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Abstract
We discuss topological aspects of cluster analysis and show that inferring the top-
ological structure of a dataset before clustering it can considerably enhance clus-
ter detection: we show that clustering embedding vectors representing the inherent 
structure of a dataset instead of the observed feature vectors themselves is highly 
beneficial. To demonstrate, we combine manifold learning method UMAP for infer-
ring the topological structure with density-based clustering method DBSCAN. Syn-
thetic and real data results show that this both simplifies and improves clustering in 
a diverse set of low- and high-dimensional problems including clusters of varying 
density and/or entangled shapes. Our approach simplifies clustering because topo-
logical pre-processing consistently reduces parameter sensitivity of DBSCAN. Clus-
tering the resulting embeddings with DBSCAN can then even outperform complex 
methods such as SPECTACL and ClusterGAN. Finally, our investigation suggests 
that the crucial issue in clustering does not appear to be the nominal dimension of 
the data or how many irrelevant features it contains, but rather how separable the 
clusters are in the ambient observation space they are embedded in, which is usu-
ally the (high-dimensional) Euclidean space defined by the features of the data. The 
approach is successful because it performs the cluster analysis after projecting the 
data into a more suitable space that is optimized for separability, in some sense.

Keywords  Cluster analysis · Manifold learning · Topological data analysis

1  Introduction

Clustering is the task of uniting similar and separating dissimilar observations in a 
dataset (Kriegel et al. 2009; Aggarwal 2014). It is a fundamental task in data analysis 
and is thus widely investigated in many fields. With this study we intend to raise 
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awareness for topological aspects of clustering and to provide empirical evidence 
that topologically-informed approaches which are conceptually and computationally 
simple can compete with or even outperform much more complex existing methods 
on a wide range of problems.

1.1 � Problem specification

Cluster analysis is usually approached in an algorithm-driven manner, and consid-
erations about the underlying principles of data generating processes and data struc-
tures are often limited to a probabilistic conceptualization assuming that the data X 
follow a joint probability distribution P(X) (Hastie et al. 2009) or, more precisely, 
a mixture of distributions (Aggarwal 2014). In contrast, connections to topological 
data analysis (TDA) (Chazal and Michel 2021; Wasserman 2018), a branch of statis-
tical data analysis inferring the structure of data leveraging topological concepts, are 
usually not considered. In general, the topological aspects of cluster analysis appear 
to be an under-investigated topic. Current text books on cluster analysis (Aggarwal 
and Reddy 2014; Aggarwal 2015; Giordani et al. 2020; Scitovski et al. 2021; Hennig 
et al. 2015, e.g.) and recent reviews of the field (Jain et al. 1999; Kriegel et al. 2009; 
Assent 2012; Pandove et al. 2018; Mittal et al. 2019, e.g.) rarely mention the term 
“topology”.

Following Niyogi et al. (2011), we consider clustering a natural example of TDA. 
Since an improved understanding of the underlying principles governing the prob-
lem is likely to lead to more suitable methods and novel solutions, our work aims to 
reduce this lack of awareness for topological aspects in the clustering literature. Spe-
cifically, our approach follows Niyogi et al (2011, p. 2) who state that “clustering is 
a kind of topological question” which tries to separate the data into “connected com-
ponents”. In practice, a connected component is a subset of the vertex set of a graph 
where the vertices within the subset are connected. For cluster analysis, the nodes of 
the graph are data points, and the (potentially weighted) edges between them repre-
sent their (typically dichotomized or truncated) similarity. Two vertices can be con-
nected by a sequence of connected points, that is, they do not have to be connected 
directly. One particularly relevant consequence of this topological perspective is its 
implication that the difficulty of a clustering problem is not necessarily determined 
by the data’s (nominal) dimensionality.

1.2 � Scope of the study

In this work we make use of the well-known algorithm DBSCAN (Ester et al. 1996) 
for cluster detection and the recently developed manifold learning algorithm UMAP 
(McInnes et al. 2018) to infer the topological structure of a dataset. To be specific, 
“inferring the topological structure” as we do here with UMAP has two aspects: 
first, a fuzzy graph representation of the dataset is used to find the (number of) con-
nected components. Second, this structure is represented by embedding vectors (i.e., 
coordinates in a representation space) that are optimized for the separability of the 
connected components. As we show in Sect.  3, UMAP’s graph construction and 
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graph embedding steps both increase cluster separability, and their combined effect 
thus improves clusterability dramatically. DBSCAN, on the other hand, is a widely 
used and well established method for cluster detection (Schubert et al. 2017). In par-
ticular, it neither requires a pre-specified number of clusters nor does it make any 
assumptions about their specific shapes or patterns. This is important, as inferring 
the connected components of a dataset is largely equivalent to identifying the clus-
ters it contains. Moreover, the optimized representation of the topological approach 
focuses on separability of clusters, not on the specific shapes the clusters might 
have. Note that UMAP’s developers conjectured that it might enhance density-based 
clustering, but that this requires further investigation (McInnes 2018).

It needs to be emphasized that that we do not consider UMAP and DBSCAN 
the most suitable combination in general and our results should not be taken as evi-
dence that this specific combination of methods is the most suitable for the purpose. 
Other combinations of clustering and/or manifold learning methods than UMAP 
and DBSCAN are possible, can lead to comparable or even better results, and cer-
tainly deserve investigation as well. For example, note the results of Allaoui et al. 
(2020) that show that combining UMAP with k-means can yield comparable results. 
That said, this work is not intended as a benchmark study comparing clustering 
approaches.

Instead, the main contribution of the work is to demonstrate that inferring the 
topological structure of a dataset before attempting to partition its clusters can con-
siderably enhance the resulting partition and how easily it can be found, and we use 
the specific combination of UMAP and DBSCAN to demonstrate this. UMAP is 
used to preprocess the data such that its representation is optimized for separability 
and the resulting embedding vectors are used as inputs for DBSCAN.

We chose UMAP in particular as our embedding method for the following rea-
sons. First of all, UMAP has a decidedly topological underpinning, so it is suitable 
for a theoretical analysis from the clustering perspective we take here. In particu-
lar, it builds on simplicial complexes to obtain a fuzzy topological representation 
of the inherent structure of a dataset. As such, it is based on the same theoretical 
principles as topological data analysis (Chazal and Michel 2021; Wasserman 2018). 
These aspects are outlined in more detail in Sect.  2.2. In addition, it has already 
been shown that preprocessing by UMAP can improve clustering results (Allaoui 
et  al. 2020) and, moreover, that the resulting embeddings frequently yield “more 
compact clusters than t-SNE [another state-of-the-art manifold learning method] 
with more white space in between” (Kobak and Linderman 2021, p. 157). The topo-
logical embedding methods PAGA (Wolf et al. 2019) and Topomap (Doraiswamy 
et al. 2021) are domain-specific and/or by far not as well-established and generally 
applicable as UMAP. Other alternatives to infer topological structure from data are 
not suited for pre-processing as needed here. For example, persistent homology dia-
grams (Wasserman 2018) do not provide a vector representation of the dataset that 
could be supplied as input to a clustering method, and neither do measures of data 
separability such as those described in Guan and Loew (2021), which only yield sca-
lar values indicating class overlap.

We again emphasize that the goal of the study is to describe and explain why clus-
tering embedding vectors representing the inherent topological structure of a dataset 
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can be highly beneficial, and we use the specific combination of UMAP and DBSCAN 
in our experiments to practically demonstrate this. The aspects outlined above provide 
reasons to select these methods, but we do not indent to assert and establish the supe-
riority of this particular combination of methods in general. As outlined, other combi-
nations of clustering and/or manifold learning methods are possible and may lead to 
comparable or even better results.

1.3 � Contributions

This study makes three distinct contributions: First, Sect. 3 illustrates that approaches 
motivated by a topological perspective can dramatically reduce the difficulty of cluster-
ing for both low- and high-dimensional data. This is achieved with an in-depth analy-
sis of simulated data specifically designed to reflect some often described problems of 
clustering including high-dimensional data, clusters of different density, and irrelevant 
features. In addition, a simple toy example demonstrates why and how inferring the 
intrinsic topological structure of a dataset with UMAP before clustering improves the 
clustering performance of DBSCAN.

Secondly, with intuition and motivation in place, Sect. 4 is devoted to specific impli-
cations of the topological perspective. We describe which structures of a dataset are 
preserved when inferring the topological structure by finding connected components 
and enhancing separability (using the UMAP algorithm), in particular by contrasting 
topological against geometrical characteristics in a detailed qualitative and quantitative 
analysis of simple synthetic examples.

Finally, in Sect.  5, we report extensive experiments using real world data. Our 
results show that inferring the topological structure of datasets before clustering them 
not only improves—dramatically, for some examples such as MNIST—performance 
of DBSCAN, but also drastically reduces its parameter sensitivity. The comparatively 
simple approach of combining UMAP and DBSCAN can even outperform recently 
proposed clustering methods such as ClusterGAN (Mukherjee et  al. 2019), which 
require expensive hyperparameter tuning, on complex datasets.

In addition, related work and the methods used are described in Sect. 2, while the 
results are discussed in Sect. 6 before we conclude in Sect. 7.

2 � Methods and related work

In this section, we first describe the background of the study and related work, before 
we outline the methods DBSCAN and UMAP, which are used for clustering and infer-
ring topological structure, respectively, in this study. Readers which are familiar with 
the methods might skip the corresponding paragraphs. However, note that we will refer 
to some of the more technical details outlined here in Sect. 3.2.
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2.1 � Background and related work

The body of literature on clustering, topological data analysis and manifold learning 
is extensive and has seen contributions from many different areas and perspectives. 
General reviews on clustering have been provided for example by Jain et al. (1999) 
and more recently by Saxena et al. (2017). Moreover, there a several reviews focus-
ing on cluster analysis for high-dimensional data (Kriegel et al. 2009; Assent 2012; 
Pandove et al. 2018; Mittal et al. 2019). In addition, there exist overviews on TDA 
(Niyogi et al. 2011; Chazal and Michel 2021; Wasserman 2018, e.g.) as well as on 
manifold and representation learning (Cayton 2005; Bengio et al. 2013; Wang et al. 
2021) including the textbooks by Ma and Fu (2012) and Lee and Verleysen (2007).

The variety of clustering algorithms is vast and endeavors have been made to 
capture this diversity through taxonomies. DBSCAN, the algorithm used here, is a 
density-based approach. One of its major advantages is that it does not require a 
pre-specified number of clusters and that the clusters can have arbitrary shapes and 
patterns. Its hierarchical version (HDBSCAN, Campello et al. 2013) does not use a 
global �-threshold but computes on its own multiple cut-off values resulting in clus-
ters of different densities and therefore requires only the minPts parameter. Similar 
to HDBSCAN, the OPTICS algorithm (Ankerst et al. 1999) calculates an ordering 
of the observations without a global �-threshold that provides broader insight on the 
structure of the data. However, the method does not explicitly assign cluster mem-
berships. Instead, it allows to visualize the hierarchical cluster structure for example 
via reachability plots (Ankerst et al. 1999).

Further categories are hierarchical and partitioning algorithms (Jain et al. 1999), 
where the latter can be divided further into sub-taxonomies. Some of them are based 
on the minimization of distances to certain prototypes (centroids, medoids, etc.), 
this includes algorithms like k-means (Lloyd 1982), or its more general archetype 
of algorithms: Gaussian Mixture Models (GMMs) among which the Expectation-
Maximization (EM) algorithm (Dempster et  al. 1977) is a prominent exponent. A 
major caveat, however, is that these methods estimate a specific probabilistic model 
which includes the number of clusters to be detected and often fail if the data is 
distributed differently (Liu and Han 2014). Note, however, that there are approaches 
for determining the number of clusters (Hamerly and Elkan 2003; Pham et al. 2005; 
Mehar et al. 2013; Debatty et al. 2014, e.g.).

In contrast, spectral clustering, a family of algorithms that shares some common 
ground with many manifold learning methods, are more robust with respect to shape 
and distribution of the clusters. However, note that these methods require the num-
ber of clusters to be specified in advance (Von Luxburg 2007; Liu and Han 2014). 
They compute the spectral decomposition of the Laplacian of a graph obtained from 
a pairwise (dis)similarity matrix and there are several results that show that such 
low-rank matrix approximations can improve cluster separability. Blum et al (2020, 
Ch. 7.5), for example, prove that cluster separability can be increased if one com-
putes a singular value decomposition of the data matrix. In a similar vein, Cohen-
Addad and Schwiegelshohn (2017) study distribution stability, perturbation resil-
ience, and—in particular—spectral separability, three conditions that allow to 
distinguish different data settings and can simplify clustering.
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Subspace clustering approaches emerged specifically for high-dimensional set-
tings (Kriegel et  al. 2009; Assent 2012; Pandove et  al. 2018; Mittal et  al. 2019). 
The fundamental assumption here is that objects within a cluster do not exhibit high 
similarities among all dimensions but only within a small subset of features that can 
either (a) span an axis-parallel subspace or (b) an affine projection to an arbitrarily-
oriented subspace (“correlation clustering”). In both cases, the objects of a cluster 
are assumed to be located on a common, low-dimensional linear manifold.

In contrast, manifold learning is based on the assumption that data observed in a 
high-dimensional ambient observation space is distributed on or near a potentially 
nonlinear manifold with a much smaller intrinsic dimension than the ambient space 
(Ma and Fu 2012). In general, the aim is to find low-dimensional representations of 
datasets preserving as much of the structure of the observed data as possible. A syn-
onymous term is nonlinear dimension reduction (NDR) (Lee and Verleysen 2007). 
However, there is no general definition of which characteristics are to be preserved 
and represented and different methods infer the intrinsic structure and provide low-
dimensional representations in different ways.

For instance, principal component analysis (PCA) yields embedding vectors that 
optimally preserve global Euclidean distances in the original data space, while other 
methods such as Isomap (Tenenbaum et al. 2000) yield embedding vectors that aim 
to preserve geodesic distances on a single, globally connected data manifold. Meth-
ods like t-distributed Stochastic Neighbor Embedding (t-SNE, van der Maaten and 
Hinton 2008) and uniform manifold approximation and projection (UMAP, McInnes 
et  al. 2018) have been successfully applied to complex high-dimensional datasets 
with cluster structure. More recently, methods with a specific topological focus such 
as general purpose Topomap (Doraiswamy et al. 2021) as well as domain specific 
Paga (Wolf et al. 2019), which focuses on the analysis of single cell data, have been 
proposed. The manifold learning-based clustering approach of Souvenir and Pless 
(2005) relies on the assumption that data is sampled from multiple intersecting 
lower-dimensional manifolds.

Modern manifold learning methods like UMAP and t-SNE optimize a loss func-
tions—the cross-entropy in UMAP, the Kullback–Leibler divergence in t-SNE—via 
(stochastic) gradient descent (Wang et  al. 2021, e.g.). Therefore, an initial config-
uration of points is required to start the optimization procedure. The initialization 
procedure has a crucial effect on the embedding performance and, in general, a 
non-random initialization should be used (Kobak and Linderman 2021; Wang et al. 
2021; McInnes et al. 2018, e.g.). UMAP uses a spectral embedding initialization by 
default. Other methods, for example, TriMAP and PaCMAP, use PCA for initializa-
tion (Wang et al. 2021). t-SNE, in contrast, uses a random initialization by default 
in many implementations but should also be initialized non-randomly by methods 
like PCA (Kobak and Linderman 2021). In summary, these methods leverage stand-
ard spectral embedding methods such as PCA or Laplacian Eigenmaps but addition-
ally make use of more sophisticated graph construction and embedding layout steps 
that improve the embedding performance. This also illustrates the close connections 
between manifold learning and spectral clustering. As outlined, spectral clustering 
uses a (dis)similarity matrix (and the number of clusters nc ) as input. From that, 
it first constructs a similarity graph and then computes the spectral decomposition 
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of the corresponding graph Laplacian that encodes the graph structure. Using the 
first nc eigenvectors as inputs to the k-means algorithm finally yields the desired 
clustering (Von Luxburg 2007). More generally, one can conduct spectral cluster-
ing directly using a n × d data matrix X instead of a n × n (dis)similarity matrix by 
computing the singular value decomposition (SVD) of X (Blum et al. 2020, Ch. 7.5). 
Note that this (lower rank) matrix factorization is a projection to a lower dimen-
sional subspace of dimension nc that can increase cluster separability because it 
“brings data points closer to their cluster centers” (Blum et al. 2020, p. 222). For 
more on the connections between manifold learning and spectral clustering see, for 
example, Belkin and Niyogi (2001), Saul et al. (2006) and Linderman and Steiner-
berger (2019).

Several studies that precede ours also focus on the combination of manifold 
learning techniques and cluster analysis, with applications to cytometry data (Putri 
et al. 2019), brain tumor segmentation (Kaya et al. 2017), spectral clustering (Arias-
Castro et al. 2017), or big data (Feldman et al. 2020), the latter three based on PCA. 
DBSCAN was used in combination with multidimensional  scaling (MDS) in Mu 
et al. (2020), and UMAP was used for time-series clustering (Pealat et al. 2021) as 
well as clustering SARS-COV-2 mutation datasets (Hozumi et al. 2021). However, 
these all focus on specific domains and not on the underlying topological princi-
ples. In contrast, we base our work on a topological perspective on clustering first 
described theoretically by Niyogi et al. (2011), who conceptualize clustering as the 
problem of identifying the connected components of a data manifold. We show the 
theoretical and practical utility of this perspective by means of extensive experi-
ments based on synthetic and real datasets. Similar in spirit to our work, Allaoui 
et al. (2020) perform a comparative study with real data to show that UMAP can 
considerably improve the performance of clustering algorithms. Among other 
things, they combined UMAP with HDBSCAN and report comparable clustering 
results for three of the real-world datasets (Pendigits, MNIST and FMNIST) also 
used here. However, in contrast to our study, Allaoui et  al. (2020) do not provide 
insights into the conceptual topological underpinnings, nor do they describe how the 
data structures preserved in UMAP embeddings lead to these performance improve-
ments. Note that their results also show empirically that the benefits of the proposed 
approach are not tied to any particular combination of NDR and clustering methods.

2.2 � UMAP

Three important assumptions (or “axioms”) underlie the method UMAP. It is 
assumed that “there is a manifold on which the data would be uniformly distrib-
uted”, “the underlying manifold of interest is locally connected”, and “preserv-
ing the topological structure [...] is the primary goal” (McInnes et al. 2018, p. 13). 
UMAP is rather similar to other manifold learning methods in its basic computa-
tional structure, and we first outline these aspects of UMAP in the following. We 
then try to build up some intuition about the theoretical underpinnings. The princi-
ple idea behind UMAP essentially consists of two steps:



847

1 3

Enhancing cluster analysis via topological manifold learning

1.	 Constructing a weighted k-nearest neighbor ( k-NN) graph from a pairwise dis-
tance matrix.

2.	 Finding a (low-dimensional) representation of the graph which preserves as much 
of its structure as possible.

Note that this is the fundamental principle in manifold learning and the details of 
the two steps constitute the differences between manifold learning methods (Wang 
et  al. 2021). However, unlike many other manifold learning methods, UMAP is 
based on a solid theoretical foundation that ensures that the topology of the manifold 
is faithfully approximated (McInnes et al. 2018)

2.2.1 � Graph construction

Given a dataset X = {x1, ..., xnobs} sampled from a space equipped with a distance 
metric d(xi, xj) , UMAP constructs a directed k-NN graph Ḡ = (V ,E,w) with the ver-
tices Vi being observations xi from X, E the edges and w the weights, based on the 
following definitions.

Definition 1  The distance �i of an observation xi to its nearest neighbor is defined by

Definition 2  A (smooth) normalization factor �i is set for each xi by

This defines a local (Riemannian) metric at point xi.

Definition 3  Weight function: The edge weights of the graph are defined by

Note that w takes on values in the interval [0, 1]. Moreover, the distance to the near-
est neighbor �i ensures that xi is connected to at least one other point with an edge of 
weight 1 (local connectivity constraint).

For the theory to work it is essential to assume that the data is uniformly distrib-
uted on the manifold, which is too strong an assumption for real world data. The 
issue is bypassed by defining independent notions of distance at each observed point 
through �i and �i . However, these local metrics may not be mutually interchange-
able, which means that the “distance” between neighboring points xi and xj may not 
be the same if measured w.r.t xi or w.r.t. xj , i.e., d(xi, xj) ≠ d(xi, xj) , so edge weights 
in Ḡ depend on the direction of the edges.

𝜌i = min{d(xi, xij )|1 ≤ j ≤ k, d(xi, xij ) > 0}.

k∑
j=1

exp

(
−max(0, d(xi, xij ) − �i)

�i

)
= log2(k).

w((xi, xij )) = exp

(
−max(0, d(xi, xij ) − �i)

�i

)
.
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A unified, undirected graph G with adjacency matrix B is obtained by

with A the weighted adjacency matrix of Ḡ and ◦ the Hadamard product1. Note that 
Eq. (1) represents the well defined operation of unioning fuzzy simplicial sets (with 
which the manifold is approximated). The resulting entries in B can be interpreted as 
the probability that at least one of the two directed edges between two vertices in Ḡ 
exists, or more generally as a measure of similarity between two observations xi and 
xj . Note that it has recently been shown that a stricter notion of connectivity induced 
by mutual nearest neighbors can further improve the topology preserving property 
of standard UMAP used here (Dalmia and Sia 2021). However, at the time of writ-
ing this paper, no implementation of this approach was publicly available.

2.2.2 � Graph embedding

The objective is to find a configuration of points in the representation space Y whose 
fuzzy simplicial set is as similar as possible to the fuzzy simplicial set of the origi-
nal data, as represented by G. To find this low-dimensional representation, UMAP 
optimizes the cross entropy of edge weights in the two spaces. Similarities in the 
observation space are represented in terms of the local smooth nearest neighbor dis-
tances as

with vj|i = exp[(−d(xi, xj) − �i)∕�i] (c.f. Eq. (1)), and similarities in the representa-
tion space Y as

with yi and yj the embedding vectors to optimize and a and b tuning parameters 
that are—by default—a ≈ 1.929 and b ≈ 0.7915 . The cross entropy between the two 
fuzzy simplicial set representations

is minimized via stochastic gradient descent (SGD) to obtain the graph layout. The 
two terms in Eq. (4) represent the attractive and repulsive forces for the graph layout 
algorithm used here.

UMAP’s central tuning parameters are the number of nearest neighbors k (often 
denoted as n or n_neighbors), the number of SGD optimisation iterations 
n-epochs, the dimension d of the representation space, and min-dist, a param-
eter controlling how close neighboring points can appear in the representation.

(1)B = A + AT − A◦AT ,

(2)vij = (vj|i + vi|j) − vj|ivi|j,

(3)wij = (1 + a||yi − yj||2b2 )−1,

(4)CUMAP =
∑
i≠j

vij log

(
vij

wij

)
+ (1 − vij) log

(
1 − vij

1 − wij

)

1  For two matrices M1 and M2 with the same dimension, the Hadamard product is defined as 
(M1◦M2)ij = (M1)ij(M2)ij
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2.2.3 � Topological background

In the following, we try to build up some intuition about UMAP’s theoretical under-
pinnings by describing its close connections to topological data analysis (TDA). 
Note that UMAP has a sophisticated category theoretical foundation, but in princi-
ple the basic conceptual and computational cornerstones are simplicial complexes, 
sets of n-simplices that can be constructed using the n + 1 points in a given set. 
In more descriptive terms, 0-simplices are points, 1-simplices are edges between 
points, 2-simplices are triangles, 3-simplices are tetrahedrons, and so on. A subset 
of a n-simplex is called a face and is a (lower order) simplex itself (Wasserman 2018; 
Zomorodian and Carlsson 2005).

More generally, given a set X  , the vertex set, an abstract simplicial complex can 
be defined as the “set K̃ of finite subsets of X  such that the elements of X  belong to 
K̃ and for any s ∈ K̃ , any subset of s belongs to K̃ ” (Chazal and Michel 2021, p. 4). 
Chazal and Michel (2021, p. 4) emphasize that “abstract simplicial complexes can 
be seen as topological spaces”. That means, if a simplicial complex is constructed 
from a given data set X = {x1, ..., xnobs} , one obtains a topological representation of 
the the dataset, encoding information on structures such as connected components 
(i.e., clusters) or holes. On the other hand, simplicial complexes are combinatorial 
objects and thus allow for efficient computations (Chazal and Michel 2021).

In practice, one can, for example, compute a Vietoris-Rips complex VRr(X) (Was-
serman 2018; Chazal and Michel 2021). Given a dataset X ⊂ ℝ

D (note that ℝD is a 
metric space naturally endowed with the Euclidean metric) and r ∈ ℝ

+
0
 , a Vietoris-

Rips complex is the set of simplices with d(xi, xj) ≤ r , xi, xj ∈ X . The value r con-
trols the resolution with which the topological features are extracted from the (finite) 
dataset and each point will appear as one of nobs unconnected components if r = 0 . 
On the other extreme, a single connected component will result for a large r, i.e., all 
observations will appear connected to each other (Bubenik 2015).

Computing filtrations, that is, a series of Vietoris-Rips complexes for increasing 
values of r, is a very important approach in TDA called persistent homology (Chazal 
and Michel 2021; Zomorodian and Carlsson 2005, e.g.), where “homology charac-
terizes sets based on connected components and holes” (Wasserman 2018, p. 515). 
That means, starting from the observations in a dataset as nobs unconnected compo-
nents, connected components and other topological features such as holes or voids 
will appear and vanish with increasing r (Wasserman 2018). The birth and death 
times of these topological features can be used to create a persistence diagram, with 
the birth time plotted on the horizontal axis and the death time plotted on the verti-
cal axis. Persistent topological features, i.e., features with long lifetimes, appear far 
from the diagonal.

UMAP, in contrast, constructs a single simplicial complex in its graph con-
struction step in principle. The simplicial complex is constructed by specifying a 
number of nearest neighbors k to include in a ball around a point. This results in 
locally different metrics because in non-uniformly distributed data the distance to 
the kth neighbor depends on how densely sampled the region is a point is located 
in. In more descriptive terms, consider that the radius of the ball around a point 
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xi is equal to the distance to xi ’s k-nearest neighbor. Since k is the same for all 
points, the radii of balls around points in dense regions are smaller than those 
of points in sparse regions (McInnes 2018). In particular, as outlined, each edge 
can have two different weights depending on the point from which the distance 
is measured. In the more abstract terms on which UMAP is built, this means 
that one obtains a family of fuzzy simplicial sets. A simplicial set is a more gen-
eral notion of a simplicial complex usually defined in category theoretical terms 
(McInnes et al. 2018). In particular, the vertices of a simplicial set “need not be 
distinct nor necessarily determine the simplex spanning them” (Riehl 2011, p. 2). 
The simplicial sets are fuzzy because of the two different weights an edge can 
obtain and computing the fuzzy union of the fuzzy simplicial sets results in a sin-
gle weight for each edge (McInnes 2018).

In summary, both TDA and UMAP approximate continuous structures by build-
ing simplicial complexes and sets from the (discretely) observed data points. UMAP 
constructs a topological representation of a dataset via fuzzy simplicial sets while 
persistent homology, as a specific example of TDA, yields a persistence diagram 
that indicates topological features of the data based on filtrations. These close con-
nections between TDA and UMAP emphasize UMAP’s topological “nature”. If 
the data live on a manifold (a single connected component), UMAP constructs a 
topological representation of the manifold. On the other hand, if the data live on dif-
ferent unconnected components, UMAP constructs a representation that preserves 
these unconnected components. In particular, as will be demonstrated in Sect. 3.2, if 
the parameter k steering the neighborhood size is much smaller than the number of 
observations nobs , many edge weights will become 0 in the graph construction step 
with the local connectivity constraint (see Definition 3) ensuring that the dataset is 
not separated into many connected components consisting of a single point only. In 
general, UMAP should not be considered an isometric embedding method, i.e., a 
method preserving distances, but rather a method preserving topological features.

2.3 � DBSCAN

Since DBSCAN is already very well-known and established, we will only briefly 
describe its principles. The idea behind DBSCAN is captured within six definitions 
we adapt from Ester et al. (1996) and elaborate on:

Definition 4  �-neighborhood of an object: The �-neighborhood of an object xi 
denoted by N�(xi) , is defined by:

where X denotes a given dataset.

Definition 5  Directly density-reachable: An object xi is directly density-reachable 
from an object xj w.r.t. a given �-range and MinPts if:
1.	 xi ∈ N�(xj) and

N�(xi) = {xj ∈ X|d(xi, xj) ≤ �}



851

1 3

Enhancing cluster analysis via topological manifold learning

2.	 |N�(xj)| ≥ MinPts (core point condition)

Definition 6  Density-reachable: An object xi is density-reachable from another 
object xj w.r.t. � and MinPts if there is a chain of objects x1, ..., xc , x1 = xi , xc = xj 
such that xl+1 is directly density-reachable from xl.

Definition 7  Density-connected: An object xi is density-connected to another object 
xj w.r.t. � and MinPts if there is an object o such that both, xi and xj are density-
reachable from o w.r.t. � and MinPts.

Definition 8  Cluster: Let X be a given dataset of objects. A cluster C w.r.t. � and 
MinPts is a non-empty subset of X satisfying the following conditions:
1.	 ∀xi, xj ∶ if xi ∈ C and xj is density-reachable from xi w.r.t. � and MinPts, then 

xj ∈ C (Maximality)
2.	 ∀xi, xj ∈ C ∶ xi is density-connected to xj w.r.t. � and MinPts (Connectivity)

Definition 9  Noise: Let C1, ...,Cnc
 be the nc clusters of the given dataset X w.r.t. 

parameters �i and MinPtsi , i = 1, ..., nc . Then noise is defined as the set of objects in 
the dataset X that do not belong to any cluster Ci , i.e. noise = {xi ∈ X|∀i ∶ xi ∉ Ci}.

In Definition 5 an object is a core point if it has at least MinPts number of objects 
within its �-neighborhood. In the case that no objects in a given dataset are density-
reachable then we would obtain nc clusters where nc denotes the number of core-
points in a dataset X for a given � and MinPts. This means that the number of core 
points can be considered as an upper-bound for the number of emerging clusters for 
a given � and MinPts. Further it can be deduced from the core point definition that 
the region surrounding a core point is more dense compared to density-connected 
objects that do not satisfy |N�(xj)| ≥ MinPts meaning that they are objects in more 
sparse regions.

3 � Inferring the topological structure enhances clusterability

In this section, we demonstrate that the correct use of manifold learning (here, spe-
cifically: UMAP), as motivated by our topological framing, largely avoids several 
frequently described challenges in cluster analysis.

A major problem affecting cluster analysis is that clustering often becomes 
more challenging in high-dimensional datasets. Specifically, the presence of many 
irrelevant and/or dependent features potentially degrades results (Kriegel et  al. 
2009). However, contrary to wide-spread “folk-methodological” superstitions and 
some sources like Assent (2012), the well known result that Lp2 distances lose 

2  The Lp distance between two vectors x = (x1, ..., xd)
T and y = (y1, ..., yd)

T in ℝd is defined as 

dp(x, y) =
�∑d

i=1
(�xi − yi�)p

� 1

p . For p = 2 one obtains the Euclidean distance.



852	 M. Herrmann et al.

1 3

their discriminating power in high dimensions (Beyer et  al. 1999, e.g.) is entirely 
irrelevant for well-posed clustering problems: both the original publication and 
subsequent works like Kriegel et  al. (2009) and Zimek and Vreeken (2015) show 
that the conditions for this result do not apply if the data is distributed in well 
separable clusters. In particular, this means that DBSCAN, being based on pairwise 
distance information, can easily detect clusters in high-dimensional datasets.

Nevertheless, there are other problems specific to density-based clustering, and 
DBSCAN in particular, among which finding a suitable density level is one of the 
most important (Kriegel et al. 2011; Assent 2012). A recent review (Schubert et al. 
2017), outlined some heuristic rules for specifying � for DBSCAN, but domain 
knowledge should mostly determine such decisions. More importantly, density 
based clustering is likely to fail for clusters with varying density. In such cases, a 
single global density level—for example, specified via � in DBSCAN—cannot 
delineate cluster boundaries successfully (Kriegel et al. 2011).

In addition to these well known issues, we outline another more subtle, less well 
known aspect: not only does the difficulty of a clustering problem not necessarily 
increase for high-dimensional X, clusters may even become easier to detect in higher 
dimensional (embedding) spaces.

3.1 � Enhancing clusterability of DBSCAN with UMAP

The four example datasets we consider here illustrate the following three points: 
(1) Density-based clustering works in some but not all high-dimensional settings. 
(2) Perfect performance may not be achievable even for extensive parameter grid 
searches, and suitable � values are highly problem-specific. (3) Most importantly, 
manifold learning can considerably enhance clustering both by improving perfor-
mance and by reducing parameter sensitivity of DBSCAN to the extent it becomes 
almost tuning-free.

The datasets we consider here consist of three clusters sampled from three mul-
tivariate Gaussian distributions with different mean vectors. In the first two exam-
ples, denoted by E100 and E1000 , the covariance matrix for all three Gaussians is the 
identity matrix, inducing clusters of similar density. In the latter two examples, U3 
and U1003 , the covariance matrices differ, inducing clusters of different density. In 
addition, we consider problems with very different dimensionalities. Observations in 
setting E100 are sampled from 100-dimensional Gaussians, while observations in set-
ting E1000 are sampled from 1000-dimensional Gaussians. In contrast, observations 
for U3 and U1003 are sampled from 3-dimensional Gaussians. For U1003 , an additional 
1000 features that are irrelevant for cluster membership are sampled independently 
and uniformly from [0, 1]. For each setting we sample 500 observations from each 
of the three clusters, i.e., each example dataset consists of 1500 observations in total. 
The complete specifications of the examples are given in Table 1.

We use the Adjusted Rand Index (ARI) (Hubert and Arabie 1985, Eq. 5) and the 
Normalized Mutual Information (NMI) with maximum normalization (Vinh et  al. 
2010a, Tab. 2) as (quantitative) evaluation measures throughout. Both measures 
compare two data partitions and return a numeric value quantifying the agreement. 
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The NMI strictly ranges between [0, 1], but it is not adjusted for random partition. 
The ARI also takes values in the range [0, 1], but unlike the NMI, it is adjusted for 
random partitioning. Strictly speaking, this means the ARI becomes 0 only when 
the Rand Index exactly matches its expected value under the null hypothesis that the 
partitions are generated randomly from a hypergeometric distribution (Hubert and 
Arabie 1985).

That means, we focus on external cluster evaluation in this work, a frequently 
used approach in methodological research on cluster analysis. Note, however, that 
in truly unsupervised and exploratory settings relevant external information is often 
unavailable. In such situations, one can fall back on internal evaluation measures to 
evaluate and choose between clusterings obtained with different parameter settings 
in practice. Unlike external evaluation measures that evaluate a cluster result accord-
ing to its concordance with the ground-truth partition (synthetic data) or a label set 
(real data), internal evaluation measures evaluate a clustering based on an objec-
tive such as “within-cluster homogeneity, between-cluster separation, and similar-
ity of cluster members to their cluster centroid” (Van Mechelen et al. 2018, p. 15). 
Prominent examples of internal evaluation measures are the silhouette coefficient 
(Rousseeuw 1987), Hopkins statistics (Hopkins and Skellam 1954), and the Davis-
Bouldin-Index (Davies and Bouldin 1979). Fig. 1 shows the ARI and NMI for differ-
ent � values obtained by either applying DBSCAN directly to the observed data or 
to their 2D UMAP embeddings. Note that we refer, e.g., to a 2-dimensional UMAP 
embedding obtained with k = 5 as 2D UMAP with k = 5 or 2D UMAP-5 for short.

Several aspects need to be emphasized. First of all, the effect of the dimensionality 
of the dataset on the performance of DBSCAN applied to the original data is 
complicated (Fig.  1, first column (A)). Contrary to preconceived notions, it can 
be easier to detect clusters in higher dimensions. Figure 1A shows that using only 
DBSCAN, clusters are more easily detected in the 1000-dimensional data (2nd 
row) than in the 100-dimensional data (1st row, although perfect performance is not 
achieved by DBSCAN in either of the two).

The dimension of the Gaussian distributions defining the clusters is the only 
difference between these two settings. On the other hand, Fig. 1A shows that it can 
also be the other way round. In the 1003-dimensional dataset with 1000 irrelevant 
features (4th row) cluster performance is much lower than in the corresponding 
3-dimensional dataset with only 3 relevant variables (3rd row). Again, perfect 

Table 1   Specifications of the 
settings E100 , E1000 , U3 , and 
U1003

In setting U1003 clusters are defined by means of p = 3 dimensional 
Gaussians, yet an additional 1000 irrelevant features are sampled 
uniformly from [0,  1], leading to a total dimensionality of 1003. 
Bold numbers indicate vectors

Setting p Mean vectors Variances

E100 100 � ∈ {0, 0.5, 1} �
i
= 1

E1000 1000 � ∈ {0, 0.5, 1} �
i
= 1

U3 3 � ∈ {0, 3, 7} �
i
∈ {0.1, 1, 3}

U1003 3 � ∈ {0, 3, 7} �
i
∈ {0.1, 1, 3}
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Fig. 1   ARI and NMI as a function of � for the synthetic settings E100,E1000,U3,U1003 . First column: 
DBSCAN directly applied to the data. Second column: DBSCAN applied to a 2D UMAP embedding 
with k = 5 . Clusters sampled from multivariate Gaussian distributions (see Table 1 for specifications). 
For setting U1003 , additional 1000 irrelevant variables are sampled uniformly from [0,  1]. DBSCAN 
computed for � ∈ [0.01, 50] , step size: 0.01; minPts = 5
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cluster performance is not achieved by DBSCAN alone. Note that settings U3 and 
U1003 define clusters with varying densities, so DBSCAN is expected not to provide 
a perfect result.

Secondly, finding a suitable value of � is very challenging using DBSCAN alone. 
Note that the optimal �opt varies between 0.9 and 42.64 for these examples. Iden-
tifying a suitable � is even more problematic since the sensible �-ranges are very 
small (e.g. see U1003 ). In some cases, clustering does not seem feasible at all even 
with an optimally chosen �—optimal results are very poor for setting E100 with ARI 
(NMI) = 0.003(0.05) for �opt = 11.32(10.98) . Moreover, while �opt is not necessar-
ily consistent for datasets with approximately the same dimensionality—compare 
�opt = 42.64 for E1000 to �opt = 12.48 for U1003—it can be similar for datasets with 
very different dimensionality—compare �opt ∼ 11 for E100 to �opt = 12.48 for U1003.

Finally, the crucial point we want to highlight with these examples is that infer-
ring the topological structure before clustering by applying DBSCAN on UMAP 
embeddings instead of directly to the data makes all these issues (almost) com-
pletely disappear (see Fig. 1B). First of all, clustering performance is increased in all 
four examples; in three it even leads to perfect performances. But not only is perfor-
mance increased, UMAP also dramatically reduces the complexity of finding a suit-
able � . In all considered cases the sensible �-ranges start near zero, rapidly reach the 
optimal value, and remains optimal over a wide range of �-values in three of the four 
examples. Note that we do not tune UMAP at all – we simply set k = 5 and leave all 
other settings at their default values.

We emphasize that perfect performance is obtained for large swaths of the �-range 
we consider for the two high-dimensional examples. This suggests that the crucial 
issue in clustering is not the nominal dimension of the dataset or whether it contains 
irrelevant features, but rather how separable the clusters are in their ambient space, 
which is usually simply the p-dimensional Euclidean space spanned/defined by the 
dimensions/features of the data, while the approach taken here attempts to cluster 
observations after projecting them into a space that is optimized for separability.

To analyze the variability across different samples, we generated another 50 data-
sets for each of the settings (as defined in Table 1) and report the means and standard 
deviations for ARI and NMI in Table  2. For these experiments, we set � = �opt (the 
values corresponding to the optimal ARI values shown in Fig. 1), i.e., for DBSCAN 
applied directly to the data, � = {11.32, 42.64, 0.9, 12.48} , and for DBSCAN applied 
to 2D UMAP-5 embeddings, � = {0.24, 0.46, 1.41, 0.28} . The results show that the 
findings are very robust across different samples. In particular, the mean values are 
close to the optimal values shown in Fig. 1 with (very) low variability. See “Appen-
dix A” for a more details.

In summary, applying DBSCAN on UMAP embeddings not only improved 
performance considerably, it also reduced the sensitivity of DBSCAN w.r.t. � . In 
particular, suitable �-ranges started near zero for all considered examples. Our 
experiments described in Sect.  5 show that this holds for complex real data such 
as fashion MNIST (Xiao et al. 2017) as well, where applying DBSCAN on UMAP 
embeddings not only dramatically improved DBSCAN’s performance but even 
outperformed the recently proposed ClusterGAN (Mukherjee et al. 2019) method. In 
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the next subsection, we examine the technical aspects that explain this behavior in a 
simple toy example.

3.2 � Reasons for improved clusterability

This section lays out possible reasons for the observed improvements w.r.t clusterability 
with a detailed analysis of the underlying technical mechanisms in a simple toy exam-
ple. Consider the following distance matrix between six objects:

Inspecting this distance matrix reveals two clusters of objects, shown here in green 
and cyan. We set DBSCAN’s core point condition parameter to minPts = 2 . Note 
that the object itself is not considered part of its �-neighborhood. We set � = 0.75 , so 
that every object whose row (or column) in the distance matrix contains at least two 
entries ≤ 0.75 is considered a “core point”. Since two objects from the different clus-
ters have a distance of exactly 0.75 (orange entries), all objects are part of a single 
connected component, and the two dense regions are subsumed into a single large 
cluster for � = 0.75 , as can be seen in the matrix below:

To avoid this collapsed solution, one could try to reduce the � parameter to e.g. 
� = 0.74 . However, as a consequence, now all the objects in the second (cyan) 

(5)

(6)

Table 2   Means and standard deviations (SD) for ARI and NMI over 50 datasets for each of the 
considered settings, with � = {11.32, 42.64, 0.9, 12.48} and � = {0.24, 0.46, 1.41, 0.28} for E100 , E1000 , 
U1003 , U1003 and DBSCAN or UMAP-5 + DBSCAN, respectively

Setting ARI NMI

Mean (SD) Mean (SD)

DBSCAN UMAP-5 + DBS DBSCAN UMAP-5 + DBS

E100 0.00 (0.01) 0.65 (0.23) 0.01 (0.01) 0.58 (0.18)
E1000 0.55 (0.20) 1.00 (0.00) 0.54 (0.16) 1.00 (0.00)
U3 0.84 (0.10) 0.90 (0.16) 0.77 (0.06) 0.88 (0.15)
U1003 0.37 (0.16) 0.97 (0.01) 0.40 (0.16) 0.95 (0.02)
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cluster become “noise”: They no longer satisfy the “core point” condition for 
minPts = 2 , since at most one distance in each of their rows is ≤ 0.74 . This means 
only one cluster (top left, green) is detected, as can be seen in the following matrix:

From this first example, we conclude (1) that there may be cases where even a sin-
gle object may connect two clusters, yielding a single collapsed cluster and (2) that 
the sensitivity of clustering solutions to hyperparameter settings is large: A small 
change of the �-parameter by only 0.01 led to a fundamentally different solution.

Thus, we should look for improvements that (i) reduce the sensitivity of results 
towards the parameter settings and (ii) increase the separability of the data and 
thereby reduce the susceptibility of DBSCAN to merge multiple poorly separated 
clusters via interconnecting observations at their respective margins. Sharpening the 
distinction between dense and sparse regions within the dataset, i.e. increasing sepa-
rability, improves clusterability. As we will now see, UMAP is able to do exactly 
that by arranging objects into clusters with fairly constant density within and empty 
regions in between.

To illustrate this, we consider the representation of the toy example via the fuzzy 
graph as constructed by UMAP. This reflects the fuzzy simplicial set representation 
of the data and crucially depends on the number of nearest neighbors k . We start 
with k = 6 . This leads to a graph with adjacency matrix

Each cell represents the fuzzy edge weight vij (Eq. 2) connecting two points, so each 
value represents the affinity of two observations, not their dissimilarity as in the dis-
tance matrices before. As before, the cluster structure is obvious in this representa-
tion, with high affinities ( ≥ 0.95 ) where distances had been low ( ≤ 0.75 ). The repre-
sentation learned by UMAP in the graph construction step clearly reflects the cluster 
structure of the dataset.

Note that this fuzzy topological representation by itself already amplifies the 
cluster structure: if we stopped UMAP at this point and converted the affinities 
vij into dissimilarities e.g. via dij = 1 − vij, i ≠ j , DBSCAN with minPts = 2 would 
yield perfect cluster results for � ∈ [0.01, 0.09]!

(7)

(8)

⎛⎜⎜⎜⎜⎜⎜⎝

0 1.0 0.95 0.29 0.53 0.25

1.0 0 1.0 0.9 0.19 0.30

0.95 1.0 0 0.24 0.45 0.58

0.29 0.9 0.24 0 1.0 1.0

0.53 0.19 0.45 1.0 0 1.0

0.25 0.3 0.58 1.0 1.0 0

⎞⎟⎟⎟⎟⎟⎟⎠
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Note as well that UMAP’s graph layout optimization has not even been per-
formed yet and that the nearest-neighbor parameter k has been set to 6, the largest 
possible value in this example. Thus, the vast improvement in separability we 
observe is due only to the way UMAP learns and represents the structure of the 
data in the fuzzy graph G alone. The improvement can be driven even further both 
by decreasing the parameter k and by conducting the graph layout optimization.

First, consider the effect of k . In the following, blanks in the matrices denote 
zero entries. Graph (9) shows G for k = 3 . Clearly, the beneficial effects we noted 
for k = 6 are considerably amplified.

Almost all vij become zero (i.e. there is no affinity/similarity between the two points) 
except for those joined in one of the clusters and the two entries which caused 
DBSCAN to break. Turning vij into dij as above, DBSCAN yields correct clusters for 
� ∈ [0.01, 0.42].

By setting k = 2 , the smallest possible value due to the local connectivity con-
straint, we can further distill the cluster structure down to its bare essentials:

Based on this graph, DBSCAN yields correct clusters for � ∈ [0.01, 0.99] ! Thus, by 
setting the nearest neighbor parameter of UMAP to a very small value, the cluster 
separability is dramatically amplified and DBSCAN’s sensitivity w.r.t. � is signifi-
cantly reduced.

However, the graph layout optimization step has not even been performed yet. 
This additional step is crucial, in particular for reducing the parameter sensitivity 
of clustering methods. This is due to the fact dij = 1 − vij only converts affinities 
into dissimilarities. Finding a graph layout via the cross-entropy CUMAP as defined 
in Eq. 4 instead, not only converts affinities (indirectly) into dissimilarities, but 
also improves the conversion itself w.r.t. to separability (on top of the separability 
gained by the graph construction), since the optimization procedure optimizes the 
graph layout for increased cluster separability. This can be explained as follows:

CUMAP becomes minimal for vij = wij . For vij = 0 , the further away from each 
other the embedding vectors yi and yj are placed, the better, since this will drive 
wij towards zero. Considering graphs  9 and  10, we see that vij is zero mostly 

(9)

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0 0.83

1.0 1.0 0.58

0.83 1.0

0.58 1.0 1.0

1.0 1.0

1.0 1.0

⎞
⎟⎟⎟⎟⎟⎟⎠

(10)

⎛⎜⎜⎜⎜⎜⎜⎝

1.0

1.0 1.0

1.0

1.0 1.0

1.0

1.0

⎞⎟⎟⎟⎟⎟⎟⎠
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for observations from different clusters. Minimizing CUMAP thus increases cluster 
separability in the embedding space by driving objects from different clusters 
apart. Note that minimizing the cross entropy “can be seen as an approximate 
bound-optimization (or Majorize-Minimize) algorithm [...] implicitly minimiz-
ing intra-class distances and maximizing inter-class distances” (Boudiaf et  al. 
2020, p. 3). The optimization in the graph embedding step of UMAP thus leads 
to tighter clusters with more white space in between.

The most relevant additional benefit this graph embedding step provides is 
the large expansion of well-performing �-ranges for DBSCAN. Since the graph 
layout optimization uses stochastic gradient descent, the resulting embedding 
vectors are not deterministic. To account for this randomness, we perform 25 
embeddings for each value of k and compute separate averages of the lower 
and the upper interval boundaries of the �-ranges yielding optimal cluster per-
formance. On average, the obtained embedding coordinates yield correct clus-
ters for k = 6 with � ∈ [0.83, 1.03] , for k = 3 with � ∈ [0.70, 6.76] , and for k = 2 
with � ∈ [0.79, 20.94] . Even the smallest (optimal) �-ranges we observed over 
the 3 × 25 replications are at least as large as the ones obtained on the fuzzy 
graph for k = 6 , and still considerably larger for k = 3 and k = 2 : [0.94,  1.03], 
[0.72, 1.33], [1.16, 4.57], respectively. Further analysis of the variability result-
ing from optimizing embedding vectors via SGD can be found in “Appendix B”.

These results indicate how crucial optimizing separability by computing 
embedding vectors is for clustering performance. “Appendix C” confirms its 
importance on real data.

In these and the following experiments, all of UMAP’s other hyperparam-
eters were left to the implementation defaults, in particular min_dist = 0.1. 
Additionally adjusting these parameters might further increase separability. 
However, tuning parameters in an unsupervised setting is a notoriously difficult 
task and since the results are already convincing by setting k to a small value, 
we concentrate on the effect of k.

Summarizing, both the graph construction and the graph embedding steps 
in the UMAP algorithm independently contribute to an increased separabil-
ity of clusters in a dataset, and their combined effect improves clusterability 
dramatically.

4 � The price to pay: structures preserved and lost

As we have outlined in the previous sections, UMAP is able to infer and even 
enhance the topological, i.e. the cluster, structure of a dataset. However, these 
improvements come at a price which will be outlined in this section.
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Fig. 2   Effects of UMAP: preservation of topological versus geometrical structure. A: Three nested 
spheres in 3D ( nobs = 30000 , part of the data omitted to make the nested structure visible). B: 2D UMAP 
embeddings for k = 7 and k = 15 . The clusters, i.e., topological structure, is preserved. Geometrical 
structure is not preserved: Ambient space geometry (“nestedness”) is lost; for k = 7 , less of the spherical/
circular shape is preserved. C: Clustering performances for � ∈ [0, 10] (step size: 0.01, minPts = 5 ) 
for DBSCAN directly applied to the data (left) and applied to the UMAP embeddings ( k = 7 : middle, 
k = 15 : right)
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4.1 � Topology versus geometry

Beyond topological structure, i.e., mere “connectedness”, datasets also have 
geometrical structure—the shapes of the clusters and how the clusters are positioned 
relative to each other in the ambient space.

Consider the example of a dataset consisting of three nested spheres embedded 
in a 3-dimensional (Euclidean) space (see Fig.  2A). What kind of structure does 
this dataset yield? First of all, from a purely topological perspective, we have three 
unconnected topological subspaces, i.e. clusters: the three spheres. Moreover, from 
an additional geometrical perspective, we have information on the shape of the indi-
vidual clusters: they form spheres, i.e. 2-dimensional surfaces. Finally, we have 
information on the relative position of the clusters to each other within the ambient 
feature space: the spheres are nested.

What happens if these data are represented in a 2D UMAP embedding? Since a 
sphere cannot be isometrically mapped to a 2-dimensional plane, some distortion 
of the geometric structure will be unavoidable in any 2D embedding. Figure  2B 
shows that, in fact, most of the geometrical structure is lost in UMAP embeddings: 
the relative positioning of the clusters diverges from the original data and is not 
consistent over different embeddings.

The effect on the shape of the clusters is less severe. While for k = 15 the embed-
dings are similar to circles, i.e. 2D spheres, for k = 7 the general circular shape 
is retained, yet less uniformly. In contrast, the topological structure of the differ-
ent clusters are not only preserved in full, but even exaggerated—clusters are much 
more separated in the embeddings, which is also reflected once again in much wider 
�-ranges that yield sensible results (Fig. 2C). DBSCAN alone provides perfect clus-
tering performances only over a much smaller � range than when applied to these 
UMAP embeddings.

As a further example, we consider the complex 2D synthetic dataset by Jain 
(2010), “who suggest that it cannot be solved by a clustering algorithm” (Barton 
et al. 2019, p. 2). This “impossible” data contains seven clusters with complex struc-
ture, see Fig. 3A. The clusters have different densities, are in part non-convex, and 
are not linearly separable. DBSCAN by itself is not able to detect the full cluster 
structure and choosing � from [0, 15] (step size: 0.01, minPts = 5 ) based on an opti-
mal ARI value yields a very different cluster result than choosing � based on the 
optimal NMI value (see Fig. 3B and C). This challenging example further demon-
strates two important points:

First, how successfully UMAP embeddings preserve the connected compo-
nents (i.e. topological structure) and simultaneously distort geometric structure. In 
Fig.  3D, we can see that the nested structure of the circles and the entanglement 
of the spirals are completely lost and that the spirals have been “unrolled” in the 
embedding space, but the different clusters are very clearly separated.

Second, the example illustrates that “dimension inflation” via UMAP can have 
a positive effect on cluster performance. “Dimension inflation” means that the 
data is embedded into a space of higher dimensionality than the observed data. 
Although this is uncommon and we are not aware of any work where this has 
been investigated before, there are no restrictions that prevent UMAP from being 
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Fig. 3   Another example of complex synthetic data and the beneficial effect of “dimension inflation”. 
1st row: the “impossible” data with color according to true cluster structure. 2nd row: data colored 
according to DBSCAN cluster results if applied directly to the data (different optimal � values for ARI 
and NMI). 3rd row: Visualizations of a 2D and 3D UMAP-5 embedding with colors according to true 
cluster structure. 4th row: �-curves for DBSCAN applied to the data, a 2D UMAP-5, and a 3D UMAP-5 
embedding. Last row: 2D visualizations of the 3D UMAP-5 embedding with colors according to true 
cluster structure. In all settings: DBSCAN computed for � ∈ [0.01, 15] , step size: 0.01; minPts = 5
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used in this way. Consider Fig.  3F, which shows ARI- and NMI-curves obtained 
with DBSCAN applied (1) to the data, (2) a 2D UMAP-5, and (3) a 3D UMAP-5 
embedding. Although the 2D UMAP-5 embedding already improves performance 
and strongly reduces parameter sensitivity, it does not yield a perfect solution. In 
the 2D embedding (Fig. 3D), the two spirals are very close to each other, with a gap 
between them that is smaller than the gap appearing within the black cluster.

However, the three dimensional UMAP-5 embedding not only further reduces 
parameter sensitivity, but also allows for perfect cluster performances. A 3D 
visualization of this embedding is depicted in Fig.  3E, but note that a static 
3D visualization does not make the improved separability visible very well. 
Figures 3G–I show all pairwise plots of the three embedding dimensions of the 3D 
UMAP embedding, even though none of these 2D projections reflects the cluster 
structure well. We recommend to base exploratory analysis on 3D embeddings as 
they are more likely to yield good results in complex data than 2D embeddings and 
still allow for very reasonable visualizations with dynamic plotting tools.

4.2 � Outliers and noise points

Outliers are another important property of a dataset, but their distinctiveness and 
relative isolation is unlikely to be preserved in their UMAP embeddings. Consider 
Fig.  4A and C, which shows two 2D datasets with two clusters and, firstly, with 
two outliers (in blue, A and C), and, secondly, with additional, uniformly distributed 
noise points (in grey, C). Corresponding UMAP embeddings for k = 15 are depicted 

Fig. 4   Effect of UMAP on data with outliers and noise points. First column: 2D datasets with two 
clusters and two outliers (A) and two outliers and noise points (C). Second column: UMAP embeddings 
with k = 15 (B and D, respectively). The cluster structure is preserved. Outliers and noise points are 
forced into the clusters
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in Fig.  4B and D. Although the cluster structure is preserved, in both cases the 
outliers are no longer detectable as such (note that no dimension reduction has taken 
place). Similarly for noise points, which are embedded into proximal clusters and 
then no longer detectable as noise.

It has recently been shown for functional data that outlyingness can be seen as a 
metric structure of a dataset (Herrmann and Scheipl 2021). Since UMAP does not 
preserve metric structure (i.e. distances) but connected components, the loss of the 
outlier structure is not surprising. Moreover, note that UMAP’s local connectivity 
constraint, which ensures that each point is at least connected to its nearest 
neighbor, may render it generally impossible to preserve outlier structure in UMAP 
embeddings. Applying outlier detection methods in an additional preprocessing step 
before computing UMAP embeddings may solve this issue.

4.3 � Overlapping and diffuse clusters

Clusters with considerable overlap or diffuse boundaries that result in a large likeli-
hood of “bridge” points between nominally distinct clusters are especially challeng-
ing for most clustering algorithms.

Fig. 5   Effect of UMAP on data with connected components. Upper row: 2D data with two bridged 
clusters. Lower row: 2D dataset with two strongly overlapping clusters. A and D: data. B, C, E, F: 
UMAP embeddings with k = 15 and k = 505 , respectively. UMAP breaks the bridged components up 
into two clusters, but does not break up the strongly overlapping components
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First of all, consider Fig. 5A, which shows a 2D dataset consisting of two clusters 
which are connected by a small “bridge” of points (blue). From a purely topological 
perspective, we have a single connected topological subspace. A 2D UMAP 
representation, however, breaks the connected components apart, see Fig.  5B and 
C. Note, that this holds for a small value of k = 15 as well as for a very large value 
of k = 505 . Another issue concerns clusters with substantial overlap, which are 
often modeled as diffuse components of a Gaussian mixture (Rasmussen 2000). In 
such cases, UMAP and similar manifold learning methods are unlikely to improve 
clustering performance. Consider Fig. 5D. It shows a 2D dataset with two clusters 
following 2-dimensional Gaussian distributions with mean vectors (0, 2)� and 
(2, 2)� and unit covariance matrix. Note that in both embeddings (Fig.  5E and F) 
the clusters are not clearly separable, and the less so the larger UMAP’s locality 
parameter k is chosen.

For strongly overlapping clusters, it is questionable to even consider such settings 
as (“pure”) clustering tasks. From a topological perspective, such settings cannot be 
considered a well-posed clustering problem as there are no separable components 
in the data. However, in the presence of bridges, it seems reasonable to consider 
the dataset as consisting of two clusters. Whether overlapping clusters should be 
merged or considered as separate must surely be answered w.r.t. the specific domain. 
Practitioners should be aware how UMAP tends to behave in such settings: it 
typically breaks “bridges” apart and merges highly overlapping clusters.

4.4 � Quantitative analysis of further synthetic data

In addition to the qualitative analyses of these toy datasets we investigate further 
examples quantitatively in this paragraph. The datasets under consideration are 

Table 3   Characteristics of the FCPS datasets: the number of clusters n
c
 , the number of observations nobs , 

the number of features (dimensionality) p, and the problem as specified in corresponding papers (Thrun 
and Ultsch 2020; Ultsch and Lötsch 2020)

Name n
c

nobs p Problem

Hepta 7 212 3 Different variances
Lsun 3 400 2 Different variances and inter cluster distances
Tetra 4 400 3 Almost touching clusters
Chainlink 2 1000 3 Not linearly separable
Atom 2 800 3 Different variances and not linearly separable
EngyTime 2 4096 2 Gaussian mixture
Target 6 770 2 Outliers
TwoDiamonds 2 800 2 Cluster borders defined by density
Wingnut 2 1070 2 Density versus distance
Golfball 1 4002 3 No clusters at all
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those from the Fundamental Clustering Problem Suite (FCPS) (Ultsch 2005). These 
datasets are constructed such that they reflect specific clustering problems. Table 3 
shows key characteristics of these datasets and the problems they present. More 
details including visualizations can be found in the corresponding papers (Thrun and 
Ultsch 2020; Ultsch and Lötsch 2020). The datasets are provided as a supplement of 
Ultsch and Lötsch (2020)3.

The results of applying DBSCAN directly to the data and on 2D UMAP embed-
dings with k = 10 are shown in Table 4. Depicted are the highest achievable ARI 
and NMI values by approach and dataset as well as the �-range 𝜀[ARI>0] for which 
ARI is greater than zero.

The results show that DBSCAN alone already yields perfect clustering 
performance for the datasets Hepta, Lsun, Chainlink, Atom, Target, WingNut, and 
GolfBall. However, note that UMAP clearly reduces � sensitivity (much wider �-
range), i.e., it increases clusterability for Hepta, Lsun, Chainlink, Atom, Target. 
In contrast, on the datasets Tetra and TwoDiamonds, DBSCAN does not perform 
perfectly. These datasets represent problems (specified as “almost touching clusters” 
(Tetra) and “cluster borders defined by density” (TwoDiamonds)) with less clearly 
separable clusters. Consistent with the examples presented in Sect.  3.1, inferring 
the topological structure via UMAP not only drastically reduces � sensitivity of 
DBSCAN, it also improves clustering performance to (almost) perfect results in 
these examples.

However, inferring the relevant structure is not possible with UMAP in the set-
tings EngyTime and Target and thus it does not improve performance of DBSCAN, 
it even reduces it. This is consistent with the results of the previous subsections: 
EngyTime is a setting with clusters that overlap strongly, while the Target data is a 
setting with six clusters of which four are defined by a few outliers.

Table 4   Maximum ARI and 
NMI and � ranges corresponding 
to ARI > 0 for FCPS data

Data DBSCAN UMAP + DBSCAN

ARI NMI 𝜀[ARI>0] ARI NMI 𝜀[ARI>0]

Hepta 1 1 [0.0, 2.3] 1 1 [0.1, 19]
Lsun 1 1 [0.1, 0.7] 1 1 [0.1, 14]
Tetra 0.91 0.85 [0.2, 0.5] 0.99 0.99 [0.1, 7]
Chainlink 1 1 [0.0, 0.8] 1 1 [0.0, 7]
Atom 1 1 [0.8, 20] 1 1 [0.0, 13]
EngyTime 0.36 0.23 [0.0, 1] 0.29 0.26 [0.0, 0.9]
Target 1 0.97 [0.0, 2.3] 0.97 0.88 [0.0, 11]
TwoDiamonds 0.95 0.85 [0.0, 0.1] 1 1 [0.0, 4.7]
WingNut 1 1 [0.1, 0.3] 1 1 [0.0, 8.1]
GolfBall 1 NA [0.0, 20] 1 NA [0.0, 20]

3  They can be downloaded via http://​www.​mdpi.​com/​2306-​5729/5/​1/​13/​s1.

http://www.mdpi.com/2306-5729/5/1/13/s1
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In summary, the synthetic examples investigated in this and the previous section 
show that inferring the topological structure of a dataset can dramatically improve 
and simplify clustering: improvement in the sense that cluster detection with 
DBSCAN is considerably more reliable, and simplification in the sense that finding 
good parameters for DBSCAN becomes significantly less challenging: the suitable 
�-ranges are typically much wider, they consistently start near zero and ARI/NMI 
quickly reach their optimum in this range, so that a quick and simple coarse grid 
search over small values of � is likely to be successful. We emphasize that these 
conclusions apply for diverse and challenging synthetic data settings that include 
low- as well as high-dimensional data, data with equal and unequal cluster densities, 
data with (many) irrelevant features, clusters of arbitrary shape and not linearly 
separable clusters. In the following, we show that this also holds for several real 
datasets.

Table 5   Characteristics of 
the real datasets: the number 
of clusters n

c
 , the number of 

observations nobs , the number of 
features (dimensionality) p 

As in the ClusterGAN paper (Mukherjee et al. 2019) we investigate 
two versions of FMNIST: FMNIST-10 and FMNIST-5, the clusters 
in the latter are: 1: Tshirt/Top, Dress; 2: Trouser; 3: Pullover, Coat, 
Shirt; 4: Bag; 5: Sandal, Sneaker, Ankle Boot

Name n
c

nobs p

Iris 3 150 5
Wine 3 176 14
COIL 20 1440 16,385
Pendigits 10 10,992 17
MNIST 10 70,000 784
FMNIST-10 10 70,000 784
FMNIST-5 5 70,000 784

Table 6   Maximum ARI and NMI for the real datasets

Bold indicates the highest ARI/NMI value for the dataset
DBSCAN directly applied to the data and to 3D UMAP embeddings for k ∈ {5, 10, 15}. For the explored 
�-ranges, see Fig. 6

DBSCAN DBS+UMAP-5 DBS+UMAP-10 DBS+UMAP-15

ARI NMI ARI NMI ARI NMI ARI NMI

Iris 0.75 0.67 0.70 0.75 0.89 0.86 0.89 0.86
Wine 0.44 0.52 0.81 0.77 0.81 0.78 0.80 0.79
Pendigits 0.58 0.70 0.80 0.82 0.86 0.85 0.83 0.85
COIL 0.66 0.85 0.82 0.93 0.75 0.91 0.70 0.88
MNIST 0.00 0.00 0.69 0.70 0.90 0.85 0.87 0.85
FMNIST-10 0.00 0.00 0.41 0.59 0.40 0.54 0.38 0.54
FMNIST-5 0.00 0.00 0.60 0.62 0.75 0.71 0.63 0.63
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Fig. 6   ARI and NMI as functions of � for the real datasets. Parameters: k = 10 and d = 3 (UMAP); 
minPts = 5 , �-step-size = 0.01 (DBSCAN)
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5 � Experiments on real‑world data

An overview of the real datasets used in this study is given in Table 5. Since some 
of these datasets have already been used in other studies, we can investigate not only 
how the clustering performance of DBSCAN is improved if the topological structure 
of a dataset is inferred beforehand. We can additionally compare our results to those 
reported for other clustering methods. The set of datasets includes the well known 
Iris data (Anderson 1935; Fisher 1936), the Wine data (Aeberhard et al. 1994; Forina 
et al. 1988; Dua and Graff 2017), the Pendigits data (Alimoğlu and Alpaydin 2001; 
Dua and Graff 2017) as well as the COIL (Nane et al. 1996), MNIST (Lecun et al. 
1998) and fashion MNIST (FMNIST) (Xiao et al. 2017) data. Following Mukherjee 
et al. (2019), we use two different versions of FMNIST: one with the original ten 
clusters and a version reduced to five clusters which are pooled from the original ten 
based on their similarity. The results of applying DBSCAN directly to the datasets 
and to the embeddings obtained with UMAP are depicted in Fig. 6 and Table 6.

Figure  6 shows ARI and NMI as a function of � for the different datasets. 
Table 6 details the optimum ARI and NMI achieved within the considered �-ranges. 
We inferred the topological structure of the datasets for three different values of 
k ∈ {5, 10, 15} . Note that we did not tune UMAP at all and used min_dist = 0.1 , 
n_components = 3 and spectral initialization throughout. Iris and Wine data 
features were scaled respectively standardized.

In general, the results show that what has been observed for the synthetic exam-
ples also holds for real data. For all considered settings, inferring the topological 
structure of the dataset via UMAP before applying DBSCAN leads to better clus-
tering performances than applying DBSCAN directly, dramatically so for MNIST 
and FMNIST. Moreover, it reduces � sensitivity of DBSCAN with suitable �-ranges 
starting close to zero and with high ( > 0.5 ) ARI and NMI values for large parts of 

Table 7   Optimal ARI and NMI for some of the real datasets reported in other studies and the methods 
used

Bold indicates the highest ARI/NMI
The last two columns show the corresponding optimal performances achieved with DBSCAN and 
UMAP

Study Conf Data ARI NMI Method(s) ARI NMI
(DBS+UMAP)

Goebl et al. IEEE Pendigits NA 0.77 FOSSCLU 0.86 0.85
2014 Wine NA 0.87 FOSSCLU 0.80 0.79
Mautz et al. KDD Pendigits NA 0.77 FOSSCLU 0.86 0.85
2017 Wine NA 0.93 LDA-k-means 0.80 0.79
Mukherjee et al. AAAI Pendigits 0.65 0.73 ClusterGAN 0.86 0.85
2019 MNIST 0.89 0.90 ClusterGAN 0.90 0.85

FMNIST-10 0.50 0.64 ClusterGAN 0.41 0.59
FMNIST-5 0.48 0.59 ClusterGAN 0.75 0.71

GAN with bp
Hess et al. , 2019 AAAI MNIST NA 0.76 SPECTACL(N) 0.90 0.85
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the �-range. For DBSCAN directly applied to (F)MNIST, we additionally scanned 
the �-range [0, 100] with a step size of 0.1, but performance did not improve over 
this extended search grid.

We also investigate the effect of optimizing the separability by constructing 
embedding vectors instead of using the fuzzy edge weights directly for datasets 
Iris, Wine, COIL, and Pendigits. Clustering using UMAP’s fuzzy graph weights 
directly performs worse, as expected. On the Iris data, e.g., computing embedding 
vectors with UMAP-10 leads to optimal ARI/NMI = 0.89∕0.86 over an �-range 
of [0.67,  4.82] in contrast to 0.88/0.84 over [0.6,  0.61] if only the fuzzy graph 
weights of UMAP-10 are used. Both variants still yield better results than applying 
DBSCAN directly to the data (optimal ARI/NMI = 0.75∕0.67) . We found similar 
results for Wine, COIL, and Pendigits, see “Appendix C”.

In addition, our results show that the fast, simple and very easily tuneable 
approach we have proposed leads to comparable or superior clustering performances 
than recently proposed clustering methods such as ClusterGAN (Mukherjee et  al. 
2019) and SPECTACL(N) (Hess et al. 2019) in some settings. Table 7 lists the high-
est results obtained on the respective datasets in other studies (Goebl et  al. 2014; 
Mautz et al. 2017; Mukherjee et al. 2019; Hess et al. 2019). On Pendigits and FMN-
IST-5, DBSCAN applied to UMAP embeddings performs better than the best per-
forming methods FOSSCLU and ClusterGAN as reported by Goebl et  al. (2014), 
Mautz et al. (2017), and Mukherjee et al. (2019). On MNIST, comparable perfor-
mance is achieved w.r.t. ClusterGAN and better performance w.r.t. SPECTACL(N). 
Only for the Wine data and FMNIST-10 are better performances reported for meth-
ods FOSSCLU, LDA-k-means, and ClusterGAN.

It must be emphasised that these methods also require analysts to pre-specify a 
fixed number of clusters that are to be found. ClusterGAN’s optimal performances 
reported in Table 7 were achieved only if the true number of clusters was supplied 
(Mukherjee et  al. 2019). The performance on MNIST considerably deteriorated 
if the number of clusters was not correctly specified. Recall that one of the major 
advantages of DBSCAN is that it does not require pre-specifying the number of 
clusters, in contrast to the complexity of specifying and training ClusterGAN. It 
should be taken into account, first of all, that a suitable network architecture needs 
to be defined. Note that standard architectures specified elsewhere had to be adapted 
for ClusterGAN to achieve satisfactory performance.

In addition, the various hyperparameters for the GAN, the SGD optimizer and 
the generator-discriminator updating require substantial tuning. Finally, note that 
our approach works well in settings with both few and many clusters and for both 
small and large numbers of observations. This is also in contrast to ClusterGAN, 
which was “particularly difficult [... to train...] with only a few thousand data points” 
(Mukherjee et al. 2019, p. 4616).

These experiments show that the combination of DBSCAN and UMAP signifi-
cantly reduces the complexity of finding suitable parameterisations, even in real 
data. However, the question of how to choose a specific parameterisation requires 
further discussion, especially since in real exploratory settings there is usually no 
ground truth to compare the results with.
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First of all, it must be emphasised that hyperparameter tuning in unsupervised 
learning is in general a difficult and unsolved problem, and it is beyond the scope of 
this study to discuss it in detail. A comprehensive overview of the topic is provided 
by Zimmermann (2020). As outlined in Sect. 3.1, external evaluation and internal 
evaluation measures need to be distinguished in cluster analysis. In manifold learn-
ing, the performance is often evaluated by comparing the overlap of neighborhoods 
in the low-dimensional embedding to neighborhoods in the high-dimensional obser-
vation space. Overall, however, it remains largely unclear how to properly assess 
performance and evaluate results (Zimmermann 2020) and much work has been 
devoted to this question. For clustering see, for example, Ben-David and Acker-
man (2008), Vinh et al. (2010b), Rendón et al. (2011), Ullmann et al. (2022) and 
for manifold learning see, for example, Lee and Verleysen (2008), Lee and Verley-
sen (2009), Chen and Buja (2009), Rieck and Leitte (2015), Kraemer et al. (2018), 
Liang et al. (2020). In manifold learning, some work focuses specifically on hyper-
parameter tuning of certain methods (Alaız et al. 2015; Belkina et al. 2019, e.g.). In 
contrast, Herrmann and Scheipl (2020) investigate the tunability of different mani-
fold learning methods including UMAP and t-SNE, but with a focus on settings with 
a single connected manifold.

In the following, we briefly illustrate the complexity of the problem with a sim-
ple tuning experiment. Based on the Silhouette Coefficient (Rousseeuw 1987), we 
performed a grid search to jointly tune UMAP and DBSCAN. Optimizing a perfor-
mance measure over a grid of parameter settings is a common approach in hyper-
parameter tuning (Bischl et al. 2023). The Silhouette Coefficient takes into account 
the mean intra-cluster distance, i.e. the similarity of an object to its cluster (cohe-
sion), and the mean nearest-cluster distance, i.e. the (dis)similarity of an object to 
other clusters (separation), for each object in a dataset. To evaluate the clustering 
across all observations we use the Average Silhouette Width (ASW), which takes 
on values between −1 (worst performance) and 1 (best performance) (Rousseeuw 
1987). Since it has been argued above that the use of UMAP in combination with 
DBSCAN enhances the clusterability in terms of obtaining well-separable clusters, 
we would expect high ASW for parameterizations that well separate the data into 
distinct clusters (via UMAP) and that well detect these components (via DBSCAN).

The grid search was performed over different combinations of k and � . Since the 
experiments are computationally time demanding, only the datasets Iris, Wine, Pen-
digits and COIL were used in these experiments. UMAP embeddings were com-
puted for k ∈ {5, 10, 15, ..., 50} , which were then clustered with DBSCAN based on 
100 different values for � equally spaced in [0, 50]. The ASW was then computed 
for each combination of k and � . If a clustering resulted in only one cluster, we set 
the ASW to −1 , because it can only be computed for a clustering that yields at least 
two clusters. Figure 7 shows the results in terms of ASW as a function of � grouped 
by k. The dashed black line reflects the ASW curve obtained for DBSCAN applied 
directly to the data.

One could now (automatically) select the method parameters without further 
investigation and visualization by simply using the parameter combination that 
gives the highest ASW. The advantage of this approach is that it is simple and can 
be easily extended if other parameters of the two methods are to be included in 
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the optimization. For example, for the COIL data this results in a single optimal 
parameter configuration of kopt = 5 and �opt = 2.12 , and for Wine with kopt = 30 and 
�opt = 0.60.

However, we advise against this approach, firstly because the performance differ-
ences between different parameter combinations can be small, and secondly because 
there may not be a single optimal combination—as is the case for Iris and Pendigtis—
as can be seen in Fig. 1. Overall, the results show that high ASW values are obtained 
over large parts of the �-region and that the performance differences between different 
UMAP embeddings are small in the examples considered. More importantly, while the 
chosen parameterization may be optimal in terms of ASW, it may not actually be well 
suited to the problem at hand. In the Pendigits data, the parameter combination k = 20 
and � = 41.43—the first of several optimal �-values – yields an optimal ASW. The cor-
responding clustering, however, yields only two very unbalanced classes with 10968 
and 24 observations, respectively. Given that it is usually assumed that there are 10 
clusters, it is very questionable whether this is a desirable parameterization.

Fig. 7   Results of the hyperparameter tuning experiment: Average Silhouette Width (ASW) curves as 
a function of � and grouped by k. Colored, solid curves: UMAPk + DBSCAN� . Black, dashed curve: 
DBSCAN� applied directly to the data
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In summary, while tuning DBSCAN and UMAP based on grid search and internal 
evaluation measures may be helpful in practice, we advise against automatic selection 
of the parameterization. Instead of this naive approach, we would recommend using 
the results of a grid search to pre-select reasonable parameter configurations, which 
should then be evaluated in more detail, for example, by inspecting the corresponding 
embedding visualizations.

6 � Discussion

In summary, the presented results show that considering clustering from a topo-
logical perspective consistently simplified analysis and improved results in a wide 
range of settings: from a practical perspective, inferring the topological structure 
of datasets and representing this structure in suitable embedding vectors that are, 
in some sense, optimized for separability between the different connected com-
ponents (dramatically) increased clustering performances of DBSCAN, even out-
performing a highly complex deep learning-based clustering method, as long as 
the clusters did not exhibit large overlap. These insights suggest some concep-
tual conclusions and raise a number of fundamental questions for cluster analysis, 
which we will discuss in the following.

To begin with, we argue that two “perspectives” on cluster analysis should be 
more strictly distinguished: on the one hand, settings were the aim is to infer the 
number of connected components in a dataset (the “topological perspective”), 
and, on the other hand, settings where clusters may show considerable overlap 
(in the following the “probabilistic perspective”). If the “perspective” (implicitly) 
taken is not clearly specified, the results of a cluster analysis can be misleading. 
For example, in applied, exploratory analyses relevant information may be lost, 
while in methodological analyses method comparisons can be misleading.

Consider a truly unsupervised and exploratory setting (i.e. the true number of 
clusters is not known and determining it is a crucial part of the problem) in an 
applied context. From the “topological perspective” applying methods that yield 
a fixed, pre-specified number of clusters is highly questionable in this situation. If 
the number of clusters is determined a-priori for example via domain knowledge, 
the analysis cannot falsify these a-priori assumptions about the data and may hide 
any unexpected structure. This seems contradictory to the purpose of an explora-
tory analysis, where discovery of unexpected structures can yield valuable new 
insights. If, on the other hand, approaches such as elbow-plots of cluster qual-
ity metrics are used to determine the number of clusters nc in a data-driven way, 
methods inferring and enhancing connected components should be used in the 
first place.

Another issue concerns the evaluation of competing methods for clustering 
using datasets with label information. Label information can be misleading, 
in particular if it is (also) used to pre-specify nc , as the label information may 
not be consistent with the unconnected components of a dataset. Consider the 
FMNIST example, where a simple modification of label information—merging 
the original 10 into 5 broader categories— leads to considerably different results. 
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Note that this change of labels was not introduced here, but in Mukherjee et al. 
(2019). Since it requires no specialized domain knowledge to assess the general 
similarity of clusters in this dataset containing images of pieces of apparel, 
a change of labels is easy to do. But while this change did not improve the 
performance of ClusterGAN in terms of ARI and NMI by much, it considerably 
improves the performance of DBSCAN + UMAP. In other words: the labels were 
presumably changed such that they were much more consistent with the actual 
unconnected components—i.e. clusters—in the data. If only the original ten 
categories of clothing had been considered here, the method comparison would 
have been misleading, as the different ability of the methods to identify the (un)
connected components of the data would have gone unnoticed. The original label 
information arguably does not reflect the actual cluster structure of the data. This 
is likely to be the case in many labeled datasets.

On the other hand, consider settings with overlapping clusters. Taking the top-
ological perspective does not make a lot of sense here, as there are no uncon-
nected components if clusters (strongly) overlap and our investigations showed 
that it is in general questionable that it is possible to infer such cluster structure 
with methods which aim to infer connected components. In such settings, one 
should rather take a “probabilistic perspective” and assume that the data follow a 
joint multi-modal probability distribution, i.e., a mixture of probability distribu-
tions. Note that this usually implies some kind of domain knowledge from which 
it makes sense to assume such structure. Many prominent clustering methods 
such as k-means, Gaussian Mixture models, or approaches based on the EM algo-
rithm are based on this perspective. It has to be emphasised that our experiments 
on several widely used real world benchmark datasets showed that an approach 
based on the topological perspective, which does not use the true number of clus-
ters as a parameter, can perform comparable or even better than methods which 
do so.

These considerations raise some important questions. First of all, from a rather 
practical perspective: Is it fair to compare methods which require nc as a parameter 
with those which do not? How trustworthy is the widely used approach to evaluate 
clustering methods using labeled data? Is it at all useful to apply non-probabilistic 
clustering methods on data with assumed strong cluster overlap?

Moreover, from a rather general conceptual perspective: Can there be methods 
which work optimally both in settings with large cluster overlap and settings of high 
separability? As Schubert et al (2017, p. 19) state in that regard:

“To get deeper insights into DBSCAN, it would also be necessary to evaluate 
with respect to utility of the resulting clusters, as our experiments suggest that 
the datasets used do not yield meaningful clusters. We may thus be bench-
marking on the ‘wrong’ datasets (but, of course, an algorithm should perform 
well on any data).”

This already points to the problem of “wrong” datasets, while on the other hand they 
state a method should perform well in any setting. In the light of the insights pre-
sented here, we would argue that it is very fruitful to investigate the characteristics 
of settings in which a method or combinations of methods works specifically well or 
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even optimally. As outlined, we consider in particular high cluster overlap in con-
trast to well separable clusters examples of such settings. The underlying principles 
are fundamentally different (disconnected domains of the clusters versus connected 
domains of the clusters) and may require different, maybe even contradictory objec-
tives to be optimized. This is specifically relevant as a dataset may consist of both 
sorts of (assumed) structure. We think the insights and results presented here sup-
port this view.

7 � Conclusion

This work considered cluster analysis from a topological perspective. Our results 
suggest that the crucial issue in clustering is not the nominal dimension of the 
dataset or whether it contains many irrelevant features, but rather how separable 
the clusters are in the ambient observation space they are embedded in. Extensive 
experiments on synthetic and real datasets clearly show that focusing on the topo-
logical structure of the data can dramatically improve and simplify cluster analy-
sis both in low- and high-dimensional settings. To demonstrate this principle in 
practice, we used the manifold learning method UMAP to infer the connected 
components of the datasets and to create embedding vectors optimized for separa-
bility, to which we then applied DBSCAN.

Using synthetic data, we showed that this makes results much more robust to 
hyperparameters in a diverse set of problems including low-dimensional as well 
as high-dimensional data, data with equal and unequal cluster densities, data 
with (many) irrelevant features and clusters of arbitrary, not linearly separable 
shapes. The parameter sensitivity of DBSCAN was consistently and dramati-
cally reduced, simplifying the search for a suitable �-value. Moreover, the clus-
ter detection performance of DBSCAN was considerably improved compared to 
applying it directly to the data.

Experiments in real data settings corroborated these insights. In addition, our 
results showed that the simple approach of combining UMAP and DBSCAN can 
even outperform complex clustering methods SPECTACL and deep-learning-
based ClusterGAN on complex image data such as Fashion MNIST.

All these results were obtained with very little hyperparameter tuning for 
UMAP. In particular, we always used a small value for the number-of-near-
est-neighbors parameter denoted k in this work (in most of our experiments: 
k ∈ {5, 10, 15} ), markedly reducing the complexity of the parameter choice in 
density-based clustering. All other parameters where set to the default values. 
Based on a simple toy example we provided a detailed technical explanation why 
the choice of a small k is reasonable for the purpose of clustering.

Finally, we propose a conceptual differentiation of cluster analysis suggested 
by the topological perspective and the presented results. Specifically, we argue 
that settings with high cluster overlap in contrast to well separable clusters should 
be considered as fundamentally different settings which require different kinds of 
methods for optimal results, a distinction usually not made explicit enough. We 
also propose that using external label information to evaluate clustering solutions 
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should only be done if these labels actually correspond to the (un)connected com-
ponents of the data manifold from which observations are sampled. If this is not 
the case, we would argue that evaluation metrics diverge from what clustering 
algorithms should properly optimize for—identifying (un)connected compo-
nents—and results will be misleading.

We think these considerations point out important question to be investigated 
in future work.

Appendix A: Sampling variability

To assess the variability of clustering performance across different samples, we 
generated 50 datasets for each synthetic setting considered in Sect. 3.1, and computed 
clusterings via DBSCAN applied directly and to 2D UMAP-5 embeddings. Figure 8 
shows box plots of the resulting ARI & NMI distributions.

To compute the clusterings, we used (one of) the �-values that correspond to 
the optimal ARI values depicted in Fig. 1, i.e. �opt , but also examined the param-
eter values �opt + 0.2 and �opt − 0.2 . The optimal �-values for the four settings 
E100 , E1000 , U3 , and U1003 are—in this order—�opt = {11.32, 42.64, 0.9, 12.48} for 
DBSCAN applied directly to the data. For DBSCAN applied to 2D UMAP-5 
embeddings, we chose �opt = {0.24, 0.46, 1.41, 0.28} . For E1000 , U3 , and U1003 , this 
is the smallest �-value that gives the optimal ARI value, but note that there are 
multiple �-values that yield optimal ARI in these settings.

The results underline that applying DBSCAN to UMAP embeddings yields 
clearly better clustering performance. Overall, one obtains consistently bet-
ter average performances and much lower variability. In particular, the cluster-
ing performances obtained with DBSCAN + UMAP-5 are optimal for the setting 
E1000 , and close to optimal for U1003 , for most replications. Furthermore, despite 
using the smallest possible �opt , the results are again very robust to changes in � , 
both for ±0.2 for E1000 and U3 , and for +0.2 in the case of U1003.

Appendix B: Embedding variability

In Sect.  3.2, we showed that although the computation of embedding vectors 
induces some variability with respect to the meaningful �-range, it also leads 
to considerably improved separability and is therefore crucial from a clustering 
perspective. Here we provide additional experiments on this which are based 
on the synthetic settings from Sect.  3.1 and the three smallest ( nobs < 104 
observations) real datasets Iris, Wine, and COIL. We computed 25 embeddings 
for each of the datasets (and k values in the case of the real datasets) and 
corresponding clusterings on �-grids [0.01, 15] and [0.01, 25], respectively, with 
a step size of 0.01. For each �-value, the individual minimal, mean, and maximal 
ARI and NMI values are computed over the 25 replications. Figures  9 and 10 
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depict the corresponding minimum, mean, and maximum ARI and NMI curves. 
Note that the curves do not reflect a single embedding, but the worst/mean/
best case over all 25 embeddings for each individual �-value. In addition, the 
maximum ARI and NMI values obtained by applying DBSCAN directly to the 
data are shown as a black dashed horizontal line and the corresponding �-value as 
a black dashed vertical line.

Fig. 8   Distribution of ARI & NMI over 50 datasets repeatedly sampled for E100 - U1003
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In summary, the results again show that optimizing embedding vectors induces 
some variability with respect to the sensible �-range across different embeddings. 
However, this variability can be neglected if the main focus is on improving cluster 

Fig. 9   Maximum, mean and minimum ARI (left column) and NMI (right column) curves summarized 
over 25 embeddings of the four synthetic settings E100,E1000,U3,U1003 . Note, the curves do not reflect a 
single embedding, but the worst/mean/optimal case over all 25 embeddings for each individual �-value. 
The maximum ARI and NMI values obtained by applying DBSCAN directly to the data are shown as 
a black dashed horizontal line and the corresponding �-value as a black dashed vertical line. DBSCAN 
computed for � ∈ [0.01, 15] , step size: 0.01; minPts = 5
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detection. First of all, the variability does not affect the fact that the sensible �-ranges 
start near zero and quickly reach the optimal value, which is in stark contrast to 
DBSCAN directly applied to the data (see the black dashed horizontal and vertical 
lines, and Fig.  1). In addition, in all settings the mean ARI and NMI curves are 
higher on larger parts of the �-ranges as the maximum ARI and NMI for DBSCAN 
directly applied to the data. Note that, except for UMAP-5 on Iris and UMAP-15 on 
COIL, this holds for the minimum curves as well!

Appendix C: Using just the fuzzy graph weights versus using 
embedding vectors

Figure 11 shows ARI and NMI as a function of � for four of the real datasets. Cluster 
results were computed using just the fuzzy graph weights, without additionally 
computing embedding vectors. Converting the graph weights into dissimilarities 
via dij = 1 − vij , i ≠ j , means that the meaningful �-range is restricted to [0,  1]. 
Moreover, the sensible �-ranges (yielding optimal or high ARI/NMI values) are 
smaller than those resulting based on additionally optimized embedding vectors.

Here we shortly detail this effect for the Wine, COIL, and Pendigits data based on 
the UMAP-10 results. The Iris data results are exemplary discussed in Sect. 5.

For the Wine data, only computing the fuzzy graph with UMAP-10 leads to 
optimal ARI/NMI = 0.7∕0.61 for a single � = 0.5∕0.52 . In contrast, addition-
ally computing optimized embedding vectors leads to ARI/NMI = 0.81/0.78 for 
� ∈ [0.64, 0.69]∕[1.11, 1.16] . Unlike the Iris and Wine data, the optimal ARI/NMI 
value for the Pendigits and COIL data is only achievable for a single �-value. Using 
embedding vectors is nevertheless beneficial. To see this, consider that on Pendig-
its an ARI/NMI > 0.6 can be obtained over [0.17, 4.04]/[0.16, 4.13] with embed-
ding vectors. Only using the fuzzy graph would mean that an ARI > 0.6 is not at 
all achievable and NMI > 0.6 only for � ∈ [0.48, 0.56] . Similar holds for COIL, 
with ARI/NMI > 0.6 for � ∈ [0.25, 0.8]∕[0.18, 4.07] in contrast to [0.52,  0.68]/
[0.45, 0.79].

Again, it needs to be emphasized that only using the fuzzy graph still yields 
better results than applying DBSCAN directly to the data. For example, applying 
DBSCAN directly to the Wine data yields optimal ARI/NMI = 0.44∕0.52.

In summary, these investigations also show that computing embedding vectors 
optimized for separability on top of the fuzzy graph not only reduces parameter sen-
sitivity of the clustering method, but can also lead to a better clustering performance 
due to improved separability.

Fig. 10   Maximum, mean and minimum ARI (A) and NMI (B) curves summarized over 25 embeddings 
of the Iris, Wine, and COIL data. Note, the curves do not reflect a single embedding, but the worst/mean/
optimal case over all 25 embeddings for each individual �-value. The maximum ARI and NMI values 
obtained by applying DBSCAN directly to the data are shown as a black dashed horizontal line and the 
corresponding �-value as a black dashed vertical line. DBSCAN computed for � ∈ [0.01, 25] , step size: 
0.01; minPts = 5

▸



880	 M. Herrmann et al.

1 3



881

1 3

Enhancing cluster analysis via topological manifold learning

Appendix D: Real data embedding visualizations

Figure  12 shows 2D UMAP-10 embeddings of the real datasets under 
investigation. Colors correspond to the class labels. As can be seen, the inferred 
connected components clearly agree with the labels for the most of the datasets. 
In FMNIST this holds much better for the 5-label-set. However, note that 
although 3D embeddings are used in the experiments as they are better suited for 
cluster detection, they are less well suited for static visualizations (see Sect. 4). 
That is why we depict UMAP-10 embeddings optimized in two dimensions (i.e. 
d = 2 ) here.

Fig. 11   ARI and NMI as a function of � for four of the real datasets. Results obtained by applying 
DBSCAN on the fuzzy graph computed by UMAP (converted into a dissimilarity matrix via dij = 1 − vij , 
i ≠ j , with vij an edge weight). Embedding vectors optimized for separability have not been constructed. 
DBSCAN computed for � ∈ [0.01, 1.5] , step size: 0.01; minPts = 5
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