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Abstract
Natural language does not express all connectives definable in classical logic as simple
lexical items. Coordination in English is expressed by conjunction and, disjunction
or, and negated disjunction nor. Other languages pattern similarly. Non-lexicalized
connectives are typically expressed compositionally: in English, negated conjunction
is typically expressed by combining negation and conjunction (not both). This is
surprising: if ∧ and ∨ are duals, and the negation of the latter can be expressed
lexically (nor), why not the negation of the former? I present a two-tiered model of
the semantics of the binary connectives. The first tier captures the expressive power
of the lexicon: it is a bilateral state-based semantics that, under a restriction, can
express all and only the distinctions that can be expressed by the lexicon of natural
language (and, or, nor). This first tier is characterized by rejection as non-assertion
and a Neglect Zero assumption. The second tier is obtained by dropping the Neglect
Zero assumption and enforcing a stronger notion of rejection, thereby recovering
classical logic and thus definitions for all Boolean connectives. On the two-tiered
model, we distinguish the limited expressive resources of the lexicon and the greater
combinatorial expressive power of the language as awhole. This gives us a logic-based
account of compositionality for the Boolean fragment of the language.

Keywords Lexicalization · Horn’s Puzzle · Semantics · Natural language semantics ·
Bilateralism · Assertion · Rejection · Propositional logic · Connectives · NAND ·
Neglect Zero effects
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1 Introduction

Languages across the world have simple (monomorphemic) words for some but not
all of the binary connectives of classical logic [21, 22, 31]. Coordination in English
is expressed by conjunction and, disjunction or, and negated disjunction nor. No lan-
guage appears to include coordinators that express more or other connectives [21,
46]. Connectives that are definable in classical logic but are not lexicalized are usu-
ally expressed compositionally: for example, negated conjunction by not both, and
exclusive disjunction by either but not both.

This surprising distribution is known as Horn’s puzzle [21]. The surprise is due
in part to standard semantics. A common assumption in standard semantics is that
conjunction and disjunction in natural language express Boolean operators, which are
duals under negation, and so if the negation of one can be expressed by a simple word
(nor), one would expect that the negation of the other could be so expressed (by a
hypothetical *nand). But this is not so.

More generally, if the logic of semantic representations is Boolean, we face an
overgeneration problem: there are many binary Boolean operators but only and, or,
and nor are ever lexicalized.1

There is a Gricean approach to the overgeneration problem, according to which
pragmatic principles of communication explain the lexical gaps, in particular scalar
implicatures [4, 13, 21, 30, 46]. Implementations of this approach differ in various
respects, but two main concerns with this strategy have arisen.

(a) Most Gricean approaches are limited in scope. The arguments of [13, 21, 30], aim
to show how the set {and, or, nor, *nand} can be thinned to the target set and, or,
nor, but do not apply to the full set of classically definable binary Boolean con-
nectives. Additional assumptions are needed to rule out non-trivial but unattested
operators.

(b) NoGricean approach explains or predicts that compositionality is the fundamental
linguistic tool to overcome the expressive limits of the lexicon [25]: on Gricean
approaches, the combinatorial power of logical operators is not part of the account.

Gricean approaches maintain a background Boolean logic and invoke principles of
communication to account for Horn’s puzzle. The perspective of this paper is to change

1 Some preliminary clarifications. (i) The focus of this paper are coordinating expressions: this is to exclude
binary operators such as because, until, or if, that are not merely coordination devices (on if, see [33, 39],
among others). (ii) As emphasized below, nor coordinates rejections, unlike and and or that coordinate
assertions. Inmany natural languages, including English, rejectionsmust bemorphologicallymarked, hence
occurrences of nor are accompanied by rejection-markers on the first argument (in English, not and neither):

(1) a. She is not American nor Canadian.
b. Neither the President nor the Prime Minister was found guilty.

In other languages (the analog of) nor need not come with a different partner. Italian né, for example,
behaves as conjunction (sia) and disjunction (o) in constructions akin to (1b).

(2) {Sia/O/Né} questo {sia/o/né} quello
{Both/Either/Neither} this {and/or/nor} that

(iii) A separate issue is raised by the view that nor is not syntactically simple [41, 51]. This seems tangential
to me. The puzzle is to explain why nor may occur as a monosyllabic item (syntactically complex or not),
unlike other possible operators such as *nand.
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The Logic of Lexical Connectives 1329

the background logic and make the overgeneration problem disappear. In the logic of
the lexicon, issues (a) and (b) do not arise: no additional principles are needed to
exclude non-trivial unattested operators, and compositionality is a core component of
the explanation.

A logic of the lexicon is a formal system that captures all and only the semantic
distinctions that natural language expresses lexically, relative to a fragment of the
language, and nothing else. Regarding the coordinators, there are two desiderata: to
describe the semantics of and, or, and nor, and to show that no other connective is
definable. In this paper I will introduce two logics. The two logics share the same
language and, in a sense, the same semantics for the operators ¬,∧ and ∨ that belong
to the common language. The semantics is bilateral, and stated in terms of assertion-
and rejection-conditions of sentences at information states (sets of possible worlds).
The first logic, llc, is characterized by (i) a definition of rejection as non-assertion,
and (ii) the possibility of avoiding vacuous information in the performance of speech
acts. llc is the logic of the lexical connectives: under a restriction, only and, or, and
nor can be expressed in llc. The second logic, cl, is characterized by (i) a stronger
notion of rejection, and (ii) a requirement to always allow for vacuous speech. cl is
classical logic.

The two systems can be understood as two specifications (by different parameter
settings) of the sameunderlying semantic structure,which can capture, on theonehand,
the expressive power of the lexicon (llc), and on the other, the expressive power of
natural language as a whole (cl). A two-tiered account of lexicalization emerges. On
the first tier, llc, we define what the lexicon can express. Classically definable non-
lexical connectives are introduced at the second tier, cl, which is obtained from the
first by requiring that non-vacuous reasoning is always permitted (a staple of classical
logic) and by strengthening rejection into the classical contradictory of assertion. If we
suppose, which seems plausible, that the overt negation operator not often expresses
strong rejection [26], then the two tiers closely correspond to how natural language
expresses the connectives: some at lexical level, and some by combining the lexical
connectives with overt negation (e.g., not both).

1.1 Linguistic Motivations

There is a widely accepted explanation of the lexicalization pattern of color terms.
We start with a space of possible lexical meanings, some of which are selected in
any given natural language. The space of color terms’ possible lexical meanings is,
plausibly, any partition of the visible light spectrum that satisfies certain universal
constraints (such as connectedness [10]). Partitions of the color spectrum that satisfy
such universal constraints are “up” for lexicalization, so to speak, and languages differ
lexically in patterns that have been explained by informativity and cost pressures on
communication [32, 35, 36].

The case of binary connectives may be analogous. The first question is: what is the
space of possible lexical meanings for the connectives? Gricean approaches to Horn’s
puzzle assume a “worst case” hypothesis [24], namely that the space of possible lexical
meanings is determined by Boolean logic. However, there is no linguistic evidence

123



1330 Sbardolini

that any coordinating connective is lexicalizable besides and, or, and nor, and we
know that further constraints are in place (such as monotonicity [5, 45]), that rule out
some Boolean operators. In the logic introduced below, natural assumptions about
assertion and rejection constrain the space of possible meanings for the connectives
so as to include and, or, nor, and nothing else. On the model provided by this logic,
only and, or, and nor are possible lexical meanings for the connectives. Languages
may then differ by adopting different strategies concerning what to lexicalize from
this space: some languages lack a word for nor, others lack disjunction. This part
of the explanation may well depend on communicative trade-offs. For an account of
cross-linguistic differences along these lines, compatible with the perspective of the
present paper, see [9].

The project of a logic of the lexicon is continuous with the project of standard
semantics. Standard semantics, as many understand it [49], is a model of semantic
competence as revealed by native speakers’ intuitive judgements.A logic of the lexicon
builds on this by adding an account of lexicalizability—another source of evidence
about semantic competence. There are methodological differences: while in standard
semantics valid entailments are understood to be introspectively accessible to native
speakers, in a logic of the lexicon some valid entailments are not meant to “ring”
valid (knowledge of one’s language does not imply knowledge of cross-linguistic
regularities): these entailments are meant to show that the expressive power of the
logic of the lexicon matches the expressive power of the lexicon of natural language.
The more general perspective is that of explaining some aspects of lexicalizability,
such as the lack of *nand, by appealing to (un)definability in the proper logic.

For illustration, consider a language L closed under negation¬, conjunction∧, and
disjunction ∨. Let’s assume a standard semantics and a classical metalanguage.

φ ∧ ψ is true iff φ is true and ψ is true

φ ∨ ψ is true iff φ is true or ψ is true

¬φ is true iff φ is not true

Why are ∧ and ∨ the primitive binary connectives of L? Apparently by accident. For
if the lexicon of L has the expressive resources invoked on the right-hand side of the
“iffs”, then it could in principle include all connectives definable in Boolean logic.
Negated conjunction *nand, for example, could be a primitive of L by stipulating that
φ nand ψ is true iff φ is not true or ψ is not true. The same applies to the material
biconditional, exclusive disjunction, and all other Boolean operators. The absence of
simple words for all these operators would be unexplained in L as well as in natural
language insofar as the former is a model of the latter.

Standard semantics is often understood to model compositionality in the following
sense: the semantics shows that compositionality in natural language is possible, by
means of a formal language that implements compositionality and interprets natural
language. The clauses above show that the truth-conditions of not both φ and ψ

can be obtained by combining the semantic contributions of ¬,∧, φ, and ψ . This
approach does not show how compositionality in natural language works: it does not
explain how natural language expresses not both φ and ψ . For the possibility remains

123



The Logic of Lexical Connectives 1331

open that such truth-conditions are expressed directly at the lexical level by a simple
word such as *nand. However, this is not a genuine possibility: it is an apparent one
that arises because the expressive resources of the lexicon of L , as characterized by
a standard semantics and a classical metalanguage, outstrip those of the lexicon of
natural language.

Semantic clauses such as the ones above are rather rudimentary, of course, but the
point is general. A semantic metalanguage should be expressive enough to capture the
truth-conditions of all expressions in the intended fragment of the object language.
But this assumption may overgenerate. A further constraint is thus desirable: that the
semantic metalanguage does not express more than what is expressed by the lexicon
of the intended fragment of natural language. A logic of the lexicon is thus continuous
with standard truth-conditional semantics, but builds in an account of why we don’t
have more logic at the lexical level than we do. (For recent work oriented in a similar
direction, see [24].)

1.2 Overview

Binary sentential coordinators are natural language expressions such as and, or, nor.
The Logic of Lexical Connectives (llc) may be studied bymeans of a formal language
with standard syntax.

Lllc := p | ¬φ | φ ∧ φ | φ ∨ φ

I assume two basic distinctions: between assertion and rejection, and between con-
junction and disjunction. The lexicon of natural language plausibly keeps track of both
distinctions, which justify the syntactic primitives of Lllc. The distinction between
conjunction ∧ and disjunction ∨ is attested in the lexicon of many natural languages
[34]. The distinction between assertion and rejection is also well-documented [22,
26], and justifies a form of negation ¬ as a switch between the two speech acts.

Perhaps the most conspicuous detail of llc is that the classical duality of con-
junction and disjunction is broken: while assertions of conjunctions and assertions
of disjunctions behave classically, their rejections coincide if vacuous information
is avoided, and express the classical meaning of negated disjunction, which is the
semantic value of nor. In other words, under certain conditions llc fails to express
the contradictory of conjunction. This is what we want, because a connective such as
*nand is not lexicalized in natural language, and llc is designed to model the expres-
sive resources of the lexicon of natural language. The same consideration applies to
other non-lexical connectives.

llc may be depicted by the Triangle of Oppositions of Fig. 1. The dashed vertical
line represents the assertion/rejection distinction, and the horizontal the conjunc-
tion/disjunction distinction. These two lines divide the plane in four quadrants, one
of which is empty (down-right). The ghost of the Square of Oppositions for classical
propositional logic, that goes back to the Aristotelian tradition [7, p. 14], is indicated
by a dotted line.
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Fig. 1 The triangle of oppositions

Evidence for placing nor up-right is that (3a) implies both (3b) and (3c) and is jointly
implied by them. This is the same inferential relation as that between a conjunction
(up-left) and its arguments.

(3) a. Neither Maria nor Robert tried the new restaurant.
b. Robert did not try the new restaurant.
c. Maria did not try the new restaurant.

The Rejection side of Fig. 1 is characterized in classical logic by the DeMorgan equiv-
alences. The up-right quadrant is characterized by the equivalence between ¬(φ ∨ψ)

and¬φ∧¬ψ , and the empty down-right quadrant by the equivalence between¬(φ∧ψ)

and ¬φ ∨ ¬ψ . A sentence of any of these four forms will be called a De Morgan sen-
tence. The strategy I will follow to triangulate the Square will be to (a) collapse the De
Morgan sentences on the same meaning, and (b) show that it is the classical meaning
of nor. The entailments that account for part (a) are summarized below: on the two left
columns, the classically valid entailments among De Morgan sentences. All of these
are unrestrictedly valid in llc. On the right column, the classically invalid entailments,
to which I will refer collectively as Negative Collapse. These will also come out valid
in llc, under a restriction, thereby causing all De Morgan sentences to collapse on
the same meaning. Moreover, and this is part (b), this is the classical meaning of nor,
for llc captures the inferential pattern in (3) under the same restriction.2

Classically Valid Negative Collapse

¬φ ∨ ¬ψ � ¬(φ ∧ ψ) ¬(φ ∨ ψ) � ¬φ ∨ ¬ψ ¬φ ∨ ¬ψ � ¬(φ ∨ ψ)

¬(φ ∧ ψ) � ¬φ ∨ ¬ψ ¬(φ ∨ ψ) � ¬(φ ∧ ψ) ¬(φ ∧ ψ) � ¬(φ ∨ ψ)

¬φ ∧ ¬ψ � ¬(φ ∨ ψ) ¬φ ∧ ¬ψ � ¬(φ ∧ ψ) ¬(φ ∧ ψ) � ¬φ ∧ ¬ψ

¬(φ ∨ ψ) � ¬φ ∧ ¬ψ ¬φ ∧ ¬ψ � ¬φ ∨ ¬ψ ¬φ ∨ ¬ψ � ¬φ ∧ ¬ψ

2 Horn [pp. 216ff] [22] mentions a ‘three-cornered Square of Oppositions’, which illustrates a proposal
about lexicalization originally due to Jespersen [28] (see [23] for a negative assessment). On the three-
cornered Square, or is interpreted as exclusive disjunction. The Square is thus made into a triangle, since or
expresses two vertices at once (disjunction and the contradictory of conjunction), but this comes at the price
of a non-standard disjunction. The triangulation of the Square that I am proposing is different: I propose
not to revise standard semantics but to complement it.
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Because of Negative Collapse, triviality looms. Suppose that ¬φ, therefore ¬φ ∨ ¬ψ

by Disjunction Introduction, therefore ¬φ ∧ ¬ψ by Negative Collapse, therefore ¬ψ

by Conjunction Elimination. It appears that from any ¬φ we can conclude any ¬ψ .
This is the Triviality Argument.

(i) ¬φ Assumption
(i i) ¬φ ∨ ¬ψ From (i) by Disjunction Introduction
(i i i) ¬φ ∧ ¬ψ From (i i) by Negative Collapse
(iv) ¬ψ From (i i i) by Conjunction Elimination

The step from (i) to (i i) arguably captures something fundamental about disjunction,
and is valid in classical logic along with the step from (i i i) to (iv), which arguably
captures something fundamental about conjunction. Negative Collapse supports the
inference from (i i) to (i i i), which is classically aberrant but necessary to claim that
¬φ ∨ ¬ψ and ¬φ ∧ ¬ψ express the same meaning in llc. Thus, each of the steps
from (i) to (iv) seems irresistible. There are similar triviality arguments from any of
the other validities in Negative Collapse, but they will be dealt with in the same way
as this.

The inference from (i i) to (i i i) has the superficial form of a (wide scope) free
choice inference, and it is labelled accordingly.

fc ¬φ ∨ ¬ψ � ¬φ ∧ ¬ψ

free choice ♦φ ∨ ♦ψ � ♦φ ∧ ♦ψ

free choice is classically invalid but perceived to be valid in ordinary uses of epis-
temic or deontic modals. For example, (4b) seems to follow from (4a).

(4) a. Paul might be Dutch or might be Danish.
b. Paul might be Dutch and might be Danish.

The analogy between fc and free choice is perhaps only superficial, but it may
offer some technical insight to block the Triviality Argument. Consider the analogous
argument with epistemic modals below [29].

(i ′) Paul might be Dutch Assumption
(i i ′) Paul might be Dutch or might be Danish From (i ′) by Disjunction Introduction
(i i i ′) Paul might be Dutch and might be Danish From (i i ′) by free choice
(iv′) Paul might be Danish From (i i i ′) by Conjunction Elimination

Someonewho is in a position to assert (i ′) seems to be led to (iv′) by inexorable steps of
logical reasoning. A possible diagnosis of the argument from (i ′) to (iv′) is to reject not
any single inferential step, but rather the way the steps are chained together. Intuitively,
one’s ground for asserting (i ′) is also, somewhat loosely, a ground for asserting (i i ′).
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However, asserting (i i ′) as the premise of an inference to (i i i ′) requires more than
such loose ground. One must not equivocate between the epistemic state of someone
who asserts a disjunction, and the state of someone who loosely asserts a disjunction
because they can assert a disjunct. For a diagnosis of free choice roughly along
these lines, see [2]. While I do not commit to an account of free choice here, I do
endorse an analogous equivocation diagnosis of the Triviality Argument via Negative
Collapse. In addition, I will look at recent work on free choice to design models
that validate the fc inference [2, 20].

1.3 The Semantic Core

As I anticipated, I will describe two logical systems: the Logic of the Lexical Connec-
tives llc and Classical Logic cl. Perhaps surprisingly, the two systems are closely
related. In this section I will introduce their common core. The languageLllc, already
introduced in the previous section, is also shared.

A model is a structure M = (W , V ) of a non-empty set of possible worlds and a
valuation function. Worlds are classical indices. Valuations are functions from worlds
to the Boolean truth values.

Definition 1 Let M = (W , V ) be a model, with W �= ∅. For all atomic sentences p
in Lllc and all worlds w ∈ W , a valuation V in M is a function from p and w to a
truth value 0 or 1.

The syntactic primitives ofLllc, {¬,∨,∧}, have bilateral truth-conditions, following
a rich logical tradition [26, 37, 40, 44]. Truth-conditions of sentences will be specified
relative to information states, that is, subsets of W , following [12]. We can think of
the statement ‘M, s � φ’ as saying that φ is asserted in state s relative to a model
M , while ‘M, s �φ’ says that φ is rejected in s relative to M . I will also gloss this
notation, occasionally, by saying that s asserts (resp., rejects) φ relative to a model.
For simplicity, reference to M is omitted whenever no confusion arises.

A form of negation is available “for free”, as it were, in a bilateral setting, as a
switch between assertion and rejection. A sentence ¬φ is asserted if and only if φ is
rejected, and vice versa.

s � ¬φ iff s �φ
s �¬φ iff s � φ

Classical disjunction (s � φ ∨ ψ iff s � φ or s � ψ) would quickly lead to triviality
via the Triviality Argument: by classical disjunction, Disjunction Introduction holds
unrestrictedly in the metalanguage. Instead of classical disjunction, I adopt a rule of
so-called split disjunction. A disjunction is asserted in an information state if and only
if the state can be “split” into two substates, each asserting a disjunct, while a state
rejects a disjunction if and only if both disjuncts are rejected.

s � φ ∨ ψ iff for some t and t ′ : s = t ∪ t ′ and t � φ and t ′ � ψ

s �φ ∨ ψ iff s �φ and s �ψ
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Split disjunction has been studied in state-based models of intuitionistic and classical
logic [12], team logic [50], and for the semantics of free choice [2, 20]. Split
disjunction gets us half way to avoiding trivialization, as we shall see.

A similar issue arises with the conditions for rejecting a conjunction. Classical
rejected conjunction (s �φ ∧ ψ iff s �φ or s �ψ) would allow for unrestricted
Disjunction Introduction in themetalanguage,which threatens to trivialize the account.
The truth-conditions of ∧ are the mirror image of those for ∨. Indeed, the former can
be derived from the latter by setting φ ∧ ψ := ¬(¬φ ∨ ¬ψ).

s � φ ∧ ψ iff s � φ and s � ψ

s �φ ∧ ψ iff for some t and t ′ : s = t ∪ t ′ and t �φ and t ′ �ψ

Summarizing, I assume the following truth-conditions for the operators inLllc. These
truth-conditions are common for llc and cl. In this sense, conjunction, disjunction,
and negation, have the same meaning in the two systems.3

Definition 2 Bilateral truth-conditions of the operators inLllc.

s � ¬φ iff s �φ
s �¬φ iff s � φ

s � φ ∨ ψ iff for some t and t ′ : s = t ∪ t ′ and t � φ and t ′ � ψ

s �φ ∨ ψ iff s �φ and s �ψ
s � φ ∧ ψ iff s � φ and s � ψ

s �φ ∧ ψ iff for some t and t ′ : s = t ∪ t ′ and t �φ and t ′ �ψ

Logical consequence for llc and cl is the familiar assertion-based notion: a sentence
ψ follows from some sentences � if and only if ψ is asserted in all models and states
in which all sentences in � are asserted.

Definition 3 Logical consequence.

� �llc/cl ψ iff M, s � ψ for all models M and states s such that M,

s � γ for all γ ∈ �

Therefore, φ is a tautology in llc or cl, written ‘�llc/cl φ’, if and only if φ is asserted
relative to all models and states. In the following, the subscript on the consequence
relation will often be omitted. There is thus a triple ambiguity, for ‘�’ may stand for
assertion (a relation between a model, a state, and a sentence), consequence in llc,
and consequence in cl (which are relations between some sentences and a sentence).
The context will always clarify which sense is intended: if assertion, then a variable

3 Insofar as meaning is captured by assertion- and rejection-conditions. There is a further dimension of
meaning (a “structural” one that concerns which entailments are valid) on which the logical operators have
different meanings in llc and cl, since the two logics have different sets of validities. See Section 4.3
below.
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for an information state will always occur to the left of ‘�’,4 and the two logics llc
and cl are the focus of different sections of the paper.

The logical scaffolding I have described thus far is not a logic because assertion-
and rejection-conditions for atomic sentences are yet to be specified. The definition
of rejection for atoms is one point where llc and cl diverge.

2 The Logic of Lexical Connectives

A logic is obtained from the semantic core described in the previous section by adding
conditions for the assertion and rejection of atomic sentences, and a policy for the
management of vacuous speech. The conditions for assertion and rejection of an atomic
sentence in llc reflect the intuitive idea that assertion and rejection are polar opposites.
A state asserts p if and only if all worlds in the state verify p. A state rejects p either
vacuously, if the state is empty, or if it fails to assert p. Since the (non-vacuous)
condition for rejection is non-assertion, I will call this condition polar rejection.

Definition 4 Assertion and Polar Rejection.

s � p iff for all w ∈ s : V (w, p) = 1

s �p iff s = ∅ or s � p

Equivalently, polar rejection can be stated directly in terms of possible worlds rather
than states, as for the assertion clause.

s �p iff s = ∅ or for some w ∈ s : V (w, p) = 0

Assertion and polar rejection are opposite but unequal. There is a demanding rule
of unanimity for assertion: all worlds in a state have to agree that p is true in order
for the state to assert p. However one dissenting world is enough for polar rejection.
Intuitively, the epistemic standard for assertion is higher.

An immediate consequence of Definition 4 is that the empty state—the “zero”—
asserts and rejects any atom. A simple induction through the clauses of Definition 2
extends this property to all sentences. Following [2], I take ∅ to be a state of logical
absurdity.

Observation 5 ∅ � φ and ∅ �φ for any φ inLllc

By Observation 5, vacuous information is a ground for asserting anything: ex absurdo
quodlibet. However, there is an important difference between asserting something
on the basis of specific information, and asserting something because one is in a
vacuous information state and could assert anything. Likewise for rejection. The next
assumption I will introduce, which completes the description of llc, is a policy on

4 In particular, ‘∅ � φ’ indicates that φ is asserted in the empty state, not that it follows from the empty
set of premises, for which I will write ‘�llc/cl φ’ (see Observation 27).
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the management of the zero: in llc, the empty ground can be avoided. In certain
contexts, vacuous information is not an acceptable ground for assertion and rejection.
This assumption is called ‘Neglect Zero’, following [2].

To model Neglect Zero I introduce the star operator �: a speech act modifier whose
function is to refine the grounds for assertion and rejection in order to avoid the vacuous
support provided by the zero. Formally, the star is a function from a speech act, s � φ,
to its non-vacuous counterpart, s � φ�, which says that φ is non-vacuously asserted
in s.5 Likewise for rejection. For atomic sentences, s � p� (s �p�) if and only if
s is non-empty and asserts (resp., rejects) p. Non-vacuous assertion and rejection of
complex sentences are defined in terms of the non-vacuous assertion and rejection of
their constituents.6

Definition 6 The star.

s � p� iff s � p and s �= ∅

s �p� iff s �p and s �= ∅

s � [¬φ]� iff s � ¬φ�

s �[¬φ]� iff s �¬φ�

s � [φ ∨ ψ]� iff s � φ� ∨ ψ�

s �[φ ∨ ψ]� iff s �φ� ∨ ψ�

s � [φ ∧ ψ]� iff s � φ� ∧ ψ�

s �[φ ∧ ψ]� iff s �φ� ∧ ψ�

Neglect Zero is an optional environment for the performance of speech acts in llc. The
possibility of neglecting the zero enjoys some independent motivation. Disregarding
the role of vacuous configurations in reasoning can be plausibly considered a natural

5 Although the star appears as a superscript on a sentence, it is not a sentential operator: its scope is the
whole (s � φ)�. The notation has the benefit of allowing us to write ‘φ� � ψ�’ to mean that, for all M and
s, if M, s � φ� then M, s � ψ�, namely, if φ is non-vacuously asserted, then ψ is non-vacuously asserted:
a claim of entailment in a context in which the speaker is forbidden from vacuous speech. Intuitively, the
job of the star operator is to separate two dimensions of speech acts: obligatorily non-vacuous, when the
Zero is neglected, and possibly vacuous, as in classical logic.
6 It might be objected that calling the star a speech act operator does not sit well with Definition 6, on which
the star can take narrow scope under the logical constants. However, logical scope need not be understood as
an environment utterly inaccessible to illocutionary force, even if it is on some theories of logic, particularly
Frege’s. A simple observation is the following. Consider a function ? that turns an assertion into a question.
No doubt, ? is a speech act operator. In many logics of questions [11], a distinction is made between
?(Fx ∨ Gx) and (?Fx) ∨ (?Gx), corresponding to the intuitive difference between (5a) and (5b).

(5) a. Is he going to Portugal or Spain? (I am also traveling to the Iberian peninsula) ?(Fx ∨ Gx)

b. Is he going to Portugal or is he going to Spain? (I forgot which.) (?Fx) ∨ (?Gx)

In context, it is natural to understand the speaker of (5b) as asserting the disjunction but asking about the
disjuncts. In contrast, the speaker of (5a) is not asserting the disjunction but asking about it. This example
illustrates that speech act operators can interact with logical scope in subtle ways. There are several further
questions about the interaction between force and logic: in particular, the Frege-Geach problem and its
various manifestations [15, 17, 27, 42, 47], about which I will defer to the relevant literature. Thanks to an
anonymous reviewer for asking me to clarify this point.
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Fig. 2 States s = {wp, wq } and t = {wp}

cognitive tendency of speakers [8]. Moreover, despite some differences, the star is
inspired by Maria Aloni’s ‘pragmatic intrusion’ operator for the treatment of free
choice in Bilateral State-based Modal Logic [2], and it is similarly motivated. The
option to Neglect Zero is also available in BSML.7

An immediate consequence of the enforcement of Neglect Zero is the dual of
Observation 5 (the proof is omitted but straightforward): no sentence is non-vacuously
asserted or rejected in the empty state.

Observation 7 ∅ � φ� and ∅ � �φ� for any φ inLllc

Moreover, if a state non-vacuously asserts φ, then it asserts φ, likewise for rejection.
The converse, of course, fails because of the empty state.

Observation 8 If s � φ� then s � φ and if s �φ� then s �φ

For illustration of what the star does, consider a state s = {wp, wq}, as in Fig. 2, with
subscripts indicating which atomic sentences are true at a world. By the conditions
on the atoms (Definition 4), s � p and s � q. However, s � p ∨ q because s can be
split into two substates, {wp} and {wq}, which assert p and q respectively. Consider
now state t = {wp}. Despite t � p and t �q, still t � p ∨ q since t = t ∪ ∅ and the
empty state asserts anything, hence t can be split into two substates that assert p and
q respectively. However, there is a difference in the assertability of disjunction in s
and t , which is brought up by the star: s � [p ∨ q]� and t � [p ∨ q]�, since s is made
out of non-empty substates that assert the disjuncts, unlike t . So s is a non-vacuous
ground for asserting p ∨ q, but t is not.

Another interesting remark concerning Fig. 2 is about polar rejection, and does not
depend on the star. As we just saw, s � p ∨ q. Moreover, since s �p and s �q,
we have s �p ∨ q as well. Hence s � ¬(p ∨ q). Intuitively, p ∨ q is asserted in s
because, from s, both a state that asserts p and a state that asserts q are “accessible”—
interpreting set-theoretic inclusion as accessibility. However s is just as good a ground
for rejecting p ∨ q, since the state rejects both disjuncts. This remains so under the
star: relative to Fig. 2, s � [p ∨ q]� and s � [¬(p ∨ q)]�. Thus the empty state is not

7 In BSML, Neglect Zero is encoded in the syntax of the object language by means of an optional atom
ne. Since such atom does not correspond to a lexicalized expression of natural language, following Aloni’s
notation would be somewhat at odds with the goals of this paper.
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the only source of inconsistency in llc: the zero is not the only “glutty” information
state. It follows that negation in llc does not satisfy the standard truth-table.8

2.1 Classical Validities

Despite the conclusion of the previous section, a number of classically valid results
hold in llc. As for the case of Observations 5 and 7, it is interesting to check whether
the validity of an entailment depends on the zero. All of the entailments discussed in
this section are valid in classical logic as well as in llc, and remain valid whether
the zero is allowed or not—so the topic of this section is the part of llc that does not
depend on the Neglect Zero assumption. I will write ‘φ ⇔ ψ’ if and only if φ � ψ

and ψ � φ.
Double negation is valid. Suppose s � ¬¬φ. Then s �¬φ, hence s � φ. In the

opposite direction we reason in a similar fashion.

Observation 9 ¬¬φ ⇔ φ

Conjunction implies disjunction but disjunction does not imply conjunction. Let s �
φ ∧ ψ , then both s � φ and s � ψ . Since s = s ∪ s, it follows that s � φ ∨ ψ .
Conversely, a countermodel to the disjunction-to-conjunction inference is given by a
state s made out of two substates, each verifying one disjunct but not the other, so
that the disjunction but not the conjunction is asserted in s. An example is in Fig. 2:
{wp, wq} � p ∨ q, but since {wp, wq} � p and {wp, wq} � q, {wp, wq} � p ∧ q.

Observation 10 φ ∧ ψ � φ ∨ ψ

φ ∨ ψ � φ ∧ ψ

Observation 10 establishes the familiar relation between the top-left and down-left
corners of the Triangle of Oppositions (Fig. 1) for llc. I will now turn to the classically
valid De Morgan entailments, all of which are valid in llc.

¬(φ ∧ ψ) � ¬φ ∨ ¬ψ ¬φ ∨ ¬ψ � ¬(φ ∧ ψ)

¬(φ ∨ ψ) � ¬φ ∧ ¬ψ ¬φ ∧ ¬ψ � ¬(φ ∨ ψ)

¬φ ∧ ¬ψ � ¬φ ∨ ¬ψ ¬(φ ∨ ψ) � ¬(φ ∧ ψ)

¬φ ∧ ¬ψ � ¬(φ ∧ ψ) ¬(φ ∨ ψ) � ¬φ ∨ ¬ψ

Let s � ¬(φ ∧ ψ). Then s �φ ∧ ψ . Then there are t, t ′ such that s = t ∪ t ′, t �φ
and t ′ �ψ . Hence t � ¬φ and t ′ � ¬ψ . Hence s � ¬φ ∨ ¬ψ . The opposite direction
is similar.

Observation 11 ¬φ ∨ ¬ψ ⇔ ¬(φ ∧ ψ)

Next, let s � ¬(φ ∨ ψ). Hence s �φ and s �ψ . Hence s � ¬φ and s � ¬ψ . Hence
s � ¬φ ∧ ¬ψ . The converse is similar.

8 Consequently, the down-left to up-right diagonal of the Triangle of Oppositions in Fig. 1 is not the relation
of classical incompatibility. The notion of incompatibility in llc is the topic of Section 4.2. Classical
exclusionary negation depends on the stronger notion of rejection that will be introduced in Section 4.3.
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Observation 12 ¬φ ∧ ¬ψ ⇔ ¬(φ ∨ ψ)

The next one is simply an instance of Observation 10, and for the same reason its
opposite direction fails.

Observation 13 ¬φ ∧ ¬ψ � ¬φ ∨ ¬ψ

Next, assume that s � ¬φ ∧ ¬ψ . Then s � ¬φ and s � ¬ψ . Thus s �φ and s �ψ .
Hence s �φ and s �ψ . Since s = s ∪ s then s �φ ∧ ψ hence s � ¬(φ ∧ ψ).

Observation 14 ¬φ ∧ ¬ψ � ¬(φ ∧ ψ)

Next, let s � ¬(φ ∨ ψ), and so s �φ ∨ ψ . Hence s �φ and s �ψ . Since s = s ∪ s
then s �φ ∧ ψ , and so s � ¬(φ ∧ ψ).

Observation 15 ¬(φ ∨ ψ) � ¬(φ ∧ ψ)

Next, we reason from s � ¬(φ ∨ ψ) to s �φ and s �ψ . Thus s � ¬φ and s � ¬ψ ,
and so s � ¬φ ∨ ¬ψ by taking s = s ∪ s.

Observation 16 ¬(φ ∨ ψ) � ¬φ ∨ ¬ψ

Inspection of these entailments shows that they hold regardless of the empty state.
Thus, they remain valid under the star. The star, however, is not an idle wheel in the
system, as it will be apparent in the next section, when we turn to Negative Collapse.
All entailments of Negative Collapse, which are not valid in cl, are valid in llc (under
a restriction) if assertion and rejection are non-vacuous.

2.2 Non-StandardValidities

In this section I will discuss some important consequences of Neglect Zero. The
basic observation is the following: in llc, speech acts performed non-vacuously are
“stable” with respect to the order on the states. Let’s first distinguish positive and
negative sentences.

Definition 17 A sentence φ of Lllc is positive iff every atom in φ is in the scope of
an even number of ¬s. A sentence φ of Lllc is negative iff every atom in φ is in the
scope of an odd number of ¬s.

For example, p ∨ q is positive, ¬p and ¬(p ∨ q) are negative, and p ∧ ¬q is neither
positive nor negative. Positive sentences have the following property: if non-vacuously
rejected in a state, they are non-vacuously rejected in all superstates. No matter how
much information is added by expanding an information state, illocutionary force does
not flip. Negative sentences have the opposite property: if they are non-vacuously
asserted, they are non-vacuously asserted in all superstates.

Lemma 1 lexical rejection. Let φ be positive. If t �φ� then for all s ⊇ t : s �φ�

In other words, non-vacuous rejection is upward monotonic for positive sentences in
llc. Intuitively, if a singleton state s = {w} rejects p, that’s because V (w, p) = 0.
Then, w is a member of all superstates of s, and so all superstates of s non-vacuously
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reject p. A proof of lexical rejection is in the Appendix. The positive counterpart
of the Lemma also holds: non-vacuous assertion is upward monotonic for negative
sentences (as shown in the Appendix).

lexical rejection is necessary to prove all four classically invalid entailments
of Negative Collapse, repeated below. Since lexical rejection holds for positive
sentences, Negative Collapse is valid under a restriction to negative sentences and
assuming Neglect Zero. I will write ‘φ� � ψ�’ to indicate a valid argument whose
single premise and conclusion are non-vacuously asserted.

(fc) [¬φ ∨ ¬ψ]� � [¬φ ∧ ¬ψ]� [¬(φ ∧ ψ)]� � [¬(φ ∨ ψ)]�
[¬(φ ∧ ψ)]� � [¬φ ∧ ¬ψ]� [¬φ ∨ ¬ψ]� � [¬(φ ∨ ψ)]�

fc is a disjunction to conjunction inference. The countermodel described in
Observation 10 is blocked in llc in case assertion is non-vacuous and the disjunction
is a negative sentence. Suppose that s � [¬φ ∨ ¬ψ]� and assume that the disjunction
is a negative sentence. Then s � [¬φ]�∨[¬ψ]�. Then there are t, t ′ such that s = t ∪ t ′
and t � [¬φ]� and t ′ � [¬ψ]�. Then t � ¬φ� and t ′ � ¬ψ�. Then t �φ� and t ′ �ψ�

and both φ and ψ are positive. By lexical rejection, s �φ� and s �ψ�. Hence
s � [¬φ]� and s � [¬ψ]�. Hence s � [¬φ ∧ ¬ψ]�.
Observation 18 (Restricted) fc: [¬φ ∨ ¬ψ]� � [¬φ ∧ ¬ψ]�
The restriction to negative sentences is, in a way, to be expected, since in llc double
negation holds (Observation 9). Hence, just as p ∨ q � p ∧ q (Observation 10), so
too ¬¬p ∨ q � ¬¬p ∧ q. But, by Definition 17, ¬¬p ∨ q is not a negative sentence,
despite the occurrence of the negation symbol.

Next, a conjunction of negatives follows fromnegated conjunction under the restric-
tions indicated. Let s � [¬(φ ∧ ψ)]� and assume that the sentence is negative. Then
s �φ� ∧ ψ�. Then there are t, t ′ such that s = t ∪ t ′ and t �φ� and t ′ �ψ�, and both
φ and ψ are positive. Since s is a superstate of both t and t ′ then s �φ� and s �ψ�

by lexical rejection. Hence s � ¬φ� and s � ¬ψ� and the conclusion follows.9

Observation 19 (Restricted) [¬(φ ∧ ψ)]� � [¬φ ∧ ¬ψ]�
Consider next the inference from negated conjunction to negated disjunction. Let
s � [¬(φ ∧ψ)]� and assume that the sentence is negative. Hence s �φ� ∧ψ�. Hence
s = t ∪ t ′, t �φ�, and t ′ �ψ�, and both φ and ψ are positive. Since s is a superstate
of both t and t ′, s �φ� and s �ψ� by lexical rejection. Hence s �φ� ∨ ψ�.
Hence s � [¬(φ ∨ ψ)]�.
Observation 20 (Restricted) [¬(φ ∧ ψ)]� � [¬(φ ∨ ψ)]�
The last inference of Negative Collapse is from a disjunction of negatives to negation
of disjunction. Assume that s � [¬φ ∨ ¬ψ]� and that the sentence is negative. Hence
there are t, t ′ such that s = t ∪ t ′ and t � ¬φ� and t ′ � ¬ψ�. Hence t �φ� and

9 Observation 19 shows that in llc non-vacuously asserted conjunction behaves like informational con-
junction in bilattice algebras [3, 14, 18]. Informational conjunction coincides with Boolean conjunction in
its assertion-conditions, but its rejection-conditions require both conjuncts to be rejected.
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Fig. 3 Lemma 3. Full arrows are classically valid entailments, also valid in llcwhether or not Neglect Zero
is assumed. Dashed arrows are entailments that are valid in llc, relative to negative sentences, if Neglect
Zero is assumed

t ′ �ψ� and both sentences are positive. By lexical rejection, s �φ� and s �ψ�.
Hence s �φ� ∨ ψ�. Therefore s � [¬(φ ∨ ψ)]�.
Observation 21 (Restricted) [¬φ ∨ ¬ψ]� � [¬(φ ∨ ψ)]�
Observations 18, 19, 20, and 21, together with the last four observations of the previous
section (Observations 13, 14, 15, 16, all ofwhich hold unrestrictedly), establish that the
following Lemma is valid under the restriction to negative sentences. I use ‘φ� ⇔ ψ�’
to abbreviate φ� � ψ� and ψ� � φ�.

Lemma 2 (Restricted) The following equivalences hold in llc.

[¬φ ∨ ¬ψ]� ⇔ [¬φ ∧ ¬ψ]� [¬(φ ∧ ψ)]� ⇔ [¬(φ ∨ ψ)]�
[¬(φ ∧ ψ)]� ⇔ [¬φ ∧ ¬ψ]� [¬φ ∨ ¬ψ]� ⇔ [¬(φ ∨ ψ)]�

Together with the two classically valid DeMorgan equivalences (Observations 11 and
12), which are valid in llc with no restrictions, Lemma 2 entails the following result.

Lemma 3 (Restricted) If Neglect Zero is assumed, all De Morgan sentences are equiv-
alent in llc.

That is, if assertion and rejection are non-vacuous, and relative to negative sentences,
distinctions among De Morgan sentences collapse in llc. Hence, under certain con-
ditions, llc expresses but one binary operator on the negative side of Fig. 1. Figure 3
summarizes this result.

3 The Binary Connectives

llc is the logic of lexical connectives because, under Neglect Zero, the only binary
connectives that can be expressed are and, or, and nor (setting aside trivial connectives,
see Section 3.2 below).

Let’s begin with conjunction and disjunction. As I noted above (Observation 10),
assertion of conjunction implies assertion of disjunction but not vice versa, and this
relation is preserved under the star. The relation between ∧ and ∨ is thus the familiar
one. Moreover, the behavior of conjunction is entirely ordinary. A conjunct does not
imply a conjunction but both do. The second claim is obvious from the assertion-
conditions of conjunction. For the first claim, suppose that s � p. Let s = {w} and
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suppose that V (w, p) = 1 and V (w, q) = 0. Then s � q. Hence s � p ∧ q. Finally,
conjunction implies its conjuncts (obviously, given its assertion-conditions). It is easy
to verify that all of these inferences are valid under the star.

Observation 22 φ,ψ � φ ∧ ψ

φ � φ ∧ ψ

φ ∧ ψ � φ

A disjunct suffices to support a disjunction, but only if the zero is allowed. Let s � φ.
Since ∅ � ψ for any ψ (Observation 5) and s = s ∪ ∅, then s � φ ∨ ψ . Thus
φ � φ ∨ ψ . However, this inference fails under Neglect Zero. If both disjuncts are
asserted in a state s, then of course s asserts the disjunction, since one can always take
s = s ∪ s. Finally, and as expected, a disjunction does not imply a disjunct (regardless
of the zero; proof omitted but obvious).

Observation 23 φ � φ ∨ ψ

φ,ψ � φ ∨ ψ

φ ∨ ψ � φ

Unlike conjunction, whose inferential behavior is not affected by Neglect Zero, Dis-
junction Introduction is valid only when we consider all states in a model, including
in particular the empty state. Thus, one cannot generally go from s � φ or s � φ�

to s � [φ ∨ ψ]�. Nevertheless, there are at least three reasons to suggest that natural
language or is expressed in llc. The first reason is that the truth-conditions for ∨,
given in Definition 2, are unchanged whether or not the Neglect Zero assumption is
in place. Some inferences might fail if the context requires high standards for the
performance of speech acts, but this does not imply a change of meaning.

The second reason is that itwould be unwise to assume thatDisjunction Introduction
in generally valid in natural language. Disjunction Introduction might fail in llc but
this is how it should be. Depending on context, the inference from (6a) to (6b) may
be a pragmatic norm violation [19, 43], and in combination with modals, imperatives,
and performatives, Disjunction Introduction fails: this is the case of the inference from
(7a) to (7b), of the inference from (8a) to (8b), also known as Ross’s paradox, and of
the inference from (9a) to (9b) [1, 38, 48, 52].

(6) a. Russell was a great philosopher.
b. Therefore, Russell was a great philosopher or Hegel is overestimated.

(7) a. She may go to the beach.
b. Therefore, she may go to the beach or she may go to the cinema.

(8) a. Clean your room.
b. Therefore, clean your room or burn the house down.

(9) a. You are fired.
b. Therefore, you are fired or you are our new CEO.

Finally, failure of Disjunction Introduction may also explain why, in contexts that
support free choice, it is not the case that (10a) implies (10b) (see [2, 29], and
Section 1 above).

(10) a. Paul might be Dutch.
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b. Paul might be Dutch and might be Danish.

Hence, llc expresses themeanings ofand andor, even underNeglect Zero, asmeaning
is revealed by assertion- and rejection-conditions and inferential role.

3.1 TheMeaning of nor

By Lemma 3, llc expresses but one negative relation between atoms p and q if the
zero is out. We may indicate such relation equivalently by ‘s � [¬p ∧ ¬q]�’ or
‘s � [¬p ∨ ¬q]�’. This relation is the meaning of p nor q: the following inferences
hold, and characterize the inferential profile of nor (cf. example (3) above).

¬φ � [¬φ ∧ ¬ψ]� ¬φ � [¬(φ ∧ ψ)]�
¬φ,¬ψ � [¬φ ∧ ¬ψ]� ¬φ,¬ψ � [¬(φ ∧ ψ)]�

¬φ � [¬φ ∨ ¬ψ]� ¬φ � [¬(φ ∨ ψ)]�
¬φ,¬ψ � [¬φ ∨ ¬ψ]� ¬φ,¬ψ � [¬(φ ∨ ψ)]�

[¬φ ∧ ¬ψ]� � ¬φ [¬(φ ∧ ψ)]� � ¬φ

[¬φ ∨ ¬ψ]� � ¬φ [¬(φ ∨ ψ)]� � ¬φ

That is,¬φ alone does not suffice to support the one negativemeaning expressed in llc
under Neglect Zero, for s � ¬φ fails to entail s � ¬φ ∧ ¬ψ (Observation 22), hence
it fails to entail s � [¬φ ∧¬ψ]� (Observation 8), and it fails to entail s � [¬φ ∨¬ψ]�
(Observation 23). However, ¬φ and ¬ψ together support the relevant inferences.
Conversely, this one negative meaning suffices to support ¬φ (under the restrictions
we are considering), for [¬φ∧¬ψ]� � ¬φ∧¬ψ byObservation 8 and¬φ∧¬ψ � ¬φ

by the truth-conditions of conjunction, and [¬φ∨¬ψ]� � ¬φ by fc (Observation 18).
Thus the one negative meaning of llc, under Neglect Zero, exhibits the inferential
pattern of nor seen in example (3): the truth of neither φ nor ψ follows from the truth
of both ¬φ and ¬ψ jointly but not individually, and implies each. The same holds if
¬ takes wide scope (see the right column above). It also follows that this one negative
meaning expressed in llc under Neglect Zero is not *nand.

3.2 Other Connectives

So, under a restriction, llc expresses and, or, nor and does not express nand. Similarly,
the lexicon of natural language does not express any of the other binary Boolean
operators. Setting aside trivial operators, llc does not express them either. The trivial
connectives, the Falsum⊥ and the Verum�, are expressible in llc but are not attested
in the lexicon of natural language. However, there are good independent reasons why
these are not lexicalized.Acommonandplausible assumption is that trivial connectives
have not evolved for reasons of cognitive economy [16].

The interesting candidates are the material conditional, the material biconditional,
and exclusive disjunction. However, none of these are expressed in llc under the
restrictions that define the lexical connectives. The material conditional is expressed
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in classical logic as ‘¬φ ∨ ψ’. However, suppose that s � [¬p ∨ q]�. Then there are
substates t and t ′ such that s = t ∪ t ′ and t � ¬p� and t � q�. Hence t �p� and
so, since p is positive, s �p� by lexical rejection. Hence s � ¬p. Therefore, if
assertion is non-vacuous the inferential behavior of ¬p ∨ q is not that of the material
conditional.

Observation 24 [¬p ∨ q]� � ¬p

Exclusive disjunction is expressed in a classical setting by ‘(φ ∨ ψ) ∧ ¬(φ ∧ ψ)’
but we know that this sentence does not capture Boolean exclusive disjunction since
its second conjunct does not express the classical complement of conjunction under
Neglect Zero. Therefore, thematerial biconditional isn’t expressed in llc either. Thus,
if Neglect Zero is assumed, llc expresses only and, or, and nor (the latter, under a
restriction to negative sentences), and no other non-trivial connective. I conclude with
the following result, which follows from Lemma 3 and the remarks in this section.

Theorem 1 If Neglect Zero is assumed, llc characterizes the expressive power of the
lexicon of natural language with regards to the binary connectives.

In the next section I will focus on the relationship between llc and classical logic cl.

4 Relation to Classical Logic

This section has three parts: on the Triviality Argument, on the notion of incompati-
bility, and on “recapturing” classical logic.

4.1 The Triviality Argument

As we have seen, ¬φ � ¬φ ∨ ¬ψ (Observation 23), and [¬φ ∨ ¬ψ]� � ¬ψ (by
Observation 18). Doesn’t this imply that any ¬ψ follows from any ¬φ? This is a
version of the Triviality Argument. But the Triviality Argument is invalid, due to an
equivocation between disjunction loosely supported by a state that asserts one disjunct
only, and disjunction under the star, in which such a configuration is ruled out. In other
words, in llc we have:

s � ¬φ ⇒ s � ¬φ ∨ ¬ψ � s � ¬ψ

s � ¬φ � s � [¬φ ∨ ¬ψ]� ⇒ s � ¬ψ

So there is no path from ¬φ to ¬ψ . The first path is blocked because, although
Disjunction Introduction is valid if the zero is allowed, disjunction asserted while
allowing for the zero does not entail a disjunct. Intuitively, if one somewhat vacuously
asserts that Lisa is not at school or not at home (having information that Lisa is not at
school), it doesn’t follow that Lisa is not at home. The second path is blocked because,
although non-vacuous assertion of disjunction may entail a disjunct, the star blocks
Disjunction Introduction. Intuitively, it is not the case that any non-vacuous ground to
assert ‘Lisa is not at the movies’ is a non-vacuous ground to assert ‘Lisa is not at the
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movies nor at the supermarket’, since a non-vacuous ground to assert the former but
not the latter is given by information that Lisa is at the supermarket. Other apparent
routes to triviality via the entailments in Neglect Zero are analyzed in a similar fashion.

4.2 Negation and Incompatibility

Incompatibility is regarded as the hallmark of negation [6]. However, as observed
above with respect to Fig. 2, the same state s may support both p ∨ q and ¬(p ∨ q).
However, it may be that s � p and therefore contradiction does not entail everything.
Indeed, EFQ holds in llc among atoms but not in general.

Observation 25 p ∧ ¬p � ψ

This is because if s � p and s � ¬p, then s �p, hence s = ∅. Interestingly, if Neglect
Zero is assumed it is still the case that EFQ holds only among atoms, but for a different
reason: no state (not even the empty state) is such that s � [p ∧ ¬p]�. Consequently,
contradictory atomic sentences entail anything under Neglect Zero because logical
consequence is void (Definition 3).

Failures of EFQmight raise a generalworry about the relationship between negation
and the notion of incompatibility in llc. One way to express this relationship is as
empty intersection between states. s � ¬φ if and only if, for all t , t � φ only if
s ∩ t = ∅. Both directions fail in llc. A counterexample to the LtR direction is of the
same sort as that just seen: it may be that s � ¬(p ∨ q) and s � p ∨ q, and yet s �= ∅.
The other direction fails because of the empty state. Since s ∩ ∅ = ∅ for any s, it
follows that if∅ � p then s ∩∅ = ∅. But it is not the case that s � ¬p for any s. Both
directions fail under Neglect Zero aswell. The abovementioned counterexample to the
LtR direction also shows that s � [¬φ]� does not imply that t � φ� only if s ∩ t = ∅

for any t . For the opposite direction, notice that assuming that s ∩ t = ∅ for any t
such that t � φ� is compatible with s = ∅. In this case, s � [¬φ]�.

However, a more limited characterization of incompatibility holds—but only if we
are considering all states in a model, that is, including the empty state in particu-
lar. In bilateral systems, besides the standard unilateral reductio rules, there are also
Smileian or bilateral reductio rules [26, 44]. Intuitively, if the assertion of φ leads to
contradiction, then φ must be rejected, and vice versa. Smileian reductios hold in llc.

Lemma 4 Smileian reductio: If s � φ then s = ∅ ⇒ s �φ
If s �φ then s = ∅ ⇒ s � φ

Consider the first implication. Suppose that either s � φ or s = ∅. If s = ∅,
the conclusion is obvious by Observation 5. Otherwise, the conclusion follows from
the following lemma: failure of assertion is rejection, and vice versa. The second
implication is proved in a similar way.

Lemma 5 If s � φ then s �φ and if s � �φ then s � φ

For the proof of this Lemma, see the Appendix. The converse implications fail. One
example is given by Fig. 2 (in which s �p ∨q, which does not entail that if s � p ∨q
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then s = ∅), other examples are due to the empty set. Moreover, the proof strategy
for Smileian reductio relies on the empty state, and it fails if Neglect Zero is assumed.

A straightforward consequence of Lemma 5 is that the unilateral reductio rules are
valid—again, provided we are considering “full” models that include the zero. For
the intuitionistic version of reductio, let ‘⊥’ be short for ‘q ∧ ¬q’ and suppose that
�, φ � ⊥. From the assumption, for all models and states, if s � φ (and s supports
all of �) then s � q ∧ ¬q. Hence if s � φ then s � q and s � ¬q, and so s = ∅ by
Definition 2. Therefore if s � φ (and s supports all of �) then s = ∅. Therefore s �φ
by Smileian reductio (Lemma 4). The classical version of unilateral reductio can be
established in a similar way.

Observation 26 If �, φ � ⊥ then � � ¬φ

If �,¬φ � ⊥ then � � φ

The previous remarks about Smileian and unilateral reductio crucially rely on the role
of the empty state. Indeed, all reductio rules fail in llc under Neglect Zero. This is not
surprising: after all, appeal to absurdity is crucial to reductio reasoning, and vacuous
grounds are ruled out by Neglect Zero. A consequence of this failure is that some
classical inference patterns that are valid in llcwhen one considers all states within a
model have countermodels under Neglect Zero. A case in point is the Law of Excluded
Middle. Suppose for reductio that for some model M and state s, s � φ ∨ ¬φ. Thus
for any t and t ′ such that s = t ∪ t ′ it is not the case that both t � φ and t ′ � ¬φ.
However, either t or t ′ could be empty. Let t = ∅. Then t � φ by Observation 5 and
therefore the assumption entails that no state t ′ = s is such that t ′ � ¬φ. This is false.
Thus there could be no such s.

Observation 27 LEM. � φ ∨ ¬φ

So LEM is a tautology of llc. Parallel reasoning establishes the Law of Non-
Contradiction. However, the proof in both cases fails if we are not allowed to assume
that one of the substates is empty: indeed, it is easy to find counterexamples to
s � [φ ∨ ¬φ]�. There are other failures of classical reasoning under the star.

In sum, if the zero is allowed, φ and ¬φ are exhaustive in llc but not mutually
exclusive, except on atoms. Nevertheless, negation expresses incompatibility in llc in
the sense captured by the reductio rules, provided all states are considered. However,
this is not full-blown classical incompatibility, for assertion is not in general equivalent
to failure of rejection, except on atoms.

4.3 Classical Logic

A simple and well-motivated adjustment leads from llc to the classical propositional
calculus cl. The adjustment is in two steps. First, it must always be possible to assert
and reject on the basis of the empty state. That is, there is no longer an option to neglect
the zero. Second, as seen in the previous Section 4.2, the negation operator in llc is
not classical negation. As I mentioned above, the language Lllc is the same for llc
and cl, and so are the assertion- and rejection-conditions for ¬,∨,∧.

Negation is definable in a bilateral setting by the opposition of assertion and rejec-
tion. This, in turn, means that the behavior of ¬ rests on the properties of assertion
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and rejection. Polar rejection is insufficient for classical negation. Classical rejection
is a stronger requirement on states: s classically rejects p if and only if all non-empty
substates of s fail to assert p.

Polar Rejection: s �p iff either s = ∅ or s � p

Classical Rejection: s �p iff for all t ⊆ s : either t = ∅ or t � p

Of course, polar rejection is implied by classical rejection, but not vice versa. Classical
rejection entails that s rejects p if and only if every singleton substate {w} of s fails
to assert p. Therefore, every w ∈ s must falsify p. This means that assertion and
classical rejection can both be stated as universal conditions on states.

Definition 28 Classical bilateral truth-conditions for atoms.

s � p iff for all w ∈ s : V (w, p) = 1

s �p iff for all w ∈ s : V (w, p) = 0

As I noted above, assertion has a demanding standard: all worlds in the statemust agree
that p is true. Polar rejection is comparatively undemanding: one world in which p
is false is enough for polar rejection. Classical rejection restores the balance: both
assertion and classical rejection require unanimity amongst worlds within a state.

The logic obtained by the classical assertion- and rejection-conditions for atoms
of Definition 28, together with the semantic core of the Introduction (Section 1.3: in
particular, Definitions 2 and 3), always allowing for the empty state, is classical logic
cl [12]. In other words, classical logic is the bilateral system obtained from llc with
classical rejection, and in which no speech acts are starred and thus models always
include the empty state. This latter condition is unsurprising: after all, a staple of
classical reasoning is its reliance on reasoning from absurdity. It is worth noting that
Neglect Zero may still have a role to play for the reasons noted in Section 3 about
the behavior of disjunction in natural language, and that may suggest a departure
from classical logic. Indeed, working with a classical definition of rejection, Aloni [2]
assumes Neglect Zero to account for free choice and related phenomena.

There is a sense in which the meaning of any of the operators in Lllc does not
change between cl and llc, at least insofar as meaning is expressed by the relation
between speech acts, information states, and logical form. After all, ¬,∧, and ∨ have
the same assertion- and rejection-conditions in cl and in llc. In particular, negation
just expresses the opposition between assertion and rejection. With classical rejection,
however, assertion of ¬φ is thoroughly incompatible with assertion of φ: if two states
support a formula and its negation, respectively, then their intersection must be empty.

On what grounds is it legitimate to introduce classical rejection? Natural language
negation not allows us to express all Boolean connectives compositionally. For exam-
ple, φ nand ψ is typically expressed in English by not both φ and ψ . It is clear that
the negation of llc based on polar rejection does not allow us to express all Boolean
connectives. And so it is plausible to assume that natural language negation not can
and often does express classical rejection [26]. Thanks to classical rejection, it is pos-
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sible to re-capture all connectives of classical logic. For example, φ and ψ may be
expressed as ¬(φ ∧ψ) once the clause for ¬ is defined in terms of classical rejection.

The semantic model thus described has two tiers. We begin with polar rejection,
characterized as non-assertion. Assertion and polar rejection determine the expressive
limits of the lexicon, which are defined in llc assuming Neglect Zero. The binary
connectives that may be so introduced at this first tier are only and, or, and nor, and
these are the only coordinating connectives attested in the lexicon of natural language.
But of course the expressive power of natural language as a whole is vastly greater. The
additional expressive power is typically achieved by combining the lexicalized binary
connectives, and, or, nor, with negation not. This step can bemodeled by assuming that
not can contribute a stronger notion of rejection, classical rejection, and by imposing
no restrictions on the zero. It is at this second tier that, as in natural language, we
may express all distinctions of classical logic. The two-tiered model accounts for the
differences in expressive power between the lexicon and natural language as a whole.
On this picture, compositionality arises, in the way it does, by reason of logic.

5 Conclusion

The lexical coordinators and, or, nor, are usually analyzed as Boolean operators. This
analysis captures the truth-conditions of sentences in which the coordinators occur,
but it leaves something out. Conjunction and disjunction are treated as duals under
negation, but natural language does not treat them as such in all respects: the negation
of disjunction may be expressed lexically but not the negation of conjunction. Existing
accounts of lexicalization assume a background Boolean logic and leave to Gricean
pragmatic principles the task to explain failures of lexicalization, but such accounts
are open to criticism. I indicated twomain issues: (a) most Gricean accounts need to be
supplemented with additional assumptions to rule out non-trivial unattested material,
(b) Gricean accounts don’t shed light on the relation between compositionality and
the expressive limitations of the lexicon [9, 25].

The main contribution of this article is the Logic of Lexical Connectives: a two-
tiered model of the expressive power of the lexicon, as apparent from the semantics of
and, or, and nor, together with cross-linguistic generalizations about lexicalizability,
as well as of the expressive power of natural language as a whole. I have shown how to
link the two levels in terms of natural assumptions about the speech acts of assertion
and rejection, and the possibility of reasoning from vacuous information. The overt
negation operator not of natural language can express a strong notion of rejection,
that permits the recovery of all classical meanings if vacuous reasoning is always
allowed. On this model we have a single explanation of the limits of lexicalization for
the binary coordinators, and an indication of the role of compositionality, improving
on both issues (a) and (b).

An important component of the present account is the Neglect Zero assumption,
implemented as the star operator. The assumption is independently motivated and
independently plausible as a cognitive constraint on the performance of speech acts.
LikeGricean accounts of lexicalization, the present account rests on assumptions about
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language use and cognitive resources, but unlikeGricean accounts, the present account
does not include a model of communication and does not rely on scalar reasoning.

The resulting two-tiered model is a complete and compositional account of the
semantic space of the lexical coordinators, which accounts for why we don’t have
more logic at the lexical level than we do, and explains in logical terms why the
expressive power of natural language greatly outstrips the expressive power of the
lexicon.
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Appendix

Proof of Lemma 1. lexical rejection. Let φ be positive. If t then for all
s t s .
Recall Definition 17: a sentence φ of Lllc is positive iff every atom in φ is in the
scope of an even number of ¬s; a sentence φ of Lllc is negative iff every atom in
φ is in the scope of an odd number of ¬s. In order to establish the Lemma we prove
something stronger, namely the following generalization alongside the Lemma, for
the purposes of induction. Let φ be negative: If t � φ� then for all s ⊇ t : s � φ�.
We run two inductions in parallel for positive and negative sentences. The basis for
the positive case are positive literals: these sentences are in the scope of the least even
number of ¬s, namely 0. Suppose that t p . Then t p and t �= ∅ by Definition 6.
Then there is a world w ∈ t : V (w, p) = 0. Let s ⊇ t . Then w ∈ s, hence s p and
s �= ∅. Therefore s p . The basis for the negative case are negative literals. Suppose
that t � [¬p]�. Then t � ¬p� and so t p hence t p and t �= ∅. Therefore s p
by the previous reasoning. Hence s � ¬p� and so s � [¬p]�.
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Suppose that ¬φ is positive and t . Then t , hence t � φ� and φ is
negative since it has one wide-scoping negation less. Assume the IH about φ. Then
for all s ⊇ t : s � φ�. Hence s and so s . Suppose that ¬φ is negative
and t � [¬φ]�. Then t � ¬φ�. Hence t and φ is positive. Assume the IH about
φ. Then for all s t : s . Hence s � ¬φ� and so s � [¬φ]�.

Suppose that φ ∨ ψ is positive and t . Then both φ and ψ are positive
and t and t . Assume the IH about φ and ψ . Then for all s t s
and s . Hence s and so s . Suppose that φ ∨ ψ is negative
and t � [φ ∨ ψ]�. Then both φ and ψ are negative and there are t ′ and t ′′ such that
t = t ′ ∪ t ′′ and t ′ � φ� and t ′′ � ψ�. Assume the IH about φ and ψ . Then for all
s ⊇ t ′ : s � φ� and for all s ⊇ t ′′ : s � ψ�. Since all superstates of t are superstates of
both t ′ and t ′′, for all s ⊇ t both s � φ� and s � ψ�. Since s = s ∪ s then s � φ� ∨ ψ�

for all s ⊇ t . Hence s � [φ ∨ ψ]� for all such states.
Suppose that φ ∧ ψ is positive and t . Then both φ and ψ are positive

and there are t ′ and t ′′ such that t = t ′ ∪ t ′′ and t and t . Assume the IH
about φ and ψ . Then for all and for all s t s . Since all
superstates of t are superstates of both t ′ and t ′′, for all s ⊇ t both s and s .
Since s = s ∪ s then s for all s ⊇ t . Hence s for all such states.
Suppose that φ ∧ψ is negative and t � [φ ∧ψ]�. Then both φ and ψ are negative and
t � φ� and t � ψ�. Assume the IH about φ and ψ . Then for all s ⊇ t : s � φ� and
s � ψ�. Hence s � φ� ∧ ψ� and so s � [φ ∧ ψ]�.

Proof of Lemma 5. If s � φ then s and if s then s � φ.
This is shown by induction, generalizing from the atomic case. For the atomic case,
(i) suppose that s � p. Then s p by Definition 2. (ii) Suppose that s p. Then
s �= ∅ and s � p by the same definition.

Assume the Induction Hypothesis about φ. (i) Suppose that s � ¬φ. Then s .
Then s � φ by the IH. Then s (ii) Suppose that s . Then s . Then
s by the IH. Then s � ¬φ.

Assume the IH about φ and ψ . (i) Suppose that s � φ ∨ ψ . Then it is not the case
that there are t and t ′ such that s = t ∪ t ′ and t � φ and t ′ � ψ . Let s = t and t ′ = ∅.
Since ∅ � ψ , the assumption implies that s � φ. Then s by the IH. Suppose for
contradiction that s . Then s � ψ by IH and since s = s ∪ ∅ and ∅ � φ, we
would have s � φ ∨ ψ , contrary to assumption. Hence s . Hence s . (ii)
Suppose that s . Then either s or s . Suppose the former. Then s � φ

by the IH. Since s = s ∪ ∅ and ∅ � ψ , then s � φ ∨ ψ . Likewise if you suppose the
latter.
(i) Suppose that s � φ ∧ ψ . Then either s � φ or s � ψ . Suppose the former. Then
s by the IH. Since s = s ∪ ∅ and , then s . Likewise if you
suppose the latter. (ii) Suppose that s . Then it is not the case that there are
t and t ′ such that s = t ∪ t ′ and and t . Let s = t and t ′ = ∅. Since

, the assumption implies that s . Then s � φ by the IH. Moreover, suppose
for contradiction that s � ψ . Then s by IH and since s = s ∪ ∅ and , we
would have s , contrary to assumption. Hence s � ψ . Hence s � φ ∧ ψ .

123



1352 Sbardolini

References

1. Aloni, M. (2007). Free choice, modals, and imperatives. Natural Language Semantics, 15, 65–94.
2. Aloni, M. (2022). Logic and Conversation: The case of Free Choice. Semantics and Pragmatics, 15,

1–40.
3. Arieli, O., & Avron, A. (1996). Reasoning with logical bilattices. Journal of Logic, Language and

Information, 5, 25–63.
4. Bar-Lev, M., & Katzir, R. (2022). Communicative stability and the typology of logical operators.

Linguistic Inquiry, (pp. 1–42).
5. Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Phi-

losophy, 4, 159–219.
6. Berto, F., & Restall, G. (2019). Negation on the Australian Plan. Journal of Philosophical Logic, 1,

1–26.
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