bke,,l),E;Z]*]*gp3qz>‘

k,1€Z3 PESKNS:

5 1
Y ¥ Vikp 11, (p2+ k)11, (p3 +1)

5 ~
}(epﬁ.k, Bkepl)‘ <\IJ, cp3cp3\IJ>
k.le73 peLiNL; \/)‘k,pl +)‘k,P2+k\/)‘1,P3+I + A py
) *

2 2
S ID ISP MITNCIL e ) SERTEY <h B>
keZ3 peLy \| I€Z3 M.ps lez3
<\lj, 6ip+k5—[7+k\p>
_ 17, (p+k)
1 L\p
D IDMIICND D vl (1 Bepuil (w2, w)
PEBF keZ3 lez3 ’

<ckz' Y |y 1 +k) > Bke,,+k||2< e_pnp)

A
peBr\|iez?  kezd PK kezd

<C 7 Zmax”h Bkep||2 D VAW NEY). (4.61)
kZ3 leZ3

*
Finally, from (4.51) and (4.54) we see that [bl (Kiep,) 5}“,3] [bk (Brep,) 5}“,2] is equal
to

lLk (PZ + k)lL[ (p3 + l) (Bkepl ) ep2+k) <ep3+lv Klep4) E;3+]5p2+kv (462)
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SO we estimate

Z Z )(‘I/, [b[ (Klem) s 5;3]* [bk (Bkepl) , 5;2} ‘I’>‘

kleZ3 peSKNS

Viki' 1, (p2 +K)1, (p3 +1) N
<C E E L : ‘<Bk@p1 ) epz+k>| <\Il, c773+lc172+k\p>
k.1€Z3 peLiNL \/)‘k,pl + )\k,p2+k\/)"l,])3+l + )\l,p4

<Ckp' Y > e (P lnn (—p+k+1)

Vi
VA
PEBY k,1€Z3 L.p

. ("IJ, Eip+k+15—p+k+] \IJ)

_1
<€p7 hk z Bkefp+k+l>

. v
=Ckg' 3 Y dan(p+k+DlgnL(—p)

. VA
PEBY k,1eZ3 L p+ksl

_1 e
<e,,+k+1, hy? Bke_p> <\IJ, cipc_p\ll>

< Ckj! ZJ D A (p+k+Dlig (=p)

PEBE \| k.1eZ3

P | +k+1
J Z WZL)<W’ 5’:1]57[,\1/)

A
k,leZi 1, p+k+l

1 1
2 -2 72
< CkFZJ > max iy * Brepl® [ V2 (W, NpW). (4.63)
keZ3 leZ3

The £ ,3 bound of Theorem 4.1 now follows:

Proposition 4.12. For any V € Hy and t € [0, 1] it holds that

> |(w. (2B~ (ves. E2(Bewnves)) w)| <c \/ S V2 min (K], kr} (9, A )

keZ3 keZ3

2

_1
<ep+k+l7 hk : Bke7p>

: 72
for a constant C > 0 depending only on Zkezﬁ Vi

Proof. Clearly

_1 _1
max || Bie, |* < ,;Lk max [(ep, Breq||”, max Iy Biey | < 1Bk s,

(4.64)

for any By, and as our estimate for By (¢) in Theorem 3.1 is the same as that for A (),
the bounds

1 . PO
> max [fe,. Breg)|” . k' > 11Behy *3s<C (1 + ||V||zto) > V2 min{k| . kr}

keZ3 peLi keZ3 keZ3

follow exactly as those of Proposition 4.7. Insertion into the Propositions 4.8, 4.10 and
4.11 yields the claim. O
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4.3. Analysis of the exchange contribution. Finally we determine the leading order of
the exchange contribution. To begin we derive a general formula for a quantity of the
form <WFS» Sf(Bk)lﬁFs>i We can write

- 2(¢Fs, 5;3(Bk)¢Fs>
=- Z Z Z (Wrs. bk (Brep)e—i,—i(e—p: e_g)bf (Kieq)s)

leZ3 peligely

Z Z <¢FSabk(Bkep)g*_p+157p+kb7(Klep)IﬂFS>

€73 peLiNLy
3 3 <¢FS, bi (Brepsr) €, 16— p—ib} (Kiepsr) VfFS)
173 pe(Ly—=k)N(L;—1)
=:A+B (4.65)

where, using equation (4.22) in the form
¢ _ Sp.g-1{¥:eq)C €B
[bl W), c;] _ = 2gendra 1 eq)cq~ p r o)
qu(Lz—l) ‘Sp,q+l <1ﬂ, €q+1>cq pE BF

the terms A and B are given by

A=Y 3 (urs [betBien). @] [br (Kiey) 2 o] )

1eZ3 peLiNL;

=Z Z <WFS, Z‘S—p+l,q—k<Bk€p’eq>Eq

leZ3 peLiNL; qeLi

Z 8—p+k,q’—l <eq’v Klep>52/ 1pFS>

q'eL;

= Z Z Spq k+l (ep, Bkeq>(eq, Klep> 4.67)

1€Z3 p.q€LkNLy
and similarly
*
B=Y Y <1//Fs, [bk (Brep+) - Ei,,_l] [bl (Kiep) Eip—k] 1/’FS>
173 pe(Ly—=k)N(L1=1)

= Z Z 8—p—g.k+i (€prks Bregsk)eg+t, Kiepsr). (4.68)
1€Z3 p.ge(Lk—k)N(L;—1)

Although non-obvious, there holds the identity A = B. To see this we rewrite both terms:
First, for A, we note that the presence of the §,44 x4+ makes the L; of the summation
P.q € LN L; redundant: For any p, g € Bj. there holds the equivalence

Psq € Lpig—k < p,q € Li (4.69)
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by the trivial identities
lp—kl=lg—(p+q—Kl, lg—kl=Ip—(p+q—kKl, (4.70)

so A can be written as

Z Z‘Sp+q,k+l(€pvBkeq)(emKlep): Z (ep Bieg)leq, Kprg-rep)-

P.q€Li 173 P-q€Ly
“4.71)

A similar observation applies to B: For any p, g € Br we likewise have

p.q€(L_pyqr+p+q+k) < p+k,q+k € Lprgek <> p,q € (Lx — k)

4.72)
SO
B = Z Zafpfq,kﬁ (ep+ks Bregsk)(eq+i, Kiepsi)

p.qe(Li—k) 173

= Z (ep+kvBkeq+k>(e*p*k’Kfpquke*q*d
P.q€(Li—k)

= Z (eps Breg)(eq: K prg—kep) 4.73)
P.g€Lk

where we lastly used that the kernels K obey
(e—p. K_xe—g) = (ep, Kieg) = (eq. Kxep), k€Zi, p.geLi. (474
In all we thus have the identity
<1/st, Eg(Bk)wFs> =- Z Z Spiq.ket (€ps Breg)(eq. Kiep)
1€Z3 p.qeLiNLy

= — Z (ep, Bkeq>(eq, Kp+q,kep>. 4.75)
P.g€Ll

Our matrix element estimates of the last section now yield the following:

Proposition. (4.2) It holds that

Z/ Vs, 2Re (E2(BL(1)) Vs )di — Ecomex <c/z V2 min {1k], k)

keZ3 keZ3

‘or a constant C > 0 depending only on 3 ‘72, where
P g only kez3 Yk

Vkvp+q k
Ecorr,ex:“.(2 )6 Z Z —.

+ A
keZ3 p.geLy Mop + Mg
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Proof. Since all the one-body operators are real-valued we can drop the Re (-) and apply
the above identity for

1 1
> /0 (vrs, 2Re (E2Be(1) ) vrs) di = Zz<ws,e,3 ( fo Bk(odt) wFs>
keZ3

keZ3
1
=2 Z Z 8 pig kil <e,,, (/ Bk(t)dt> eq>(eq, (=KD ep). (4.76)
kleZ} p.geLinL; 0
Now, note that E¢orr ex can be written as

Vikz' Viky! 1
Ecorr,ex = Z Z 8p+q,k+l 3 3 (4~77)
k,1eZ3 p.qeLiNL; 2(2m)" 2 (2m) Al’p * )Ll’q

since, much as in Proposition 4.5, the 8,44 1+ implies the following identity for the
denominators:

S (p2 = 1p—12) + 5 (1g ~1g ~ 11

(PP —tg k) 3 (1 = 1o~ kP) = hip + g @T8)

)»l”,, + )\l,q

In conclusion we thus see that

3 / (Ves. 2Re (E2(Bi (1)) ¥rs)di — Ecomex

keZ3

! Vik 7!
=2 Z Z 5p+q,k+l (<ep, (/0 Bk(t)dl‘) €q>—4(k27:)3) (eq»(_Kl)ep>

k,l€Z3 p.geLkNL;

Vik! 73 !
+ B eq (K ep) = Ls———— | = A+B.
Z Z p+q,k+12(2 )3 (< ¢ (=KD p) 2Q2m) Mp +Aig

k,1€Z3 p.geLiNL;

4.79)

We estimate A and B. By the matrix element estimates of Theorem 3.1 we have that
(using our freedom to replace A; p, + A g by Ak p + Ak g)

. B ‘7;k_1
lAl =€ Z Z Sp+q kel (1 + Vk) szkF ﬁ
k,leZ3 p.qeLyNL; Lp T AlLg

<Ck? (14171) 02 3 /T Z Vp+q :

keZ3 peLy P geLy

3
< Ck;? (1+||V||OO) DRI
lez3 keZ3 peLk

N ~ ~ 1 . 3 3
<C (1 + ||V||Oo> 3T V2 ST V2 Ik min {1,k k|73 (4.80)

lez3  keZ3
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where we applied the inequality >
implies that

gely ,;q < Ckr and also used that Proposition 3.11

3 3 3
< CK2 [k min {1, k2 [k|~2} 4.81)

Z 1
peL Vv M

for a C > 0 independent of all quantities. By Cauchy-Schwarz we can further estimate

~ 3 3 N N
> Ikl%min{l,kf; k|73) < V2D V2 Ikl min {1, k3. k|7

keZ3 keZ3 keZ3
< [0V D] VZmin{lkl, kr) (4.82)
keZ3 keZ3

for the bound of the statement. By similar estimation also

V2ky!
Bl <C 1) ikl —LF
Bl<C Y > p+qk+lka Yy
k,leZ3 p.qeLinL; Lp 4

~ ~ 3
<cC V23" V2101 min (1, k2 1173)
keZ3 lez3

and the claim follows likewise. O

5. Estimation of the Non-Bosonizable Terms and Gronwall Estimates

In this section we perform the final work which will allow us to conclude Theorem 1.1.
The main content of this section lies in the estimation of the non-bosonizable terms,
by which we mean the cubic and quartic terms

k 1
=L ViRe((Bx+B*) Di).
@) kez3
Z DDy — Z cheptep—iCh i) |- (5.1)
2(271)3 o peLk< p P )

The cubic terms C will not present a big obstacle to us: As was first noted in [2] (in their
formulation), the expectation value of these in fact vanish identically with respect to the
type of trial state we will consider. The bulk of the work will thus be to estimate the
quartic terms. We prove the following bounds:

Theorem 5.1. It holds that Q = G + Q1R + Qsr where for any ¥ € Hy

(W, GW)| < C\/Z V2 min (k] , kr} (¥, Np @)

keZ3

(%, QurW)| = € |37 V2 min {lkl k) (W, N3W)
keZ3
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and e Qsre™ = Qgr + fol 'K 2Re (§)) e"’cdtfor an operator G obeying

(. gw)=c [Y szmin{|k|,kp}<\ll, (Ng + 1) w)

keZ3

C > 0 being a constant independent of all quantities.

With these all the general bounds are established. As all our error estimates are with
respect to Mg and powers thereof, it then only remains to control the effect which the
transformation e’ has on these. By a standard Gronwall-type argument this control will
follow from the estimate of Proposition 2.4, and we then end the paper by concluding
Theorem 1.1.

Analysis of the cubic terms. Expanding the Re (-), the cubic terms are

> Vi ((Bif + B—x) Dy + Di (Bi + B¥})) . (5.2)

2(27[)3 o

The operators By can be written simply as By = Y peL, bi,p in terms of the excitation
operators by, = c’;_kcp, whence it is easily seen that

[Ne. Bxl = —Bi, [N, Bf] = B. (5.3)

As aconsequence, B maps the eigenspace {Nr = M} into {Nz = M — 1} and B; maps
{Ng = M} into {Ng = M + 1}. Meanwhile, the operators Dy, preserve the eigenspaces:
Writing Dy = Dy + Do i for

Dy =dr (PBpefik'xPBp) = D Spakcpeg=— Y, Glgk
P.q€EBF geBFN(BF+k)
Doy =dl (Ppye ™ Py )= Y bpgicheg= Y. Gl (A
p.qEBy PEBS.N(BG—k)

these annihilate and create one hole or excitation, respectively, whence [Ng, Dy] = 0
[N, Df].

Itfollows that C maps the eigenspace {Ng = M}into {(Ng = M — 1}®{Ng = M + 1}.
Decomposing Hy orthogonally as Hy = HG" & HW for

HY" = D We =2m). HY = EB e =2m+1}, (5.5

m=0 m=0

we thus see that C maps each subspace into the other. On the other hand, since our
transformation kernel K is of the form

1
=32 2 lep Kiey) (b,,,,b_,,_q - b*_,’_qb;"p) (5.6)
leZ3 p.q€Ly
we note that K maps each {Ng = M} into {Ng = M — 2} ® {Ng = M + 2}, hence K
preserves H$" and H3%, and so too does the transformation ¢ K. As any eigenstate

W e Hy of Ng is contained in either HY" or H9d  and these are orthogonal, we
conclude the following:
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Proposition 5.2. For any eigenstate ¥ of Ng it holds that

<e_lc‘-IJ, Ce_’C\IJ> =0.

5.1. Analysis of the quartic terms. Now we consider the quartic terms

Z DDy — Z (cpcp+cp ka k) . (5.7)

keZ3 PEeL

2(271)3

We begin by rewriting these: Recalling the decomposition Dy = Dj ; + D3 i above, we
calculate

* ~k % ok ~k ke ~
Dy D1k = Z Cp_kCpCyCq—k = Z Cp—iCqCq—kCp
P,q€BFN(BF+k) P.qE€BEN(BR+k)
LD DA
q€BFN(BFr+k)
- Z 4 Crlg klp+ Z L, (q +K)Eé, (5.8)
P,q€ BFN(BF+k) pEBF

and similarly

D3 Dy = Z 5;+k5p5:;5q+k = Z 5;+k5;5q+k5p
p.qEeBEN(BS—k) p.qEeBEN(BSL—k)
+ Y g (p = K&,
PEBS
= > Er i Calquny + Ne — Y g (p—h&Ey.  (5.9)
p.qeBEN(BS—k) PEBY

3 . . . * * .
For any k € Z; we can likewise write ZpeLk (cpc,, + cp,kcp_k) in the form

Z (c cp+cpo kc ) Z 1pr(p — k)c p+ Z ch (q+k)c Cq

peLy peB‘ qEBF
= > g (p—0&E+Ne— Y (g +k)EE,.
PEB q€Br

(5.10)

Noting that D x = O for |k| > 2kF, as then Br N (Br + k) = {J, we thus obtain the
decomposition

Q=G+ 91r + 9sr (5.11)

where G is the one-body operator

SV D s EE = Y 1p(p—REE, | (5.12)

keZ3 qE€BF pEBY,

" )3
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the long-range terms QI R are given by

Kzt . o
QLR:Z(szr)3 2 Vi ( ) Cp_kCqCq—kCp+DY Do g + Dile,k)
keB(0,2kp)NZ3 P,q€BFN(BF+k)

(5.13)

and the short-range terms Qgr are

SV Y S uliindy. (5.14)

keZ3  p.qeBLN(B%—k)

Osr =

2(2 )3

Estimation of G and Qir G and the long-range terms are easily controlled: First,
interchanging the summations we can write G as

Z Z ‘,}k E; ~q (27.[)3 Z Z Vk E;Ep

T @ >3 .
q€Br \ke(Br—q)NZ3 peBy \ke(Bp+p)NZ3
(5.15)
from which it is obvious that G obeys
—1 R
4+ G < max > Vi | Nk (5.16)

7\ 2n)?
pezi \ (2m) ke(Bp+p)NZ3

This implies the following:

Proposition 5.3. For any V € Hy it holds that

(W, GW)| < C\/Z V2 min (k] , kr} (&, Np®)

keZ3
for a constant C > 0 independent of all quantities.

Proof. For any p € 7> we estimate by Cauchy-Schwarz

Yo W< > Vmin{kl k) [ Y min{k| kp)!

ke(Bp+p)NZ3 ke(Bp+p)NZ3 ke(Bp+p)NZ3
< Z V2 min (k| , k) Z kI~ + k! (5.17)
kez? keBp\{0)

where we lastly used that k +— min {|k]|, kp}~lis radially decreasing and that (Br + p)N
Zi contains at most | By | points. As it is well-known that ZkeE(o,R)\{O} Ikl’1 < CR?
as R — oo the bound follows. O

Q1 Rr can be handled in a similar manner:
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Proposition 5.4. For any ¥ € Hy it holds that

(%, QurW)| = € |37 V2 min {lkl k) (W, NFW)
keZ3
for a constant C > 0 independent of all quantities.

Proof. Consider the first term in the parenthesis of (5.13): For any k € Zi we can
estimate

Z ‘<‘I’ 52_k525q—k5p‘1’>\ = Z léqep—r¥] ég—42p¥|
P.q€BFN(BF+k) P.q€BFN(BF+k)
S D D [ ] e D DR LA L (Y ) A L)
P.q€BFN(Bp+k) P.q€BFN(Bp+k)
Ase.g.
Di Do = ) Do GGl

PEBS.N(BG—k) gEBFrN(BE+k)

_ ok sk o~ X
= 2 D Galelpu

pEBEN(BG—k) ¢€BFN(Br+k)

the terms DT’ « D2,k and Dz « D1,k can be handled similarly, whence

—1
(¥, OLrW)| = o > | (waze)

3
2@m) keB(0,2kp)NZ3

C\/Z V2 min (1k], kr } (¥, N W)

keZ3

IA

where Zk €B(0.2kp )N Vk was bounded as in equation (5.17). O

Analysis of Qsr Lastly we come to

DoV Y Euliiendy. (5.19)

keZ}  p.qeBLN(B%—k)

—1

Recall that the transformation K can be written as K = K — K* for

~ 1 1
k=3 Y D lev Kieg)brpbi—g = 3 D0 bi(Kieg)bg, 4. (5.20)

1eZ3 p.qeLy leZ3 g€l

To determine ¢/ Qsge™X we will need the commutator [, Osg] = 2 Re ([I@, QSR]).
Noting that for any p € B}, and !/ € Zi, q € L, we have

(b0 & ] = [cimicar b)) = 8pacyos = dpalot. (5.21)
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we deduce (with the help of Lemma A.1) that

I:]%, E;] = % Z Z (b[(Kleq) I:bfl,,q, c* ] + [b[(Kleq) c ] - )

leZ3 g€l
1 ~: ~;
D) Z Z (bl(Kleq) [b—l,—q’ C;] + [bl,q, C;] b_z(K—ze_q)>
leZ3 g€l
1 ~ ~
) Z Z (b1(Ki1eq)Sp.—gC—qst +8p.gCqib—1(K_je_y))
leZ3 g€l
=YD Spgbi(Kieg)e g =Y 1r,(—p)by (Kie_p) Epat. (5.22)
leZ3 q€L; 1eZ3

Using this we conclude the following:

Proposition 5.5. It holds that X Qsge™® = Ogg + [} ¢'X 2Re (G)) e~ "Fd1 for

F A ~: ~ ~ ~
g= Z Vi Z 11,(q)¢,bi(Kieq)C—g+1C—g4kCp—k
k,leZ;E P.qE€BSN(BS+k)

YoV > (L@ (Kieg ep) EpiE—gié—gialpi-

T2 27'[ 3
@) kl€Z3  p.geBLN(BL+k)

Proof. By the fundamental theorem of calculus
1
FQsre™ = Qe+ [N IK. Qsule s (5.23)
0

and as noted [IC, Qsr] = 2Re ([IC, QSR]). Using equation (5.22) we compute that
g .= [Iﬁ, QSR] is given by

i Y > GlRa]+[Re]a) dmirs

3
2 (27T) keZd  peBLN(B%+k) geBLN(BS—k)
— Z Z Z 12, (=q)&5br (Kie—q) Cqs1CqskCp—k
2 (271) 3 . . .
kleZ}  peBLN(BG+k) geBLN(BS—k)
+3 (271)3 > Yo lupbr(Kiemp) Epadylqmidp—i

kleZ3 pEB;ﬁ(B;:-H{) qeBLN(BG—k)

Z Z Z 1p,(=q) {bl (Kie—g) . p} Cq+1Cq+kCp—k

kl€Z3  peBLN(B%+k) qeBEN(B%—k)

2 (zm*

S Y @ |bKie). G guiguipn (5.24)

T2 27r 3
(@2m)” kI€Z3  p.qeBLN(BG+k)



1518 M. R. Christiansen, C. Hainzl, P. T. Nam

where we for the third inequality substituted p — ¢ and k — —k in the second sum.
By the identity of equation (4.22) the anti-commutator is given by

{b;(Kleq), 5;} =28 bi(Kieq) + 11, (p) (Kieg, €p)Epy (5.25)

which is inserted into the previous equation for the claim. 0O
We bound the G operator as follows:

Proposition 5.6. For any ¥ € Hy it holds that

(W, gW) = C |3 Vmin (k] ke) (W, (NF +1) W)
keZ3
for a constant C > 0 depending only on Zkezz ‘7,3
Proof. Using Proposition 4.4 we estimate the sum of the first term of G as
SV Y 1@ |V b Kiei iy i)
k€73 p.qEBEN(BS+k)

YUY 1@ I K] [t e¥]
kl€Z3  p,geB&N(B%+k)

< S U Y 1@ |Kieg| 18 Wi + D W] [&poiigeiiogu ¥ |
p.qE€BEN(BS+k)

~ 1
INE+DWIY > [ Kieg| D 1pean(@ Ville—gaaé—guNZ W

leZ3 g€l keZ3

D VRINE+ D WY Y [ Kieg| [e—guNE Y|
keZ3 1e73 q€Ly
~ 3
< [ VA DD IKilus | INE + 1) W INZ @, (5.26)
keZ3 lez3

Now, the || Ki|lys estimate of Theorem 3.1 and Cauchy-Schwarz lets us estimate

IA

IA

min {1, k% [k| 74}

Kilus <C > Vimin {1k} k| 2} < C
D IKilus = € ) Vimin {1 k7 672} = € | )| — =

keZ3 keZ3 keZ3

x\/z V2 min (k| . kr}.

keZ3

and

min {1, k% [k| =4} 1 1 5
— = — +k — < Ck (5.27)
;; min {|k| , kr} 2 k|~ 2 Ik|* F

eZ3 keBp\{0} keZ3\BF
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for a constant C > 0 independent of all quantities, so in all the first term of G obeys

k7! . 3 o
3 2F 3 Z Vi Z 1L,(q)’<‘11, C;k,bl(Kleq)C—q+lC—q+ka—kq’)‘
(@) kleZi  p.geBLN(BG+k)
A A 3
<C Z V2 Z VZmin {|k|, kp} |(NE + 1) W] [N W] (5.28)

keZ3 keZ3
Similarly, for the second term (using simply that || Cpi || op = 1 at the beginning)
YoV D M@ |(Kieg, ep) (W, EpiEgu— gy i )|
kl€Z3  p.geBSN(BG+k)

<IWI Y Ve Y L@ |(Kieg ep)] [Ep-ké—gui—qu¥|
kleZ}  p.geBLN(B%+k)

N 1
<Y D" [Kieq] D Upean(@ Ville—guré—guNE W

leZ3 g€l keZ3
~ 3
< [0S UKl | 191 IVZ W (5.29)
keZ3 €73

5.2. Gronwall estimates. We now establish control over the operators KN g‘e_’C for
m = 1, 2, 3. Consider first the mapping 7 — ¢/~ Nze~"X: Noting that for any ¥ € Hy

% <\p, K WE +1) e*”cxp> - <\11, KK, Nel e*”cqz>, (5.30)

Gronwall’s lemma implies that to bound ¢’ K WNg+1)e™! K it suffices to f:ontrpl (K, NE]
with respect to Ng + 1 itself. We determine the commutator: As K = K — K* for

1
K= D len Kieg)bipb-i— (5.31)

leZ3 p.q€Ly

and [b1,p, Ng] = by, p it holds that [ £, N | = 2K, whence

[, Nzl = 2Re ([ICNED — 2K +2K*, (5.32)
The estimate of Proposition 2.4 immediately yields that
T[Nl <CWNEg+1) (5.33)
for a constant C > 0 depending only on ) _, 73 sz, whence by Gronwall’s lemma
(W, e Wi + 1) e W) < MW, W+ D W) < €W, W+ DW) L ] < 1.
(5.34)
This proves the bound for Ng; for /\fE2 we will as in [10] apply the following lemma:



1520 M. R. Christiansen, C. Hainzl, P. T. Nam

Lemma 5.7. Let A, B, Z be given with A > 0, Z > 0 and [A,Z] = 0. Then if
+[A, [A, B]] < Z it holds that

1
+[AZ,[AY,B]] < ZA—lz.

The estimates are as follows:

Proposition 5.8. For any W € Hy and |t| < 1 it holds that
(e w, (W 1) e Rw) < clw, (VR + )W), m=1,23,

: 52
for a constant C > 0 depending only on Zkezi Vi

Proof. The case of m = 1 was proved above. For m = 2 it suffices to control [IC, N, é]
in terms Of./\/% + 1; by the identity {A, B} = AIBA7 + [A%, [A%, B]] we can write

(16 V] = W G N ) = (W + 1, 1 N ) = 21K, V]

= (Ng+ D2 K Ne]Wg + D7+ [N + 17, [(Ng + D)2,
x [, NE]]] —-2[K, NE] (5.35)

and note that the commutator [I€ N E] = 2K also implies that
[N, INE, [, NIl = 41K, NE], (5.36)
so by Lemma 5.7 and equation (5.33)
i[/c,/\/g] §C<(NE+1)2+1+(/\/'E+1)> <c (N§+1). (5.37)
Similarly, for N3,

[ICJ\/’;} =3 NEg K, NEINE+INE, INE, [K, Ngll = 3NE K, NEINE+4 K, NE]
(5.38)

implies that
+ [/C,Ng] <CWNEWg+DNg+Wg+1) <’ (Ng + 1) (5.39)

hence the m = 3 bound. O
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Conclusion of Theorem 1.1 'We can now conclude:

Theorem. (1.1) It holds that

info (Hy) < Ep+ Ecorr,bos + Ecorr,ex + C\/Z sz min {|k|, kr}, krp — 00,
keZ3

. 2
for a constant C > 0 depending only on ZkeZi V.

Proof. By the variational principle applied to the trial state e X yps we have by Propo-
sition 1.2 and the Theorems 1.4, 3.1 and 5.1 that

—1

Vik
info (Hy) < EF + <ws, & (Hﬁm + Y > 2‘27':)3 (2B} By + By By + B*kB,j)) e’CI/,FS>
kez3

+ <¢Fs, eKCe*KWFs) + <WFSa o Qef’CWFs>

= Er + Ecombos + (s, Hiines) +2 Y (vrs, OF (e Xbnge™ % — ) ys)
keZ?k

1
Y /0 (e pps, (ex((Ke, Be) +2Re (& (4x )
kez3

+2Re (5,3(Bk(z)))) e_(l_t)’cwl:s>dl

+ <3K‘//FS: (G +QrRr) fKI/fFS) + (YFs, QSRVFES)

1
+ [ e urs. 2Re @) e F urs)ar
0

= EF + Ecorr,bos + Ecorr,ex + €1 + €2 + €3, (5.40)

where we also used that
HiinVrs = Of (A)Yrs = Qsrrs = 0 (5.41)

and that (s, e’CCe_’CwFS) = 0 by Proposition 5.2. The errors €1, €, and €3 obey

a=x (s 2Re (208100 rs)d — Euome

keZ3
<C Z Z V2 min {|k|, kr} (5.42)
keZ3 \ keZ3
by Proposition 4.2,

1
€ = Z /(; <e_(l—t)’C‘//FS» (Sk({Kk, Br(1)}) +2Re (gli(Ak(l)))) e—(l—z)lcws>dl
keZ3

) /01 <37(17t)K‘/’FS’ (2 Re (51%(Bk(’)) - (!ﬁF, 513(Bk(t))1//17>)> ef(lft)lcwps>dt

keZ3
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<Ckp'+C | Y VZmin{lk| . kp} < C' | Y VZmin (k| kp) (5.43)
keZ3 keZ3

by Theorem 4.1, and

1
& = (¢ s, (G + Qur) ey + fo (e s, 2Re (@) e X s ) ar

<C [> " VZmin{lk|, kr) (5.44)
keZ3

by Theorem 5.1, where we for the last error terms also used that
(e ®prs, W + D) e Ryps) < M =tm=123 (549

as follows by Proposition 5.8. O
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A. Diagonalization of the Bosonizable Terms

In this section we derive the identity of Theorem 1.4. This is to a degree equivalent with
the contents of Section 5 of [10], but for the reader’s convenience, and since the notation
used in the papers differ, we include a brief derivation in this appendix.

To determine the action of ¢/°, we must first compute several commutators involving
KC. To simplify the calculations we will make repeated use of the following result ( [10,
Lemma 3.2]).

Lemma A.1. Let (V, (-, -)) be an n-dimensional Hilbert space andletq : V xV — W
be a sesquilinear mapping into a vector space W. Let (e,-)lN: | be an orthonormal basis
for V. Then for any linear operators S, T : V — V it holds that

n n
Zq (Sei, Tej) = Zq (ST*ei, e;) .

i=1 i=1


http://creativecommons.org/licenses/by/4.0/
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The lemma is easily proved by orthonormal expansion. In our case, where we regard
£2(Ly) as real vector spaces, sesquilinearity is simply bilinearity. Moreover, the operators
K} satisfy

I K = K_i Iy (A.1)
where Ij : £2(L;) — ¢*(L_y) denotes the unitary mapping defined by Ixep = e—p,

p € Li. Thus Lemma A.1 allows us to move operators from one argument to another
(when summed), as e.g.

> bi(Kieg)b-i—g = Y bi(Kieg)b— (Iieg)

qeL; qgeL;

= > bi(eg)b-i (IKjeq) = > bigbi(K_je_y). (A.2)

geL; qeL;
We start by computing the commutator of /C with an excitation operator:
Proposition A.2. For any k € Zi and ¢ € €*(Ly) it holds that
(K, bi(@)] = b*; (IkKkp) +E (@), [K.b{(9)] = bk IkKkp) + Ex(9)*
where
E(p) = % D fewi (req) . b* (K _re_g)} .
leZ3 g€l

Proof. Tt suffices to determine [/C, by (¢)]. Using Lemmas A.1 and 1.3 we calculate that

1
(K, br(p)] = 3 Z Z {[b(@), 0%, (e—g)] . b (Kiep))
leZ3 g€l
1
~—2 Z Z {8k —1{p. e—g)+ex—1 (01 e—y) . b (Kiey)}
leZ3 g€l
= b*—k (I K p) + E (@) (A3)

where in the last identity we recognized K« 3" ¢/ , (0, e—g)eq = K_iIrp = I Kio.
o

Using this relation we can now determine the commutators with Q]f terms:

Proposition A.3. Forany k € Zi and symmetric operators Ay : 02(Liy) — €>(Liy)
such that Iy Ay = A_y Iy, it holds that

.2 08 (a0 +2 07 (A0 | = Q5K Ah +2Re (&40 ) + (6 > —k)
where

AN =D Y > bi(Akep) {eralepieg). b* (K _je—y)} .

1€Z3 peLi g€l
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Proof. Using Proposition A.2 (and Lemma A.1 together with symmetry of A;) we find
that

K. Qhan] = 3 (bitarey) [K. b (ep)] + [K. b (Axep)] b (ey)

peLi

= Z (bik,_[,b;: (AkKkep) + by (AkKkep) b_k,_p)
PELk

+2Re | Y bi(Acep)Ex (ep)
PELk

= O5(AcKi) +2Re [ D bi(Arep)&i (ep) | - (A.4)
PELk

The assumption that Iy Ay = A_i I yields QS(AkKk) = Qz_k(K,kA,k). Summing
over both k and —k, we obtain the desired identity. O

To state the commutator of /C with Qé terms we note the identity

D bi(ep) bi(Arep) = QY (Ap) + tr(Ap) + ex (Ar) (A.5)
PELk

where we introduced the convenient notation

ex(Ap) = Z Sk (ep; Akep) =— Z <ep, Akep) (c;‘,cp + cp,kc;;_k) . (A6)
peLy PEL

The commutator is then given as follows:

Proposition A.4. For any k € Zi and symmetric operators Biy : €>(Liy) — €>(L1y)
such that I} By = B_i I, it holds that

[, 08B + 05" (B0 ] = 2 Q4 (Ki, Beh) + (K., Be) + e (K, Be)
+2Re (5,3(3,9) + (k- —k)

where

1
EB) =53 D > Abe(Brep). {eii(e—pi e—g). b (Kieg) }}.

1eZ3 el qely
Proof. Writing Q%(By) = 2Re (Z ver, be(Brep)b_i (e ,,)) and using Proposition

A.2 we get

(6. 4B ] = 2Re | 3 (buBrep) [, bos (e )] + [, bi(Brep) ] bi (e-))
PELg
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=2Re Z (bk,pb;: (KkBkep) + bik (K_kB_ke_p) b_k,_p)
peLly

+2Re | > (bi(Brep)E—i (e-p) +Ek (ep) bk (B—ie—p)) | = (D+(D).
peLi

For (I), the first term on the right-hand side, using (A.5) we find that
() = QY ({Kk. Bi)) + tr({Ky, Be)) + ex (Ki, Bi)) + Q7 (K. Bi)). (A7)

Summing over k and —k and using 5,{2(31() = ZpeLk {bk(Bkep), E_i (e_p)} for (ID),
we obtain the desired identity. (|

Finally we calculate the commutator with H; :

Proposition A.5. Ir holds that

(K. Hji ] = > O5(UKk. he).

kez3
Proof. By equation (1.34) we have
[Hiin bi(9)] = =2 (i) [Hisn. b5 (@)] = 2] (hig) | (A.8)
so using that Iyhy = h_i I} we find

’C Hkm = Z Z bk Kkeq b k(e—q) Hkm]_[b (e—q)bk (Kkeq) Hﬁin])
keZ’qELk

= > D (be ((Ki hid eg) boi (e—q) + b7 (e~g) b (K- hi eg))

keZ3 q€Ly

= Y 05Kk, lu)). (A9)

keZ3

Now we can now determine the action of ¢ on quadratic operators:

Proposition A.6. For any k € Zi and symmetric operators Tyy : 02 (Lay) = 02(Lig)
such that I Ty, = T_; Iy it holds that

“2olan+20 1) e = (1L - 1) +2 4 ) + 05 (7))
+ /01 c1-0K (gk (|Kk, T,f(t)}) +2Re (5,}(T,j (:)))
+2Re (5,3 (Tk2(t)>)> =K gt 4 (k > —k)

and

©(05T0 + 05" () e = (12(1) + 2. 0F (T2(D) + Q5(T! (1))
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1
(1-nK 1 1 2
+ e ex(\Ki, Ty (1)1)+2Re (&, ( T)2(2)
[ " (ki mt o 2re (s (120))
+2Re (5,3(Tk‘ (r)))) =K gt 4 (k — —k)
where fort € [0, 1],
1 1
1 _ tKi tKy —t K —t Ky 2 . tKj tKy _ —tKy —t Ky
T, (1) = 3 (e Tre "k +e Tre ) (3 5 (e Tie e Tre ) .

Proof. We prove the first identity, the second following by a similar argument. Note that
the operators Ay (t) = Tk1 (1), Br(t) = Tk2 (1) satisfy

A (1) = {Ki, Be(1)}, Bp(t) = {Kg, Ax(D)}, A (0) =T, Br(0)=0.
(A.10)

By Propositions A.3 and A.4 we get

%e”’c (2 O\ (Ar(1)) + Q’E(Bk(z))) ¢ 4 = —k)
= e (204 (440) + 05 (Bi) - [K.2 04 Axw) + O (Bu0n)]) € 4k — —b)
= —tr({Ky, By (1)}) + e '% (2 0% (AL (1) — {Kk, Be(1)}) + Q% (B.(t) — {Kx, Ak(t)})) oK

_ etk (ex({Kk, Be(1)}) +2Re (S,i (Ak(1))) +2Re (&?(Bk(t)))) Kb = —k).

The second term on the right-hand side vanishes due to (A.10). Specifying also the initial
conditions in (A.10) we conclude by the fundamental theorem of calculus,

(2050 +2 074 (T-0) e =1 (Ax(1) = To) +2 0 Ak (1) + Q5(Bi(1)

1
b [ e (euKe, B + 2Re (L (An(0)
0
+2Re (S,E(Bk (z)))) ==K gt 4 (k — —k) (A11)

where we also used that by the assumptions on A (¢) and By (t)

1 1
/tr({Kk,Bk(t)})dt:tr </ A;(t)dz):tr(Ak(l)—Tk). (A.12)
0 0

The proof of Proposition A.6 is complete. O
From this we can also easily deduce the action of X on H.:

Proposition A.7. It holds that

M rfgye ™ = 37 1w (1) — i) + Hisy + 3 (201 (W) — e) + 05 (D) )

keZ3 keZ3
) /1 elI=0k <5k ({Kk h,%(t)}) +& (h,ﬁ(t) - hk) + &2 (h%(t))) e 1D g
kez3 "0
where fort € [0, 1],

(ethhkelKk _ e—thhke—th> )

1 1
o =3 (e’Kkhke’Kk + e—’Kkhke—’Kk> WOES
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Proof. By the Propositions A.3 and A.5 we see that

K Hiy = 302040 | == Y 2Re (&) (A.13)

keZ3 keZ3

whence by the fundamental theorem of calculus

KN H = > 2050 | e

keZ3
= Hipy— > 205 - / 2Re Ek (hk))) e Kdr. (A14)
keZ3 keZ3
Applying Proposition A.6 now yields the claim. O

We are now equipped to conclude Theorem 1.4. By the two previous propositions, we
see that

& Here™ = o | Hisy+ Y (205P0+ 05RO |
keZ3

= 3 A = PO+ Higy + Y (205 Ac(1) + 05(BL(1))

keZ3 keZ3

+> / =0K (e ({Kk, BeOD + EL A + E (B ) e Kar
keZ3
(A.15)

where the operators Ay (t), By (¢) : Ez(Lk) — Ez(Lk) are given by
1
ALt = b0 + PLO+ PR — i = 5 <e”<k (hi +2P) 'Kk 4 e*kahke*’Kk) —
1
Bi(t) = hi(t) + PL(1) + PE(t) = 5 (eka (hy +2P;) 'K — e—kahke—’Kk) :
(A.16)
Now we choose K such that By (1) = 0. This amounts to the diagonalization condition
K6 (hy +2Py) X = e KipreKi (A.17)

of which the solution is given in (1.39). Since (A.17) is fulfilled, it follows that also
Ar(1) = e Kkpe X — by, and so the identity in Theorem 1.4 follows provided we
can show that

Y (e—Kkhke—Kk ~ Iy — Pk) — Ecorr.bos- (A.18)
keZ3

To establish this final identity we will use the following integral representation of the
square root of a one-dimensional perturbation, first used in [2]:
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Lemma A.8. Let A : V — V be a positive self-adjoint operator. Then for any w € V
and g € R such that A + g Py, > 0 it holds that

(A+gPy)? A%+2g/ e P dt
8 - — 2y~ s
7o tag(w (A+2) w) (A% w

tr ((A +ng)%> =tr (A%) + % /Oolog <1 +g<w, <A+t2)71 w>> dt.
0

The trace identity (A.18) now follows (note that this is essentially Proposition 7.6 of
[10]):

Proposition A.9. Let F (x) =log (1 +x) —x. Forany k € Zi it holds that

tr (e_K"hke_Kk — hy — Pk> = l /oo Z M dt.
7 Jo (27[)3 A +t2

Proof. By cyclicity of the trace and Lemma A.8, tr (¢~ ¥t hie= & — hy) is equal to

1
2
1 [ -1
tr h,%+2P% :-/ 1og<1+2<vk,hk(h,%+z2) vk>)dt. (A.19)
7 Jo

hi vk

The claim follows by inserting the definition of /; and v, and noting also that

/ < h h +1 )71 >dt = —Akk_l [Le| =l ||2 =tr(F) (A.20)
— Uk, v = = ||V =1 .
¢ k g g 2(27)? ‘ ¢ ‘

where we used the integral identity fooo a/(@*+12)dt =n/2foreverya > 0. 0O
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