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Abstract
Despite the large number of species in the group Coleoptera (beetles), it is usually relatively easy to identify an adult 
beetle as such due to certain common characteristics. Among beetle larvae, however, there is a larger variability of body 
organisation. In some lineages, specialised larval morphologies are carried on into the adult phase by heterochrony, 
more exactly paedomorphosis. Such evolutionary events resulted in larviform females, as they occur in some extant 
representatives of Lycidae (net-winged beetles) and Lampyridae (fireflies). However, such larviform individuals, larvae 
or paedomorphic females, have been very rarely described in the fossil record until now and were restricted to Cenozoic 
ambers. Here, we report fossil larviform representatives, resembling larvae of the groups Lampyridae and Lycidae in 
certain aspects, from 100-million-year-old Myanmar amber. We furthermore discuss the morphological similarities 
and differences of the three new specimens in relation to extant larviform representatives of the groups and possible 
relationships of the new fossils.
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Introduction

The group Coleoptera is extremely species-rich, with more 
than 380,000 formally described species of beetles (e.g. 
McKenna et al. 2019). Still, most people are able to iden-
tify an adult representative of the group as a beetle. This 
is possible due to the rather stereotypic morphology of an 
adult beetle: when viewed from above (dorsal view), head, 
pronotum, and the two elytra (forewings) are apparent (with 
few exceptions such as rove beetles). Especially, the straight 
anterior–posterior line between the elytra is very different 
from the arrangement in other winged representatives of 
Insecta, as there is, for example, no apparent prominent part 
of the scutellum (triangular sclerite between the wing bases).

A larger variability of body organisation within Coleop-
tera is represented by the larval stages. A strong differen-
tiation between larvae and adults in beetles is possible due 
to a certain evolutionary decoupling of these stages (e.g. 
Scholtz 2005). Selective pressures can, therefore, lead to 
highly specialised larval morphologies. In some lineages of 
Coleoptera, such specialised larval morphologies have been 
carried on into the adult life phase by heterochrony, more 
exactly paedomorphosis (Kundrata and Bocak 2011; McMa-
hon and Hayward 2016; Rosa et al. 2020). This has led to 
larviform females, i.e. adult females that retain an overall 
larva-like morphology. Phylogenetic reconstructions clearly 
indicate that this phenomenon has evolved independently in 
several lineages.

A quite famous case is that of the “trilobite larva” (Mjö-
berg 1925). Females and larvae of the group Platerodrilus (in 
older literature also as Duliticola; Masek and Bocak 2014) 
have tiny heads with stout antennae, laterally drawn out tho-
rax tergites, and processes on the abdomen segments. In fact, 
also within the closely related larger group Lycidae, highly 
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specialised larvae and other paedomorphic females are known. 
Lycidae includes up to 4600 species (Masek et al. 2018 p. 2; 
Molino-Olmedo et al. 2020, p. 1), yet of only 2% the larvae are 
indeed known (Levkanicova and Bocak 2009 p. 210); still the 
morphological diversity (≈ disparity) of these is astonishing 
(Levkanicova and Bocak 2009, Figs. 2, 4, 5 p. 215).

Very similar larvae are also known in the group Lampy-
ridae (most similar in Emeia pseudosauteri; Fu et al. 2012, 
Figs. 5, 6, p. 4). Also in many representatives of Lampyridae 
(fireflies), a group of about 2,200 species (Martin et al. 2019, 
p. 1), females are larviform. However, most firefly larvae 
differ from the trilobite-type larvae; they appear less heavily 
derived, at least on a first glance. Lycidae and Lampyridae 
are both ingroups of Elateroidea. The two groups have been 
suggested to be sister groups in some analyses (Kundrata and 
Bocak 2011), but not in others (e.g. Kundrata et al. 2014).

Representatives of Lycidae and Lampyridae have been 
found as fossils, especially often in different types of amber. 
So far, all fossil finds seem to be winged adults, no larviform 
individual, neither larva nor paedomorphic female, has been 
reported so far. Here, we report larviform specimens that share 
many characters with extant trilobite-type beetle larvae and 
fireflies (and their paedomorphic females), but also differ in 
certain aspects.

Material and methods

Material

In the centre of this study are three fossil specimens, BUB 
3369, BUB 3845, and BUB 3989. The specimens originate 
from 100-million-year-old Cretaceous Kachin amber (99 mil-
lion years old, hence rounded to about 100 million years old) 
from the Hukawng Valley, Myanmar (Cruickshank and Ko 
2003; Shi et al. 2012; Yu et al. 2019). They come from the 
collection of one of the authors (PM). The specimens were 
legally exported from Myanmar before 2017 (see discussion 
in Haug et al. 2020).

Documentation methods

The specimens were documented on a Keyence VHX-6000 
digital microscope. White and black background and different 
illumination settings were used (cross-polarised co-axial light 
and low-angle ring light; Haug et al. 2013a, 2018). Several 
images of varying focus and several adjacent image details as 
well as different exposure times (HDR, cf. Haug et al. 2013b) 
were combined, resulting in composite images (Haug et al. 
2011). All images were further processed and colour-marked 
with Adobe Photoshop CS2.

Description of specimens

Specimen BUB 3369

General

Elongate, slightly dorso-ventrally compressed fusiform body, 
with slightly tapering anterior and posterior part. Total body 
length ~ 3.38 mm. Body differentiated into head and trunk 
(Fig. 1). Trunk differentiated into anterior trunk region (tho-
rax) and posterior trunk region (abdomen). Head prognathous 
(mouthparts facing forward). Thorax with three segments 
(pro-, meso-, metathorax). Thorax with one pair of long loco-
motory appendages (legs) on each segment. Abdomen with 
nine discernible units. Trunk units with well-sclerotised ter-
gites, laterally drawn out into dorso-lateral processes. In dorsal 
view, second row of similar processes discernible ventro-later-
ally, partially hidden by dorso-lateral ones. Body bears short 
setae, especially discernible on abdomen laterally.

Head

Head roughly pentagonal in dorsal view, wider than long, 1.6× 
(~ 0.26 mm long and ~ 0.43 mm wide), partially hidden by pro-
thorax tergite dorsally (Fig. 1a, b). No stemmata discernible. 
Antenna (appendage of post-ocular segment 1) with three 
elements discernible (Fig. 1a–c). Antenna longer than head 
capsule, 1.3× (~ 0.34 mm long) and relatively wide (~ 0.07 mm 
wide). Most distal element the longest (~ 0.19 mm), signifi-
cantly longer than other two elements, 1.25×. Labrum (deriv-
ative of ocular segment) continuous with head capsule (no 
sutures discernible), anterior edge bears multiple small setae 
(at least 16).

Mandibles (appendages of post-ocular segment 3), sickle-
shaped (Fig. 1d, e), strongly sclerotised, with no setae discern-
ible. Right mandible partially hidden by the counterpart. Left 
mandible ~ 0.25 mm long and ~ 0.06 mm wide at its widest 
point.

Maxillae (appendages of post-ocular segment 4), differenti-
ated in proximal part (stipes?) and palp. Proximal part elon-
gate, longer than wide, 6.4 × (~ 0.24 mm long), with median 
protrusion facing anteriorly (galea, lacinia, or mala). Latero-
distally with palp (~ 0.09 mm long) with four elements dis-
cernible (Fig. 1d, e). No setae discernible.

Labium (conjoined appendages of post-ocular segment 5) 
with no clear sutures between elements discernible. Distally 
with pair of possible palps (Fig. 1d, e).

Trunk

Prothorax sub-hexagonal in dorsal view, with poste-
rior part slightly drawn out posteriorly (Fig.  1a, b), 
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wider than long, 1.6 × (max. length ~ 0.47  mm, max. 
width ~ 0.77 mm). Mesothorax sub-hexagonal in dorsal 
view, largest thorax segment, wider than other thorax seg-
ments, 1.1× (max. length ~ 0.48, max. width ~ 0.85 mm). 
Metathorax sub-hexagonal in dorsal view, wider than long, 
1.9× (max. length ~ 0.41 mm, max. width ~ 0.8 mm).

Legs relatively long, longer than mesothorax, 1.8× 
(0.85 mm long), with five discernible elements (Fig. 1c): 
coxa, trochanter, femur, tibio-tarsus, and distal claw.

Abdomen segments 1–7 sub-similar, wider than long 
(~ 0.2 mm long, 0.73–0.91 mm wide), with abdomen seg-
ment 4 being widest (Fig. 1a–c). Abdomen segment 8 

Fig. 1   Specimen BUB 3369, specimen resembling larviform fireflies: 
a habitus in dorsal view; b colour-marked version of a; c habitus in 
ventral view; d details of head in ventral view; e colour-marked ver-
sion of d; f detail of spine-like process on terminal end, flipped for-
ward; g colour-marked version of f. a2–a6, abdomen segment 2–6; at, 

antenna; da, dorso-lateral process on abdomen segment; fe, femur; hc, 
head capsule; li, labium; md, mandible; ms, mesothorax; mt, metatho-
rax; mx, maxilla; pt, prothorax; ti, tibia (or tibio-tarsus?); va, ventro-
lateral process on abdomen segment
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longer and narrower than previous segments (~ 0.27 mm 
long, ~ 0.57 mm wide). Last discernible unit, terminal end 
(possible compound of several segments), semicircular in 
dorsal view, with single dorsal process postero-medially. 
Process with triangular proximal and pin-like distal part 
(Fig. 1f, g).

Specimen BUB 3989

General

Elongate, slightly dorso-ventrally compressed fusiform 
body, with slightly tapering anterior and posterior part. 
Total body length ~ 2.31 mm. Body differentiated into head 
and trunk (Fig. 2). Trunk differentiated into anterior trunk 
region (thorax) and posterior trunk region (abdomen). 
Head prognathous (mouthparts facing forward). Thorax 
with three segments (pro-, meso-, metathorax). Thorax 
with one pair of long locomotory appendages (legs) on 
each segment. Abdomen with nine discernible units. Trunk 
units with well-sclerotised tergites, laterally drawn out into 
dorso-lateral processes. In dorsal view, second row of sim-
ilar processes discernible ventro-laterally, partially hidden 
by dorso-lateral ones. Body bears short setae, especially 
discernible on abdomen laterally.

Head

Head roughly pentagonal in dorsal view, slightly longer 
than wide, 1.1× (~ 0.3  mm long and ~ 0.28  mm wide) 
(Fig. 2a, b). No stemmata discernible. Antenna (append-
age of post-ocular segment 1) club-shaped, with three 
elements discernible (Fig. 2a, b). Antenna shorter than 
head capsule, 1.3× (~ 0.22  mm long) and relatively 
wide (~ 0.05 mm wide). Most distal element the longest 
(~ 0.16 mm), significantly longer than other two elements, 
2.65×, bears multiple setae.

Labrum (derivative of ocular segment) continuous with 
head capsule (no sutures discernible), anterior edge bears 
single discernible micro-seta (Fig. 2b).

Mandibles (appendages of post-ocular segment 3) with 
no setae discernible. Both mandibles partially hidden by 
labrum in dorsal view.

Maxillae (appendages of post-ocular segment 4) pre-
sumably differentiated in proximal part (not discernible) 
and palp. Palp (~ 0.12 mm long) with multiple elements 
distinguishable (Fig. 2b), exact number not discernible. 
Proximal part of palp bears a single seta (Fig. 2b).

Labium (conjoined appendages of post-ocular segment 
5) not discernible.

Trunk

Prothorax sub-hexagonal in dorsal view (Fig.  2a, b), 
wider than long, 2× (max. length ~ 0.28  mm, max. 
width ~ 0.57  mm). Mesothorax sub-hexagonal in dor-
sal view, sub-similar to prothorax (max. length ~ 0.29, 
max. width ~ 0.57 mm). Metathorax trapezoidal in dorsal 
view, wider than long, 3 × (max. length ~ 0.21 mm, max. 
width ~ 0.64 mm), shortest and widest segment of thorax.

Legs relatively long, longer than mesothorax, 2.2× 
(~ 0.64 mm long), with five presumed elements: coxa, tro-
chanter, femur, tibio-tarsus, and distal claw. Femur, tibio-
tarsus and claw clearly discernible (Fig. 2a, b).

Abdomen segments 1–7 sub-similar, wider than long 
(~ 0.10–0.21 mm long, ~ 0.59–0.75 mm wide), with abdo-
men segment 4 being longest and abdomen segment 2 wid-
est (Fig. 2a, b). Posterior rim of abdomen segment 8 medi-
ally convex in dorsal view. Last discernible unit, terminal 
end (possible compound of several segments), rhomboid in 
dorsal view, with single dorsal process postero-medially. 
Process with triangular proximal and pin-like distal part 
(Fig. 2b).

Specimen BUB 3845

General

Elongate body, with slightly tapering posterior part. Total 
body length ~ 3.92 mm. Body differentiated into head and 
trunk (Fig. 3). Trunk differentiated into anterior trunk region 
(thorax) and posterior trunk region (abdomen). Head prog-
nathous (mouthparts facing forward). Thorax with three 
segments (pro-, meso-, metathorax). Thorax with one pair 
of long locomotory appendages (legs) on each segment. 
Abdomen with nine discernible units. Trunk units with well-
sclerotised tergites, laterally drawn out into dorso-lateral 
processes. On abdomen dorso-lateral processes longer and 
thinner, rod-like, with distal parts facing posteriorly (Fig. 3a, 
b). In dorsal view on thorax, second row of similar processes 
discernible ventro-laterally on thorax, partially hidden by 
dorso-lateral ones. In ventral view on abdomen, second row 
of significantly shorter processes discernible ventro-laterally 
(Fig. 4a, b). Head, antennae, prothorax and legs bear short 
setae.

Head

Head semicircular in dorsal view, wider than long, 1.8× 
(~ 0.26 mm long and ~ 0.43 mm wide), partially hidden by 
prothorax tergite dorsally (Fig. 3a, b). No stemmata discern-
ible. Antenna (appendage of post-ocular segment 1) club-
shaped, with three elements discernible (Figs. 3a–c, 4a). 
Antenna longer than head capsule, 2.1× (~ 0.63 mm long) 
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and relatively wide (~ 0.2 mm wide). Most distal element 
the longest (~ 0.41 mm), longer than other two elements 
together, 1.9×, bears multiple micro-setae. Distal surface 
of most distal antenna element with four distinct globular 
structures (Fig. 3c).

Labrum (derivative of ocular segment) continuous with 
head capsule (no sutures discernible), anterior edge bears 
multiple micro-setae.

Mandibles (appendages of post-ocular segment 3) not 
discernible.

Maxillae (appendages of post-ocular segment 4) presum-
ably differentiated in proximal part (not discernible) and 
palp. Palp of maxilla (~ 0.13 mm long) with three elements 
distinguishable (Fig. 4a). No setae discernible.

Labium (conjoined appendages of post-ocular segment 
5) not discernible.

Fig. 2   Specimen BUB 3989, specimen resembling larviform fireflies: 
a habitus in dorsal view; b colour-marked version of a. a4–a8, abdo-
men segment 4–8; at, antenna; da, dorso-lateral process on abdomen 

segment; hc, head capsule; ms, mesothorax; mt, metathorax; mx, 
maxilla; pt, prothorax; te, terminal end; va, ventro-lateral process on 
abdomen segment
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Trunk

Prothorax trapezoidal in dorsal view (Fig.  3a, b), with 
posterior part drawn out posteriorly (ventro-lateral pro-
cesses), wider than long, 1.8× (max. length ~ 0.74 mm, max. 
width ~ 1.37 mm). Prothorax tergite hexagonal, wider than 
long, 1.6× (max. width ~ 1.21 mm). Mesothorax trapezoidal 
in dorsal view, wider than long, 2.9× (max. length ~ 0.51, 

max. width ~ 1.49 mm), tergite trapezoidal, wider than long, 
2.5× (max. width ~ 1.29 mm). Metathorax trapezoidal in 
dorsal view, wider than long, 3.3× (max. length ~ 0.42 mm, 
max. width ~ 1.39 mm), tergite trapezoidal, wider than long, 
3.2× (max. width ~ 1.33 mm).

Legs relatively long, longer than whole thorax, 1.3× 
(~ 2.1 mm long), with five discernible elements (Figs. 3d, 
4b): coxa, trochanter, femur, tibio-tarsus, and distal claw.

Fig. 3   Specimen BUB 3845, trilobite-like beetle: a habitus in dor-
sal view; b colour-marked version of a; c details of antennae, arrows 
indicate four distinct structures on distal surface; d details of locomo-

tory appendage (leg). a2–a6, abdomen segment 2–6; cl, claw (tarsun-
gulum?); fe, femur; hc, head capsule; ms, mesothorax; mt, metatho-
rax; pt, prothorax; ti, tibia (or tibio-tarsus?)
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Abdomen segments 1–7 sub-similar, slightly taper-
ing antero-posteriorly, due to dorso-lateral pro-
cesses significantly wider than long (~ 0.15–0.26  mm 
long, ~ 1.23–1.58 mm wide), with abdomen segment 3 being 
widest (Fig. 3a, b). Abdomen segment 8 possibly longer and 
narrower than previous segments but partially inaccessible. 
Last unit, terminal end (possible compound of several seg-
ments), not discernible. Dorso-lateral abdomen processes 

significantly longer (max. 0.51 mm long) than ventro-lateral 
abdomen processes (max. 0.14 mm long) (Fig. 4b).

Fig. 4   Specimen BUB 3845, trilobite-like beetle, continued. a habi-
tus in ventral view; b detail of trunk region, including locomotory 
appendage (leg). cl, claw (tarsungulum?); cx, coxa; da, dorso-lateral 
process on abdomen segment; dt, dorso-lateral process on thorax seg-

ment; fe, femur; mp, maxillary palp; ti, tibia (or tibio-tarsus?); tr, tro-
chanter; va, ventro-lateral process on abdomen segment; vt, ventro-
lateral process on thorax segment
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Discussion

Identity of the new fossil specimens: the coarse 
frame

All three fossils reported here share certain features. The 
overall arrangement of the body segments into head, tho-
rax with three appendage-bearing segments, and abdomen 
with 11 or slightly less segments immediately identifies the 
specimens as representatives of Insecta (Hexapoda of many 
authors). Absence of wings in combination with a tibio-tar-
sus either indicates a position outside Pterygota or immature 
stages of a representative of Holometabola. The arrangement 
of the mouthparts, absence of genitalia and compound eyes 
support the latter interpretation. The overall campodeiform 
habitus is best compatible with an interpretation as a larva 
of a beetle (Coleoptera).

In the specimen with accessible mouthparts, the mandi-
bles are sickle-shaped. In combination with the overall habi-
tus, specimens BUB 3369 and BUB 3989 remind of larvae 
of the group Cantharidae (e.g. LeSage 1991 Fig. 34.465a p. 
430). Yet, the trunk segments of the three specimens have 
short lateral processes, one row of more dorsal and one row 
of more ventral processes. Such processes seem to be absent 
in larvae of Cantharidae.

Processes as in the fossils are particularly known from 
certain representatives of the group Elateroidea, most 
prominently in the ingroups Lycidae (net-winged beetles), 
Lampyridae (fireflies) and Drilini (false firefly beetles) and 
especially in their larvae (but also in paedomorphic females; 
more on this aspect below). The here reported specimens 
are unlikely to be representatives of Drilini, as in larvae of 
this group prominent urogomphi are developed, which are 
absent in the new fossils. In addition, the abdomen processes 
become longer towards the posterior end in larvae of Drilini 
(Baalbergen et al. 2016 Fig. 3k p. 167), which is not the case 
in the fossils.

Also in some other beetle groups, the larvae have at 
least comparable processes (e.g. Silphidae, Erotylidae, 
Chrysomelidae, and Coccinellidae). Larvae of Silphidae 
lack the prominent sickle-shaped mandibles, have urogom-
phi not seen in any of the here described specimens, and 
lack the stout antenna present in the here presented speci-
mens (e.g. Mahlerova et al. 2021). Larvae of Erotylidae and 
Chrysomelidae with processes differ from the here described 
specimens in possessing urogomphi and lacking similar 
mandibles (e.g. Skelley 2009; Świętojańska 2009). In larvae 
of Coccinellidae, the antennae are less prominent than in our 
specimens and do not show distal structures comparable to 
the ones seen here (e.g. Ślipiński 2007).

Comparison to larvae of Lampyridae and Lycidae

Specimens BUB 3369 and BUB 3989 appear sub-similar 
to each other and resemble modern larvae of Lampyridae 
(e.g. Riley et al. 2021). Many modern larvae of Lampy-
ridae have two rows of processes on the trunk segments 
as in the fossils (example here: LaBella and Lloyd 1991 
Fig. 34.463 p. 428). Other larvae of Lampyridae appear 
more onisciform having broad tergo-pleura-like protru-
sions (LaBella and Lloyd 1991 Fig. 34.462 p. 428), not 
displaying a prominent two-row arrangement. The two fos-
sils are clearly more similar to the first type of larvae. The 
fossils have especially strong similarities to the larva of 
Luciola atra (Branham 2011 Fig. 4.15.2D p. 143).

BUB 3845 resembles modern larvae of Lycidae (“trilo-
bite larvae”) in several aspects, but also differs in certain 
features. For example, the head is in relation to the body 
rather small in modern larvae of Lycidae (Mjöberg 1925 
Fig. 1 pl. III; Lok 2008 Fig. 1 p. 176; Kusy et al. 2019 
Fig. 2A p. 913), but is of a more “normal” proportion in 
the fossil. The shape of the head is indeed rather simi-
lar (Kazantsev and Zaitsev 2008 Fig. 13 p. 286). In addi-
tion, the short antennae of the fossils strongly resemble 
antennae of modern net-winged beetle larvae (McCabe 
and Johnson 1979 Fig. 1 p. 284; Miller 1997 Fig. 1 p. 7; 
Kazantsev and Nikitsky 2011 Fig. 1–22 pl. 2; Fanti et al. 
2017 Fig. 2 p. 140). Yet, in modern larvae only two ele-
ments are apparent in the antenna (e.g. see supplementary 
information in Bocak et al. 2016), while in the fossil there 
are clearly three such elements. Other morphological fea-
tures characteristic for modern larvae of Lycidae such as 
a circular pygopodium or non-opposable, longitudinally 
divided mandibles (e.g. Bocak and Matsuda 2003) are not 
accessible in the fossil larva and can, therefore, not be 
used for the present discussion.

The exact morphology of the trunk processes varies in the 
modern larvae of Lycidae:

(1) There are rod-like processes, comparable to those in 
the fossil (Mjöberg 1925 Figs. 1, 2, 7 pl. III; Brues 1941 
pl. II p. 31, pl. III p. 32 upper; Levkanicova and Bocak 
2009 Fig. 2 p. 215; Masek and Bocak 2014 Fig. 2, 3 p. 37, 
Figs. 32, 33 p. 47, Figs. 35, 36, 38, 39, 42 p. 49; Masek 
et al. 2014 Figs. 12, 15, 16 p. 138; Kusy et al. 2019 Fig. 2E 
p. 913).

(2) There are short processes (Mjöberg 1925 Figs. 2a, 
3 pl. III; Lok 2008 Fig. 1, p. 176; Masek and Bocak 2014 
Fig. 43, p. 49).

(3) There are very thin processes (Mjöberg 1925 Fig. 5 pl. 
III; Brues 1941 pl. III p. 32 lower; Levkanicova and Bocak 
2009 Fig. 4 p. 215; Masek and Bocak 2014 Fig. 40 p. 49; 
Kusy et al. 2019 Fig. 3O p. 916).

(4) There are tergo-pleura-like processes (similar to those 
of some larvae of Lampyridae, see above; Masek and Bocak 
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2014 Fig. 37 p. 49; Masek et al. 2014 Figs. 13, 14 p. 138; 
Kusy et al. 2019 Fig. 2A p. 916).

(5) Finally, there are some more aberrant larvae with very 
strange processes (Levkanicova and Bocak 2009 Fig. 5 p. 
215).

While the overall trilobite-larva-type morphology seems 
pretty unique, there are in fact some firefly larvae that appear 
very similar to trilobite beetle larvae (Fu et al. 2012 Fig. 5 
p. 4, Fig. 30 p. 16). Hence BUB 3845 resembles, concern-
ing the trunk processes, certain modern larvae of Lycidae 
(those with rod-like processes), but also certain larvae of 
Lampyridae.

The complicated phylogenetic frame of Elateroidea

As pointed out above, the specimens reported here resemble 
modern-day larvae of Lycidae and Lampyridae in certain 
aspects, in a more distant way also larvae of Cantharidae.

Cantharidae has been resolved as the sister group to 
Lampyridae + Lycidae (e.g. Kundrata and Bocak 2011 Fig. 2 
p. 371), or to Lampyridae with Lycidae as an earlier branch 
within Elateroidea (Kundrata et al. 2014 Fig. 1; Rosa et al. 
2020 Fig. 6), or to Lycidae with Cantharidae + Lycidae as 
sister group to a larger group including Lampyridae (Doug-
las et al. 2021 Fig. 2), or with the three groups not being 
directly related, but all as ingroups of Elateroidea (Zhang 
et al. 2018; Fig. 2; Cai et al. 2022; Fig. 1). In the first case, 
the similarities of the larvae of Lycidae, Lampyridae, and 
Cantharidae may characterise (as an apomorphy) a group 
including only these three ingroups. In the latter cases, one 
might suggest that the similarities may be interpreted as a 
result of convergent evolution. Alternatively, the specific lar-
val morphology may characterise a rather basal node within 
Elateroidea, with more further derived lineages (e.g. Elateri-
dae) having secondarily further modified larval morphology.

Most likely, a combination of both aspects, i.e. retained 
ancestral features and convergences, may be the best expla-
nation. Convergent evolution of larval forms within this part 
of the tree of Elateroidea seems to be common, also explain-
ing why some firefly larvae basically appear like trilobite 
beetle larvae (Fu et al. 2012 Fig. 5 p. 4, Fig. 30 p. 16).

This situation makes a more definite interpretation of 
the here reported fossils challenging: two of the specimens 
resemble modern larvae of Lampyridae and the other mostly 
larvae of Lycidae (but also certain larvae of Lampyridae). It 
seems unlikely that the latter specimen is a representative of 
Lycidae (“crown group”) given the rather large head and the 
three elements in the antennae; yet, these may represent ple-
siomorphic characters that are further derived in the modern 
representatives. The fossil may, therefore, be interpreted as 
an early offshoot of the lineage (“stem-lineage representa-
tive”) or simply as a possible sister species.

Yet, given the character distribution as discussed above, 
the interpretation of the three fossils is even more compli-
cated. They might potentially represent larvae of offshoots 
of the evolutionary lineage towards Lampyridae + Lyci-
dae, Lampyridae + Cantharidae, Cantharidae + (Lampy-
ridae + Lycidae), (Lampyridae + Cantharidae) + (smaller 
ingroup of Elateroidea), or also Lycidae + ((Lampyri-
dae + Cantharidae) + smaller ingroup of Elateroidea). In all 
these parts of the tree, we can at least expect a rather similar-
appearing larval morphology. Combined with the quite com-
mon occurrence of convergent evolution in Elateroidea (e.g. 
Kundrata and Bocak 2011), we cannot easily exclude that 
the new specimens are representatives of these parts of the 
tree. Especially, the rather large head of specimen BUB 3845 
may well represent a plesiomorphic feature, indicating that, 
despite its overall trilobite-larva-type appearance, the speci-
men might be a representative of a more ancestral lineage.

Are the new fossils larvae?

We have pointed out that the three new fossils resemble 
larvae of Lampyridae and Lycidae in certain aspects. Does 
that immediately identify them as larvae? In other lineages, 
this might already be sufficient (but see also discussion in 
Haug (2020) on this problem with larviform fossils in gen-
eral). However, especially in Elateroidea, and even more so 
in Lycidae and Lampyridae, many females retain an overall 
larviform morphology and never reach the “typical adult-
beetle-type” of morphology (Kundrata and Bocak 2011). 
This leaves the possibility that the specimens are larviform 
females.

Larviform females of Lampyridae often have an adult-
like anterior body (especially head, prothorax) and only the 
posterior trunk resembles that of the larvae (e.g. Kundrata 
and Bocak 2011 Fig. 1 p. 370; Branham 2011 Fig. 4.15.2B p. 
143; Dong et al. 2021 Fig. 101 p. 464). Larviform females of 
Lycidae strongly resemble their larvae in overall appearance 
(e.g. Kundrata and Bocak 2011 Fig. 1 p. 370; McMahon and 
Hayward 2016 Fig. 3 p. 510).

Based on this comparison, BUB 3369 and BUB 3989 are 
more likely larvae than paedomorphic females, given their 
head morphology. For BUB 3845 this aspect is less easy to 
be evaluated. The rather small size of all specimens is clearly 
more indicative for an interpretation of all three specimens 
as larvae, but it cannot be fully excluded that one of them is 
a very small-sized paedomorphic female.

The fossil record of Lycidae and Lampyridae

So far, 16 fossil species of Lycidae have been formally 
described (numbers combined from Molino-Olmedo et al. 
2020 and Li et al. 2021), but 3 of these have been interpreted 
as representatives of Tenebrionoidea (Bocak et al. 2022), 
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resulting in 13 accepted species. Most of these were based 
on specimens preserved in amber: 3 species are known from 
Miocene Dominican amber (Kazantsev 2012a; Ferreira and 
Ivie 2017), at least 4 species are known from Eocene Baltic 
amber (Kazantsev 2013), and apparently at least 3 species 
from Cretaceous Kachin amber from Myanmar (numbers 
combined from Bocak et al. 2019, 2022; Molino-Olmedo 
et al. 2020; Li et al. 2021).

Fossils of Lampyridae are even rarer. Also here, only few 
specimens are known from non-amber deposits (e.g. Wed-
mann et al. 2010). At least three species in Eocene Baltic 
amber (Kazantsev 2012b, c; Alekseev 2019) have been for-
mally described, a single one from Cretaceous Kachin amber 
(Kazantsev 2015; Alekseev 2019). A larva of Lampyridae 
has recently been reported from Dominican amber (Oligo-
cene–Miocene; Ferreira et al. 2022).

The fossil record of larviform individuals 
of Elateroidea

Klausnitzer (2003) reported, for Baltic amber, that beetle lar-
vae are rarely preserved and often difficult to interpret. Due 
to the strong evolutionary independence between larvae and 
adults, fossils of larvae are important for holometabolans, 
including beetles, when attempting to reconstruct ecologi-
cal aspects of fossil faunas (see discussion in Baranov et al. 
2019), instead of inferring larval or other life stages based 
on adult males.

Many larvae of the group Elateroidea have rather peculiar 
morphologies and, therefore, should be recognisable when 
found as fossils, which has been suggested as a pre-requisite 
by Klausnitzer (2003). Still, few fossil larviform individu-
als of Elateroidea have so far been reported in addition to 
the larva of Lampyridae from Dominican amber mentioned 
above (Ferreira et al. 2022).

Larvae of Eucnemidae have been found preserved in 
sedimentary rocks (Chang et al. 2016) and in amber (Zippel 
et al. 2022 early view). There, legless vermiform to bupres-
tiform appearance in combination with often jagged heads 
allowed an easy identification of the fossils.

Larvae of the very species-poor group Brachypsectridae 
have been found in various types of amber (Dominican, 
about 15 million years old, Baltic, about 35 million years, 
Kachin, about 100 million years old; recently summarised 
in Haug et al. 2021). These larvae have highly specialised 
processes on all trunk segments.

A possible fossil larva of the group Cantharidae was 
reported by Fowler (2019 Fig. 2 p. 141). More such larvae 
seem to be present in various collections, but have not been 
described in detail so far (pers. obs.)

In summary, the overall fossil record of larviform rep-
resentatives of Elateroidea is still quite scarce. The here 

reported fossils are, therefore, possibly an important addi-
tion to this still rather limited fossil record.
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